JP2856839B2 - Silicon purification method - Google Patents

Silicon purification method

Info

Publication number
JP2856839B2
JP2856839B2 JP12006090A JP12006090A JP2856839B2 JP 2856839 B2 JP2856839 B2 JP 2856839B2 JP 12006090 A JP12006090 A JP 12006090A JP 12006090 A JP12006090 A JP 12006090A JP 2856839 B2 JP2856839 B2 JP 2856839B2
Authority
JP
Japan
Prior art keywords
furnace
silicon
electrode
silica
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12006090A
Other languages
Japanese (ja)
Other versions
JPH0416504A (en
Inventor
憲吉 湯下
裕幸 馬場
復夫 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12006090A priority Critical patent/JP2856839B2/en
Publication of JPH0416504A publication Critical patent/JPH0416504A/en
Application granted granted Critical
Publication of JP2856839B2 publication Critical patent/JP2856839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシリコンの精製方法に係り、詳しくは太陽電
池用原料等として使用する高純度シリコンの製造方法で
ある。
The present invention relates to a method for purifying silicon, and more particularly, to a method for producing high-purity silicon used as a raw material for solar cells and the like.

〔従来の技術〕[Conventional technology]

太陽電池に使用される高純度シリコンは、たとえば比
抵抗が0.1Ωcm以上のものが使われるが、このようなシ
リコン(Si)では含まれる不純物含有量はppmオーダま
で除去する必要があり、これに対して従来種々の技術が
検討されているが、ボロン(B)及び炭素(C)は最も
除去しにくい元素である。
The high-purity silicon used in solar cells has a specific resistance of, for example, 0.1 Ωcm or more. However, such silicon (Si) requires the impurity content to be reduced to the order of ppm. On the other hand, although various techniques have been conventionally studied, boron (B) and carbon (C) are the most difficult elements to remove.

これに関してたとえば特開昭63−218506号公報には高
周波励起によって得られる熱プラズマ下でSiを溶融する
ことでBが除去されることが示されている。この方法で
は第1工程においてSiを高周波励起によるプラズマで溶
解し、第2工程では0.005〜0.05%の酸素(O2)と1〜9
9.995%の水素(H2)を含むArとの混合ガスをプラズマ
発生用ガスとしたプラズマで処理する方法が記載されて
いる。
In this regard, for example, Japanese Patent Application Laid-Open No. 63-218506 discloses that B is removed by melting Si under thermal plasma obtained by high-frequency excitation. In this method, in the first step, Si is dissolved by plasma excited by high frequency, and in the second step, 0.005 to 0.05% oxygen (O 2 ) and 1 to 9
A method of treating with a plasma using a mixed gas with Ar containing 9.995% hydrogen (H 2 ) as a plasma generation gas is described.

しかしながら、このような方法では、熱の利用効率の
悪いプラズマでSiの溶解、精製のすべてを行うため、経
済的に多大の負担が生じること、及びシリコンをプラズ
マで溶解した場合、溶融したシリコンの領域は比較的小
さな領域に限定されるため、生産性が悪く太陽電池用に
利用するための大量生産には不向きな技術であること
や、局部的にSiの温度か過上昇するため精練中のロス
(飛散、蒸発)が多くてプラズマガス中の酸素濃度を大
きくできない欠点があった。
However, in such a method, since all of melting and refining of Si are performed by using plasma having low heat utilization efficiency, a great burden is caused economically. Since the area is limited to a relatively small area, it is a technique that is not suitable for mass production for use in solar cells due to poor productivity, and it is being refined because the temperature of Si rises excessively locally. There is a disadvantage that the loss (scattering and evaporation) is large and the oxygen concentration in the plasma gas cannot be increased.

またCについては、たとえば特願昭61−132874に示さ
れるように、シリカ坩堝中で溶融したSiを減圧下でArガ
スを吹込むことで撹拌することで脱炭できることが示さ
れているが、この方法では脱炭速度が遅く生産性が悪い
欠点があった。
As for C, for example, as shown in Japanese Patent Application No. 61-132874, it has been shown that decarburization can be achieved by stirring Si melted in a silica crucible by blowing Ar gas under reduced pressure. This method has the disadvantage that the decarburization rate is low and the productivity is poor.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は前記従来技術の問題点を解決し、Si溶解と、
従来はその除去に多大なエネルギーと時間が必要であっ
たSi中のBとCの除去を経済的かつ簡便に行う方法を提
供するものである。
The present invention solves the above-mentioned problems of the prior art,
An object of the present invention is to provide a method for economically and easily removing B and C in Si, which has conventionally required a great deal of energy and time.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は上記課題を解決するために、中空孔を有する
上部電極を備えた直流アーク炉を用い、該電極の中空孔
を通して搬送ガスと共に粉粒状のシリコンを酸化性ガス
及び/又は粉末状のシリカあるいはフラックスとともに
該炉内に装入して溶解することを特徴とするシリコンの
精製方法を提供するものである。
In order to solve the above-mentioned problems, the present invention uses a DC arc furnace having an upper electrode having a hollow hole, and converts powdery silicon into oxidizing gas and / or powdery silica together with a carrier gas through the hollow hole of the electrode. Another object of the present invention is to provide a method for purifying silicon, which comprises charging into a furnace together with a flux to dissolve the silicon.

〔作用〕[Action]

本発明は前記課題を解決するために、高周波励起プラ
ズマに比べてエネルギー効率が高く経済的、かつ簡便に
使用できる直流アーク炉を用いてSiの溶解とB,Cの除去
を同時に行うものである。
The present invention, in order to solve the above-described problems, is to simultaneously dissolve Si and remove B and C using a DC arc furnace that has high energy efficiency and is economical and can be used easily as compared with high-frequency excitation plasma. .

本発明を図面を用いて説明する。第1図は本発明が実
施される装置の1例の縦断面図である。
The present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of an example of an apparatus in which the present invention is implemented.

図において、1は炉体、2は炉内張耐火物、3は炉
蓋、4は溶融Si、5は下部電極、6は中空孔を有する上
部電極、7は粉粒状Siホッパ、8は粉粒状Si、9は搬送
ガス導入口、10はアーク火点部、11は水冷部、12は粉粒
状シリコンの装入量調整用バルブ、13は搬送用ガス導入
量調節用バルブである。シリカ粉末、あるいはフラック
スは必要に応じて粉粒状シリコンと混合して炉内に装入
することができる。
In the figure, 1 is a furnace body, 2 is a furnace lining refractory, 3 is a furnace lid, 4 is molten Si, 5 is a lower electrode, 6 is an upper electrode having a hollow hole, 7 is a granular Si hopper, 8 is a powdery Si hopper. Granular Si, 9 is a carrier gas inlet, 10 is an arc-fired portion, 11 is a water-cooling unit, 12 is a valve for adjusting the amount of charged granular silicon, and 13 is a valve for adjusting the amount of carrier gas introduced. The silica powder or the flux can be mixed with the particulate silicon as required and charged into the furnace.

本発明の方法は第1図に示したように一対の電極の一
方を炉底に装着し、もう一方を炉上部より挿入する構造
の直流アーク炉を用い、後者の電極を中空としてこの中
空孔より、粉あるいは粉状に粉砕されたSiを酸化性ガ
ス、あるいはシリカとともに、該電極間に形成される超
高温のアーク火点部に搬送ガスにより装入することで、
Siの溶解とB,Cの酸化による除去を同時に進行させるも
のである。
The method of the present invention uses a DC arc furnace having a structure in which one of a pair of electrodes is attached to a furnace bottom and the other is inserted from the upper part of the furnace as shown in FIG. By charging the powder or the powdered Si together with the oxidizing gas or silica together with the carrier gas into the ultra-high-temperature arc firing point formed between the electrodes,
This is to simultaneously promote the dissolution of Si and the removal of B and C by oxidation.

この処理の雰囲気は通常大気圧下で行うが、減圧下で
行えばB,Cの除去効果はさらに高くなる。
The atmosphere for this treatment is usually carried out under atmospheric pressure, but when carried out under reduced pressure, the effect of removing B and C is further enhanced.

固体のSiをアークなどで溶解するには、溶解そのもの
に時間とエネルギーが必要であり、さらに、Si中のB、
Cなどを除去する精練反応を行うには、通常はSiが完全
に溶解後に行うことになる。
In order to melt solid Si with an arc or the like, the melting itself requires time and energy, and furthermore, B in Si,
In order to carry out a scouring reaction for removing C and the like, it is usually carried out after Si is completely dissolved.

しかしながら本発明のように粉粒状の固体Siを連続的
に供給しながら溶解と精製を同時に行えると、作業は非
常に簡単になり経済的に有利となる。
However, if the melting and refining can be performed simultaneously while continuously supplying the powdered solid Si as in the present invention, the operation becomes very simple and economically advantageous.

このような目的には本発明のように一対の電極の片側
を炉底に装着し、反射側を炉上部から挿入する直流アー
ク炉は非常に有利な作用をもたらす。すなわち、炉上部
から炉内に挿入される電極を中空電極とし、この中空孔
より粉粒状のSiを連続的にアーク火点部に装入すること
で、Siは連続的に溶解でき、溶解されたSiは炉底に溜っ
て電極の作用をする。この場合電力として直流を用いる
ことでアーク火点部は数千度の高温になっており、Siが
溶融すると直ちに脱ボロン、脱炭素反応が進行する。こ
のようなことを有利に行うには、添加する粉粒状Siの粒
度は直径10mm以下のものが望ましい。また、B,Cは酸化
物ガスとして除去されると考えられ、Siと同時に何らか
の酸化剤を供給するとが必要である。これに対して実験
からは、SiのキャリヤガスとしてArを用い、これに少量
の水蒸気(H2O)、酸素(O2)、などの酸化性ガスを添
加するか、または粉末状のシリカを添加することが有効
であることがわかった。シリカ(SiO2)はB,Cを酸化し
得るO2を保有するが、他はSiのみで不純物を持ち込まな
い。またこのシリカの添加は供給するシリコン粉末を部
分的に酸化して供給しても同等の効果を得ることができ
る。
For such a purpose, a DC arc furnace in which one side of a pair of electrodes is mounted on the furnace bottom and the reflection side is inserted from the furnace top as in the present invention has a very advantageous effect. In other words, the electrode inserted into the furnace from the upper part of the furnace is a hollow electrode, and Si is continuously melted and melted by continuously charging powdery and granular Si into the arc firing point from the hollow hole. The deposited Si accumulates at the furnace bottom and acts as an electrode. In this case, the direct current is used as the electric power, so that the temperature of the arc-fired portion is several thousand degrees high, and as soon as the Si is melted, the deboron and decarbonization reactions proceed. In order to carry out such an operation advantageously, the particle size of the granular Si to be added is desirably 10 mm or less in diameter. Further, it is considered that B and C are removed as oxide gases, and it is necessary to supply some oxidizing agent simultaneously with Si. On the other hand, experiments have shown that Ar is used as a carrier gas for Si, and a small amount of oxidizing gas such as water vapor (H 2 O) and oxygen (O 2 ) is added to this gas, or powdered silica is used. The addition was found to be effective. Silica (SiO 2 ) has O 2 that can oxidize B and C, but the others do not bring impurities with only Si. The same effect can be obtained by adding this silica even if the supplied silicon powder is partially oxidized and supplied.

また、炉の内張はCを除去しないときは黒鉛が使える
が、Cを除去する時はシリカあるいはシリカを主成分と
する耐火物を使用する。また、中空電極の材質には黒鉛
が用いられるが、この中空電極を陰極にとることで、電
極の消耗の影響は無視できる。
Graphite can be used for the lining of the furnace when C is not removed, but when C is removed, silica or a refractory containing silica as a main component is used. Graphite is used as the material of the hollow electrode, but by taking this hollow electrode as the cathode, the effect of electrode consumption can be ignored.

また、酸化性ガスを使用する場合には、中空電極の中
空孔にセラミックスチューブを装入し、この中にSi、酸
化性ガスを通すことで、酸化性ガスと黒鉛電極の反応を
避けることができる。酸化性ガスとしてはO2、H2O等が
好適に使用される。
When an oxidizing gas is used, a ceramic tube is inserted into the hollow hole of the hollow electrode, and Si and the oxidizing gas are passed through the tube to avoid a reaction between the oxidizing gas and the graphite electrode. it can. O 2 , H 2 O and the like are preferably used as the oxidizing gas.

また、Bの除去を促進しようとするときには、CaO、C
aF2、CaCl2などのフラックスをシリカ粉末と共にあるい
は単独で供給することで有効に行なえる。
When promoting the removal of B, CaO, C
This can be effectively achieved by supplying a flux such as aF 2 or CaCl 2 together with the silica powder or alone.

酸化性ガス及び粉末状シリカあるいはフラックスは、
それぞれ単独に、または併用して使用することができ
る。
Oxidizing gas and powdered silica or flux are
Each can be used alone or in combination.

〔実施例〕〔Example〕

第1図に示した構造をもち40kWの出力の直流電源を備
えた小型実験炉を用い、平均粒径3mmのSilkgをアルゴン
5/minを搬送ガスにして下記4条件下に60分で供給
し、溶解処理した。供給したSiのB濃度は15ppm、C濃
度は80ppmである。
Using a small experimental furnace equipped with a DC power supply with an output of 40 kW and having the structure shown in Fig. 1, Silkg with an average particle size of 3 mm was supplied in 60 minutes under the following four conditions using argon 5 / min as a carrier gas. Was dissolved. The supplied Si has a B concentration of 15 ppm and a C concentration of 80 ppm.

(1)雰囲気を大気圧とし、搬送ガスの水蒸気を100ml/
min添加した時の処理後のB,C濃度を第1表に実験No.1と
して示した。
(1) The atmosphere is set to the atmospheric pressure, and the water vapor of the carrier gas is 100 ml /
The B and C concentrations after the treatment when min was added are shown in Table 1 as Experiment No. 1.

(2)(1)と同じ方法で、搬送ガスにO2ガスを100ml/
min添加したときの処理後の結果を第1表に実験No.2と
して示した。
(2) In the same manner as (1), the carrier gas is O 2 gas at 100 ml /
The results after the treatment when min was added are shown in Table 1 as Experiment No. 2.

(3)(1)と同じ方法で、水蒸気の代わりに平均粒径
150μmのシリカ粉末を2g/minで添加したときの結果を
第1表に実験No.3として示した。
(3) In the same manner as (1), instead of water vapor, the average particle size
The results obtained when 150 μm silica powder was added at 2 g / min are shown in Table 1 as Experiment No. 3.

(4)(3)と同じ方向で、CaO/CaF2=1/1の混合フラ
ックスを1g/minでシリカ粉末の代りに供給した結果を第
1表の実験No.4として示した。
(4) The result of supplying a mixed flux of CaO / CaF 2 = 1/1 at 1 g / min instead of silica powder in the same direction as (3) is shown as Experiment No. 4 in Table 1.

(5)(1)と同じ方法で10-3気圧の減圧下で実験を行
ったときの結果を第1表に実験No.5として示した。
(5) The results obtained when the experiment was performed under the reduced pressure of 10 −3 atm by the same method as (1) are shown in Table 1 as Experiment No. 5.

何れの実験においても、処理後のB及びC濃度を大幅
に低下させることができた。
In each of the experiments, the B and C concentrations after the treatment were significantly reduced.

〔発明の効果〕〔The invention's effect〕

本発明により、Siを経済的かつ簡便な方法により精製
することができ、特に、本発明による精製処理のあとに
一方向凝固等の工程を配する場合の予備精製技術として
有効である。
According to the present invention, Si can be purified by an economical and simple method, and it is particularly effective as a preliminary purification technique when a step such as directional solidification is provided after the purification treatment according to the present invention.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施に用いられる装置の1例の縦断面
図である。 1……炉体、2……炉内張耐火物 3……炉蓋、4……溶融Si 5……下部電極、6……上部中空電極 7……粉粒状Siホッパ、8……粉粒状Si 9……搬送ガス導入口、10……アーク火点部 11……水冷部、12、13……バルブ
FIG. 1 is a longitudinal sectional view of an example of an apparatus used for carrying out the present invention. DESCRIPTION OF SYMBOLS 1 ... Furnace body, 2 ... Furnace lining refractory 3 ... Furnace lid, 4 ... Melted Si 5 ... Lower electrode, 6 ... Upper hollow electrode 7 ... Granular Si hopper, 8 ... Granular Si 9: Carrier gas inlet, 10: Arc flash point 11: Water-cooled section, 12, 13, Valve

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C01B 33/037Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) C01B 33/037

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】中空孔を有する上部電極を備えた直流アー
ク炉を用い、該電極の中空孔を通して搬送ガスと共に粉
粒状のシリコンを酸化性ガス及び/又は粉末状のシリカ
あるいはフラックスとともに該炉内に装入して溶解する
ことを特徴とするシリコンの精製方法。
1. A direct current arc furnace having an upper electrode having a hollow hole is used. In the furnace, powdery and granular silicon is mixed with an oxidizing gas and / or powdered silica or flux through a hollow hole of the electrode together with a carrier gas. A method for purifying silicon, wherein the method is carried out by dissolving in silicon.
JP12006090A 1990-05-11 1990-05-11 Silicon purification method Expired - Fee Related JP2856839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12006090A JP2856839B2 (en) 1990-05-11 1990-05-11 Silicon purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12006090A JP2856839B2 (en) 1990-05-11 1990-05-11 Silicon purification method

Publications (2)

Publication Number Publication Date
JPH0416504A JPH0416504A (en) 1992-01-21
JP2856839B2 true JP2856839B2 (en) 1999-02-10

Family

ID=14776898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12006090A Expired - Fee Related JP2856839B2 (en) 1990-05-11 1990-05-11 Silicon purification method

Country Status (1)

Country Link
JP (1) JP2856839B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011088953A1 (en) 2010-01-21 2011-07-28 Evonik Degussa Gmbh Process for decarburization of a silicon melt
WO2011088952A1 (en) 2010-01-21 2011-07-28 Evonik Degussa Gmbh Process for coarse decarburization of a silicon melt

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO180532C (en) * 1994-09-01 1997-05-07 Elkem Materials Process for removing contaminants from molten silicon
US7732012B2 (en) 2004-06-22 2010-06-08 Shin-Etsu Film Co., Ltd Method for manufacturing polycrystalline silicon, and polycrystalline silicon for solar cells manufactured by the method
CN104110957B (en) * 2013-04-18 2017-03-29 甘肃山丹腾达西铁冶金有限责任公司 A kind of stove interior-heat smelted for various special alloys converts formula arc metallurgy equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011088953A1 (en) 2010-01-21 2011-07-28 Evonik Degussa Gmbh Process for decarburization of a silicon melt
WO2011088952A1 (en) 2010-01-21 2011-07-28 Evonik Degussa Gmbh Process for coarse decarburization of a silicon melt
DE102010001094A1 (en) 2010-01-21 2011-07-28 Evonik Degussa GmbH, 45128 Method for decarburizing a silicon melt
DE102010001093A1 (en) 2010-01-21 2011-07-28 Evonik Degussa GmbH, 45128 Process for the coarse decarburization of a silicon melt

Also Published As

Publication number Publication date
JPH0416504A (en) 1992-01-21

Similar Documents

Publication Publication Date Title
JP3205352B2 (en) Silicon purification method and apparatus
JP4159994B2 (en) Method for purifying silicon, slag for silicon purification, and purified silicon
JP4523274B2 (en) High purity metallic silicon and its smelting method
JP5140835B2 (en) Manufacturing method of high purity silicon
JP4966560B2 (en) Manufacturing method of high purity silicon
CA2227693C (en) Method for removing boron from metallurgical grade silicon and apparatus
JPH10245216A (en) Production of silicon for solar cell
JP2856839B2 (en) Silicon purification method
JP2010100508A (en) Production method of high purity silicon
JP2846408B2 (en) Silicon purification method
JP2009114026A (en) Method for refining metal silicon
JPH10182134A (en) Refining of silicon
JPH07315827A (en) Method for purifying silicon and purifying device therefor
JPH1149510A (en) Method for refining metal silicon and apparatus therefor
JPH05262512A (en) Purification of silicon
JP4274728B2 (en) Metal purification method
JPH07267624A (en) Purification of silicon and apparatus therefor
JP2004125246A (en) MELTING METHOD OF HIGH PURITY Si AND MELTER USED THEREFOR
CN113337745A (en) Device and method for preparing titanium-based alloy by melting titanium-containing slag
JP4512838B2 (en) Metal recovery method
JPH05139713A (en) Method and device for refining silicon
JPH10273374A (en) Purification of silicon
JPH05246706A (en) Method for purifying silicon and device therefor
JPH10212113A (en) Method for removing boron from metal silicon
CN112723358B (en) Method for reducing iron and removing phosphorus of industrial silicon

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees