JP3588250B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP3588250B2
JP3588250B2 JP08637898A JP8637898A JP3588250B2 JP 3588250 B2 JP3588250 B2 JP 3588250B2 JP 08637898 A JP08637898 A JP 08637898A JP 8637898 A JP8637898 A JP 8637898A JP 3588250 B2 JP3588250 B2 JP 3588250B2
Authority
JP
Japan
Prior art keywords
coating layer
fuel cell
current collector
lacro
ceramic coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08637898A
Other languages
Japanese (ja)
Other versions
JPH11283642A (en
Inventor
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP08637898A priority Critical patent/JP3588250B2/en
Publication of JPH11283642A publication Critical patent/JPH11283642A/en
Application granted granted Critical
Publication of JP3588250B2 publication Critical patent/JP3588250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は固体電解質型燃料電池セルに関し、特に集電体の焼結性と還元雰囲気における安定性を改善した固体電解質型燃料電池セルに関するものである。
【0002】
【従来技術】
従来より固体電解質型燃料電池セルは、その作動温度が800〜1100℃と高温であるため、発電効率が高く第三世代の燃料電池として期待されている。
【0003】
燃料電池セルとしては、一般的に平板型または円筒型の固体電解質型燃料電池セルが知られている。平板型では発電の単位面積当たりの出力密度が高く、一方円筒型ではセル強度が強く熱衝撃性に優れるという特徴がある。両形状の固体電解質燃料電池セルとも、それぞれの特長を生かして積極的に研究開発が進められている。
【0004】
図3に円筒型の固体電解質型燃料電池セルの一例を示す。この固体電解質型燃料電池セルでは、例えばCa、Srを固溶させたLaMnO系の空気極2の表面に、Y安定化ZrOからなる固体電解質3、およびCa、Srを固溶したLaCrOからなる集電体5が形成され、固体電解質3の表面にNi−ジルコニア等のサーメットからなる燃料極4が設けられている。空気極2には、集電体5の一方側面が接合され、集電体5の他方側面が外部に露出している。
【0005】
燃料電池は、上記した複数の固体電解質型燃料電池セルを集合したスタックにより形成される。隣接する固体電解質型燃料電池セル間は、例えば一方の固体電解質型燃料電池セルの集電体の露出面と、他方の固体電解質型燃料電池セルの燃料極とがNiフェルト等を介して接続されている。固体電解質型燃料電池セルは、空気極側に酸素または空気を流し、燃料極側に水素や都市ガスを流し800〜1100℃前後の温度で発電する。
【0006】
【発明が解決しようとする課題】
集電体を形成するLaCrO系材料は陽イオンの拡散速度が遅いことに加えて、焼結過程において材料中からCr成分が蒸発しやすく、粒子の接触部(ネック部)にCrとして蒸発凝縮堆積してその結果焼結を阻害する。このため、LaCrO系材料は大気中では2000℃以上の温度で焼結させるか、あるいは還元性雰囲気でCrの蒸発を抑制しながら焼結させることが必要である。この場合でも、1800℃以上の高温度が必要である。このような高温度での焼成により、固体電解質型燃料電池セルの量産が経済的な観点から著しく困難であった。
【0007】
それに対して、LaCrOにYや希土類元素、またはYや希土類元素とCaを同時に添加させて焼結性を改善することが試みられている。これらの元素を添加した材料系は、焼結温度を1500〜1600℃と低温度化することには効果的ではあるが、その反面長時間の発電において、LaCrO系材料からなる集電体の露出面付近で、LaCrO系材料中の不可避元素であるSiとYや希土類元素、またはこれらとCaが化合物を形成し、これが還元雰囲気中においてLaCrO系材料の分解を促進させ、集電体の集電特性を低下させ、ひいては発電性能を劣化させるという欠点があった。
【0008】
本発明は、LaCrO系材料からなる集電体の分解を抑制して集電特性を向上できる固体電解質型燃料電池セルを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者は、集電体の低温度での焼結性を改善し、かつ還元雰囲気中の材料の安定性を向上させる方法について検討を重ねた結果、Yおよび希土類元素の少なくとも一種を含有させたLaCrOからなる集電体の露出面に、耐還元性の強いLaCrO系材料、またはZrO系材料、あるいはCeO系材料からなるセラミック被覆層を形成することにより、集電体の低温度での焼結性を改善し、かつ還元雰囲気中での材料の安定性を向上できることを見出し、本発明に至った。
【0010】
即ち、本発明の固体電解質型燃料電池セルでは、固体電解質の一面に空気極を、他面に燃料極を形成してなり、前記空気極または前記燃料極に電気的に接続され、かつ外部に露出する集電体を具備する固体電解質型燃料電池セルにおいて、前記集電体が、金属元素として少なくともLaおよびCrを含有するペロブスカイト型複合酸化物からなるLaCrO を主成分とし、Yおよび希土類元素のうち少なくとも一種を含有してなり、前記集電体の露出面にNi金属被覆層を形成するとともに、該Ni金属被覆層が形成されていない前記集電体の露出面に、Mg、SrおよびCaのうち少なくとも一種を含有するLaCrO (YおよびLa以外の希土類元素を含有せず)、またはY、希土類元素、CaおよびMgのうち少なくとも一種が固溶したZrOまたはCeO、あるいはCeO単体からなるセラミック被覆層を形成してなるものである。
【0011】
ここで、セラミック被覆層の膜厚は0.01〜30μmであることが望ましい。また、セラミック被覆層は、LaおよびCrと、Mg、SrおよびCaのうち少なくとも一種の金属元素を含有する有機金属化合物、または、ZrあるいはCeと、Y、希土類元素、CaおよびMgのうち少なくとも一種の金属元素を含有する有機金属化合物、あるいはCeを含有する有機金属化合物を熱分解して形成されることが望ましい。
【0012】
【作用】
集電体を形成するLaCrO系材料は、陽イオンの拡散速度が遅いことに加えて、焼結過程において材料中からCr成分が蒸発し、粒子の接触部(ネック部)にCrとして凝縮堆積して焼結を阻害する。それに対して、本発明では、Yや希土類元素、もしくはこれらとCaを同時に所定量含有することにより、おそらくはLaCrOの陽イオンの拡散速度を増加させるか、あるいはCrの蒸発を抑制することにより、LaCrO系材料の焼結性が高められる。
【0013】
しかしながら、原因は不明であるが、Yや希土類元素、またはこれらとCaを含有するLaCrO系材料では、水素等の強い還元雰囲気中に晒されると分解し易い。また、特にLaCrO系材料中には不可避元素であるSiが含まれ、これが還元雰囲気中に表面に拡散して濃縮し、その結果発電中還元雰囲気に晒されると、Yや希土類元素とSiが化合物を生成し、LaCrO系材料の分解が促進されていた。
【0014】
そこで、本発明の固体電解質型燃料電池セルでは、集電体の露出面に、Mg、SrおよびCaのうち少なくとも一種を含有するLaCrO、またはY、希土類元素、CaおよびMgのうち少なくとも一種を含有するZrOまたはCeO、あるいはCeO単体からなる、耐還元性の強いセラミック被覆層を形成することにより、LaCrO系材料からなる集電体の分解を抑制できる。
【0015】
また、セラミック被覆層の膜厚を0.01〜30μmとすることにより、集電体の分解をさらに抑制することができる。
【0016】
【発明の実施の形態】
本発明の固体電解質型燃料電池セルは、図1に示すように、円筒状の固体電解質31の内面に空気極32、外面に燃料極33を形成して燃料電池セル本体34が構成されており、この燃料電池セル本体34の外面に、一方側面が空気極32と電気的に接続し、他方側が外部に露出する集電体35を設けてなるものである。即ち、固体電解質31の一部を切り欠いて固体電解質31の内面に形成されている空気極32の一部が露出しており、この露出面37および切り欠いた固体電解質31の表面に集電体35が形成されている。尚、本発明の円筒型燃料電池セルは、多孔質支持管を形成し、この多孔質支持管の外面に空気極32、固体電解質31、燃料極33を順次積層して構成しても良い。
【0017】
空気極32と電気的に接続する集電体35は、燃料電池セル本体34の外面に形成され、連続同一面39を覆うように形成されており、燃料極33とは電気的に接続されていない。連続同一面39は、固体電解質31の内面に形成されている空気極32の一部を露出させるとともに、固体電解質31の端部と空気極32の露出面37とをほぼ同一面(固体電解質31の端部と空気極32の露出面37とが段差の少ない平面状態)をなして構成されている。この同一面39は固体電解質成形体の一部と空気極成形体の一部とがほぼ同一面となるまでセル本体の外周面を研摩することにより形成されている。
【0018】
集電体35は、金属元素として少なくともLaおよびCrを含有するペロブスカイト型複合酸化物を主成分とし、Yおよび希土類元素のうち少なくとも一種を含有してなるものである。
【0019】
また、集電体35の一方側面が空気極1に接合され、集電体35の他方側面が外部に露出し、その露出面にはNi金属からなるNi金属被覆層41が形成されている。
【0020】
そして、集電体35のNi金属被覆層41が形成されていない露出面には、Mg、SrおよびCaのうち少なくとも一種を含有するLaCrO、またはY、希土類元素、CaおよびMgのうち少なくとも一種を含有するZrOまたはCeO、あるいはCeO単体からなる、耐還元性の強いセラミック被覆層50が形成されている。この際、セラミック被覆層50は、ZrOを含有するセラミック被覆層50の場合を除き、Ni金属被覆層41表面に被覆しても良い。
【0021】
また、Ni金属被覆層41が酸素ガスの透過性を良くする目的でポーラス体である場合は、セラミック被覆層50は、ポーラス体の気孔内部に充填されることが望ましい。
【0022】
この集電体35には、Ni金属被覆層41、もしくはセラミック被覆層50、Niフェルト等の接続部材を介して他の固体電解質型燃料電池セルの燃料極が接続されることになる。
【0023】
集電体35は、焼結性を改善を改善する目的で、LaCrO系材料に、0.1〜8重量%のYや希土類元素、たとえばY、Yb、Ce、Nd、Sm、Sc、Dyが含有されている。また、この際、0.1〜8重量%のCaを同時に含有するとさらに焼結性が改善できる。
【0024】
また、集電体35は、LaCrO系材料のCrを5〜30原子%Mgで置換したものが好ましいが、Laを5〜20原子%のSr、Caで置換したLaCrO系材料でもよい。この場合、焼結温度がMgで置換したものより50〜100℃高くなる。
【0025】
集電体35の厚みとしては、30〜300μm、特に50〜100μmの範囲が望ましい。LaCrOの厚みが30μmより薄いと酸素イオンの燃料極側への拡散量が大きく、発電性能を低下させる。また、300μmより厚いと集電体35の電気抵抗が大きくなり、同様に発電性能を低下させるからである。また、Ni金属被覆層41の厚みとしては、0.1〜10μm、特には0.5〜5μmが望ましい。
【0026】
セラミック被覆層50が、Mg、SrおよびCaのうち少なくとも一種を含有するLaCrOからなる場合には、電気伝導度を大きくする観点からLaの一部を5〜30原子%のSrあるいはCaで置換したり、Crの一部を5〜20原子%のMgで置換したものが好ましい。このセラミック被覆層50の厚みは0.01〜30μm、特に0.1〜10μmの範囲が好ましい。セラミック被覆層50の厚みが0.01μmより薄いと耐還元性の効果が小さく、厚みが30μmを越えるとセラミック被覆層50にクラックが入ったり、あるいは剥離したりするからである。
【0027】
また、セラミック被覆層50がZrO系またはCeO系からなる場合には、5〜20モル%のY、Yb、Nd、Sm、CaO、MgOを含有するZrOまたはCeOからなるセラミック被覆層50が望ましい。また、CeO単体でも同様に大きな効果を示す。
【0028】
固体電解質として、例えば、3〜20モル%のYあるいはYbを含有した部分安定化あるいは安定化ZrOが用いられ、空気極としては、例えば、主としてLaをCa、Srで10〜30原子%置換したLaMnOが用いられ、燃料極としては50〜80重量%Niを含むZrO(Y含有)サーメットが用いられる。空気極、固体電解質、燃料極としては、上記例に限定されるものではなく、公知材料を用いても良い。
【0029】
この円筒型の固体電解質型燃料電池セルの作製方法としては、例えば押し出し成形により作製したLaを10〜30原子%のCa、Srで置換したLaMnO系空気極成形体を作製し、その外表面にドクターブレード法により作製した3〜15モル%Yを含有した安定化あるいは部分安定化ZrOからなる固体電解質テープ、およびLaCrO系材料からなる集電体テープを形成し、さらに固体電解質テープの表面に70〜90重量%Niとジルコニア(Y含有)からなる燃料極テープを貼り付け、1400〜1600℃の温度で2〜10時間大気中で焼成して作製される。この場合、燃料極はスラリーにディップして作製しても良い。
【0030】
次に、集電体の露出面にNiメッキ法を用いて、無電解メッキ法または電解メッキ法にてNi金属被覆層を形成する。その後、Ni金属被覆層が形成されていない集電体の露出面にセラミック被覆層を形成する。
【0031】
セラミック被覆層の形成は、例えばLa、Cr、Mgを同時に含む有機金属化合物水溶液、例えばオクチル酸塩、ナフテン酸塩、ネオデカン塩酸、エチルヘキサン酸塩等を所定の組成に成るようにトルエンに溶解させた溶液を、Ni金属被覆層が形成されていない集電体の露出面にスクリーン印刷またはスラリーディップ等の周知の方法により塗布した後、酸化性雰囲気で400〜1200℃の温度で1〜10時間熱分解させて作製される。この際600℃を越える温度で熱処理する場合は、燃料極の酸化を防止するため、酸素を1%以下含有するArまたはN雰囲気中で行うことが望ましい。ZrO系材料、CeO系材料からなるセラミック被覆層を形成する場合も同様な方法で形成することができる。尚、ZrO系材料のセラミック被覆層を形成する場合を除いて、Ni金属被覆層の表面にもセラミック被覆層を形成しても良い。
【0032】
また、その他の方法として、スパッタ法や溶射法およびレーザーアブレーション法なども被覆技術として適用されるが、経済的でない。
【0033】
尚、上記例では、円筒型の固体電解質燃料電池セルについて説明したが、本発明は上記例に限定されるものではなく、平板型の固体電解質型燃料電池セルにも適用できる。平板型の固体電解質型燃料電池セルにおいては、平板状あるいは円板状のLaCrO系焼結体からなる集電体(セパレータ)表面に、所定の金属元素を含有する有機金属化合物からなる溶液を上記と同様な方法により塗布し、熱分解させてセラミック被覆層が形成される。
【0034】
また、本発明の円筒型の固体電解質型燃料電池セルでは、固体電解質の一面に空気極、他面に燃料極が形成されていればよく、その構造は図1に限定されるものではない。
【0035】
【実施例】
実施例1
市販の純度99.5%以上のLaCO、MgCO、Cr粉末に、5重量%のY粉末をそれぞれ加え混合した後、1200℃で5時間仮焼した後、ジルコニアボールを用いた回転ミルで24時間粉砕した。その後、粉末を外径30mm、厚み1mmに金型プレスを用いて成形し、大気中において1500℃5時間焼成して、開気孔率0.1%のLaCrO系円板を作製した。
【0036】
一方、La、Ca、Cr、Sr、Mg、Y、Yb、Sm、Nd、Zr、Ceを含むオクチル酸塩をトルエンに溶解させて、表1の組成になるように配合した後、上記のLaCrO系円板に数回から数10回塗布した。その後、大気中において1000℃で1時間熱処理してセラミック被覆層を形成した。この際、セラミック被覆層の厚みは走査型電子顕微鏡で観察し求めた。
【0037】
上記のセラミック被覆層を形成したLaCrO系円板のセラミック被覆層側に水素を、他方に空気を供給して1000℃で1000時間熱処理して、LaCrO系円板の分解を調べた。その結果を表1に示す。尚、LaCrO系円板の分解は、セラミック被覆層を除去して、走査電子顕微鏡により観察し、表面が粉状に分解したものを×とし、表面が変色したものを△、分解も変色も全く見られなかったものを○とした。
【0038】
【表1】

Figure 0003588250
【0039】
表1より、セラミック被覆層を形成しなかった試料No.1については表面が粉状に分解し、セラミック被覆層の厚みが0.01μm未満の試料No.2については表面が変色した。それに対して、所定膜厚のセラミック被覆層を形成した本発明の試料はいづれも材料の分解や変色が見られず安定したものであった。
【0040】
実施例2
Laを10原子%のCaで置換したLaMnO系空気極粉末を用い押し出し成形法により外径20mm、肉厚3mmの空気極成形体を作製した。一方、10モル%Yを含有した安定化ZrO粉末、および70重量%Niとジルコニア(10モル%Y含有)、および実施例1のLaCrO粉末を用い、それぞれ厚み約100μmの固体電解質テープ、燃料極テープおよび集電体テープを作製した。
【0041】
この後、上記の空気極成形体に、図1の形状になるように固体電解質テープ、燃料極テープ、集電体テープを順次張り付け、積層成形体を作製した。この後、この積層成形体を1500℃で4時間大気中で共焼結し、固体電解質型燃料電池セルを作製した。その後、集電体の露出面に無電解メッキ法によりNi金属被覆層を形成した後、実施例1の試料No.2と9の組成の溶液を、Ni金属被覆層が形成されていない集電体の露出面に塗布し、500℃で1時間大気中で熱処理して、それぞれ0.78μmと0.90μmの厚みのセラミック被覆層を形成した。
【0042】
発電は、セルの内側に空気を、外側に水素を流し1000℃で1000時間行い、その時の出力密度の変化を調べた。その結果を図2に示す。これより、セラミック被覆層のない試料ではLaCrOからなる集電体の分解に伴い、急激に出力が低下するのに対して、本発明の試料No.2、9では1000時間の発電において出力密度の低下は見られなかった。この結果、本発明の固体電解質型燃料電池セルは、従来にない優れた性能のものであることが明らかである。
【0043】
【発明の効果】
本発明の固体電解質型燃料電池セルでは、集電体の露出面に、Mg、SrおよびCaのうち少なくとも一種を含有するLaCrO、またはY、希土類元素、CaおよびMgのうち少なくとも一種を含有するZrOまたはCeO、あるいはCeO単体からなる、耐還元性の強いセラミック被覆層を形成することにより、LaCrO系材料からなる集電体の分解を抑制でき、集電体の集電特性を向上でき、固体電解質型燃料電池セルの長期信頼性を向上できる。また、セラミック被覆層の膜厚を0.01〜30μmとすることにより、集電体の分解をさらに抑制することができる。
【図面の簡単な説明】
【図1】本発明の固体電解質型燃料電池セルを示す断面図である。
【図2】出力密度と発電時間との関係を示すグラフである。
【図3】従来の固体電解質型燃料電池セルを示す斜視図である。
【符号の説明】
31・・・固体電解質
32・・・空気極
33・・・燃料極
34・・・燃料電池セル本体
35・・・集電体
41・・・Ni金属被覆層
50・・・セラミック被覆層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid oxide fuel cell, and more particularly, to a solid oxide fuel cell having improved current collector sinterability and stability in a reducing atmosphere.
[0002]
[Prior art]
Conventionally, since the operating temperature of a solid oxide fuel cell is as high as 800 to 1100 ° C., its power generation efficiency is high and it is expected as a third generation fuel cell.
[0003]
As a fuel cell, a flat or cylindrical solid electrolyte fuel cell is generally known. The flat plate type is characterized by a high power density per unit area of power generation, while the cylindrical type is characterized by high cell strength and excellent thermal shock resistance. Both types of solid electrolyte fuel cells are being actively researched and developed utilizing their respective features.
[0004]
FIG. 3 shows an example of a cylindrical solid oxide fuel cell. In this solid oxide fuel cell, for example, solid electrolyte 3 made of Y 2 O 3 stabilized ZrO 2 and solid solution of Ca and Sr are formed on the surface of LaMnO 3 -based air electrode 2 in which Ca and Sr are dissolved. A current collector 5 made of LaCrO 3 is formed, and a fuel electrode 4 made of a cermet such as Ni-zirconia is provided on the surface of the solid electrolyte 3. One side of the current collector 5 is joined to the air electrode 2, and the other side of the current collector 5 is exposed to the outside.
[0005]
The fuel cell is formed by a stack in which a plurality of the above-described solid oxide fuel cells are assembled. Between adjacent solid oxide fuel cells, for example, the exposed surface of the current collector of one solid oxide fuel cell and the fuel electrode of the other solid oxide fuel cell are connected via Ni felt or the like. ing. The solid oxide fuel cell generates oxygen at a temperature of about 800 to 1100 ° C. by flowing oxygen or air to the air electrode side and flowing hydrogen or city gas to the fuel electrode side.
[0006]
[Problems to be solved by the invention]
The LaCrO 3 -based material forming the current collector has a slow diffusion rate of cations, and the Cr component easily evaporates from the material during the sintering process, so that Cr 2 O 3 is formed at the contact portion (neck portion) of the particles. As a result of evaporation and condensation, thereby inhibiting sintering. For this reason, it is necessary to sinter the LaCrO 3 -based material at a temperature of 2000 ° C. or higher in the air, or to sinter in a reducing atmosphere while suppressing the evaporation of Cr. Even in this case, a high temperature of 1800 ° C. or more is required. Due to the firing at such a high temperature, mass production of solid oxide fuel cells has been extremely difficult from an economic viewpoint.
[0007]
On the other hand, it has been attempted to improve sinterability by simultaneously adding Y or a rare earth element, or Y or a rare earth element and Ca to LaCrO 3 . Although a material system to which these elements are added is effective in lowering the sintering temperature to 1500 to 1600 ° C., on the other hand, in a long-time power generation, a current collector made of a LaCrO 3 material is used. In the vicinity of the exposed surface, Si and Y or rare earth elements or Ca and Ca, which are unavoidable elements in the LaCrO 3 -based material, form a compound, which promotes decomposition of the LaCrO 3 -based material in a reducing atmosphere, However, there has been a drawback that the current collecting characteristics of the battery have deteriorated and the power generation performance has been deteriorated.
[0008]
An object of the present invention is to provide a solid oxide fuel cell capable of improving the current collection characteristics by suppressing the decomposition of a current collector made of a LaCrO 3 -based material.
[0009]
[Means for Solving the Problems]
The present inventors have studied a method of improving the sinterability of the current collector at a low temperature, and improving the stability of the material in a reducing atmosphere, and as a result, it has been found that at least one of Y and a rare earth element is contained. By forming a ceramic coating layer made of a LaCrO 3 -based material, a ZrO 2 -based material, or a CeO 2 -based material having high reduction resistance on the exposed surface of the current collector made of LaCrO 3, The present inventors have found that the sinterability at a temperature can be improved and the stability of the material in a reducing atmosphere can be improved, and the present invention has been achieved.
[0010]
That is, in the solid oxide fuel cell of the present invention, an air electrode is formed on one surface of the solid electrolyte and a fuel electrode is formed on the other surface, and the solid electrolyte is electrically connected to the air electrode or the fuel electrode, and externally. In a solid oxide fuel cell having an exposed current collector, the current collector is mainly composed of LaCrO 3 composed of a perovskite-type composite oxide containing at least La and Cr as metal elements, and is composed of Y and a rare earth element. A Ni metal coating layer is formed on the exposed surface of the current collector, and Mg, Sr, and Ni are formed on the exposed surface of the current collector on which the Ni metal coating layer is not formed. LaCrO 3 containing at least one of Ca (not containing a rare earth element other than Y and La), or Y, rare earth elements, at least one of Ca and Mg It is formed by forming a ceramic coating layer made of ZrO 2 or CeO 2 dissolved in solid solution or CeO 2 alone.
[0011]
Here, the thickness of the ceramic coating layer is desirably 0.01 to 30 μm. In addition, the ceramic coating layer is an organic metal compound containing at least one metal element of La and Cr, Mg, Sr, and Ca, or at least one of Zr or Ce, Y, a rare earth element, and Ca and Mg. It is desirable that the organic metal compound is formed by thermally decomposing an organic metal compound containing a metal element or an organic metal compound containing Ce.
[0012]
[Action]
In the LaCrO 3 -based material forming the current collector, in addition to the slow diffusion rate of cations, the Cr component evaporates from the material during the sintering process, and Cr 2 O 3 is formed at the contact portion (neck portion) of the particles. And condensed and deposited to inhibit sintering. On the other hand, in the present invention, by containing a predetermined amount of Y or a rare earth element or both of them and Ca at the same time, probably by increasing the diffusion rate of the cation of LaCrO 3 or suppressing the evaporation of Cr, sinterability of LaCrO 3 system material is enhanced.
[0013]
However, although the cause is unknown, Y or a rare earth element or a LaCrO 3 system material containing them and Ca,, easily decomposes when exposed in a strong reducing atmosphere of hydrogen or the like. In particular, LaCrO 3 -based material contains Si, which is an unavoidable element, which diffuses and concentrates on the surface in a reducing atmosphere, and as a result, when exposed to the reducing atmosphere during power generation, Y and rare earth elements and Si A compound was generated, and decomposition of the LaCrO 3 -based material was promoted.
[0014]
Therefore, in the solid oxide fuel cell unit of the present invention, at least one of LaCrO 3 containing at least one of Mg, Sr and Ca, or Y, a rare earth element, Ca and Mg is provided on the exposed surface of the current collector. By forming a ceramic coating layer of ZrO 2, CeO 2 , or CeO 2 alone and having high resistance to reduction, decomposition of the current collector made of a LaCrO 3 -based material can be suppressed.
[0015]
Further, by setting the thickness of the ceramic coating layer to 0.01 to 30 μm, the decomposition of the current collector can be further suppressed.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1, the solid oxide fuel cell of the present invention has a fuel cell body 34 formed by forming an air electrode 32 on the inner surface of a cylindrical solid electrolyte 31 and a fuel electrode 33 on the outer surface. On the outer surface of the fuel cell main body 34, a current collector 35 is provided, one side of which is electrically connected to the air electrode 32 and the other side is exposed to the outside. That is, a part of the solid electrolyte 31 is cut away to expose a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31, and the exposed surface 37 and the cut surface of the solid electrolyte 31 collect current. A body 35 is formed. In addition, the cylindrical fuel cell of the present invention may be formed by forming a porous support tube, and sequentially laminating the air electrode 32, the solid electrolyte 31, and the fuel electrode 33 on the outer surface of the porous support tube.
[0017]
A current collector 35 electrically connected to the air electrode 32 is formed on the outer surface of the fuel cell body 34 and is formed so as to cover the continuous same surface 39, and is electrically connected to the fuel electrode 33. Absent. The continuous same surface 39 exposes a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31 and makes the end portion of the solid electrolyte 31 and the exposed surface 37 of the air electrode 32 substantially the same surface (the solid electrolyte 31). Of the air electrode 32 and the exposed surface 37 of the air electrode 32 are formed in a flat state with few steps. The same surface 39 is formed by polishing the outer peripheral surface of the cell body until a part of the solid electrolyte molded body and a part of the air electrode molded body become substantially the same plane.
[0018]
The current collector 35 is mainly composed of a perovskite-type composite oxide containing at least La and Cr as metal elements, and contains at least one of Y and rare earth elements.
[0019]
Further, one side surface of the current collector 35 is joined to the air electrode 1, and the other side surface of the current collector 35 is exposed to the outside, and a Ni metal coating layer 41 made of Ni metal is formed on the exposed surface.
[0020]
On the exposed surface of the current collector 35 where the Ni metal coating layer 41 is not formed, at least one of LaCrO 3 containing at least one of Mg, Sr and Ca, or at least one of Y, a rare earth element, Ca and Mg , A ceramic coating layer 50 having strong resistance to reduction is formed of ZrO 2, CeO 2 , or CeO 2 alone. At this time, the ceramic coating layer 50 may cover the surface of the Ni metal coating layer 41 except for the ceramic coating layer 50 containing ZrO 2 .
[0021]
When the Ni metal coating layer 41 is porous for the purpose of improving the permeability of oxygen gas, the ceramic coating layer 50 is desirably filled into the pores of the porous body.
[0022]
The fuel electrode of another solid oxide fuel cell is connected to the current collector 35 via a connecting member such as a Ni metal coating layer 41 or a ceramic coating layer 50 or Ni felt.
[0023]
For the purpose of improving the sinterability, the current collector 35 is prepared by adding 0.1 to 8% by weight of Y or a rare earth element, for example, Y, Yb, Ce, Nd, Sm, Sc, Dy to a LaCrO 3 -based material. Is contained. In this case, when Ca is simultaneously contained in an amount of 0.1 to 8% by weight, the sinterability can be further improved.
[0024]
The current collector 35 is preferably a LaCrO 3 -based material in which Cr is substituted with 5 to 30 atomic% of Mg, but may be a LaCrO 3 -based material in which La is substituted with 5 to 20 atomic% of Sr and Ca. In this case, the sintering temperature is higher by 50 to 100 ° C. than that of the one replaced by Mg.
[0025]
The thickness of the current collector 35 is preferably in the range of 30 to 300 μm, particularly preferably 50 to 100 μm. If the thickness of LaCrO 3 is less than 30 μm, the amount of diffusion of oxygen ions to the fuel electrode side is large, and the power generation performance is reduced. On the other hand, if the thickness is more than 300 μm, the electric resistance of the current collector 35 increases, and similarly, the power generation performance decreases. Further, the thickness of the Ni metal coating layer 41 is preferably 0.1 to 10 μm, particularly preferably 0.5 to 5 μm.
[0026]
When the ceramic coating layer 50 is made of LaCrO 3 containing at least one of Mg, Sr and Ca, a part of La is replaced with 5 to 30 atomic% of Sr or Ca from the viewpoint of increasing electric conductivity. Or a material in which part of Cr is substituted with 5 to 20 atomic% of Mg. The thickness of the ceramic coating layer 50 is preferably in the range of 0.01 to 30 μm, particularly 0.1 to 10 μm. This is because if the thickness of the ceramic coating layer 50 is less than 0.01 μm, the effect of the reduction resistance is small, and if the thickness exceeds 30 μm, the ceramic coating layer 50 cracks or peels off.
[0027]
When the ceramic coating layer 50 is made of a ZrO 2 system or a CeO 2 system, 5 to 20 mol% of Y 2 O 3 , Yb 2 O 3 , Nd 2 O 3 , Sm 2 O 3 , CaO, and MgO are used. A ceramic coating layer 50 made of ZrO 2 or CeO 2 is desirable. Also, CeO 2 alone shows a great effect similarly.
[0028]
As the solid electrolyte, for example, partially stabilized or stabilized ZrO 2 containing 3 to 20 mol% of Y 2 O 3 or Yb 2 O 3 is used. As the air electrode, for example, La is mainly composed of Ca and Sr. LaMnO 3 substituted with 10 to 30 atomic% is used, and ZrO 2 (containing Y 2 O 3 ) cermet containing 50 to 80 wt% Ni is used as a fuel electrode. The air electrode, the solid electrolyte, and the fuel electrode are not limited to the above examples, and known materials may be used.
[0029]
As a method for producing this cylindrical solid electrolyte fuel cell, for example, a LaMnO 3 -based air electrode molded body in which La produced by extrusion molding is substituted with 10 to 30 atomic% of Ca and Sr, and an outer surface thereof is produced. A solid electrolyte tape made of stabilized or partially stabilized ZrO 2 containing 3 to 15 mol% Y 2 O 3 prepared by a doctor blade method, and a current collector tape made of a LaCrO 3 -based material. A fuel electrode tape made of 70 to 90% by weight of Ni and zirconia (containing Y 2 O 3 ) is attached to the surface of the electrolyte tape and fired in air at a temperature of 1400 to 1600 ° C. for 2 to 10 hours. In this case, the fuel electrode may be prepared by dipping the slurry.
[0030]
Next, a Ni metal coating layer is formed on the exposed surface of the current collector by an electroless plating method or an electrolytic plating method using a Ni plating method. Thereafter, a ceramic coating layer is formed on the exposed surface of the current collector on which the Ni metal coating layer is not formed.
[0031]
The ceramic coating layer is formed by dissolving an organic metal compound aqueous solution containing, for example, La, Cr, and Mg simultaneously, such as octylate, naphthenate, neodecane hydrochloride, and ethylhexanoate, in toluene so as to have a predetermined composition. The resulting solution is applied to the exposed surface of the current collector on which the Ni metal coating layer is not formed by a known method such as screen printing or slurry dipping, and then is heated at a temperature of 400 to 1200 ° C. for 1 to 10 hours in an oxidizing atmosphere. It is produced by thermal decomposition. In this case, when the heat treatment is performed at a temperature exceeding 600 ° C., it is desirable to perform the heat treatment in an Ar or N 2 atmosphere containing 1% or less of oxygen in order to prevent oxidation of the fuel electrode. The same method can be used to form a ceramic coating layer made of a ZrO 2 -based material or a CeO 2 -based material. The ceramic coating layer may be formed on the surface of the Ni metal coating layer, except for the case where the ceramic coating layer of the ZrO 2 -based material is formed.
[0032]
As other methods, a sputtering method, a thermal spraying method, a laser ablation method, and the like are also applied as coating techniques, but they are not economical.
[0033]
In the above-described example, the cylindrical solid electrolyte fuel cell has been described. However, the present invention is not limited to the above example, and may be applied to a flat solid electrolyte fuel cell. In a plate-type solid electrolyte fuel cell, a solution composed of an organometallic compound containing a predetermined metal element is coated on a surface of a plate-shaped or disk-shaped current collector (separator) composed of a LaCrO 3 -based sintered body. A ceramic coating layer is formed by applying the same method as described above and thermally decomposing it.
[0034]
Further, in the cylindrical solid electrolyte fuel cell of the present invention, the air electrode may be formed on one surface of the solid electrolyte and the fuel electrode may be formed on the other surface, and the structure is not limited to FIG.
[0035]
【Example】
Example 1
5 wt% of Y 2 O 3 powder was added to each of commercially available LaCO 3 , MgCO 3 , and Cr 2 O 3 powders having a purity of 99.5% or more, mixed, and calcined at 1200 ° C. for 5 hours. Was ground for 24 hours with a rotary mill using. Thereafter, the powder was formed into an outer diameter of 30 mm and a thickness of 1 mm by using a die press, and fired in the air at 1500 ° C. for 5 hours to produce a LaCrO 3 -based disc having an open porosity of 0.1%.
[0036]
On the other hand, an octylate containing La, Ca, Cr, Sr, Mg, Y, Yb, Sm, Nd, Zr, and Ce was dissolved in toluene and blended to have the composition shown in Table 1, and then the above-described LaCrO It was applied several times to several tens of times on a third series disk. Thereafter, a heat treatment was performed at 1,000 ° C. for 1 hour in the air to form a ceramic coating layer. At this time, the thickness of the ceramic coating layer was determined by observation with a scanning electron microscope.
[0037]
Hydrogen was supplied to the ceramic coating layer side of the LaCrO 3 -based disk on which the ceramic coating layer was formed, and air was supplied to the other, and heat treatment was performed at 1000 ° C. for 1000 hours to examine the decomposition of the LaCrO 3 -based disk. Table 1 shows the results. The decomposition of the LaCrO 3 -based disc was performed by removing the ceramic coating layer and observing the disc with a scanning electron microscope. Those that were not seen at all were marked with a circle.
[0038]
[Table 1]
Figure 0003588250
[0039]
From Table 1, it can be seen that Sample No. with no ceramic coating layer was formed. With respect to Sample No. 1, the surface was decomposed into a powder, and the thickness of the ceramic coating layer was less than 0.01 μm. With regard to 2, the surface was discolored. On the other hand, the samples of the present invention in which the ceramic coating layer of a predetermined thickness was formed were stable without any decomposition or discoloration of the material.
[0040]
Example 2
An air electrode molded body having an outer diameter of 20 mm and a wall thickness of 3 mm was produced by an extrusion molding method using a LaMnO 3 -based air electrode powder in which La was substituted with 10 atomic% of Ca. On the other hand, a stabilized ZrO 2 powder containing 10 mol% Y 2 O 3 , 70 wt% Ni and zirconia (containing 10 mol% Y 2 O 3 ), and a LaCrO 3 powder of Example 1 were used, each having a thickness of about A 100 μm solid electrolyte tape, fuel electrode tape and current collector tape were produced.
[0041]
Thereafter, a solid electrolyte tape, a fuel electrode tape, and a current collector tape were sequentially adhered to the above-described air electrode molded body so as to have the shape shown in FIG. 1 to produce a laminated molded body. Thereafter, the laminated molded body was co-sintered at 1500 ° C. for 4 hours in the air to produce a solid oxide fuel cell. Thereafter, a Ni metal coating layer was formed on the exposed surface of the current collector by an electroless plating method. A solution having a composition of 2 and 9 was applied to the exposed surface of the current collector on which the Ni metal coating layer was not formed, and was heat-treated at 500 ° C. for 1 hour in the air to have a thickness of 0.78 μm and 0.90 μm, respectively. Was formed.
[0042]
Power generation was performed at 1000 ° C. for 1000 hours by flowing air inside the cell and hydrogen outside the cell, and the change in output density at that time was examined. The result is shown in FIG. As a result, the output of the sample without the ceramic coating layer rapidly decreased due to the decomposition of the current collector made of LaCrO 3 , whereas the output of the sample No. In Nos. 2 and 9, no decrease in output density was observed after 1000 hours of power generation. As a result, it is clear that the solid oxide fuel cell of the present invention has excellent performance which has not been achieved in the past.
[0043]
【The invention's effect】
In the solid oxide fuel cell of the present invention, the exposed surface of the current collector contains at least one of Mg, Sr, and Ca, or LaCrO 3 containing at least one of Y, a rare earth element, and Ca and Mg. By forming a ceramic coating layer of ZrO 2, CeO 2 , or CeO 2 alone and having strong reduction resistance, the decomposition of the current collector made of LaCrO 3 material can be suppressed, and the current collection characteristics of the current collector can be reduced. And the long-term reliability of the solid oxide fuel cell unit can be improved. Further, by setting the thickness of the ceramic coating layer to 0.01 to 30 μm, the decomposition of the current collector can be further suppressed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a solid oxide fuel cell unit of the present invention.
FIG. 2 is a graph showing a relationship between an output density and a power generation time.
FIG. 3 is a perspective view showing a conventional solid oxide fuel cell.
