JP3598946B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP3598946B2
JP3598946B2 JP2000151946A JP2000151946A JP3598946B2 JP 3598946 B2 JP3598946 B2 JP 3598946B2 JP 2000151946 A JP2000151946 A JP 2000151946A JP 2000151946 A JP2000151946 A JP 2000151946A JP 3598946 B2 JP3598946 B2 JP 3598946B2
Authority
JP
Japan
Prior art keywords
supply device
air supply
fuel cell
oil
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000151946A
Other languages
English (en)
Other versions
JP2001332285A (ja
Inventor
和喜 荒巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000151946A priority Critical patent/JP3598946B2/ja
Publication of JP2001332285A publication Critical patent/JP2001332285A/ja
Application granted granted Critical
Publication of JP3598946B2 publication Critical patent/JP3598946B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、オイルフリー圧縮機を用いた燃料電池システムに関する。
【0002】
【従来の技術】
従来の燃料電池システムとしては、例えば、図12に示すように、オイルフリー圧縮機(オイルレス圧縮機とも呼ばれる)101を用いて圧縮空気を燃料電池103に供給し発電を行うようにしたものが知られている。ここで、オイルフリー圧縮機とは、発生する圧縮空気中に油分を含まないように考慮した圧縮機のことである。
【0003】
【発明が解決しようとする課題】
しかしながら、このような従来の燃料電池システムにあっては、以下の問題があった。
【0004】
まず、この燃料電池システムで用いる圧縮機101がオイルフリー式の圧縮機であるためにオイルセパレータが圧縮機101の下流に設けられていないことから、圧縮機101のオイル封入部と圧縮空気との間のオイルシールが破損した場合、潤滑オイルが燃料電池103に流入して燃料電池103が破損することを防止するために、圧縮機101を急停止させる必要がある。
【0005】
しかし、圧縮機101を急停止させると、燃料電池103内の空気と水素の圧力バランスが大きく崩れて、燃料電池103内の膜が破損するおそれがある。
【0006】
また、当該燃料電池システムを搭載した車両においては、圧縮機101を急停止させると、燃料電池103の発電が停止してしまうため、走行不可能(車両停止)となってしまう。
【0007】
本発明は、上記に鑑みてなされたもので、その目的としては、オイルフリー式の空気供給装置にオイル漏れが発生したときでも、燃料電池を保護しつつ空気供給装置の運転を続行することができる燃料電池システムを提供することにある。
【0008】
【課題を解決するための手段】
請求項1記載の発明は、上記課題を解決するため、燃料ガスと空気を用いて電力を発生する燃料電池と、燃料電池に空気を供給するオイルフリー式の空気供給装置とを備えた燃料電池システムにおいて、前記空気供給装置の下流でかつ前記燃料電池の上流に設けられ、空気中のオイルミストを除去するオイルセパレータと、前記オイルセパレータをバイパスするバイパス通路と、前記バイパス通路を開閉して前記空気供給装置からの空気の流れを切り換える切換弁と、前記バイパス通路の下流でかつ前記燃料電池の上流に設けられ、空気中の固形物をろ過作用により除去するフィルタと、前記空気供給装置からの吐出空気の流量を測定する流量測定手段と、前記空気供給装置からの吐出空気の圧力を測定する圧力測定手段と、前記空気供給装置の回転数を測定する回転数測定手段と、前記空気供給装置からの吐出空気の流量および圧力ならびに前記空気供給装置の回転数に基づいて、前記空気供給装置にオイル漏れが発生しているか否かを判定するオイル漏れ判定手段と、前記空気供給装置にオイル漏れが発生していると判定された場合、前記空気供給装置から前記燃料電池への空気の流れを前記バイパス通路経由から前記オイルセパレータ経由に切り換えるように前記切換弁を制御する制御手段とを有することを要旨とする。
【0009】
請求項2記載の発明は、上記課題を解決するため、前記流量測定手段は、熱線式の流量計であり、前記空気供給装置の下流でかつ前記フィルタの上流に設けられていることを要旨とする。
【0010】
請求項3記載の発明は、上記課題を解決するため、前記流量測定手段は、フィルタの上流と下流の圧力差を計測する差圧計であり、前記オイル漏れ判定手段は、前記フィルタの上流と下流の圧力差、前記空気供給装置からの吐出空気の圧力および前記空気供給装置の回転数に基づいて、前記空気供給装置にオイル漏れが発生しているか否かを判定することを要旨とする。
【0011】
請求項4記載の発明は、上記課題を解決するため、前記フィルタに活性炭層を設けたことを要旨とする。
【0012】
請求項5記載の発明は、上記課題を解決するため、前記空気供給装置のオイル封入部の壁面に設けられ、前記オイル封入部を大気開放する開放弁をさらに有し、前記制御手段は、前記空気供給装置にオイル漏れが発生していると判定された場合、前記空気供給装置から前記燃料電池への空気の流れを前記バイパス通路経由から前記オイルセパレータ経由に切り換えるように前記切換弁を制御すると同時に、前記開放弁を開くように前記開放弁を制御することを要旨とする。
【0013】
請求項6記載の発明は、上記課題を解決するため、前記制御手段は、前記空気供給装置にオイル漏れが発生していると判定された場合、前記空気供給装置から前記燃料電池への空気の流れを前記バイパス通路経由から前記オイルセパレータ経由に切り換えるように前記切換弁を制御すると同時に、前記空気供給装置の回転数に定格よりも低い回転数を上限値として設定し、この上限値以下の回転数で運転するように前記空気供給装置を制御することを要旨とする。
【0014】
請求項7記載の発明は、上記課題を解決するため、前記制御手段は、前記空気供給装置にオイル漏れが発生していると判定された場合、前記空気供給装置から前記燃料電池への空気の流れを前記バイパス通路経由から前記オイルセパレータ経由に切り換えるように前記切換弁を制御すると同時に、前記空気供給装置からの吐出空気の圧力に下限値を設定し、この下限値以上の吐出圧力で運転するように前記空気供給装置を制御することを要旨とする。
【0015】
【発明の効果】
請求項1記載の本発明によれば、オイルフリー式の空気供給装置と燃料電池との間にオイルセパレータ、バイパス通路および切換弁を設け、空気供給装置からの吐出空気の流量および圧力ならびに空気供給装置の回転数に基づいて、空気供給装置にオイル漏れが発生しているか否かを判定し、空気供給装置にオイル漏れが発生していると判定された場合、空気供給装置から燃料電池への空気の流れをバイパス通路経由からオイルセパレータ経由に切り換えるように切換弁を制御することで、すなわち、オイル漏れが検知されていないときはオイルセパレータをバイパスさせ、オイル漏れが検知されたときは空気の流れをオイルセパレータ経由に切り換えることで、オイルフリー式の空気供給装置にオイル漏れが発生したときでも、燃料電池を保護しつつ空気供給装置の運転を続行することができる。すなわち、オイルセパレータを通過させることで、燃料電池ヘオイルが流入することを防止することができ、したがって、同時に、空気供給装置を急停止させることなく運転を続行することができるため、空気供給装置の急停止による燃料電池の膜の破損をも防止することができる。
【0016】
請求項2記載の本発明によれば、熱線式の流量計を空気供給装置の下流でかつフィルタの上流に設けることで、圧力と回転数に対する流量の特性に影響を及ぼさない程度の微少なオイル漏れでも検知することができ、かつ、オイル漏れが圧力と回転数に対する流量の特性に影響を及ぼすようになる前にオイル漏れを検知することができるため、より確実に燃料電池を保護することができる。
【0017】
請求項3記載の本発明によれば、流量計の代わりに差圧計を設けることで、高価な流量計を省略することができ、コストの低減を図ることができる。
【0018】
請求項4記載の本発明によれば、フィルタに活性炭層を設けることで、オイル漏れ発生時に燃料電池に流入する空気のオイル濃度をより一層低く保つことができる。
【0019】
請求項5記載の本発明によれば、空気供給装置のオイル封入部の壁面に開放弁を設け、切換弁をバイパス通路経由からオイルセパレータ経由に切り換えると同時に開放弁を開くことで、オイル封入部の圧力が大気開放されて低下し、シール部において圧力の高いロータ側からオイル封入部への空気の流れが形成されるので、シールの破損によるオイル封入部からロータへ漏れるオイルの量を低減することができる。
【0020】
請求項6記載の本発明によれば、切換弁をバイパス通路経由からオイルセパレータ経由に切り換えると同時に、空気供給装置の回転数に上限値を設定し、この上限値以下の回転数で空気供給装置を運転することで、オイル潤滑部が潤滑不良による焼付きによって破損することを防止することができる。また、この場合、空気供給装置の流量が制限されるので、オイルセパレータを小型化するとともに、オイルセパレータの出入口付近の空気通路をバイパス通路よりも細くすることができ、システムの小型軽量化、コスト低減を図ることができる。
【0021】
請求項7記載の本発明によれば、切換弁をバイパス通路経由からオイルセパレータ経由に切り換えると同時に、空気供給装置の吐出圧力に下限値を設定し、この下限値以上の吐出圧力で空気供給装置を運転することで、空気圧(の差)によってオイル封入部からロータ側ヘオイルが流入することを防止することができる。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0023】
(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る燃料電池システムの構成を示す図である。
【0024】
図1に示す燃料電池システムでは、空気供給系として、燃料電池1の上流に、燃料電池1に圧縮空気を供給するオイルフリー式の圧縮機(オイルフリー圧縮機、以下単に「圧縮機」という)3が設けられており、両者は空気通路5によって接続されている。この空気通路5には、フィルタ7が設けられ、このフィルタ7の上流には、オイルセパレータ9と、このオイルセパレータ9をバイパスするバイパス通路11と、このバイパス通路11を開閉して圧縮機3からの空気の流れを切り換える切換弁13とが設けられている。圧縮機3は、モータ15によって回転駆動される。なお、フィルタ7は、ろ過器として、空気をろ材によりろ過しその中に浮遊混入している固形物や汚染物質を除去して空気を清浄にする装置であり、オイルセパレータ9は、空気に微細なオイルミストが入らないようにこれを除去するいわば油分除去用フィルタである。
【0025】
図1において、空気は、圧縮機3に吸入され、圧縮される。そして、圧縮機3で圧縮された空気は、通常時(すなわち、オイル漏れのない正常時)、空気通路5(の一部)、バイパス通路11およびフィルタ7を通過して燃料電池1に流入する。燃料電池1を出た空気は、空気排ガスとして圧力制御弁17を通過して燃料改質器(図示せず)から大気に排出される。
【0026】
ここで、圧縮機3から吐出される圧縮空気は、その流量を流量計19で、その圧力を圧力計21でそれぞれ計測している。また、圧縮機3の回転数は、回転計23で計測している。流量計19、圧力計21および回転計23は、当該燃料電池システムを制御するためのコントロールユニット25にそれぞれ接続されており、それぞれの測定信号をコントロールユニット25へ出力する。
【0027】
コントロールユニット25は、内部に制御プログラムおよび制御マップを記憶したROM、制御時のワークエリアとなるRAMを有しており、流量計19、圧力計21および回転計23からの測定信号に基づいてオイル漏れが発生したか否かを判定し、この判定結果に応じた制御信号を切換弁13およびモータ15に出力する。すなわち、コントロールユニット25は、切換弁13の切換動作を制御するとともに、圧縮機3を回転させるモータ15の回転数をも制御する。
【0028】
具体的には、コントロールユニット25は、流量計19、圧力計21および回転計23からの測定信号を常にモニタしており、あらかじめ記憶されている図2に示すオイル漏れ判定用の流量マップを用いて、モニタした値に基づいてオイル漏れの発生の有無を判定する。より具体的には、圧力計21と回転計23から読み込まれた圧力Pと回転数Rに基づいて、図2に示す圧力―回転数に対応する流量マップに割り当てられた基準流量Qfを内部ROMから読み込み、流量計19から読み込まれた流量Qaをマップ上の基準流量Qfの値と比較する。
【0029】
ここで、流量の比較によるオイル漏れ判定基準について、オイルフリー圧縮機の1つとして現在広く用いられているリショルム圧縮機を例にとって説明する。なお、リショルム圧縮機の一例は、図3に示すとおりである。
【0030】
リショルム圧縮機のベアリング27a,27bとロータ29a,29bの間のシール31a,31bが破損してギヤケース33内のオイル封入部35のオイルがロータ29a,29bの側に流入した場合、オイルフリー式であるリショルム圧縮機では、オスロータ29bとメスロータ29aの間およびロータ29a,29bとケーシング37の間の隙間がそれぞれオイルによってシールされるため、体積効率が飛躍的に高くなる。このため、オイル漏れが発生した場合には、圧力Pと回転数Rに対する測定流量Qaが、オイル漏れが発生していない正常時の場合であるマップ上の基準流量Qfの値よりも大きくなる。
【0031】
そこで、圧力Pと回転数Rに対する測定流量Qaがマップ上の基準流量Qfの値よりも大きくなると、オイル漏れが発生したと判断する。
【0032】
そして、オイル漏れが発生したと判断した場合は、切換弁13をバイパス通路11の側(バイパス通路経由)からオイルセパレータ9の側(オイルセパレータ経由)に切り替える。その理由は、次のとおりである。
【0033】
オイルセパレータ9は、拡張室にて流速を低下させ、さらに非常に厚いろ材を通過させることで、オイルミストをトラップする装置であり、圧力損失が非常に大きくなっている。これに対し、フィルタ7は、異物の混入を嫌う燃料電池システムにおいては不可欠の要素であり、大気中の微細な塵をろ過するためのものであって、ろ材が薄く圧力損失が極めて低いため、低濃度のオイルはろ過することができるが、高濃度のオイルはろ過することができず、下流にオイルを流してしまう。このため、オイル漏れ発生時には、圧縮空気をフィルタ7に流入する前に一旦オイルセパレータ9に流入させて空気中のオイル濃度を大きく下げておく必要がある。
【0034】
次に、図2に示すオイル漏れ判定用の流量マップを参照して、図4に示す制御フローチャートに従って燃料電池システムの制御動作を説明する。なお、図4に示す制御フローチャートおよび図2に示す流量マップは、コントロールユニット25の内部ROMに制御プログラムおよびデータテーブルとして記憶されている。
【0035】
まず、ステップS10では、コントロールユニット25は、圧縮機3に設けられた回転計23から圧縮機3の回転数Rを読み込む。そして、ステップS20では、圧縮機3の下流(ここでは、空気出口付近の空気通路)に設けられた圧力計21から圧縮空気の圧力Pを読み込む。そして、ステップS30では、圧縮機3の上流(ここでは、空気入口付近の空気通路)に設けられた流量計19から空気の流量(圧縮空気の流量と同じ)Qaを読み込む。なお、ステップS10〜ステップS30の各処理を実行する順番は、これに限定されるわけではなく、任意の組合せが可能である。
【0036】
ここで、ステップS40では、コントロールユニット25は、圧力計21と回転計23から読み込まれた圧力Pと回転数Rに基づいて、図2に示す圧力―回転数に対応する流量マップに割り当てられた基準流量Qfを内部ROMから読み込み、流量計19から読み込まれた流量Qaをマップ上の基準流量Qfの値と比較する。
【0037】
そして、ステップS50では、この比較結果に基づいて圧縮機3にオイル漏れが発生しているか否かを判定する。この判定は、読み込んだ流量Qaの値の方がマップ上の基準流量Qfの値よりも大きい(Qa>Qf)か否かを判断することによって行われる。読み込んだ流量Qaの値がマップ上の基準流量Qfの値よりも大きい(Qa>Qf)場合は(S50:YES)、オイル漏れが発生していると判断して、ステップS60に進み、読み込んだ流量Qaの値がマップ上の基準流量Qfの値以下である(Qa≦Qf)場合は(S50:NO)、オイル漏れが発生していないと判断して、ステップS10に戻り、オイル漏れに対するモニタ動作を続行する。
【0038】
ステップS60では、切換弁13に対し、切換弁13をオイルセパレータ経由に切り換えるための制御信号を送る。これを受けた切換弁13では、制御信号に応じて圧縮空気の流れをバイパス通路経由からオイルセパレータ経由に切り換えて圧縮機3からの圧縮空気をオイルセパレータ9に供給する。
【0039】
この結果、第1の実施の形態に関する効果としては、通常時は、圧縮空気を圧力損失の大きいオイルセパレータ9を通さずに運転することで、圧縮機3の仕事を低減して効率の良い運転を行い、一方で、圧縮機3のオイル漏れ発生時は、オイル漏れを検知して切換弁13をオイルセパレータ経由に切り換えることで、オイル漏れを検知してから切換弁13をオイルセパレータ経由に切り換えるまでの短時間の間に流出したオイルについては低濃度のためフィルタ7でろ過することができ、また、切換弁13をオイルセパレータ経由に切り換えた後はオイルセパレータ9でオイルを除去した後の空気を燃料電池1に供給し続けることができるので、圧縮機3のオイル漏れ発生時においても、オイルの流入による燃料電池1の破損を防止することができ、かつ、圧縮機3の急停止による燃料電池1内の膜の破損をも防止することができる。
【0040】
また、この燃料電池システムを搭載した車両においては、圧縮機3のオイル漏れ発生時でも圧縮機3は運転を続けることができるので、圧縮機3の急停止による車両の急停止を防止することができる。
【0041】
なお、オイルフリー式の空気供給装置は、オイルフリー圧縮機に限定されるわけではなく、圧縮機よりも昇圧レベルの低いオイルフリー式の送風機であってもよい。
【0042】
(第2の実施の形態)
図5は、本発明の第2の実施の形態に係る燃料電池システムの構成を示す図である。なお、第2の実施の形態は、図1に示す第1の実施の形態に対応する燃料電池システムと同様の基本的構成を有しており、同一の構成要素には同一の符号を付し、その説明を省略することとする。
【0043】
第2の実施の形態の特徴は、図5に示すように、圧縮機3の下流でかつ切換弁13の上流に熱線式の流量計39を設けたことにある。この熱線式流量計39は、空気通路に細かい抵抗線を張り、空気に持ち去られる熱量から圧縮空気の流量を測定する計器である。この熱線式流量計39は、コントロールユニット25に接続されており、コントロールユニット25へその測定信号を送り込む。
【0044】
熱線式流量計39では、オイルが抵抗線に付着すれば抵抗線の熱が奪われるため、測定される流量(測定値)が実際の流量(実際値)よりも大きくなる。本実施の形態では、熱線式流量計39のかかる特性(オイル漏れがあれば流量の測定値が実際値よりも大きくなる)を利用して、圧縮機3のオイル漏れを検知し、切換弁13をバイパス通路経由からオイルセパレータ経由に切り換える。
【0045】
なお、燃料電池システムの制御動作は、図2に示す流量マップを参照し、図4に示す制御フローチャートに従って説明することができるが、第1の実施の形態において説明した内容と同様であるので、その説明を省略することとする。
【0046】
また、第2の実施の形態に関する効果は、上述した第1の実施の形態に関する効果に加えて、熱線式流量計39を圧縮機3の下流でかつ切換弁13の上流に設けることで、圧力と回転数に対する流量の特性に影響を及ぼさない程度の微少なオイル漏れでも検知することができ、かつ、オイル漏れが圧力と回転数に対する流量の特性に影響を及ぼすようになる前にオイル漏れを検知することができるため、より確実に燃料電池1を保護することができる。
【0047】
(第3の実施の形態)
図6は、本発明の第3の実施の形態に係る燃料電池システムの構成を示す図である。なお、第3の実施の形態は、図1に示す第1の実施の形態に対応する燃料電池システムと同様の基本的構成を有しており、同一の構成要素には同一の符号を付し、その説明を省略することとする。
【0048】
第3の実施の形態の特徴は、空気の流量を直接的または間接的に計測する手段として、図6に示すように、図1に示す流量計19(流量を直接的に計測する手段)の代わりに、フィルタ7の上流と下流の圧力差を計測する差圧計41(流量を間接的に計測する手段)をフィルタ7に取り付けたことにある。この差圧計41は、コントロールユニット25に接続されており、コントロールユニット25へその測定信号を送り込む。
【0049】
燃料電池システムの制御動作は、図2に示す流量マップおよび図4に示す制御フローチャートにおける制御パラメータの1つである流量を差圧に代えることによって、第1の実施の形態において説明した内容とほぼ同様に説明することができるので、その詳細な説明は省略し、簡単に説明することとする。
【0050】
コントロールユニット25は、差圧計41、圧力計21および回転計23からの測定信号を常にモニタしており、あらかじめ記憶されているオイル漏れ判定用の差圧マップを用いて、モニタした値に基づいてオイル漏れの発生の有無を判定する。より具体的には、圧力計21と回転計23から読み込まれた圧力と回転数に基づいて、圧力―回転数に対応する差圧マップに割り当てられた基準差圧を内部ROMから読み込み、差圧計41から読み込まれた差圧をマップ上の基準差圧の値と比較する。そして、モニタしている差圧がマップ上の基準差圧に対して急激に増加したとき(例えば、所定時間内に所定値以上増加したとき)、オイル漏れが発生した判断して、切換弁13をバイパス通路経由からオイルセパレータ経由に切り換える。
【0051】
この結果、第3の実施の形態に関する効果は、上述した第1の実施の形態に関する効果に加えて、流量計19の代わりに差圧計41を設けることで、高価な流量計19を省略することができ、コストの低減を図ることができる。
【0052】
(第4の実施の形態)
図7は、本発明の第4の実施の形態に係る燃料電池システムに用いられるフィルタの構造を示す図である。なお、第4の実施の形態は、図1に示す第1の実施の形態に対応する燃料電池システムと同様の基本的構成を有しており、同一の構成要素には同一の符号を付し、その説明を省略することとする。
【0053】
第4の実施の形態の特徴は、図7に示すように、フィルタ7の内部にろ材43に加えて活性炭層45を設けたことにある。活性炭は、物理的吸着以外に化学的吸着をするので、圧縮空気中に含まれる微小なオイルミストの除去に効果がある。
【0054】
なお、燃料電池システムの制御動作は、図2に示す流量マップを参照し、図4に示す制御フローチャートに従って説明することができるが、第1の実施の形態において説明した内容と同様であるので、その説明を省略することとする。
【0055】
また、第4の実施の形態に関する効果は、上述した第1の実施の形態に関する効果に加えて、フィルタ7の内部にろ材43に加えて活性炭層45を設けることで、オイル漏れ発生時に燃料電池1に流入する圧縮空気のオイル濃度をより一層低く保つことができる。
【0056】
(第5の実施の形態)
図8は、本発明の第5の実施の形態に係る燃料電池システムに用いられるリショルム圧縮機の一例を示す図である。なお、第5の実施の形態は、図1に示す第1の実施の形態に対応する燃料電池システムと同じ構成を有しており、その説明を省略するとともに、その燃料電池システムに用いられる図3に示すリショルム圧縮機と同様の基本的構成を有しており、同一の構成要素には同一の符号を付し、その説明を省略することとする。
【0057】
第5の実施の形態の特徴は、図8に示すように、圧縮機3のギヤケース33内のオイル封入部35の壁面にオイル封入部35を大気開放する開放弁47を設けたことにある。この開放弁47は、コントロールユニット25に接続されており、コントロールユニット25からの制御信号に応じて弁を開放する。
【0058】
次に、図9に示す制御フローチャートに従って燃料電池システムの制御動作を説明する。なお、図9に示す制御フローチャートは、コントロールユニット25の内部ROMに制御プログラムとして記憶されている。
【0059】
本実施の形態では、図9に示すように、ステップS70を図4に示すフローチャートに挿入している。
【0060】
ステップS10〜S60は、図4に示すフローチャートの各ステップと同様であるので、その説明を省略する。
【0061】
そして、ステップS70では、コントロールユニット25は、開放弁47に対し、開放弁47を開くための制御信号を送る。これを受けた開放弁47では、制御信号に応じて弁を開放してオイル封入部35を大気開放する。
【0062】
この結果、第5の実施の形態に関する効果は、上述した第1の実施の形態に関する効果に加えて、圧縮機3のオイル封入部35の壁面に開放弁47を設け、切換弁13をバイパス通路経由からオイルセパレータ経由に切り換えると同時に開放弁47を開くことで、オイル封入部35の圧力が大気開放されて低下し、シール部31a,31bにおいて圧力の高いロータ29a,29b側からオイル封入部35への空気の流れが形成されるので、シール31a,31bの破損によるオイル封入部35からロータ29a,29bへ漏れるオイルの量を低減することができる。
【0063】
(第6の実施の形態)
図10は、本発明の第6の実施の形態に係る燃料電池システムの制御動作を説明するための制御フローチャートである。なお、第6の実施の形態は、図1に示す第1の実施の形態に対応する燃料電池システムと同じ構成を有しており、その説明を省略することとする。また、図10に示す制御フローチャートは、コントロールユニットの内部ROMに制御プログラムとして記憶されている。
【0064】
本実施の形態の特徴は、図10に示すように、ステップS80を図4に示すフローチャートに挿入して、切換弁13をバイパス通路経由からオイルセパレータ経由に切り換えると同時に、圧縮機3の回転数に上限値を設定し、この上限値以下の回転数で圧縮機3を運転することにある。
【0065】
ステップS10〜S60は、図4に示すフローチャートの各ステップと同様であるので、その説明を省略する。
【0066】
そして、ステップS80では、コントロールユニット25は、圧縮機3の回転数に対し定格よりも低い回転数を上限値として設定し、この上限値以下の回転数で圧縮機3を運転させるよう、モータ15に駆動信号を送る。
【0067】
この結果、第6の実施の形態に関する効果は、上述した第1の実施の形態に関する効果に加えて、切換弁13をバイパス通路経由からオイルセパレータ経由に切り換えると同時に、圧縮機13の回転数に上限値を設定し、この上限値以下の回転数で圧縮機13を運転することで、オイル潤滑部が潤滑不良による焼付きによって破損することを防止することができる。また、この場合、圧縮機3の流量が制限されるので、オイルセパレータ9を小型化するとともに、オイルセパレータ9の出入口付近の空気通路5a,5bをバイパス通路11よりも細くすることができ、システムの小型軽量化、コスト低減を図ることができる。
【0068】
(第7の実施の形態)
図11は、本発明の第7の実施の形態に係る燃料電池システムの制御動作を説明するための制御フローチャートである。なお、第7の実施の形態は、図1に示す第1の実施の形態に対応する燃料電池システムと同じ構成を有しており、その説明を省略することとする。また、図11に示す制御フローチャートは、コントロールユニットの内部ROMに制御プログラムとして記憶されている。
【0069】
本実施の形態の特徴は、図11に示すように、ステップS90を図4に示すフローチャートに挿入して、切換弁13をバイパス通路経由からオイルセパレータ経由に切り換えると同時に、圧縮機3の吐出圧力に下限値を設定し、停止まではこの下限値以上の吐出圧力で圧縮機3を運転することにある。
【0070】
ステップS10〜S60は、図4に示すフローチャートの各ステップと同様であるので、その説明を省略する。
【0071】
そして、ステップS90では、コントロールユニット25は、圧縮機3の吐出圧力に対して下限値を設定し、停止まではこの下限値以上の吐出圧力で圧縮機3を運転させるよう、モータ15に駆動信号を送る。
【0072】
この結果、第7の実施の形態に関する効果は、上述した第1の実施の形態に関する効果に加えて、切換弁13をバイパス通路経由からオイルセパレータ経由に切り換えると同時に、圧縮機3の吐出圧力に下限値を設定し、停止まではこの下限値以上の吐出圧力で圧縮機3を運転することで、空気圧(の差)によってオイル封入部35からロータ29a,29b側ヘオイルが流入することを防止することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る燃料電池システムの構成を示す図である。
【図2】オイル漏れ判定用の流量マップを示す概念図である。
【図3】オイルフリー圧縮機の一例を示す構成図である。
【図4】第1の実施の形態の燃料電池システムの制御動作を説明するための制御フローチャートである。
【図5】本発明の第2の実施の形態に係る燃料電池システムの構成を示す図である。
【図6】本発明の第3の実施の形態に係る燃料電池システムの構成を示す図である。
【図7】本発明の第4の実施の形態に係る燃料電池システムに用いられるフィルタの構造を示す図である。
【図8】本発明の第5の実施の形態に係る燃料電池システムに用いられるオイルフリー圧縮機の一例を示す構成図である。
【図9】第5の実施の形態の燃料電池システムの制御動作を説明するための制御フローチャートである。
【図10】第6の実施の形態の燃料電池システムの制御動作を説明するための制御フローチャートである。
【図11】第7の実施の形態の燃料電池システムの制御動作を説明するための制御フローチャートである。
【図12】従来の燃料電池システムの構成を示す図である。
【符号の説明】
1 燃料電池
3 オイルフリー圧縮機
5 空気通路
7 フィルタ
9 オイルセパレータ
11 バイパス通路
13 切換弁
15 モータ
17 圧力制御弁
19 流量計
21 圧力計
23 回転計
25 コントロールユニット
26 入力軸
27a,27b ベアリング
29a,29b ロータ
31a,31b シール
33 ギヤケース
34 ギヤ
35 オイル封入部
37 ケーシング
39 熱線式流量計
41 差圧計
42 フィルタケース
43 ろ材
45 活性炭層
47 開放弁

Claims (7)

  1. 燃料ガスと空気を用いて電力を発生する燃料電池と、
    燃料電池に空気を供給するオイルフリー式の空気供給装置とを備えた燃料電池システムにおいて、
    前記空気供給装置の下流でかつ前記燃料電池の上流に設けられ、空気中のオイルミストを除去するオイルセパレータと、
    前記オイルセパレータをバイパスするバイパス通路と、
    前記バイパス通路を開閉して前記空気供給装置からの空気の流れを切り換える切換弁と、
    前記バイパス通路の下流でかつ前記燃料電池の上流に設けられ、空気中の固形物をろ過作用により除去するフィルタと、
    前記空気供給装置からの吐出空気の流量を測定する流量測定手段と、
    前記空気供給装置からの吐出空気の圧力を測定する圧力測定手段と、
    前記空気供給装置の回転数を測定する回転数測定手段と、
    前記空気供給装置からの吐出空気の流量および圧力ならびに前記空気供給装置の回転数に基づいて、前記空気供給装置にオイル漏れが発生しているか否かを判定するオイル漏れ判定手段と、
    前記空気供給装置にオイル漏れが発生していると判定された場合、前記空気供給装置から前記燃料電池への空気の流れを前記バイパス通路経由から前記オイルセパレータ経由に切り換えるように前記切換弁を制御する制御手段とを有することを特徴とする燃料電池システム。
  2. 前記流量測定手段は、
    熱線式の流量計であり、前記空気供給装置の下流でかつ前記フィルタの上流に設けられていることを特徴とする請求項1記載の燃料電池システム。
  3. 前記流量測定手段は、
    フィルタの上流と下流の圧力差を計測する差圧計であり、
    前記オイル漏れ判定手段は、
    前記フィルタの上流と下流の圧力差、前記空気供給装置からの吐出空気の圧力および前記空気供給装置の回転数に基づいて、前記空気供給装置にオイル漏れが発生しているか否かを判定することを特徴とする請求項1記載の燃料電池システム。
  4. 前記フィルタに活性炭層を設けたことを特徴とする請求項1記載の燃料電池システム。
  5. 前記空気供給装置のオイル封入部の壁面に設けられ、前記オイル封入部を大気開放する開放弁をさらに有し、
    前記制御手段は、
    前記空気供給装置にオイル漏れが発生していると判定された場合、前記空気供給装置から前記燃料電池への空気の流れを前記バイパス通路経由から前記オイルセパレータ経由に切り換えるように前記切換弁を制御すると同時に、前記開放弁を開くように前記開放弁を制御することを特徴とする請求項1記載の燃料電池システム。
  6. 前記制御手段は、
    前記空気供給装置にオイル漏れが発生していると判定された場合、前記空気供給装置から前記燃料電池への空気の流れを前記バイパス通路経由から前記オイルセパレータ経由に切り換えるように前記切換弁を制御すると同時に、前記空気供給装置の回転数に定格よりも低い回転数を上限値として設定し、この上限値以下の回転数で運転するように前記空気供給装置を制御することを特徴とする請求項1記載の燃料電池システム。
  7. 前記制御手段は、
    前記空気供給装置にオイル漏れが発生していると判定された場合、前記空気供給装置から前記燃料電池への空気の流れを前記バイパス通路経由から前記オイルセパレータ経由に切り換えるように前記切換弁を制御すると同時に、前記空気供給装置からの吐出空気の圧力に下限値を設定し、この下限値以上の吐出圧力で運転するように前記空気供給装置を制御することを特徴とする請求項1記載の燃料電池システム。
JP2000151946A 2000-05-23 2000-05-23 燃料電池システム Expired - Fee Related JP3598946B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000151946A JP3598946B2 (ja) 2000-05-23 2000-05-23 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000151946A JP3598946B2 (ja) 2000-05-23 2000-05-23 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2001332285A JP2001332285A (ja) 2001-11-30
JP3598946B2 true JP3598946B2 (ja) 2004-12-08

Family

ID=18657430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000151946A Expired - Fee Related JP3598946B2 (ja) 2000-05-23 2000-05-23 燃料電池システム

Country Status (1)

Country Link
JP (1) JP3598946B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984465B2 (en) * 2002-09-05 2006-01-10 Donaldson Company, Inc Seal-leak detector arrangement for compressors and other equipment
JP4929568B2 (ja) * 2004-08-20 2012-05-09 株式会社Jvcケンウッド 燃料電池駆動装置
KR100749425B1 (ko) 2006-11-03 2007-08-14 삼성에스디아이 주식회사 연료 전지용 물 공급장치, 이를 포함하는 연료 전지시스템, 및 물 공급 방법
JP5153661B2 (ja) * 2009-01-15 2013-02-27 ダイハツ工業株式会社 オイルシールの取付状態の検査方法

Also Published As

Publication number Publication date
JP2001332285A (ja) 2001-11-30

Similar Documents

Publication Publication Date Title
US8721753B2 (en) Method and apparatus for an air filter cartridge replacement assembly
US6926490B2 (en) Self-actuated bearing cooling flow shut-off valve
JP2021511645A (ja) 特に燃料電池システムのためのターボマシン、燃料電池システム、ターボマシンを作動させる方法、および燃料電池システムを作動させる方法
JP4791814B2 (ja) 流体分離装置、流体導入方法、流体流制御アッセンブリおよび燃料電池システム
WO2001007791A1 (fr) Machine hydraulique turbo et joint a gaz a sec destine a cette machine
KR101243891B1 (ko) 진공 배기 시스템
KR20050071487A (ko) 압축기와 기타 장치용 밀봉 누설 감지 장치
JP4532327B2 (ja) 圧縮機およびその運転制御方法
JP3598946B2 (ja) 燃料電池システム
JPH01277696A (ja) オイルフリー・スクリュー圧縮機装置
JP2005188479A (ja) エンジンシステムの異常判定装置
EP2481902A2 (en) Drain discharge equipment for compressor and gas turbine system
US5443369A (en) Self-contained instrument and seal air system for a centrifugal compressor
JP2003254253A (ja) 圧縮機およびそのメインテナンス方法
JP5680519B2 (ja) 水噴射式スクリュー圧縮機
JP5844981B2 (ja) 発電電動機械用フィルタシステム
JP5542518B2 (ja) 空気圧縮機
JP2009268980A (ja) 遠心機
JP2004308754A (ja) 軸封装置
WO2020070910A1 (ja) 給液式気体圧縮機及び気液分離器
JP2003343282A (ja) ガスタービン
JP5419615B2 (ja) 圧縮機
JP2544435Y2 (ja) 空気圧縮装置に於ける浄油装置
JP2003343472A (ja) 真空ポンプの軸シール構造
JP2007335286A (ja) 燃料電池の空気供給システム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees