JP3597439B2 - Diagnosis method for paint deterioration of painted steel - Google Patents

Diagnosis method for paint deterioration of painted steel Download PDF

Info

Publication number
JP3597439B2
JP3597439B2 JP2000074198A JP2000074198A JP3597439B2 JP 3597439 B2 JP3597439 B2 JP 3597439B2 JP 2000074198 A JP2000074198 A JP 2000074198A JP 2000074198 A JP2000074198 A JP 2000074198A JP 3597439 B2 JP3597439 B2 JP 3597439B2
Authority
JP
Japan
Prior art keywords
color
corrosion
steel material
deterioration
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000074198A
Other languages
Japanese (ja)
Other versions
JP2001266121A (en
Inventor
典夫 正岡
健夫 対馬
紳介 毛塚
正一 佐藤
Original Assignee
株式会社巴コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社巴コーポレーション filed Critical 株式会社巴コーポレーション
Priority to JP2000074198A priority Critical patent/JP3597439B2/en
Publication of JP2001266121A publication Critical patent/JP2001266121A/en
Application granted granted Critical
Publication of JP3597439B2 publication Critical patent/JP3597439B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、塗装された鋼材の塗膜欠陥や腐食などの塗装劣化を画像処理により診断する方法に関するものである。
【0002】
【従来の技術】
大型構造物の構造部材やプラント類の配管部材等においては、劣化による塗膜欠陥(膨れ,割れ,剥離など)あるいは塗膜上に現れた腐食(薄錆,赤錆,鉄錆など)を検出して劣化度合を評価することが行われており、従来においては、点検員が目視で行う方法や、クロスカット試験等による方法などが採用されていた。
【0003】
【発明が解決しようとする課題】
しかし、従来の目視点検の場合、点検員の個人差があり、また数値評価が困難なため、評価結果にばらつきが生じるなどの問題があった。また、クロスカット試験等による点検の場合は、局所的な評価となるため、試験箇所によるばらつきが生じるなどの問題があった。
【0004】
本発明は、前述のような問題点を解消すべくなされたもので、その目的は、塗装された鋼材の塗膜欠陥や腐食などの塗装劣化を定量的に客観的に評価することが可能となる塗装された鋼材の塗装劣化の診断方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明の請求項1の塗装劣化の診断方法は、塗装された鋼材(山形鋼や鋼管など)の塗装劣化を診断するに際し、腐食レベルに対応した既知のサンプル色を有するカラーサンプルと、塗装された鋼材とを、ホワイトバランス調整が可能な3CCDデジタルビデオカメラまたは3CCDデジタルカメラで同時に撮影し撮影したカラー画像を画像処理機能を備えたコンピュータに取り込み、カラー画像解析により腐食箇所の色彩情報から腐食箇所の検出と腐食状態の判定を行うにあたって、検出されたサンプル色の色彩情報から撮影条件により変動する鋼材の色彩情報の変動分を求め、検出された鋼材の表面状態を判定するしきい値を前記変動分で補正して、腐食箇所の検出と腐食状態の判定を行い、前記撮影したカラー画像から輝度画像のみを用い、一般的な画像処理により腐食発生箇所以外を対象として輝度変動箇所を抽出して塗膜欠陥(膨れ,割れ,剥離など)の検出と塗膜欠陥状態の判定を行い、これら判定結果から塗装の劣化度合を評価することを特徴とする。
【0006】
カラー画像解析で使用する色彩情報には、色の明度・彩度・色相あるいはRGB信号などがあり、表面状態判別の画像における例えば各画素の明度・彩度・色相と、明度・彩度・色相のしきい値をそれぞれ比較することで、薄錆・赤錆・鉄錆(黒錆)の有無を判定し、薄錆・赤錆・鉄錆の面積を求める。この面積率等により、腐食状態を評価する。
【0008】
鋼材に腐食がある場合には、いったん腐食発生箇所を抽出し、腐食発生箇所以外を対象にして、一般的な画像処理手法を組合せ(例えば、最大値フィルタ,最小値フィルタ,微分フィルタなど)、膨れ,割れ,剥離などの塗膜欠陥を抽出し、この塗膜欠陥の形状や面積を算出する。この面積率等により、塗膜欠陥状態を評価する。以上の腐食の判定結果と塗膜欠陥の判定結果を集計して塗装の劣化度合を評価する。
【0009】
以上のような構成において、画像解析機能を備えたコンピュータによるカラー画像解析により、塗膜上に現れた腐食箇所が自動的に検出され、腐食状態が定量的に判定され、また、塗膜欠陥も一般的な画像処理により、自動的に検出され、塗膜欠陥状態が定量的に判定され、塗装の劣化度合を定量的に客観的に評価することが可能となる。
【0010】
また、色彩情報(明度・彩度・色相など)を用いて腐食箇所を判定することにより、腐食箇所を誤検出なく確実に判定することができる。即ち、例えば、濃淡画像における明度のみでは、腐食箇所以外の明度の小さい部分があるため、腐食箇所を特定することが難しいが、彩度を用いることにより、腐食箇所の有彩色とその他の無彩色を明確に区別することができる。従って、一定の明度以上の領域について、有彩色の判定を行い、さらに色相による錆色判定を行うことにより、より正確な腐食領域の検出および腐食度合の判定を行うことができる。さらに、カラーサンプルを使用することにより、撮影条件が変動しても精度良く腐食状態を判定することができる。
【0011】
【発明の実施の形態】
以下、本発明を図示する実施形態に基づいて説明する。図1は、本発明の方法および実施するための装置を示したものである。図2は、本発明の腐食箇所のカラー画像解析と塗膜欠陥の画像処理を示したものである。図3は、腐食箇所の判定と剥離箇所の抽出の具体例を示したものである。
【0012】
図1(a) に示すように、現地調査において、ホワイトバランス調整が可能な3CCDデジタルビデオカメラまたは3CCDデジタルカメラ1等を使用し、山形鋼や鋼管等の鋼材2の塗膜劣化部2aに専用カラーサンプル3を取り付け、鋼材の塗膜劣化部2aと専用カラーサンプル3を同時に撮影する。専用カラーサンプル3はマグネットシート4等の表面に取り付けて鋼材2の表面に着脱自在とし、作業者が被写体位置に順次取り付けながら撮影を行うことができる。
【0013】
カメラ1で撮影された画像は、例えば図1(b) に示すように、画像処理ボード(映像入出力機能・画像処理機能)5aを備えたコンピュータ5およびカラーモニター6に出力し、カラーモニター6に映像を表示すると共に、コンピュータ5で腐食箇所8および塗膜欠陥9を自動的に検出・判定し、検出結果および判定結果をビデオテープレコーダー(または光磁気ディスクシステム等)7またはコンピュータ5等に自動的に記録する。
【0014】
コンピュータ5においては、塗装の劣化度合を、腐食箇所(剥離箇所における素地状態:薄錆・赤錆・鉄錆)8と、塗膜欠陥(膨れ・割れ・剥離)9に分けて評価する。次に示すように、腐食箇所8の検出・判定は、本出願人が既に出願している亜鉛めっき鋼材等の腐食・劣化の検出・判定に関する特願平8−41005号、特願平9−300707号、特願平11−173858号、特願平11−362882号に記載されているカラー画像解析手法を利用して行い、塗膜欠陥9の検出・判定は、一般的な画像処理手法を利用して行う。
【0015】
(1) 腐食箇所の検出・判定方法
(1−1) 図2(a) は試験片をカメラ1で撮影したカラーの原画像であり、クロスカット状に塗膜が剥離して素地が露出した腐食箇所8と、点在する膨れとクロスカット状の割れの塗膜欠陥9が写っている。このような原画像において、カメラ1から出力される信号は通常の伝送系でのアナログ処理により、YuvもしくはRGB信号へ変換され、変換された信号をデジタル化し、直交変換(RGB→Lab、もしくはYuv→RGB→Lab)により、Lカラー(人間の感じる色を数値化するために設計された表色系)に変換する。なお、このLabカラーによる方法の他、Yuv等の色彩情報により直接評価することもできる。一般的なRGB信号は変換式によりLモデルに変換され、さらにa,bから彩度Cおよび色相Hが得られる。
【0016】
(1−2) 本発明のカラー画像解析では、画像が様々な色情報を持った画素の集合で構成されていることを利用して、前記画素がどのような色彩情報を持っているかを3つのパラメータ、即ち、前記で得られた明度(輝度)L(色の明暗の度合)、彩度C(色の鮮やかさの度合)、色相(色相角)H(赤〜オレンジ〜緑〜青)を用いて調べる。
【0017】
(1−3) 腐食の進行に伴い、明度Lは低下し、彩度Cは上昇し、色相角Hは赤〜黄色(0〜90°)に集中しており、劣化の進行に伴って色の特徴量も変化するため、明度・彩度・色相角のしきい値をL th・C th・H thを用い、検出された各画素の明度L・彩度C・色相角Hと比較することで、薄錆(黄色)・赤錆・鉄錆(黒色)を判定することができる。また、薄錆と赤錆とでは明度・彩度には顕著な相違が見られないが、色相角に着目すると、約90°を境にして顕著な相違が見られ、色相角により薄錆と赤錆を明確に特定することができる。また、鉄錆は赤錆よりも彩度・明度が小さいため、赤錆と鉄錆を明確に特定することができる。なお、以上のような画素単位に限らず、画像を多数のブロックに分け、各ブロックの最頻値等としきい値を比較するなどしてもよい。
【0018】
(1−4) 劣化度合の判定は、薄錆・赤錆・鉄錆が占める画素の割合を調べて行うことができる。即ち、図2(b) の腐食抽出画像において、腐食箇所8の薄錆8a・赤錆8b・鉄錆8cが抽出されており、塗膜健全部10の面積率、腐食箇所8の面積率、薄錆(亜鉛残存部分)8aの面積率、赤錆8bの面積率、鉄錆(素地露出部分)8cの面積率を求め、これらにより腐食度合を評価する。
【0019】
(1−5) カラーサンプルの利用
カラーサンプル3は、腐食レベルに対応する例えば4色の色見本あるいはカラー写真等からなり、鋼材2の塗膜劣化部2aと同時に撮影し、晴れや曇りなどの撮影条件によって変動する明度・彩度・色彩を画像処理により把握して基準値からの変動分を算出し、この変動分を用いて判定のための前記しきい値L th・C th・H thを補正し、撮影条件が変動しても精度良く腐食レベルを判定できるようにする。
【0020】
また、鋼材が鋼管の場合には、鋼材2の塗膜劣化部2aとカラーサンプル3を円周方向に複数のブロックに分け、各分割ブロック毎に前記しきい値の補正を行うことにより、曲面による明暗で色彩情報が変化する場合でも、正確な判定を行うことができる。
【0021】
(2) 塗膜欠陥の検出・判定方法
図2(c) に示す明度(輝度)画像を用い、腐食箇所がある場合には、前記(1) で検出された腐食発生箇所を抽出し、腐食発生箇所以外を対象にして、一般的な画像処理手法を組み合わせて、膨れなどの塗膜欠陥9を検出し、判定する。即ち、▲1▼腐食箇所8の除去後、微分フィルタによるフィルタ処理により輝度変動箇所(塗膜欠陥箇所)および▲2▼最大値フィルタまたは最小値フィルタによる局所的な欠陥抽出を行い、▲3▼ラベリング処理により膨れ候補等をナンバリングし、▲4▼膨れ候補等を結合処理して膨れ等の発生箇所を特定し、▲5▼各膨れ等の発生箇所の形状(円形度など)を計測し、▲6▼各膨れ等の発生箇所9の面積および塗膜健全部10の面積を算出し、これにより塗膜欠陥を評価する。
【0022】
(3) 前記(1) および(2) の結果を発生した欠陥別に集計して、塗装の劣化度合を総合的に評価する。なお、この塗装の劣化度合を定量評価する場合には、数値基準が必要となるが、JIS H 8502 または類似の規格を適用し、劣化レベル1〜5などに分類することができる。
【0023】
【実施例】
図3(a) および表1の左側に示す塗膜劣化材サンプルについて画像診断を行った。その塗装劣化診断結果を図3(b) および表1の右側に示す。
【0024】
【表1】

Figure 0003597439
【0025】
図3(b) に示すように、山形鋼の試験片Aの場合、薄錆(黄色)8aが全体にわたって、赤錆8bおよび鉄錆(黒色)8cが上部に検出されており、この腐食状態が表1に示すように定量的に評価されている。鋼管の試験片B,Cの場合、剥離による塗膜欠陥9が検出されており、この塗膜欠陥が表1に示すように定量的に評価されている。
【0026】
【発明の効果】
本発明は以上のような構成からなるので、次のような効果を奏する。
(1) 鋼材を撮影した画像を画像処理機能を備えたコンピュータに取り込み、カラー画像解析により腐食箇所の色彩情報から腐食箇所の検出と腐食状態の判定を行い、一般的な画像処理により塗膜欠陥の検出と塗膜欠陥状態の判定を行い、これら判定結果から塗装の劣化度合を評価するようにしたため、塗装された鋼材の塗膜欠陥や腐食などの塗装劣化を定量的に客観的に評価することが可能となり、従来の目視点検の評価のばらつきや試験箇所によるばらつきを解消することができる。
【0027】
(2) カラーサンプルを使用することにより、撮影条件が変動しても精度良く腐食状態を判定することができる。
【0028】
(3) 腐食箇所のカラー画像解析において、色彩情報(明度・彩度・色相など)を利用することにより、腐食箇所を誤検出なく確実に検出し判定することができる。
【図面の簡単な説明】
【図1】本発明の塗装された鋼材の塗装劣化の診断方法を実施するための装置の例であり、(a) は鋼材を撮影する装置の斜視図、(b) は画像解析を行う装置を示す正面図である。
【図2】本発明の腐食箇所のカラー画像解析と塗膜欠陥の画像処理を示したものであり、(a) は取得画像を示す図、(b) は腐食箇所の検出画像を示す図、(c) は膨れ箇所の検出画像を示す図である。
【図3】本発明の各試験片の腐食箇所の判定と剥離箇所の抽出の具体例を示したものであり、(a) は原画像を示す図、(b) は検出画像を示す図である。
【符号の説明】
1…デジタルビデオカメラまたはデジタルカメラ
2…鋼材
2a…塗膜劣化部
3…専用カラーサンプル
4…マグネットシート
5…コンピュータ
5a…画像処理ボード
6…カラーモニター
7…ビデオテープレコーダー
8…腐食箇所
8a…薄錆
8b…赤錆
8c…鉄錆
9…塗膜欠陥(膨れ,割れ,剥離など)
10…塗膜健全部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of diagnosing coating deterioration such as coating film defects or corrosion of a coated steel material by image processing.
[0002]
[Prior art]
For structural members of large structures and piping members of plants, etc., coating defects (swelling, cracking, peeling, etc.) due to deterioration or corrosion (thin rust, red rust, iron rust, etc.) appearing on the coating film are detected. Conventionally, a method of visually checking by an inspector, a method of a cross cut test, and the like have been adopted.
[0003]
[Problems to be solved by the invention]
However, in the case of the conventional visual inspection, there are individual differences among inspectors, and it is difficult to perform a numerical evaluation. In addition, in the case of inspection by a cross cut test or the like, since local evaluation is performed, there is a problem that variation occurs depending on a test location.
[0004]
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to quantitatively and objectively evaluate coating deterioration such as coating film defects and corrosion of a coated steel material. It is an object of the present invention to provide a method for diagnosing coating deterioration of a painted steel material.
[0005]
[Means for Solving the Problems]
According to the method for diagnosing coating deterioration of claim 1 of the present invention, a color sample having a known sample color corresponding to a corrosion level is used for diagnosing coating deterioration of a coated steel material (angle iron, steel pipe, etc.) and a steel material, and at the same time taken by the white balance adjustment is possible 3CCD digital video camera or 3CCD digital camera captures color images taken on a computer having an image processing function, corrosion from color information of corrosion points by color image analysis in intends detection and line determination of corrosion condition locations, the detected sample color calculated movements in color information of the steel varies by the photographing condition from the color information, the threshold for determining the surface condition of the detected steel Is corrected by the variation to detect a corroded portion and determine a corroded state, and only a luminance image is obtained from the photographed color image. Used, coating defects by extracting brightness variation points by a general image treatment by setting a non-corrosion occurrence point (blistering, cracking, peeling, etc.) makes a determination of detection and coating defects condition of painting these determination results It is characterized by evaluating the degree of deterioration of.
[0006]
The color information used in color image analysis includes lightness, saturation, hue or RGB signal of a color. For example, the lightness, saturation, hue and brightness, saturation, hue of each pixel in an image for determining the surface state. By comparing the respective threshold values, the presence or absence of light rust, red rust, and iron rust (black rust) is determined, and the area of light rust, red rust, and iron rust is determined. The corrosion state is evaluated based on the area ratio and the like.
[0008]
If there is corrosion in the steel material, once the corrosion location is extracted, the general image processing method is combined for the areas other than the corrosion location (for example, maximum value filter, minimum value filter, differential filter, etc.) Film defects such as swelling, cracks and peeling are extracted, and the shape and area of the film defects are calculated. The coating film defect state is evaluated based on the area ratio and the like. The results of the above-described determination of corrosion and the results of determination of coating film defects are totalized to evaluate the degree of deterioration of the coating.
[0009]
In the above configuration, a color image analysis by a computer having an image analysis function automatically detects a corroded portion appearing on the coating film, quantitatively determines a corrosion state, and also detects a coating film defect. By general image processing, the state of coating film defect is automatically detected, the state of coating film defect is quantitatively determined, and the degree of coating deterioration can be quantitatively and objectively evaluated.
[0010]
In addition, by determining a corroded portion using color information (lightness, saturation, hue, etc.), a corroded portion can be reliably determined without erroneous detection. That is, for example, it is difficult to identify a corroded portion by using only lightness in a grayscale image because there is a portion with low brightness other than a corroded portion. However, by using saturation, the chromatic color of the corroded portion and other achromatic colors can be determined. Can be clearly distinguished. Therefore, by determining a chromatic color in a region having a certain lightness or more and further performing a rust color determination based on a hue, it is possible to more accurately detect a corroded region and determine the degree of corrosion. Further, by using the color samples, the corrosion state can be accurately determined even if the photographing conditions fluctuate.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on an illustrated embodiment. FIG. 1 shows an apparatus for carrying out the method and the invention. FIG. 2 shows color image analysis of a corroded portion and image processing of a coating film defect according to the present invention. FIG. 3 shows a specific example of determination of a corroded portion and extraction of a peeled portion.
[0012]
As shown in FIG. 1 (a), in a field survey, a 3CCD digital video camera or a 3CCD digital camera 1 capable of white balance adjustment is used, and is dedicated to a coating deterioration portion 2a of a steel material 2 such as an angle iron or a steel pipe. The color sample 3 is attached, and the film portion 2a of the steel material and the dedicated color sample 3 are photographed simultaneously. The dedicated color sample 3 is attached to the surface of the magnet sheet 4 or the like and is detachable from the surface of the steel material 2 so that the operator can take a picture while attaching the color sample 3 to the subject position.
[0013]
An image captured by the camera 1 is output to a computer 5 and a color monitor 6 having an image processing board (video input / output function / image processing function) 5a, as shown in FIG. The computer 5 automatically detects and determines the corroded portion 8 and the coating film defect 9 by the computer 5, and sends the detection result and the determination result to the video tape recorder (or magneto-optical disk system) 7 or the computer 5 or the like. Record automatically.
[0014]
In the computer 5, the degree of deterioration of the coating is evaluated separately for a corroded portion (base state at a peeled portion: light rust / red rust / iron rust) 8 and a coating film defect (bulging / crack / peeling) 9. As shown below, the detection and determination of the corroded portion 8 is based on the detection and determination of corrosion / deterioration of galvanized steel materials and the like already filed by the applicant of the present invention. The color image analysis method described in Japanese Patent Application No. 300707, Japanese Patent Application No. 11-173858, and Japanese Patent Application No. 11-362882 is used. Use it.
[0015]
(1) Method of detecting and judging a corroded portion (1-1) FIG. 2 (a) is a color original image obtained by photographing a test piece with a camera 1, in which the coating film was peeled off in a cross-cut shape and the substrate was exposed. Corrosion spots 8 and coating defects 9 such as scattered blisters and cross-cut cracks are shown. In such an original image, a signal output from the camera 1 is converted into a Yuv or RGB signal by analog processing in a normal transmission system, the converted signal is digitized, and an orthogonal transform (RGB → Lab or Yuv) is performed. The color is converted into L * a * b * color (a color system designed to digitize the color felt by humans) by → RGB → Lab. In addition to the method using the Lab color, it is also possible to directly evaluate using color information such as Yuv. A general RGB signal is converted into an L * a * b * model by a conversion formula, and a saturation C * and a hue H * are obtained from a * and b * .
[0016]
(1-2) In the color image analysis of the present invention, the fact that an image is composed of a set of pixels having various color information is used to determine what color information the pixel has. Two parameters, namely, the lightness (luminance) L * (degree of color brightness), saturation C * (degree of color vividness), hue (hue angle) H * (red to orange to green) obtained above ~ Blue).
[0017]
(1-3) As the corrosion progresses, the lightness L * decreases, the saturation C * increases, and the hue angle H * is concentrated in red to yellow (0 to 90 °). to change the feature amount of a color with a threshold value of the lightness, saturation, and hue angle using a L * th · C * th · H * th, of each pixel detected lightness L * and chroma C By comparing with the hue angle H * , light rust (yellow), red rust, and iron rust (black) can be determined. In addition, although there is no remarkable difference in lightness and saturation between light rust and red rust, when focusing on the hue angle, a remarkable difference is seen around 90 °. Can be clearly specified. Further, since iron rust has smaller saturation and lightness than red rust, red rust and iron rust can be clearly identified. The image is not limited to the pixel unit as described above, and the image may be divided into a large number of blocks, and the mode and the like of each block may be compared with a threshold value.
[0018]
(1-4) The degree of deterioration can be determined by checking the ratio of pixels occupied by light rust, red rust, and iron rust. That is, in the corrosion extraction image of FIG. 2B, light rust 8a, red rust 8b, and iron rust 8c of the corroded portion 8 are extracted, and the area ratio of the coating film sound portion 10, the area ratio of the corroded portion 8, The area ratio of the rust (remaining zinc portion) 8a, the area ratio of the red rust 8b, and the area ratio of the iron rust (exposed base) 8c are determined, and the degree of corrosion is evaluated based on these.
[0019]
(1-5) Use of Color Sample The color sample 3 is composed of, for example, four color samples or color photographs corresponding to the corrosion level, and is photographed at the same time as the coating film deteriorated portion 2a of the steel material 2, and is used to determine whether it is fine or cloudy. The brightness, saturation, and color that fluctuate according to the shooting conditions are grasped by image processing to calculate a variation from a reference value, and the threshold L * th.C * th. H * th is corrected so that the corrosion level can be determined with high accuracy even if the photographing conditions change.
[0020]
Further, when the steel material is a steel pipe, the coating film degraded portion 2a of the steel material 2 and the color sample 3 are divided into a plurality of blocks in the circumferential direction, and the threshold value is corrected for each of the divided blocks. Even when the color information changes due to the lightness and darkness of the image, accurate determination can be made.
[0021]
(2) Method for detecting and judging coating film defects Using the brightness (brightness) image shown in FIG. 2 (c), if there is a corroded portion, the corroded portion detected in (1) above is extracted and corroded. A coating image defect 9 such as a blister is detected and determined by combining a general image processing method with respect to a portion other than the occurrence position. That is, (1) after the removal of the corroded portion 8, a luminance variation portion (coating defect portion) and (2) a local defect extraction by a maximum value filter or a minimum value filter are performed by filtering with a differential filter, and (3) Numbering of swelling candidates and the like is performed by labeling processing, and (4) the swelling candidates and the like are combined to identify swelling and other occurrence locations, and (5) the shape of each swelling and other occurrence locations (circularity, etc.) is measured. {Circle around (6)} The area of the spot 9 where each swelling or the like occurs and the area of the healthy coating film portion 10 are calculated, and thereby the coating film defects are evaluated.
[0022]
(3) The results of the above (1) and (2) are totaled for each defect that has occurred, and the degree of coating deterioration is comprehensively evaluated. In order to quantitatively evaluate the degree of deterioration of the coating, a numerical standard is required. However, JIS H8502 or a similar standard is applied, and the coating can be classified into deterioration levels 1 to 5.
[0023]
【Example】
Image diagnosis was performed on the sample of the coating film deterioration material shown in FIG. The results of the coating deterioration diagnosis are shown in FIG.
[0024]
[Table 1]
Figure 0003597439
[0025]
As shown in FIG. 3 (b), in the case of the test piece A of angle iron, the thin rust (yellow) 8a is detected over the whole, and the red rust 8b and the iron rust (black) 8c are detected at the upper part. It is quantitatively evaluated as shown in Table 1. In the case of the test pieces B and C of the steel pipe, the coating film defect 9 due to peeling was detected, and the coating film defect was quantitatively evaluated as shown in Table 1.
[0026]
【The invention's effect】
Since the present invention has the above configuration, the following effects can be obtained.
(1) An image of a steel material is taken into a computer equipped with an image processing function, and the corroded portion is detected and the corroded state is determined from the color information of the corroded portion by color image analysis. The purpose of this method is to quantitatively and objectively evaluate the coating deterioration such as coating defects and corrosion of the coated steel material, since the detection of paint and the judgment of the coating film defect state are performed, and the degree of coating deterioration is evaluated based on these judgment results. This makes it possible to eliminate the variation in the evaluation of the conventional visual inspection and the variation due to the test location.
[0027]
(2) By using a color sample, the corrosion state can be accurately determined even if imaging conditions change.
[0028]
(3) In the color image analysis of the corroded portion, by using the color information (brightness, saturation, hue, etc.), the corroded portion can be reliably detected and determined without erroneous detection.
[Brief description of the drawings]
FIG. 1 is an example of an apparatus for implementing a method for diagnosing deterioration of a coated steel material according to the present invention, wherein (a) is a perspective view of an apparatus for photographing a steel material, and (b) is an apparatus for performing image analysis. FIG.
2A and 2B show color image analysis of a corroded portion and image processing of a coating film defect according to the present invention, wherein FIG. 2A is a diagram showing an acquired image, FIG. 2B is a diagram showing a detected image of a corroded portion, (C) is a figure which shows the detection image of the swollen part.
3A and 3B show specific examples of determination of a corroded portion and extraction of a peeled portion of each test piece according to the present invention, wherein FIG. 3A is a diagram showing an original image, and FIG. 3B is a diagram showing a detected image. is there.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Digital video camera or digital camera 2 ... Steel material 2a ... Coating deterioration part 3 ... Special color sample 4 ... Magnet sheet 5 ... Computer 5a ... Image processing board 6 ... Color monitor 7 ... Video tape recorder 8 ... Corrosion spot 8a ... Thin Rust 8b: Red rust 8c: Iron rust 9: Defects in coating film (swelling, cracking, peeling, etc.)
10 ... Healthy coating film

Claims (1)

塗装された鋼材の塗装劣化を診断するに際し、腐食レベルに対応した既知のサンプル色を有するカラーサンプルと、塗装された鋼材とを、ホワイトバランス調整が可能な3CCDデジタルビデオカメラまたは3CCDデジタルカメラで同時に撮影し撮影したカラー画像を画像処理機能を備えたコンピュータに取り込み、カラー画像解析により腐食箇所の色彩情報から腐食箇所の検出と腐食状態の判定を行うにあたって、検出されたサンプル色の色彩情報から撮影条件により変動する鋼材の色彩情報の変動分を求め、検出された鋼材の表面状態を判定するしきい値を前記変動分で補正して、腐食箇所の検出と腐食状態の判定を行い、前記撮影したカラー画像から輝度画像のみを用い、一般的な画像処理により腐食発生箇所以外を対象として輝度変動箇所を抽出して塗膜欠陥の検出と塗膜欠陥状態の判定を行い、これら判定結果から塗装の劣化度合を評価することを特徴とする塗装された鋼材の塗装劣化の診断方法。In diagnosing the deterioration of the painted steel material, a color sample having a known sample color corresponding to the corrosion level and the painted steel material are simultaneously analyzed by a 3CCD digital video camera or 3CCD digital camera capable of white balance adjustment. shooting, capture a color image captured on a computer having an image processing function, when intends row determines detection and corrosion state of corrosion locations from color information of corrosion points by color image analysis, the detected sample color color information Find the variation of the color information of the steel material that fluctuates according to the shooting conditions, correct the threshold value for determining the detected surface state of the steel material with the variation, perform detection of the corrosion location and determination of the corrosion state, using only luminance image from a color image obtained by the photographing, bright as the object other than the corrosion occurrence location by a general image processing Performs detection and determination of coating defects condition of coating defects by extracting change point, the diagnostic method of coating degradation of painted steel and evaluating the degree of deterioration of paint from these determination results.
JP2000074198A 2000-03-16 2000-03-16 Diagnosis method for paint deterioration of painted steel Expired - Lifetime JP3597439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000074198A JP3597439B2 (en) 2000-03-16 2000-03-16 Diagnosis method for paint deterioration of painted steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000074198A JP3597439B2 (en) 2000-03-16 2000-03-16 Diagnosis method for paint deterioration of painted steel

Publications (2)

Publication Number Publication Date
JP2001266121A JP2001266121A (en) 2001-09-28
JP3597439B2 true JP3597439B2 (en) 2004-12-08

Family

ID=18592290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000074198A Expired - Lifetime JP3597439B2 (en) 2000-03-16 2000-03-16 Diagnosis method for paint deterioration of painted steel

Country Status (1)

Country Link
JP (1) JP3597439B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621056A (en) * 2012-03-29 2012-08-01 攀钢集团攀枝花钢铁研究院有限公司 Method for quantitatively measuring rusting ratio of surface of metal material
CN103411875A (en) * 2013-07-26 2013-11-27 攀钢集团攀枝花钢铁研究院有限公司 Quantitative measurement method for surface corrosion rate of film coated steel plate

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3568892B2 (en) * 1999-12-21 2004-09-22 株式会社巴コーポレーション Method for detecting and judging corrosion of a member having a curved surface
JP3568871B2 (en) * 2000-03-16 2004-09-22 株式会社巴コーポレーション Degradation evaluation method for inspection of pipe inner surface corrosion
JP3970052B2 (en) * 2002-02-27 2007-09-05 キヤノン株式会社 Image processing device
DE10233295A1 (en) * 2002-07-22 2004-02-12 Volkswagen Ag Process for quality control of surfaces
JP2004279317A (en) * 2003-03-18 2004-10-07 Sumitomo Chem Co Ltd Painting management system
JP4160434B2 (en) * 2003-03-31 2008-10-01 財団法人鉄道総合技術研究所 Image reading device
JP2005114500A (en) * 2003-10-07 2005-04-28 Dainippon Printing Co Ltd Method and instrument for measuring nonuniformity in optical characteristics, and product quality determination device using the same
CN100380112C (en) * 2004-03-29 2008-04-09 宝山钢铁股份有限公司 Tin-plated board corrosion-resistance rapid detecting method
JP2005283519A (en) * 2004-03-31 2005-10-13 Hitachi Zosen Corp Diagnosis system for coating deterioration
JP4723209B2 (en) * 2004-06-10 2011-07-13 川崎重工業株式会社 Temperature measuring method and apparatus for carrying out the method
JP2007111589A (en) * 2005-10-18 2007-05-10 Panahome Corp Coating method for partial repair
JP4317865B2 (en) * 2006-11-24 2009-08-19 株式会社エティック Corrosion evaluation method for ferrous structures
JP4955411B2 (en) * 2007-01-31 2012-06-20 太陽工業株式会社 Determination apparatus, determination system, determination method, and computer program
JP2009063447A (en) * 2007-09-06 2009-03-26 Sumitomo Electric Ind Ltd Method and device of inspecting anticorrosion coating
JP5375398B2 (en) * 2008-06-30 2013-12-25 株式会社デンロコーポレーション Paint degradation diagnosis method and apparatus
JP5183726B2 (en) * 2010-12-15 2013-04-17 中国電力株式会社 Paint management system
JP5605234B2 (en) * 2011-01-18 2014-10-15 三菱マテリアル株式会社 How to identify rust
GB2489253B (en) * 2011-03-22 2014-08-13 Ev Offshore Ltd Corrosion assessment apparatus and method
JP6234045B2 (en) * 2013-03-29 2017-11-22 大和ハウス工業株式会社 Exterior material deterioration judging method and judging device
JP6151077B2 (en) * 2013-04-19 2017-06-21 大和ハウス工業株式会社 Deterioration judgment method for exterior materials
JP6744065B2 (en) * 2014-12-25 2020-08-19 一般財団法人電力中央研究所 Industrial oil deterioration evaluation method and industrial oil deterioration evaluation system
DE102017003175A1 (en) * 2017-03-30 2018-10-04 ORONTEC GmbH & Co. KG Method of assessing corrosion damage
WO2019003337A1 (en) * 2017-06-28 2019-01-03 日産自動車株式会社 Painting defect inspection device and painting defect inspection method
JP6881347B2 (en) * 2018-02-16 2021-06-02 新東工業株式会社 Evaluation system, evaluation device, evaluation method, evaluation program, and recording medium
JP7153987B2 (en) * 2018-06-29 2022-10-17 ダイハツ工業株式会社 Evaluation method of painting defects
JP6815431B2 (en) * 2019-03-26 2021-01-20 株式会社ダイヘン Painted surface inspection equipment and programs
JP7403124B2 (en) * 2020-01-29 2023-12-22 株式会社イクシス Corrosion analysis system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621056A (en) * 2012-03-29 2012-08-01 攀钢集团攀枝花钢铁研究院有限公司 Method for quantitatively measuring rusting ratio of surface of metal material
CN102621056B (en) * 2012-03-29 2013-12-11 攀钢集团攀枝花钢铁研究院有限公司 Method for quantitatively measuring rusting ratio of surface of metal material
CN103411875A (en) * 2013-07-26 2013-11-27 攀钢集团攀枝花钢铁研究院有限公司 Quantitative measurement method for surface corrosion rate of film coated steel plate

Also Published As

Publication number Publication date
JP2001266121A (en) 2001-09-28

Similar Documents

Publication Publication Date Title
JP3597439B2 (en) Diagnosis method for paint deterioration of painted steel
US6950545B1 (en) Nondestructive inspection method and apparatus
JP3884834B2 (en) Defect inspection method and apparatus
JP3181543B2 (en) Deterioration / corrosion detection method for surface-treated steel
JP3329767B2 (en) Deterioration / corrosion detection judgment method for steel materials
JP3568871B2 (en) Degradation evaluation method for inspection of pipe inner surface corrosion
WO2015198401A1 (en) Method for setting inspection condition for fastener element, and method for inspecting fastener element
JP3151400B2 (en) Internal corrosion detection method for pipes
JP3568892B2 (en) Method for detecting and judging corrosion of a member having a curved surface
JP4107875B2 (en) Degradation diagnosis method for painted surfaces of buildings
JPH0380258B2 (en)
JPH0843315A (en) Automatic diagnosing method for coating film deterioration
JPH0682389A (en) Detection of surface defect
WO2020130786A1 (en) A method of analyzing visual inspection image of a substrate for corrosion determination
JPH06116914A (en) Film deterioration diagnostic method and device thereof
JPH0843316A (en) Automatic diagnosing method for coating film deterioration and its device
JP2638121B2 (en) Surface defect inspection equipment
JPH0587782B2 (en)
JPH0694660A (en) Method and device for surface defect inspection
JPH0682390A (en) Method and apparatus for inspecting surface defect
JP4093338B2 (en) Automatic evaluation equipment for printed matter
JP2707743B2 (en) Automatic evaluation method of degree of change of surface texture
WO2023248795A1 (en) Defect inspecting device, and defect inspecting method
JP2001194316A (en) Method and device for non-destructive inspection
JP2008014907A (en) Surface evaluation device and painting sample

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3597439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140917

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term