[Explanation of symbols]
31 solid electrolyte 32 air electrode 33 fuel electrode 34 fuel cell body 35 current collector 41 Ni metal coating layer 50 ceramic coating layer

Claims (3)

固体電解質の一面に空気極を、他面に燃料極を形成してなり、前記空気極または前記燃料極に電気的に接続され、かつ外部に露出する集電体を具備する固体電解質型燃料電池セルにおいて、前記集電体が、金属元素として少なくともLaおよびCrを含有するペロブスカイト型複合酸化物からなるLaCrO を主成分とし、Yおよび希土類元素のうち少なくとも一種を含有してなり、前記集電体の露出面にNi金属被覆層を形成するとともに、該Ni金属被覆層が形成されていない前記集電体の露出面に、Mg、SrおよびCaのうち少なくとも一種を含有するLaCrO (YおよびLa以外の希土類元素を含有せず)、またはY、希土類元素、CaおよびMgのうち少なくとも一種が固溶したZrOまたはCeO、あるいはCeO単体からなるセラミック被覆層を形成してなることを特徴とする固体電解質型燃料電池セル。A solid electrolyte fuel cell comprising a current collector formed by forming an air electrode on one surface of the solid electrolyte and a fuel electrode on the other surface and electrically connected to the air electrode or the fuel electrode and exposed to the outside; In the cell, the current collector contains LaCrO 3 composed of a perovskite-type composite oxide containing at least La and Cr as metal elements as a main component, and contains at least one of Y and a rare earth element. A Ni metal coating layer is formed on an exposed surface of the body, and an exposed surface of the current collector on which the Ni metal coating layer is not formed is provided on at least one of LaCrO 3 (Y and Containing no rare earth element other than La) , or ZrO 2 or CeO 2 in which at least one of Y, rare earth element, Ca and Mg is dissolved , or C A solid oxide fuel cell comprising a ceramic coating layer made of eO 2 alone. セラミック被覆層の膜厚は、0.01〜30μmであることを特徴とする請求項1記載の固体電解質型燃料電池セル。2. The solid oxide fuel cell according to claim 1, wherein the thickness of the ceramic coating layer is 0.01 to 30 [mu] m. セラミック被覆層が、LaおよびCrと、Mg、SrおよびCaのうち少なくとも一種の金属元素を含有する有機金属化合物、または、ZrあるいはCeと、Y、希土類元素、CaおよびMgのうち少なくとも一種の金属元素を含有する有機金属化合物、あるいはCeを含有する有機金属化合物を熱分解して形成されることを特徴とする請求項1または2記載の固体電解質型燃料電池セル。The ceramic coating layer is an organic metal compound containing La and Cr, and at least one metal element of Mg, Sr and Ca, or Zr or Ce, and at least one metal of Y, a rare earth element and Ca and Mg. 3. The solid oxide fuel cell according to claim 1, wherein the organic metal compound containing an element or the organic metal compound containing Ce is thermally decomposed.
JP08637898A 1998-03-31 1998-03-31 Solid oxide fuel cell Expired - Fee Related JP3588250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08637898A JP3588250B2 (en) 1998-03-31 1998-03-31 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08637898A JP3588250B2 (en) 1998-03-31 1998-03-31 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH11283642A JPH11283642A (en) 1999-10-15
JP3588250B2 true JP3588250B2 (en) 2004-11-10

Family

ID=13885227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08637898A Expired - Fee Related JP3588250B2 (en) 1998-03-31 1998-03-31 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3588250B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4859279B2 (en) * 2001-04-20 2012-01-25 京セラ株式会社 Solid electrolyte fuel cell and fuel cell
WO2006016627A1 (en) * 2004-08-10 2006-02-16 Central Research Institute Of Electric Power Industry Film-formed article and method for producing same
JP4906794B2 (en) * 2008-06-23 2012-03-28 京セラ株式会社 Cell stack and solid oxide fuel cell
KR101130126B1 (en) 2010-01-25 2012-03-28 포항공과대학교 산학협력단 Electrical Collector for Solid Oxide Fuel Cell Using Segmented Flat Tube Structure
JP6166151B2 (en) * 2013-10-30 2017-07-19 京セラ株式会社 Cell, cell stack device, module, and module storage device

Also Published As

Publication number Publication date
JPH11283642A (en) 1999-10-15

Similar Documents

Publication Publication Date Title
JP5213589B2 (en) Metal-supported solid oxide fuel cell
JP5208518B2 (en) Method for producing a reversible solid oxide fuel cell
AU2008207645B2 (en) Ceria and stainless steel based electrodes
JP5430009B2 (en) Removal of impurity phase from electrochemical devices
JP5101777B2 (en) Electrode support manufacturing method and electrochemical cell
JP2008538543A (en) Precursor material infiltration and coating methods
JP2004146334A (en) Cell for fuel cell, and fuel cell
WO2010030300A1 (en) Metal-supported, segmented-in-series high temperature electrochemical device
JP2006073230A (en) Fuel cell
JP5281950B2 (en) Horizontally-striped fuel cell stack, manufacturing method thereof, and fuel cell
JP5389378B2 (en) Composite ceramic electrolyte structure, manufacturing method thereof and related article
JP2022009365A (en) Cell, cell stack device, module, and module housing device
JP3588250B2 (en) Solid oxide fuel cell
JPH1021932A (en) Solid electrolyte type fuel cell and its manufacture
JP3350313B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3677386B2 (en) Solid oxide fuel cell
JP3730774B2 (en) Solid oxide fuel cell
JP2004265739A (en) Fuel battery cell
JP4544874B2 (en) Fuel cell and fuel cell
JP3667297B2 (en) Solid oxide fuel cell and method for producing the same
JPH09129245A (en) Cell for solid electrolyte fuel cell
KR101492118B1 (en) Solid-oxide Fuel Cells and Method for fabricating of the same
KR100760605B1 (en) A method for production of a lamellar structure of metal support/fuel electrode/solid electrolyte for a solid oxide fuel cell
JP3652932B2 (en) Solid oxide fuel cell
JP3740304B2 (en) Conductive ceramics

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees