JP3599520B2 - Stretched resin film - Google Patents

Stretched resin film Download PDF

Info

Publication number
JP3599520B2
JP3599520B2 JP2733697A JP2733697A JP3599520B2 JP 3599520 B2 JP3599520 B2 JP 3599520B2 JP 2733697 A JP2733697 A JP 2733697A JP 2733697 A JP2733697 A JP 2733697A JP 3599520 B2 JP3599520 B2 JP 3599520B2
Authority
JP
Japan
Prior art keywords
weight
calcium carbonate
film
parts
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2733697A
Other languages
Japanese (ja)
Other versions
JPH10212367A (en
Inventor
昌月 山中
和幸 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yupo Corp
Original Assignee
Yupo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yupo Corp filed Critical Yupo Corp
Priority to JP2733697A priority Critical patent/JP3599520B2/en
Priority to DE1998622684 priority patent/DE69822684T2/en
Priority to US09/012,737 priority patent/US6086987A/en
Priority to KR10-1998-0001976A priority patent/KR100481749B1/en
Priority to EP19980101156 priority patent/EP0855420B1/en
Priority to TW87100979A priority patent/TW418225B/en
Publication of JPH10212367A publication Critical patent/JPH10212367A/en
Application granted granted Critical
Publication of JP3599520B2 publication Critical patent/JP3599520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水性接着剤の初期接着性及び乾燥性に優れ、かつ水性インク及びインクジェットインク等の乾燥性にも優れた白色不透明なポリオレフィン系延伸樹脂フィルムに関するものである。
【0002】
【従来の技術】
平均粒径0.8〜4μmの炭酸カルシウム粉末を含有するポリプロピレン、高密度ポリエチレン等の結晶性ポリオレフィン樹脂組成物を基材とする延伸樹脂フィルムよりなる合成紙は知られており(特公昭60−36173号公報、特公平1−56091号公報)、市販品としても王子油化合成紙(株)よりユポFPG、ユポKPG、ユポSGS等の商品名で、又、フランスのアルジョベックス社よりPolyart−IIの商品名で市販されている。
【0003】
かかる合成紙に使用されている炭酸カルシウム粉末としては、乾式粉砕の平均粒径1〜10μmの重質炭酸カルシウム、合成法により得られた粒径0.03〜0.2μmの軽質炭酸カルシウム、乾式粉砕後の重質炭酸カルシウム粉末表面を脂肪酸金属塩等で処理したもの、アニオン系ポリマー分散剤を用いて水性媒体中に分散し、湿式粉砕した後、乾燥して得た分散剤付着炭酸カルシウム粒子等が用いられている。
【0004】
乾式粉砕して得た重質炭酸カルシウム粒子はその平均粒径が1μm以上と大きく、そのためフィルムの延伸により重質炭酸カルシウム粒子を核として発生した空孔(ボイド)、および表面亀裂が大きく、インクジェットインクが亀裂に沿って浸透してインクのニジミが生じ、得られる画像が不鮮明となるので、インクジェット用紙には使用出来ない。
更に、脂肪酸金属塩等を用いて乾式粉砕中に表面処理したものは、結晶性ポリオレフィンに配合した場合には炭酸カルシウム粒子の分散性の向上はあるものの、インクジェットインクの定着能に乏しい。
【0005】
また、アニオン系の分散剤を用いて水性媒体中に分散した炭酸カルシウムを粉砕処理し、乾燥して得たものは1次粒子への解砕が困難であり、2次凝集が多く、延伸工程での延伸切れや、2次凝集による表面突起が多くなり印刷性が悪くなる等の欠点が有った。
更に、軽質炭酸カルシウムは平均粒径が0.2μm以下と小さい為、ポリオレフィン樹脂へ配合した場合分散不良に依る2次凝集が多くなり、前記アニオン系分散剤に依る表面処理炭酸カルシウムを用いた場合と同様の欠点を有していた(特公平6−55549号公報、同5−51900号公報)。
【0006】
【発明が解決しようとする課題】
本発明は、インクのニジミが無くインク定着能に優れ、かつインク乾燥性の優れたインクジェットプリンター用紙や、水性接着剤の初期接着性や乾燥性に優れたグルーラベル用紙に適した白色不透明な延伸樹脂フィルムを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者は、(A)結晶性ポリオレフィン樹脂30〜80重量%、(B)炭酸カルシウム粒子100重量部を、ジアリルアミン塩及びアルキルアリルアミン塩より選ばれたアミン塩10〜95モル%とアクリルアミド及びメタクリルアミドより選ばれたアミド90〜5モル%との共重合体よりなる分散剤0.05〜2重量部の存在下、水性媒体中で湿式粉砕し、更にこの粉砕物を一価アルコールのアルキレンオキサイド付加物のスルホン酸塩、アルキルスルホン酸塩及びアルキルベンゼンスルホン酸塩より選ばれたスルホン酸塩0.5〜10重量部で水性媒体中で処理し、次いで乾燥した平均粒径が0.3〜2μmの炭酸カルシウム粒子70〜20重量%を含有する樹脂組成物を基材とする樹脂フィルムを、上記成分(A)の結晶性ポリオレフィン樹脂の融点より低い温度で延伸して得られる延伸樹脂フィルムを提供するものである。
【0008】
【作用】
炭酸カルシウムの平均粒径を0.3〜2μmに調製し、かつ湿式粉砕中に於いてこの粒子にアミノ基を付加させ、更にその表面に帯電防止性を有するスルホン酸塩類で処理した炭酸カルシウム粒子をポリオレフィンに配合し、これを延伸することによって、親水性を持った微細な(B)成分の炭酸カルシウムが得られた延伸樹脂フィルムの表面から突出するとともに、この(B)成分の粒子を核として微細な亀裂が多数作り出されることにより、水性インクや水性接着剤の吸水性が向上し、乾燥性が早く、かつ印字適性にも優れる延伸樹脂フィルムとなる。
【0009】
【発明の実施の形態】
(A)結晶性ポリオレフィン樹脂
白色不透明な延伸樹脂フィルムの基材樹脂となる結晶性ポリオレフィンとしては、結晶化度が10〜75%、好ましくは20〜75%のものであって、炭素数が2〜8のα−オレフィン、例えば、エチレン、プロピレン、ブテン−1、ヘキセン−1、ヘプテン−1、オクテン−1、4−メチル−ンテン−1、3−メチル−ンテン−1等の単独重合体、或いはこれらα−オレフィンの二種以上の共重合体が挙げられる。
【0010】
共重合体は、ランダム共重合体でもブロック共重合体でもよい。具体的には、密度が0.890〜0.970g/cm3 、メルトフローレート(190℃、2.16kg加重)が1〜10g/10分の分岐ポリエチレン、直鎖状ポリエチレン、メルトフローレート(230℃、2.16kg加重)が0.2〜8g/10分のプロピレン単独重合体、プロピレン・エチレン共重合体、プロピレン・ブテン−1共重合体、プロピレン・エチレン・ブテン−1共重合体、プロピレン・4−メチル−ンテン−1共重合体、プロピレン・3−メチル−ンテン−1共重合体、ポリブテン−1、ポリ(4−メチル−ンテン−1)、プロピレン・エチレン・3−メチル−ンテン−1共重合体等が挙げられる。
これらの中でもプロピレン単独重合体、密度が0.950〜0.970g/cm3 の高密度ポリエチレンが安価で、結晶化度が高いので好ましい。
【0011】
(B)湿式粉砕表面処理炭酸カルシウム粒子
(B)成分の炭酸カルシウム粒子は、粒径が10〜50μmと比較的大きい重質炭酸カルシウム粒子100重量部を、ジアリルアミン塩及びアルキルアミン塩より選ばれたアミン塩10〜95モル%とアクリルアミド及びメタクリルアミドより選ばれたアミド90〜5モル%との共重合体よりなる分散剤0.05〜2重量部の存在下、水性媒体中で湿式粉砕し、次いで粉砕物を更に帯電防止性能を有する、一価アルコールのアルキレンオキサイド付加物のスルホン酸塩、アルキルスルホン酸塩及びアルキルベンゼンスルホン酸塩より選ばれたスルホン酸塩0.5〜10重量部で、水性媒体中で処理し、次いで乾燥して得た、平均粒径が0.3〜2μmの炭酸カルシウムである。
【0012】
原料の炭酸カルシウムとしては、乾式粉砕により得た重質炭酸カルシウム粒子、分級、篩い分けされた重質炭酸カルシウム粒子等が使用される。この炭酸カルシウム粒子を水性媒体中に分散させる。
本発明で分散剤として用いる水溶性カチオン系共重合体は、ジアリルアミン塩及びアルキルアリルアミン塩より選ばれたアミン塩(a)10〜95モル%、好ましくは50〜80モル%と、アクリルアミド及びメタクリルアミドより選ばれたアミド(b)90〜5モル%、好ましくは50〜20モル%との共重合体である。
【0013】
分散剤を構成するアルキルアリルアミン塩としては、炭素数1〜8のアルキル基、好ましくは炭素数1〜4のアルキル基を有するものが挙げられる。又、ジアリルアミン及びアルキルアリルアミン塩としては、塩酸、硫酸、硝酸、酢酸等の無機ないし有機酸によりアミノ基の部位が塩になっているものである。この分散剤としての水溶性カチオン系共重合体の原料は、アミン塩(a)とアミド(b)の他に、他の共重合成分、例えば、N−ビニルピロリドン、(メタ)アクリル酸2−ヒドロキシエチルエステル、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸ブチルエステル等を用いてもよい。
該水溶性カチオン共重合体分散剤の極限粘度は通常0.05〜3.00、好ましくは0.10〜1.80、特に好ましくは0.15〜0.70である。該カチオン共重合体分散剤は、特開平5−263010号公報に記載の方法により製造することができる。
【0014】
上記カチオン共重合体分散剤の存在下で重質炭酸カルシウムを湿式粉砕する。具体的には、炭酸カルシウム/水性媒体(好ましくは水)との重量比が70/30〜30/70、好ましくは60/40〜40/60の範囲となるように炭酸カルシウムに水性媒体を加え、ここにカチオン共重合体分散剤を固形分として、炭酸カルシウム100重量部当たり0.05〜2重量部、好ましくは0.1〜1重量部添加し、常法により湿式粉砕する。さらに、上記範囲の量となるカチオン系共重合体分散剤を予め溶解してなる水性媒体を準備し、該水性媒体を炭酸カルシウムと混合し、常法により湿式粉砕してもよい。
湿式粉砕はバッチ式でも、連続式でもよく、サンドミル、アトライター、ボールミルなどの粉砕装置を使用したミル等を使用するのが好ましい。このように湿式粉砕する事により、平均粒径が0.3〜2μm、好ましくは0.3〜1μmの炭酸カルシウム粒子が得られる。
【0015】
湿式粉砕品を乾燥する場合、乾燥前に、分級工程を設けて、350メッシュオンといった粗粉を除くことができる。乾燥は、熱風乾燥、粉噴乾燥など公知の方法により行うことができるが、媒体流動乾燥により行うのが好ましい。媒体流動乾燥とは、乾燥塔内で熱風(80〜150℃)により流動化状態にある媒体粒子群(流動層)に湿式粉砕品のスラリー状物質を供給し、供給されたスラリー状物質は、活発に流動化している媒体粒子の表面に膜状に付着しながら流動層内に分散され、熱風による乾燥作用を受けることにより各種物質を乾燥する方法である。
【0016】
このような媒体流動乾燥は、例えば、(株)奈良機械製作所製の媒体流動乾燥装置「メディア スラリー ドライヤー」等を用いて容易に行うことができる。この媒体流動乾燥を用いると乾燥と凝集粒子の解砕(1次粒子化)が同時に行われるので好ましい。
この方法で得られた湿式粉砕スラリーを媒体流動乾燥すると、粗粉量が極めて少ない炭酸カルシウムが得られる。しかしながら、媒体流動乾燥後、所望の方法で粒子の粉砕と分級とを行うことも有効である。一方、媒体流動乾燥の代わりに、通常の熱風乾燥により湿式粉砕品を乾燥した場合には、得られたケーキを更に所望の方法で粒子の粉砕と分級とを行うのがよい。
【0017】
この方法により得られた湿式粉砕品の乾燥ケーキは、潰れ易く、容易に炭酸カルシウム微粒子を得ることができる。従って乾燥ケーキを粉砕する工程をわざわざ設ける必要はない。このようにして得られた炭酸カルシウム微粒子を、更に一価アルコールのアルキレンオキサイド付加物のスルホン酸塩、アルキルスルホン酸塩及びアルキルベンゼンスルホン酸塩より選ばれたスルホン酸塩で、水性媒体中で処理する。
【0018】
前記、一価アルコールのアルキレンオキサイド付加物のスルホン酸塩は下記の式(1)で示されるスルホン酸塩であり、例えば、ナトリウム・ステアリル・ポリエチレンエーテル・スルホネート、ナトリウム・ブチル・ポリエチレンエーテル・ポリプロピレンエーテル・スルホネート等が挙げられる。
【化1】
RO(AO)mSO3 M ・・・・ (1)
〔式中、Rは炭素数2〜18のアルキル基、炭素数1〜10のアルキル基で置換されていても、置換されていなくてもよいアリール基を示す。Aは炭素数2〜4のアルキレン基を、Mは、Na、K、Liまたは4級アンモニウムイオンを示し、mは2〜20の数を示す。〕
【0019】
又、アルキルスルホン酸塩は下記の式(2)で示されるスルホン酸塩であり、例えば、ナトリウム・カプリル・スルホネート、ナトリウム・ステアリル・スルホネート等が挙げられる。
【化2】
R′−SO3 M ・・・・ (2)
〔式中、R′は炭素数6〜30のアルキル基を示し、MはNa、K、Liまたは4級アンモニウムイオンを示す。〕
【0020】
更に、アルキルベンゼンスルホン酸塩は下記の式(3)で示されるスルホン酸塩であり、例えば、ナトリウム・ドデシル・ベンゼン・スルホネート、ナトリウム・カプリル・ベンゼン・スルホネート等が挙げられる。
【化3】

Figure 0003599520
〔式中、R″は炭素数6〜23のアルキル基を示し、MはNa、K、Liまたは4級アンモニウムイオンを示す。〕
【0021】
水性媒体中で処理された上記微粒子炭酸カルシウムは、前記と同様の乾燥処理を行い、粗粉量の少ないスルホン酸塩で表面処理された平均粒径が0.3〜2μmの炭酸カルシウム粉体を得ることができる。
組成:
フィルム基材は(A)結晶性ポリオレフィン樹脂30〜80重量%、好ましくは45〜80重量%に(B)湿式粉砕法により得られた平均粒径0.3〜2μm、好ましくは0.5〜1μmの表面処理炭酸カルシウム粒子70〜20重量%、好ましくは55〜20重量%を含有する。
【0022】
結晶性ポリオレフィン樹脂(A)が30重量%未満、或いは、炭酸カルシウム粒子が70重量%を越えては肉厚が均一なフィルムを製造することが困難となる。又、結晶性ポリオレフィン樹脂が80重量%を越えては、或いは、炭酸カルシウム粒子が20重量%未満ではインクの乾燥性の促進、インクの密着性の向上が期待できない。
【0023】
これら、(A)、(B)成分の他に、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ナイロン6、ナイロン66等のポリオレフィン樹脂(A)の融点よりは高い融点(例えば210〜300℃)を有する有機フィラーを5〜30重量%、平均粒径1.5μm以下の酸化チタン、酸化亜鉛、硫酸バリウム、焼成クレー、珪藻土、等の顔料を10重量%以下配合してもよい。
更に、必要に応じて熱安定剤、紫外線安定剤、オレイン酸等の分散剤、滑剤等を各々、1重量%以下添加してもよい。
【0024】
延伸樹脂フィルムの製造:
(A)結晶性ポリオレフィン樹脂30〜80重量%と(B)上記の表面処理炭酸カルシウム粒子70〜20重量%を含有する樹脂組成物を基材とする樹脂フィルムを上記成分(A)の結晶性ポリオレフィン樹脂の融点より低い温度(好ましくは3〜60℃低い温度)で一軸方向、又は二軸方向に延伸することにより、フィルム表面に微細な亀裂を有し、フィルム内部に微細な空孔(ボイド)を有する微多孔性の白色不透明な延伸樹脂フィルムが得られる。
【0025】
この白色不透明な延伸樹脂フィルムは、次式で示される空孔率が10〜50%、密度が0.65〜1.20g/cm3 、不透明度(JIS P−8138)が80%以上、ベック平滑度(JIS P−8119)が50〜5000秒である物性を有する。
【数2】
Figure 0003599520
この白色不透明な延伸樹脂フィルムは、単層構造でも、上記延伸樹脂フィルムの層を最外層とし、これと他の樹脂フィルムとの積層フィルム構造であってもよい。
【0026】
積層フィルムの例としては、例えば、炭酸カルシウム微細粉末を0〜40重量%(好ましくは3〜33重量%)含有するポリオレフィン樹脂フィルムを、該樹脂の融点より低い温度で一方向に延伸して得られる一軸方向に配向したフィルムの両面に、(A)結晶性ポリオレフィン30〜80重量%、前記(B)成分の炭酸カルシウム粒子を70〜20重量%含有する本発明の樹脂組成物の溶融フィルムを積層し、次いで前記方向と直角の方向に、この積層フィルムを延伸することにより、延伸樹脂フィルムが紙状層(表・裏)として一軸方向に配向し積層する、微細な空隙を多数有するフィルムであり、基材層が二軸方向に配向した積層構造物の白色不透明な延伸樹脂フィルムが得られる。
【0027】
白色不透明な延伸樹脂フィルム(合成紙)の肉厚は、30〜300μm、好ましくは50〜250μmである。又、接着剤を用いて貼合することにより肉厚1mm程度のものも得ることができる。
延伸倍率は、縦、横方向とも4〜10倍が好ましく、延伸温度は樹脂がポリプロピレン単独重合体(融点164〜167℃)の場合は120〜162℃、高密度ポリエチレン(融点121〜134℃)の場合は100〜130℃の範囲である。
この白色不透明な延伸樹脂フィルム(合成紙)は、水性接着剤(グルー)を用いるラベル、インクジェットプリンター用記録紙、各種封筒類、吸水台紙、粘着ラベル、オフセット印刷用紙、グラビヤ印刷用紙等として有用である。
【0028】
【実施例】
以下に示す実施例によって、本発明を具体的に説明する。
〔水溶性カチオン重合体(分散剤)の製造〕
<参考例−1>
還流冷却器、温度計、滴下ロート、攪拌装置及びガス導入管を備えた反応器にジアリルアミン塩酸塩(60%)500部とアクリルアミド(40%)200部を入れ、窒素ガスを流入させながら系内温度を50℃に昇温した。攪拌下で重合開始剤、2,2−アゾピス(2−アミジノプロパン)ジヒドロクロライド(10%)40部を2時間おきに4回に分けて加えた。同温度で10時間反応を行って粘稠な淡黄色液状物を得た。
これを50g採り、500mlのアセトン中に注ぐと白色の沈殿を生じた。沈殿を濾別し、更に2回、100mlのアセトンで、よく洗浄した後、真空乾燥して白色固体状の水溶性カチオン分散剤を得た。得られた共重合体のGPCより求めた重量平均分子量は65万であった。
【0029】
<参考例−2>
還流冷却器、温度計、滴下ロート、攪拌装置およびガス導入管を備えた反応器にジアリルアミン塩酸塩(60%)200部とアクリルアミド(40%)40部及び水220部を入れ、窒素ガスを流入させながら系内温度を60℃に昇温した。攪拌下で重合開始剤、2,2−アゾビス(2−アミジノプロパン)ジヒドロクロライド(10%)40部を2時間おきに4回に分けて加えた。最初の開始剤を加えて1.5時間後から滴下ロートでアクリルアミド(18%)280部を4時間にわたり滴下した。開始剤添加終了後、2時間反応を続け粘稠な淡黄色液状物を得た。
これを50g採り、500mlのアセトン中に注ぐと白色の沈殿を生じた。沈殿を濾別し、更に2回、100mlのアセトンで、よく洗浄した後、真空乾燥して白色固体状の水溶性カチオン共重合体分散剤を得た。得られた共重合体のGPCより求めた重量平均分子量は26万であった。
【0030】
〔表面処理重質炭酸カルシウムの製造〕
<製造例−1>
平均粒径30μmの粗粒重質炭酸カルシウム(日本セメント社製乾式粉砕品)と水との重量比が40/60となるように配合し、ここに前記参考例1で製造した水溶性カチオン重合体分散剤を、重質炭酸カルシウム100重量部当たり0.06重量部加え、テーブル式アトライター型媒体攪拌ミルを用いて直径1.5mmのガラスビーズ、充填率170%、周速10m/秒で湿式粉砕した。
次いで、ナトリウム・ステアリル・ポリエチレンエーテル・スルホネートの1重量%水溶液400重量部を加え攪拌した。次いで、350メッシュのスクリーンを通して分級し、350メッシュを通過したスラリーを(株)奈良機械製作所MSD−200媒体流動乾燥機で乾燥した。得られた炭酸カルシウムをマイクロトラック〔日機装(株)製〕で測定した平均粒径は1.5μmであった。
また、その粉末を純水中に10重量%分散させた液のイオン伝導度は300μSであった。
【0031】
<製造例−2>
製造例−1に於いて、ナトリウム・ステアリル・ポリエチレンエーテル・スルホネートに変えて、ナトリウム・ドデシル・ベンゼン・スルホネートの1重量%水溶液を用いた他は、同様にして平均粒径1.5μmの炭酸カルシウム粉末を得た。またイオン伝導度は250μSであった。
【0032】
<製造例−3>
製造例−1に於いて、ナトリウム・ステアリル・ポリエチレンエーテル・スルホネートに変えて、東邦化学工業(株)製1重量%のアルキルスルホン酸ソーダ塩水溶液アンテックスSAS(商品名)に変えた他は、同様にして平均粒径1.5μmの炭酸カルシウム粉末を得た。またイオン伝導度は380μSであった。
【0033】
<製造例−4>
前記製造例−1と同様の割合に配合し、アトライター型媒体攪拌ミルの条件の内、攪拌時間を延長した他は製造例1と同様にして湿式粉砕し、スルホン酸塩処理した重質炭酸カルシウムを得た。
得られた炭酸カルシウムをマイクロトラックで測定した平均粒径は1.0μmであった。またイオン伝導度は340μSであった。
【0034】
<製造例−5>
前記製造例−1と同様の割合に配合し、アトライター型媒体攪拌ミルの条件の内、直径1.0mmのガラスビーズを用い製造例−4より更に攪拌時間を延長した他は製造例−1と同様にして湿式粉砕し、スルホン酸塩処理した重質炭酸カルシウムを得た。得られた炭酸カルシウムをマイクロトラックで測定した平均粒径は0.4μmであった。またイオン伝導度は420μSであった。
【0035】
<製造例−6>
平均粒径30μmの粗粒重質炭酸カルシウム(日本セメント社製乾式粉砕品)と水との重量比が40/60となるように配合し、ここに前記参考例−2で製造した水溶性カチオン共重合体分散剤を、重質炭酸カルシウム100重量部当たり0.06重量部加え、テーブル式アトライター型媒体攪拌ミルを用いて直径1.5mmのガラスビーズ、充填率170%、周速10m/秒で湿式粉砕し、製造例−1で用いたナトリウム・ステアリル・ポリエチレンエーテル・スルホネートを用いた他は同様にして、平均粒径1.5μmの炭酸カルシウムの粉末を得た。またイオン伝導度は320μSであった。
【0036】
(実施例−1)
(1)MFRが0.8g/10分、融点が164℃(DSCピーク温度)、結晶化度67%のポリプロピレン(三菱化学(株)社製)70重量%、高密度ポリエチレン重量%の混合物に前記製造例−1にて得られた平均粒子径1.5μmの炭酸カルシウムを22重量%を配合〔イ〕し、270℃に設定した押出機にて溶融混練した後、シート状に押し出し、冷却装置にて50℃まで冷却して無延伸シートを得た。このシートを135℃に加熱した後縦方向に5倍延伸した。
【0037】
(2)MFRが2g/10分のポリプロピレン(三菱化学社製)40重量%と前記製造例−1にて得られた平均粒子径が1.5μmの炭酸カルシウムを60重量%を配合〔ロ〕し、押出機にて270℃で溶融混練させた後、前記(1)の項にて製造して得られた5倍延伸シートの両面に2台の押出機を用いて積層した。
【0038】
この3層構造の積層シートを155℃の温度に加熱した後、テンター延伸機を用いて横方向に8倍の延伸樹脂フィルムを得た。次いで春日電機(株)製放電処理機を用いて50w/m2 ・分のコロナ処理を行って、3層構造の延伸樹脂フィルムを得た。この3層構造の延伸樹脂フィルムの各層(〔ロ〕/〔イ〕/〔ロ〕)の厚みは、20μm/60μm/20μmでベック平滑度800秒、密度0.78g/cm3 、空孔率35%、不透明度93%、であった。
【0039】
(比較例−1)
(1)MFRが0.8g/10分、融点が164℃(DSCピーク温度)、結晶化度67%のポリプロピレン(三菱化学社製)70重量%、高密度ポリエチレン8重量%の混合物に、平均粒径1.5μmの乾式粉砕されたイオン伝導度が63μSを示す重質炭酸カルシウム〔白石カルシウム(株)製〕を22重量%を配合〔イ〕し、270℃に設定した押出機にて溶融混練した後、シート状に押し出し、冷却装置により50℃まで冷却して、無延伸シートを得た。このシートを135℃に加熱した後、縦方向に5倍延伸した。
【0040】
(2)MFRが2g/10分のポリプロピレン(三菱化学社製)40重量%と平均粒径が1.5μmの乾式粉砕された重質炭酸カルシウム〔白石カルシウム(株)製〕を60重量%を配合〔ロ〕し、押出機にて270℃で溶融混練させた後、(1)の項にて製造して、得られた5倍延伸シートの両面に2台の押出機を用いて積層した。この3層構造の積層シートを155℃の温度に加熱した後、テンター延伸機を用いて横方向に8倍の延伸樹脂フィルムを得た。次いで春日電機(株)製放電処理機を用いて50w/m2 ・分のコロナ処理を行って、3層構造の延伸樹脂フィルムを得た。
この3層構造の延伸樹脂フィルムの各層(〔ロ〕/〔イ〕/〔ロ〕)の厚みは、20μm/60μm/20μmでベック平滑度450秒、密度0.70g/cm3 、空孔率41%、不透明度93%であった。
【0041】
(比較例−2)
(1)MFRが0.8g/10分、融点が164℃(DSCピーク温度)、結晶化度67%のポリプロピレン(三菱化学社製)70重量%、高密度ポリエチレン8重量%の混合物に、平均粒径0.15μmの合成されたイオン伝導度が89μSを示す軽質炭酸カルシウム(白石カルシウム社製)を22重量%を配合〔イ〕し、270℃に設定した押出機にて溶融混練した後、シート状に押し出し、冷却装置により50℃まで冷却して、無延伸シートを得た。このシートを135℃に加熱した後、縦方向に5倍延伸した。
【0042】
(2)MFRが2g/10分のポリプロピレン〔三菱化学社製〕40重量%と平均粒径が0.15μmの合成された軽質炭酸カルシウム(白石カルシウム社製)を60重量%を配合〔ロ〕し、押出機にて270℃で溶融混練させた後、(1)の項にて製造して得られた5倍延伸シートの両面に2台の押出機を用いて積層した。この3層構造の積層シートを155℃の温度に加熱した後、テンター延伸機を用いて横方向に8倍の延伸樹脂フィルムを得た。次いで春日電機(株)社製放電処理機を用いて50w/m2 ・分のコロナ処理を行って、3層構造の延伸樹脂フィルムを得た。
この3層構造の延伸樹脂フィルムの各層(〔ロ〕/〔イ〕/〔ロ〕)の厚みは、20μm/60μm/20μmであった。
【0043】
(実施例−2〜8)
実施例−1の各層の配合〔イ〕、〔ロ〕を表−1記載のものに変更した以外は実施例−1に記載の方法と同様の方法で積層延伸樹脂フィルムを得た。
【0044】
(実施例−9)
MFRが2g/10分、融点が164℃(DSCピーク温度)、結晶化度87%のポリプロピレン(三菱化学社製)70重量%、高密度ポリエチレン8重量%の混合物に、前記製造例−4にて得られた平均粒径1.0μmの炭酸カルシウムを22重量%配合した物を〔イ〕とし、MFRが20g/10分のポリプロピレン(三菱化学社製)40重量%と前記製造例−4にて得られた平均粒径が1.0μmの炭酸カルシウムを60重量%配合した物を〔ロ〕とし、これらを別々に押出機にて270℃で溶融混練し、配合物〔イ〕が中心層に、配合物〔ロ〕がその両側になる様に積層して共押出し、冷却装置により冷却して無延伸の3層構造のシートを得た。
【0045】
次いでこのシートを135℃に加熱した後、縦方向に5倍延伸した1軸延伸樹脂フィルムを得た。
更にこのフィルム表面に春日電機(株)製放電処理機を用いて50w/m2 ・分のコロナ処理を行って、3層構造の延伸樹脂フィルムを得た。この3層構造の延伸樹脂フィルムの各層(〔ロ〕/〔イ〕/〔ロ〕)の厚みは、20μm/60μm/20μmで、ベック平滑度950秒、密度0.85g/cm3 、空孔率29%、不透明度93%であった。
【0046】
(実施例−10)
実施例−9の配合及び層構造〔ロ〕/〔イ〕/〔ロ〕は、同条件で各層の厚みを変更した他は実施例−9と同方法で3層構造の1軸延伸シートを得た。
次いで、155℃に加熱し、テンター延伸機を用いて横方向に8倍の延伸を行って3層構造の2軸延伸樹脂フィルムを得た。
更にこのフィルム表面に春日電機(株)製放電処理機を用いて50w/m2 ・分のコロナ処理を行って、3層構造の延伸樹脂フィルムを得た。この3層構造の延伸樹脂フィルムの各層(〔ロ〕/〔イ〕/〔ロ〕)の厚みは、15μm/50μm/15μmでベック平滑度2000秒、密度0.70g/cm3 、空孔率42%であった。
【0047】
(比較例−3、4)
実施例−9の記載の方法に於いて配合物〔イ〕、〔ロ〕を表−2に記載のものに変更した以外は、実施例−9記載の方法と同様の方法にて積層延伸樹脂フィルムを得た。
【0048】
(比較例−5、6)
実施例−10記載の方法において配合物〔イ〕、〔ロ〕を表−2に記載のものに変更した以外は、実施例−10に記載の方法と同様の方法にて積層延伸樹脂フィルムを得た。
【0049】
実施例−1〜10及び比較例−1〜6で得た延伸樹脂フィルムの表面に、キャノン(株)の水性インクジェットプリンター(商品名:BJC−410C)を用い、専用インク(BCI−21)のイエロー、マゼンタ、シアン、ブラックのカラー印刷を施し、インクを乾燥した時間を調べたところ、表−1に示す乾燥時間であった。
次いで、印字された延伸樹脂フィルムの一部に、ニチバン(株)製粘着テープ「セロテープ」(商品名)を印字面上に強く接着させ、次いで接着面に沿ってすばやく粘着テープを剥離し、合成紙面上のインクの残存率は表−1に示す通りであった。水性接着剤の乾燥性の評価は下法によって実施した。
実施例及び比較例で得られた延伸樹脂フィルムを縦8cm、横8cmに断裁し、その表面に澱粉系接着剤〔常磐化学工業(株)製:トキワノール600(固形分33%)(商品名)〕をアプリケーターを用いて10μmの厚さに均一に塗布し、塗布した面の水分が浸透して光沢感が無くなる迄の時間を乾燥時間とした。
【0050】
【表1】
Figure 0003599520
【0051】
【表2】
Figure 0003599520
【0052】
【発明の効果】
本発明により、表面に親水性を持った微細な炭酸カルシウム粒子が突出するとともに、この炭酸カルシウムの粒子を核として微細な亀裂が多数作り出されることにより、水性インクや水性接着剤の吸水性が向上し、乾燥性が早く、かつ印字適性にも優れる延伸樹脂フィルム(合成紙)が得られた。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is directed to a white opaque polyolefin-based stretch that is excellent in the initial adhesiveness and drying property of a water-based adhesive, and is also excellent in the drying property of aqueous inks and inkjet inks. resin It is about a film.
[0002]
[Prior art]
Stretching based on a crystalline polyolefin resin composition such as polypropylene or high-density polyethylene containing calcium carbonate powder having an average particle size of 0.8 to 4 μm resin Synthetic paper made of a film is known (Japanese Patent Publication No. 60-36173, Japanese Patent Publication No. 1-56091), and commercially available from Oji Yuka Synthetic Paper Co., Ltd. as Yupo FPG, Yupo KPG, Yupo SGS, etc. The brand name is also French Aljobex It is marketed by the company under the trade name Polyart-II.
[0003]
As the calcium carbonate powder used in such synthetic paper, dry pulverization is used. During ~ Heavy calcium carbonate having an average particle size of 1 to 10 μm and a particle size of 0.03 to 0.2 μm obtained by a synthesis method. Light Calcium carbonate, a substance obtained by treating the surface of heavy calcium carbonate powder after dry milling with a fatty acid metal salt or the like, dispersing in an aqueous medium using an anionic polymer dispersant, wet milling, and then drying to obtain a dispersant Adhered calcium carbonate particles and the like are used.
[0004]
The heavy calcium carbonate particles obtained by dry pulverization have a large average particle size of 1 μm or more, and therefore have large pores (voids) generated by the heavy calcium carbonate particles as nuclei due to stretching of the film, and large surface cracks. The ink cannot penetrate along the cracks, causing bleeding of the ink and resulting in unclear images, and cannot be used for ink jet paper.
Further, those which have been subjected to surface treatment during dry pulverization using a fatty acid metal salt or the like have an improved dispersibility of calcium carbonate particles when blended with a crystalline polyolefin, but have poor fixing ability of an inkjet ink.
[0005]
In addition, calcium carbonate dispersed in an aqueous medium using an anionic dispersant is pulverized and dried to obtain a primary particle, which is difficult to disintegrate into primary particles, and has a large amount of secondary agglomeration. However, there were drawbacks such as stretching breakage in the film and surface protrusions due to secondary aggregation increasing the printability.
Furthermore, since the average particle size of light calcium carbonate is as small as 0.2 μm or less, secondary agglomeration due to poor dispersion increases when compounded with a polyolefin resin, and when surface-treated calcium carbonate using the anionic dispersant is used. (Japanese Patent Publication Nos. 6-55549 and 5-51900).
[0006]
[Problems to be solved by the invention]
The present invention provides white opaque stretching suitable for ink jet printer paper having excellent ink fixing ability without ink bleeding and excellent ink drying property, and glue label paper having excellent initial adhesiveness and drying property of an aqueous adhesive. It is intended to provide a resin film.
[0007]
[Means for Solving the Problems]
The inventor of the present invention has prepared (A) 30 to 80% by weight of a crystalline polyolefin resin, (B) 100% by weight of calcium carbonate particles, 10 to 95% by mole of an amine salt selected from diallylamine salts and alkylallylamine salts, and acrylamide and methacrylic acid. Wet pulverization in an aqueous medium in the presence of 0.05 to 2 parts by weight of a dispersant comprising a copolymer of 90 to 5 mol% of an amide selected from amides; Adduct sulfonate, alkyl Sulfone 70 to 20% by weight of calcium carbonate particles having an average particle diameter of 0.3 to 2 μm, which is treated with 0.5 to 10 parts by weight of a sulfonate selected from acid salts and alkylbenzene sulfonates, and then dried. The present invention provides a stretched resin film obtained by stretching a resin film having a resin composition containing as a base material at a temperature lower than the melting point of the crystalline polyolefin resin of the component (A).
[0008]
[Action]
Calcium carbonate particles having an average particle size of calcium carbonate adjusted to 0.3 to 2 μm, amino groups added to the particles during wet pulverization, and the surface thereof further treated with sulfonates having antistatic properties Is blended with a polyolefin and stretched to obtain fine (B) component calcium carbonate having hydrophilicity. resin By protruding from the surface of the film and by forming many fine cracks with the particles of the component (B) as a nucleus, the water absorption of the water-based ink or the water-based adhesive is improved, and the drying property is quick and the printing suitability is improved. It also becomes an excellent stretched resin film.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
(A) Crystalline polyolefin resin
As the crystalline polyolefin as a base resin of the white opaque stretched resin film, the degree of crystallinity is 10 to 75%, preferably 20 to 75%, and an α-olefin having 2 to 8 carbon atoms; For example, ethylene, propylene, butene-1, hexene-1, heptene-1, octene-1, 4-methyl- Pe Content-1,3-methyl- Pe Homopolymers such as benzene-1 and copolymers of two or more of these α-olefins.
[0010]
The copolymer may be a random copolymer or a block copolymer. Specifically, the density is 0.890 to 0.970 g / cm Three Branched polyethylene, linear polyethylene having a melt flow rate (190 ° C., 2.16 kg load) of 1 to 10 g / 10 min, and a melt flow rate (230 ° C., 2.16 kg load) of 0.2 to 8 g / 10 min. Propylene homopolymer, propylene / ethylene copolymer, propylene / butene-1 copolymer, propylene / ethylene / butene-1 copolymer, propylene / 4-methyl- Pe Content-1 copolymer, propylene-3-methyl- Pe -Butene-1 copolymer, polybutene-1, poly (4-methyl- Pe Content-1), propylene / ethylene / 3-methyl- Pe Content-1 copolymer and the like.
Among these, a propylene homopolymer having a density of 0.950 to 0.970 g / cm Three Is preferred because of its low cost and high crystallinity.
[0011]
(B) Wet pulverized surface-treated calcium carbonate particles
(B) component Charcoal The calcium acid particles are prepared by mixing 100 parts by weight of heavy calcium carbonate particles having a relatively large particle size of 10 to 50 μm with 10 to 95 mol% of an amine salt selected from diallylamine salts and alkylamine salts and acrylamide and methacrylamide. Wet grinding in an aqueous medium in the presence of 0.05 to 2 parts by weight of a dispersant comprising a copolymer with 90 to 5 mol% of the amide, Crushed material Having a further antistatic performance, a sulfonate of an alkylene oxide adduct of a monohydric alcohol, 0.5 to 10 parts by weight of a sulfonate selected from alkyl sulfonates and alkylbenzene sulfonates in an aqueous medium. Treated and then dried, having an average particle size of 0.3 to 2 μm Is calcium carbonate.
[0012]
As the raw material calcium carbonate, heavy calcium carbonate particles obtained by dry grinding, classified, sieved Heavy Calcium carbonate particles and the like are used. The calcium carbonate particles are dispersed in an aqueous medium.
The water-soluble cationic copolymer used as a dispersant in the present invention comprises 10 to 95 mol%, preferably 50 to 80 mol%, of an amine salt (a) selected from diallylamine salts and alkylallylamine salts, and acrylamide and methacrylamide. It is a copolymer with 90 to 5 mol%, preferably 50 to 20 mol% of the amide (b) selected from the above.
[0013]
Examples of the alkylallylamine salt constituting the dispersant include those having an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms. Also, diallylamine salt The alkylallylamine salt is a salt in which the amino group is converted to a salt with an inorganic or organic acid such as hydrochloric acid, sulfuric acid, nitric acid, and acetic acid. The raw material of the water-soluble cationic copolymer as the dispersant is, in addition to the amine salt (a) and the amide (b), other copolymer components such as N-vinylpyrrolidone, (meth) acrylic acid 2- Hydroxyethyl ester, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate and the like may be used.
The water-soluble cation system The intrinsic viscosity of the copolymer dispersant is usually 0.05 to 3.00, preferably 0.10 to 1.80, particularly preferably 0.15 to 0.70. The cation system The copolymer dispersant can be produced by the method described in JP-A-5-263010.
[0014]
The above cation system The heavy calcium carbonate is wet-ground in the presence of a copolymer dispersant. Specifically, the aqueous medium is added to calcium carbonate so that the weight ratio of calcium carbonate to the aqueous medium (preferably water) is in the range of 70/30 to 30/70, preferably 60/40 to 40/60. The cation here system 0.05 to 2 parts by weight, preferably 0.1 to 1 part by weight, per 100 parts by weight of calcium carbonate is added as a solid content of the copolymer dispersant, and wet pulverization is performed by a conventional method. Further, an aqueous medium prepared by previously dissolving the cationic copolymer dispersant having an amount in the above range may be prepared, and the aqueous medium may be mixed with calcium carbonate and wet-pulverized by a conventional method.
The wet pulverization may be a batch type or a continuous type, and it is preferable to use a mill using a pulverizing device such as a sand mill, an attritor, and a ball mill. By performing the wet pulverization in this way, the average particle size is reduced. 0.3-2μm , Preferably 0.3-1 μm calcium carbonate particles are obtained.
[0015]
When drying wet pulverized products Before the drying, a classification step is provided to remove coarse powder such as 350 mesh on. Drying can be performed by a known method such as hot-air drying or powder jet drying, but is preferably performed by medium fluidized drying. Fluid drying of a medium means that a group of medium particles (fluidized bed) in a fluidized state by hot air (80 to 150 ° C.) in a drying tower. Wet grinding products The slurry-like substance is supplied, and the supplied slurry-like substance is dispersed in the fluidized bed while adhering to the surface of the actively fluidized medium particles in a film form, and is subjected to a drying action by hot air to remove various substances. It is a method of drying.
[0016]
Such medium fluid drying can be easily performed using, for example, a medium fluid drying apparatus “Media Slurry Dryer” manufactured by Nara Machinery Co., Ltd. When this medium fluidized drying is used, drying and crushing of aggregated particles (primary particles Conversion) Are preferably performed at the same time.
When the wet pulverized slurry obtained by this method is fluidized and dried in a medium, calcium carbonate having an extremely small amount of coarse powder can be obtained. However, it is also effective to pulverize and classify the particles by a desired method after fluid drying of the medium. On the other hand, when the wet pulverized product is dried by ordinary hot air drying instead of the fluidized-flow drying of the medium, it is preferable that the obtained cake is further pulverized and classified by a desired method.
[0017]
The dry cake of the wet-ground product obtained by this method is easily crushed, and calcium carbonate fine particles can be easily obtained. Therefore, it is not necessary to provide a step of pulverizing the dried cake. The calcium carbonate fine particles thus obtained are further treated in an aqueous medium with a sulfonate selected from alkylene oxide adducts of monohydric alcohols, alkyl sulfonates and alkylbenzene sulfonates. .
[0018]
The sulfonate of the alkylene oxide adduct of a monohydric alcohol is a sulfonate represented by the following formula (1), for example, sodium stearyl polyethylene ether sulfonate, sodium butyl polyethylene ether polypropylene polypropylene ether -Sulfonates and the like.
Embedded image
RO (AO) mSO Three M ... (1)
[In the formula, R represents an alkyl group having 2 to 18 carbon atoms or an aryl group which may or may not be substituted with an alkyl group having 1 to 10 carbon atoms. A is an alkylene group having 2 to 4 carbon atoms, M is Na, K, Li or Quaternary ammonium ion And m represents a number of 2 to 20. ]
[0019]
The alkyl sulfonate is a sulfonate represented by the following formula (2), and includes, for example, sodium caprylic sulfonate, sodium stearyl sulfonate and the like.
Embedded image
R'-SO Three M ... (2)
[Wherein, R ′ represents an alkyl group having 6 to 30 carbon atoms, and M represents Na, K, Li or Quaternary ammonium ion Is shown. ]
[0020]
Further, the alkylbenzene sulfonate is a sulfonate represented by the following formula (3), for example, sodium dodecyl benzene sulfonate, sodium capryl benzene sulfonate, and the like.
Embedded image
Figure 0003599520
[Wherein, R ″ represents an alkyl group having 6 to 23 carbon atoms, and M represents Na, K, Li or Quaternary ammonium ion Is shown. ]
[0021]
The fine particle calcium carbonate treated in an aqueous medium, Similar to After drying, the average particle size of the surface treated with a sulfonate having a small amount of coarse powder is 0.3 to 2 μm. Charcoal A calcium acid powder can be obtained.
composition:
The film base material is (A) a crystalline polyolefin resin of 30 to 80% by weight, preferably 45 to 80% by weight, (B) an average particle size of 0.3 to 2 μm obtained by a wet grinding method, preferably 0.5 to 80% by weight. 1 μm surface treatment It contains 70 to 20% by weight, preferably 55 to 20% by weight of calcium carbonate particles.
[0022]
When the content of the crystalline polyolefin resin (A) is less than 30% by weight or the content of calcium carbonate particles exceeds 70% by weight, it becomes difficult to produce a film having a uniform thickness. On the other hand, if the crystalline polyolefin resin exceeds 80% by weight, or if the calcium carbonate particles are less than 20% by weight, the promotion of ink drying property and the improvement in ink adhesion cannot be expected.
[0023]
In addition to these components (A) and (B), it has a melting point (for example, 210 to 300 ° C.) higher than the melting point of polyolefin resin (A) such as polyethylene terephthalate, polybutylene terephthalate, polycarbonate, nylon 6, and nylon 66. Pigments such as titanium oxide, zinc oxide, barium sulfate, calcined clay, diatomaceous earth and the like having an organic filler of 5 to 30% by weight and an average particle diameter of 1.5 μm or less may be blended at 10% by weight or less.
Further, if necessary, a heat stabilizer, an ultraviolet stabilizer, a dispersant such as oleic acid, a lubricant and the like may be added in an amount of 1% by weight or less.
[0024]
Stretched resin film Manufacturing of:
(A) 30 to 80% by weight of a crystalline polyolefin resin and (B) Surface treatment A resin film based on a resin composition containing 70 to 20% by weight of calcium carbonate particles is uniaxially oriented at a temperature lower than the melting point of the crystalline polyolefin resin of component (A) (preferably at a temperature lower by 3 to 60 ° C.). Or by stretching in the biaxial direction, the film has fine cracks on the film surface and micropores with fine pores (voids) inside the film White Color opaque stretching resin A film is obtained.
[0025]
This white opaque stretch resin The film has a porosity represented by the following formula of 10 to 50% and a density of 0.65 to 1.20 g / cm. Three , Opacity (JIS P-8138) of 80% or more, and Beck smoothness (JIS P-8119) of 50 to 5000 seconds.
(Equation 2)
Figure 0003599520
This white opaque stretch resin Even if the film has a single-layer structure, resin The layer of the film may be the outermost layer, and a laminated film structure of the outermost layer and another resin film may be used.
[0026]
As an example of the laminated film, for example, a polyolefin resin film containing 0 to 40% by weight (preferably 3 to 33% by weight) of calcium carbonate fine powder is obtained by stretching in one direction at a temperature lower than the melting point of the resin. Both sides of the obtained uniaxially oriented film contain (A) 30 to 80% by weight of the crystalline polyolefin and 70 to 20% by weight of the calcium carbonate particles of the component (B). The resin composition of the present invention By laminating the molten film of, and then stretching this laminated film in a direction perpendicular to the above direction, Stretched resin film Paper layer (front / back) As It is a film with many fine voids that is oriented and laminated in a uniaxial direction, and a white opaque stretch of a laminated structure in which a base material layer is biaxially oriented. resin A film is obtained.
[0027]
White opaque stretch resin The thickness of the film (synthetic paper) is 30 to 300 μm, preferably 50 to 250 μm. Also, by laminating with an adhesive, a material having a thickness of about 1 mm can be obtained.
The stretching ratio is preferably 4 to 10 times in both the longitudinal and transverse directions. The stretching temperature is 120 to 162 ° C when the resin is a polypropylene homopolymer (melting point: 164 to 167 ° C), and the high-density polyethylene (melting point: 121 to 134 ° C). Is in the range of 100 to 130 ° C.
This white opaque stretch resin The film (synthetic paper) is useful as a label using an aqueous adhesive (glue), a recording paper for an ink jet printer, various envelopes, a water absorbing mount, an adhesive label, an offset printing paper, a gravure printing paper, and the like.
[0028]
【Example】
The present invention will be specifically described by the following examples.
[Water-soluble cation system Production of polymer (dispersant)]
<Reference Example-1>
500 parts of diallylamine hydrochloride (60%) and 200 parts of acrylamide (40%) are placed in a reactor equipped with a reflux condenser, a thermometer, a dropping funnel, a stirrer, and a gas inlet tube, and the system is filled with nitrogen gas. The temperature was raised to 50 ° C. Under stirring, a polymerization initiator, 40 parts of 2,2-azopis (2-amidinopropane) dihydrochloride (10%) was added in four portions every two hours. The reaction was carried out at the same temperature for 10 hours to obtain a viscous pale yellow liquid.
When 50 g of this was taken and poured into 500 ml of acetone, a white precipitate was formed. The precipitate was separated by filtration, washed well twice with 100 ml of acetone, and dried in vacuo to form a water-soluble cation as a white solid. system A dispersant was obtained. The weight average molecular weight of the obtained copolymer determined by GPC was 650,000.
[0029]
<Reference Example-2>
200 parts of diallylamine hydrochloride (60%), 40 parts of acrylamide (40%) and 220 parts of water were charged into a reactor equipped with a reflux condenser, a thermometer, a dropping funnel, a stirrer, and a gas inlet tube, and nitrogen gas was introduced. The temperature inside the system was raised to 60 ° C. while heating. Under stirring, a polymerization initiator, 40 parts of 2,2-azobis (2-amidinopropane) dihydrochloride (10%) was added in four portions every two hours. 1.5 hours after the addition of the first initiator, 280 parts of acrylamide (18%) was added dropwise from the dropping funnel over 4 hours. After completion of the initiator addition, the reaction was continued for 2 hours to obtain a viscous pale yellow liquid.
When 50 g of this was taken and poured into 500 ml of acetone, a white precipitate was formed. The precipitate was separated by filtration, washed well twice with 100 ml of acetone, and dried in vacuo to form a water-soluble cation as a white solid. system A copolymer dispersant was obtained. The weight average molecular weight of the obtained copolymer determined by GPC was 260,000.
[0030]
[Production of surface-treated heavy calcium carbonate]
<Production Example-1>
The weight ratio of coarse heavy calcium carbonate having an average particle diameter of 30 μm (dry-pulverized product manufactured by Nippon Cement Co., Ltd.) and water was blended to be 40/60, and the water-soluble cation prepared in Reference Example 1 was added thereto. system 0.06 parts by weight of the polymer dispersant was added to 100 parts by weight of heavy calcium carbonate, and glass beads having a diameter of 1.5 mm were filled using a table-type attritor-type medium stirring mill at a filling rate of 170% and a peripheral speed of 10 m / sec. And wet pulverized.
Then, a 1% by weight aqueous solution of sodium stearyl polyethylene ether sulfonate 400 weight And stirred. Next, the mixture was classified through a 350-mesh screen, and the slurry that passed through the 350-mesh was dried using an MSD-200 media fluidized dryer manufactured by Nara Machinery Co., Ltd. The average particle size of the obtained calcium carbonate measured by Microtrac (manufactured by Nikkiso Co., Ltd.) was 1.5 μm.
The ionic conductivity of a liquid in which the powder was dispersed at 10% by weight in pure water was 300 μS.
[0031]
<Production Example-2>
Calcium carbonate having an average particle size of 1.5 μm was prepared in the same manner as in Production Example 1, except that a 1% by weight aqueous solution of sodium dodecyl benzene sulfonate was used instead of sodium stearyl polyethylene ether sulfonate. A powder was obtained. The ionic conductivity was 250 μS.
[0032]
<Production Example-3>
In Production Example-1, sodium stearyl Polyethylene ether A calcium carbonate powder having an average particle size of 1.5 μm was obtained in the same manner as above except that a 1% by weight aqueous solution of sodium alkylsulfonate sodium salt Antex SAS (trade name) manufactured by Toho Chemical Industry Co., Ltd. was used instead of the sulfonate. Was. The ionic conductivity was 380 μS.
[0033]
<Production Example-4>
It was blended in the same ratio as in the above Production Example-1 and was mixed with the conditions of an attritor type medium stirring mill. , Except that the stirring time was extended, wet pulverization was performed in the same manner as in Production Example 1 to obtain heavy calcium carbonate treated with a sulfonate.
Average of the obtained calcium carbonate measured by Microtrac Particle size Was 1.0 μm. The ionic conductivity was 340 μS.
[0034]
<Production Example-5>
Except that the mixing ratio was the same as that of Production Example-1 and that the stirring time was further extended from Production Example-4 using glass beads having a diameter of 1.0 mm under the conditions of the attritor-type medium stirring mill. In the same manner as described above, heavy calcium carbonate which was wet-pulverized and treated with a sulfonate was obtained. Average of the obtained calcium carbonate measured by Microtrac Particle size Was 0.4 μm. The ionic conductivity was 420 μS.
[0035]
<Production Example-6>
The water-soluble cation produced by mixing the coarse heavy calcium carbonate having an average particle diameter of 30 μm (dry-ground product manufactured by Nippon Cement Co., Ltd.) and water in a weight ratio of 40/60, and producing the water-soluble cation prepared in Reference Example 2 above system The copolymer dispersant was added in an amount of 0.06 parts by weight per 100 parts by weight of heavy calcium carbonate, and glass beads having a diameter of 1.5 mm were filled using a table-type attritor-type medium stirring mill at a filling rate of 170% and a peripheral speed of 10 m / The average particle size is the same as above except that sodium-stearyl-polyethylene ether-sulfonate used in Production Example 1 is wet-ground in seconds. 1.5 A μm calcium carbonate powder was obtained. The ionic conductivity was 320 μS.
[0036]
(Example-1)
(1) 70% by weight of polypropylene (manufactured by Mitsubishi Chemical Corporation) having an MFR of 0.8 g / 10 min, a melting point of 164 ° C. (DSC peak temperature) and a crystallinity of 67%, and a high-density polyethylene 8 After mixing 22% by weight of the calcium carbonate having an average particle diameter of 1.5 μm obtained in Production Example 1 with the mixture of the above-mentioned weight%, the mixture was melt-kneaded with an extruder set at 270 ° C. Then, it was cooled to 50 ° C. by a cooling device to obtain a non-stretched sheet. After heating this sheet to 135 ° C., it was stretched 5 times in the machine direction.
[0037]
(2) 40% by weight of polypropylene (manufactured by Mitsubishi Chemical Corporation) having an MFR of 2 g / 10 minutes and 60% by weight of the calcium carbonate having an average particle diameter of 1.5 μm obtained in Production Example 1 described above [b] Then, the mixture was melt-kneaded at 270 ° C. in an extruder, and then laminated on both sides of the 5-fold stretched sheet obtained in the above section (1) using two extruders.
[0038]
After heating this three-layer laminated sheet to a temperature of 155 ° C., it is stretched eight times in the transverse direction using a tenter stretching machine. resin A film was obtained. Then, using a Kasuga Electric Co., Ltd. discharge treatment machine, 50 w / m Two ・ Three-layer structure stretching by corona treatment for minutes resin A film was obtained. Stretching of this three-layer structure resin The thickness of each layer ([b] / [b] / [b]) of the film is 20 μm / 60 μm / 20 μm, Beck smoothness 800 seconds, density 0.78 g / cm Three The porosity was 35% and the opacity was 93%.
[0039]
(Comparative Example-1)
(1) A mixture of 70% by weight of polypropylene (manufactured by Mitsubishi Chemical Corporation) having an MFR of 0.8 g / 10 min, a melting point of 164 ° C. (DSC peak temperature) and a crystallinity of 67%, and a high-density polyethylene of 8% by weight was averaged. Particle size 1.5 μm dry milled ionic conductivity shows 63 μS Heavy 22% by weight of calcium carbonate [manufactured by Shiroishi Calcium Co., Ltd.] was blended [A], melt-kneaded with an extruder set at 270 ° C, extruded into a sheet, and cooled to 50 ° C by a cooling device. An unstretched sheet was obtained. After heating this sheet to 135 ° C., it was stretched 5 times in the machine direction.
[0040]
(2) 40% by weight of polypropylene (manufactured by Mitsubishi Chemical Corporation) having an MFR of 2 g / 10 minutes and 60% by weight of dry-pulverized heavy calcium carbonate [manufactured by Shiroishi Calcium Co., Ltd.] having an average particle size of 1.5 μm. After blending [2] and melt-kneading at 270 ° C. with an extruder, the extruder was manufactured in the section of (1) and laminated on both sides of the obtained 5-fold stretched sheet using two extruders. . After heating this three-layer laminated sheet to a temperature of 155 ° C., it is stretched eight times in the transverse direction using a tenter stretching machine. resin A film was obtained. Then, using a Kasuga Electric Co., Ltd. discharge treatment machine, 50 w / m Two ・ Three-layer structure stretching by corona treatment for minutes resin A film was obtained.
Stretching of this three-layer structure resin The thickness of each layer ([b] / [b] / [b]) of the film is 20 μm / 60 μm / 20 μm, Beck smoothness 450 seconds, density 0.70 g / cm. Three The porosity was 41% and the opacity was 93%.
[0041]
(Comparative Example-2)
(1) A mixture of 70% by weight of polypropylene (manufactured by Mitsubishi Chemical Corporation) having an MFR of 0.8 g / 10 min, a melting point of 164 ° C. (DSC peak temperature) and a crystallinity of 67%, and a high-density polyethylene of 8% by weight was averaged. Particle size 22% by weight of 0.15 μm synthesized light calcium carbonate having a ionic conductivity of 89 μS (manufactured by Shiraishi Calcium Co., Ltd.) was blended [A] and melt-kneaded by an extruder set at 270 ° C. And cooled to 50 ° C. by a cooling device to obtain a non-stretched sheet. After heating this sheet to 135 ° C., it was stretched 5 times in the machine direction.
[0042]
(2) 40% by weight of polypropylene (manufactured by Mitsubishi Chemical Corporation) having an MFR of 2 g / 10 minutes and 60% by weight of synthesized light calcium carbonate (manufactured by Shiroishi Calcium Co.) having an average particle size of 0.15 μm [b] Then, the mixture was melt-kneaded at 270 ° C. in an extruder, and then laminated on both sides of the 5-fold stretched sheet obtained in the section (1) using two extruders. After heating this three-layer laminated sheet to a temperature of 155 ° C., it is stretched eight times in the transverse direction using a tenter stretching machine. resin A film was obtained. Then, using a discharge treatment machine manufactured by Kasuga Electric Co., Ltd., 50 w / m Two ・ Three-layer structure stretching by corona treatment for minutes resin A film was obtained.
Stretching of this three-layer structure resin The thickness of each layer ([b] / [a] / [b]) of the film was 20 μm / 60 μm / 20 μm.
[0043]
(Examples 2 to 8)
Laminating and stretching in the same manner as described in Example 1 except that the composition [a] and [b] of each layer in Example 1 were changed to those shown in Table 1. resin A film was obtained.
[0044]
(Example-9)
A mixture of 70% by weight of polypropylene (manufactured by Mitsubishi Chemical Corporation) having an MFR of 2 g / 10 minutes, a melting point of 164 ° C. (DSC peak temperature) and a crystallinity of 87%, and 8% by weight of high-density polyethylene was added to the above Production Example-4. Average obtained Particle size A mixture of 1.0 μm calcium carbonate and 22% by weight was designated as [A], and 40% by weight of polypropylene (manufactured by Mitsubishi Chemical Corporation) having an MFR of 20 g / 10 minutes and the average obtained in Production Example-4. Particle size The mixture prepared by blending 60% by weight of calcium carbonate of 1.0 μm was melted and kneaded at 270 ° C. with an extruder separately. Were laminated and co-extruded on both sides thereof, and cooled by a cooling device to obtain a non-stretched three-layer sheet.
[0045]
Then, after heating this sheet to 135 ° C., it is stretched uniaxially by stretching 5 times in the machine direction. resin A film was obtained.
Further, 50 w / m was applied to the surface of the film using a discharge treatment machine manufactured by Kasuga Electric Co., Ltd. Two ・ Three-layer structure stretching by corona treatment for minutes resin A film was obtained. Stretching of this three-layer structure resin The thickness of each layer ([b] / [a] / [b]) of the film is 20 μm / 60 μm / 20 μm, Beck smoothness 950 seconds, density 0.85 g / cm Three The porosity was 29% and the opacity was 93%.
[0046]
(Example-10)
The composition and layer structure [b] / [b] / [b] of Example-9 were the same as in Example-9 except that the thickness of each layer was changed under the same conditions. Obtained.
Next, the film is heated to 155 ° C. and stretched 8 times in the transverse direction using a tenter stretching machine to biaxially stretch a three-layer structure. resin A film was obtained.
Further, 50 w / m was applied to the surface of the film using a discharge treatment machine manufactured by Kasuga Electric Co., Ltd. Two ・ Three-layer structure stretching by corona treatment for minutes resin A film was obtained. Stretching of this three-layer structure resin The thickness of each layer ([b] / [b] / [b]) of the film is 15 μm / 50 μm / 15 μm, Beck smoothness 2000 seconds, density 0.70 g / cm Three And the porosity was 42%.
[0047]
(Comparative Examples-3 and 4)
Laminating and stretching by the same method as described in Example-9, except that the compounds [a] and [b] were changed to those described in Table-2 in the method described in Example-9. resin A film was obtained.
[0048]
(Comparative Examples-5 and 6)
Laminating and stretching in the same manner as described in Example-10, except that in the method described in Example-10, the compounds [a] and [b] were changed to those described in Table-2. resin A film was obtained.
[0049]
Stretching obtained in Examples -1 to 10 and Comparative Examples -1 to 6 resin Using a water-based inkjet printer (trade name: BJC-410C) of Canon Inc., color printing of yellow, magenta, cyan, and black inks (BCI-21) was performed on the surface of the film, and the ink was dried. Was the drying time shown in Table 1.
Then the printed stretch resin Nichiban Co., Ltd. adhesive tape "Cellotape" (trade name) is strongly adhered to the printing surface on a part of the film, and then the adhesive tape is quickly peeled off along the adhesive surface, and the residual ratio of ink on the synthetic paper surface Was as shown in Table 1. Evaluation of the drying property of the aqueous adhesive was carried out by the following method.
Stretching obtained in Examples and Comparative Examples resin The film was cut into a length of 8 cm and a width of 8 cm, and a starch-based adhesive [Tokiwanol 600 (solid content: 33%) (trade name) (trade name)] was applied to the surface to a thickness of 10 μm using an applicator. The drying time was defined as the time required for the coating to be applied uniformly and for the permeation of the water on the coated surface to disappear and the glossiness to disappear.
[0050]
[Table 1]
Figure 0003599520
[0051]
[Table 2]
Figure 0003599520
[0052]
【The invention's effect】
According to the present invention, fine calcium carbonate particles having hydrophilicity on the surface protrude, and a large number of fine cracks are created with the calcium carbonate particles as nuclei, thereby improving the water absorption of the water-based ink and the water-based adhesive. As a result, a stretched resin film (synthetic paper) having fast drying properties and excellent printability was obtained.

Claims (4)

(A)結晶性ポリオレフィン樹脂30〜80重量%、(B)炭酸カルシウム粒子100重量部を、ジアリルアミン塩及びアルキルアリルアミン塩より選ばれたアミン塩10〜95モル%とアクリルアミド及びメタクリルアミドより選ばれたアミド90〜5モル%との共重合体よりなる分散剤0.05〜2重量部の存在下、水性媒体中で湿式粉砕し、更にこの粉砕物を一価アルコールのアルキレンオキサイド付加物のスルホン酸塩、アルキルスルホン酸塩及びアルキルベンゼンスルホン酸塩より選ばれたスルホン酸塩の0.5〜10重量部で水性媒体中で処理し、次いで乾燥した平均粒径が0.3〜2μmの炭酸カルシウム粒子70〜20重量%、を含有する樹脂組成物を基材とする樹脂フィルムを、上記成分(A)の結晶性ポリオレフィン樹脂の融点より低い温度で延伸して得られる延伸樹脂フィルム。(A) 30 to 80% by weight of a crystalline polyolefin resin and (B) 100 parts by weight of calcium carbonate particles were selected from 10 to 95% by mole of an amine salt selected from diallylamine salts and alkylallylamine salts and from acrylamide and methacrylamide. Wet-milling in an aqueous medium in the presence of 0.05 to 2 parts by weight of a dispersant comprising a copolymer with 90 to 5 mol% of amide, and further crushing the sulfonic acid of an alkylene oxide adduct of a monohydric alcohol Calcium carbonate particles having an average particle diameter of 0.3 to 2 μm, which is treated in an aqueous medium with 0.5 to 10 parts by weight of a sulfonate selected from salts, alkyl sulfonates and alkylbenzene sulfonates, and then dried. A resin film containing a resin composition containing 70 to 20% by weight as a base material is prepared using the crystalline polyolefin resin of the above-mentioned component (A). Stretched resin film obtained by stretching at a temperature below the melting point of. 成分(B)の炭酸カルシウム10重量部をイオン交換水100重量部中に分散させた状態での分散液のイオン伝導度が、200μS以上を示すものである請求項1記載の延伸樹脂フィルム。The stretched resin film according to claim 1, wherein the ionic conductivity of the dispersion obtained by dispersing 10 parts by weight of the calcium carbonate of the component (B) in 100 parts by weight of ion-exchanged water is 200 µS or more. 式で示される空孔率が10〜50%のものである請求項1記載の延伸樹脂フィルム。
Figure 0003599520
The stretched resin film according to claim 1, wherein the porosity represented by the following formula is 10 to 50%.
Figure 0003599520
請求項1〜3のいずれかに記載の延伸樹脂フィルムを用いたグルーラベル用紙。A glue label paper using the stretched resin film according to claim 1.
JP2733697A 1997-01-23 1997-01-28 Stretched resin film Expired - Lifetime JP3599520B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2733697A JP3599520B2 (en) 1997-01-28 1997-01-28 Stretched resin film
DE1998622684 DE69822684T2 (en) 1997-01-23 1998-01-23 Synthetic paper and its use as inkjet printing paper
US09/012,737 US6086987A (en) 1997-01-23 1998-01-23 Synthetic paper and inkjet recording paper with the use of the same
KR10-1998-0001976A KR100481749B1 (en) 1997-01-23 1998-01-23 Synthetic paper and inkjet recording paper using it
EP19980101156 EP0855420B1 (en) 1997-01-23 1998-01-23 Synthetic paper and inkjet recording paper with the use of the same
TW87100979A TW418225B (en) 1997-01-23 1998-01-23 Synthetic paper and inkjet recording paper with the use of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2733697A JP3599520B2 (en) 1997-01-28 1997-01-28 Stretched resin film

Publications (2)

Publication Number Publication Date
JPH10212367A JPH10212367A (en) 1998-08-11
JP3599520B2 true JP3599520B2 (en) 2004-12-08

Family

ID=12218231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2733697A Expired - Lifetime JP3599520B2 (en) 1997-01-23 1997-01-28 Stretched resin film

Country Status (1)

Country Link
JP (1) JP3599520B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE496085T1 (en) 1998-10-12 2011-02-15 Yupo Corp POROUS RESIN FILM
JP2001151918A (en) * 1999-12-01 2001-06-05 Yupo Corp Porous resin film
JP4688339B2 (en) * 2000-04-26 2011-05-25 株式会社ユポ・コーポレーション Light reflector
JP4508470B2 (en) * 2000-05-26 2010-07-21 株式会社ユポ・コーポレーション Inkjet recording paper
JP4676651B2 (en) * 2001-06-29 2011-04-27 サンアロマー株式会社 Crystalline polyolefin-based resin composition containing supported nucleating agent composition
US7981503B2 (en) 2002-07-25 2011-07-19 Yupo Corporation Stretched resin film and label comprising the same
JP4864281B2 (en) * 2002-07-25 2012-02-01 株式会社ユポ・コーポレーション Resin stretched film
JP5072582B2 (en) 2006-12-28 2012-11-14 株式会社ユポ・コーポレーション Sealing paper, sealing method and sealed material
JP5689882B2 (en) * 2009-11-06 2015-03-25 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Inkjet recording material
KR102082537B1 (en) 2012-09-28 2020-02-27 가부시키가이샤 유포 코포레숀 Stretched resin film, method for producing same, and laminate using stretched resin film
JP6582217B1 (en) * 2018-08-06 2019-10-02 株式会社Tbm LAMINATED SHEET, METHOD FOR PRODUCING LAMINATED SHEET, AND MOLDED BODY
JP6962631B1 (en) * 2021-05-27 2021-11-05 株式会社Tbm Resin composition and molded product

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655549B2 (en) * 1985-10-15 1994-07-27 王子油化合成紙株式会社 Image receiving sheet for thermal transfer recording
JPH07120874A (en) * 1993-07-28 1995-05-12 Fuji Photo Film Co Ltd Substrate for photographic printing paper
JP3299826B2 (en) * 1993-10-05 2002-07-08 株式会社ユポ・コーポレーション White resin film with excellent printability
JPH07300568A (en) * 1994-05-02 1995-11-14 Fuaimatetsuku:Kk Production of fine inorganic powder
JP3509278B2 (en) * 1995-04-04 2004-03-22 株式会社ユポ・コーポレーション Laminated stretched thermoplastic resin film with excellent printability
JPH093793A (en) * 1995-04-17 1997-01-07 Sumitomo Chem Co Ltd Additive for paper manufacturing and production of copolymer useful as the same
JP3943159B2 (en) * 1995-05-31 2007-07-11 三菱製紙株式会社 Inkjet recording sheet
JP3853006B2 (en) * 1997-01-31 2006-12-06 株式会社ユポ・コーポレーション Water-based inkjet recording paper

Also Published As

Publication number Publication date
JPH10212367A (en) 1998-08-11

Similar Documents

Publication Publication Date Title
US6086987A (en) Synthetic paper and inkjet recording paper with the use of the same
KR100732903B1 (en) Image-receiving film for printing and heat transfer
JP3599520B2 (en) Stretched resin film
KR20010075346A (en) Thermoplastic resin film and label sheet comprising the same
WO2020235157A1 (en) Printing sheet and method for manufacturing printing sheet
JP4864281B2 (en) Resin stretched film
CN114072284B (en) Method for manufacturing printing paper Zhang Ji
KR102650984B1 (en) Printing sheets and methods of manufacturing printing sheets
JP3853006B2 (en) Water-based inkjet recording paper
JP6894654B1 (en) Manufacturing method of antibacterial printing sheet and antibacterial printing sheet
JP3600703B2 (en) Synthetic paper with excellent printability
JP4357108B2 (en) Image receiving film for printing and thermal transfer
US6863934B2 (en) Method of surface treatment of thermoplastic resin film
JP4478466B2 (en) Resin stretched film
JP6751946B2 (en) Printing sheet and manufacturing method of printing sheet
JP4354739B2 (en) Resin stretched film, label, adherend and container
JP4276908B2 (en) Resin stretched film with water-based coating layer
JP3973302B2 (en) Thermoplastic film for electrophotography
JP2001219661A (en) Image receiving film for thermal transfer
JP7004366B1 (en) Printing sheet and manufacturing method of printing sheet
JP7049733B1 (en) Election ballot and its manufacturing method
JP2000235275A (en) Electrophotographic thermoplastic resin film
JP4508470B2 (en) Inkjet recording paper
JP2002326465A (en) Image acceptive film for thermal transfer
JP2001226507A (en) Porous resin film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term