JPH1021932A - Solid electrolyte type fuel cell and its manufacture - Google Patents

Solid electrolyte type fuel cell and its manufacture

Info

Publication number
JPH1021932A
JPH1021932A JP8167886A JP16788696A JPH1021932A JP H1021932 A JPH1021932 A JP H1021932A JP 8167886 A JP8167886 A JP 8167886A JP 16788696 A JP16788696 A JP 16788696A JP H1021932 A JPH1021932 A JP H1021932A
Authority
JP
Japan
Prior art keywords
solid electrolyte
metal
ceramic particles
porous
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8167886A
Other languages
Japanese (ja)
Other versions
JP3380681B2 (en
Inventor
Masahide Akiyama
雅英 秋山
Shoji Yamashita
祥二 山下
Yoshio Matsuzaki
良雄 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Tokyo Gas Co Ltd
Original Assignee
Kyocera Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Tokyo Gas Co Ltd filed Critical Kyocera Corp
Priority to JP16788696A priority Critical patent/JP3380681B2/en
Publication of JPH1021932A publication Critical patent/JPH1021932A/en
Application granted granted Critical
Publication of JP3380681B2 publication Critical patent/JP3380681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolyte type fuel cell which can remarkably improve the effect of prevention of the cohesion and sintering of metal. SOLUTION: In a solid electrolyte type fuel cell where a porous air electrode 2 is made on one side of a solid electrolyte 3 and a porous fuel electrode 4 is made on the other side, the fuel electrode 4 is constituted of the metallic particles where fine ceramic particles 31 are deposited on the surface and inside. Moreover, the fuel electrode 2 consists of a porous body 36 which has ceramic particles 35 as skeletal structure, and besides inside the cavity of that porous body 36, metallic particles 39, where fine ceramic particles 33 are deposited on the surface and/or inside, are scattered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池セルおよびその製造方法に関するもので、特に燃料
極の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell and a method for manufacturing the same, and more particularly to an improvement in a fuel electrode.

【0002】[0002]

【従来技術】従来より、固体電解質型燃料電池はその作
動温度が1000〜1050℃と高温であるため発電効
率が高く、第3世代の発電システムとして期待されてい
る。
2. Description of the Related Art Conventionally, a solid oxide fuel cell has a high power generation efficiency because its operating temperature is as high as 1000 to 1050 ° C., and is expected as a third generation power generation system.

【0003】一般に、固体電解質型燃料電池セルには円
筒型と平板型が知られている。平板型燃料電池セルは、
発電の単位体積当り出力密度が高いという特長を有する
が、実用化に関してはガスシ−ル不完全性やセル内の温
度分布の不均一性などの問題がある。それに対して、円
筒型燃料電池セルでは、出力密度は低いものの、セルの
機械的強度が高く、またセル内の温度の均一性が保てる
という特長がある。両形状の固体電解質型燃料電池セル
とも、それぞれの特長を生かして積極的に研究開発が進
められている。
[0003] In general, a solid oxide fuel cell is known to be a cylindrical type or a flat type. Flat fuel cells are
Although it has the feature that the power density per unit volume of power generation is high, there are problems such as incomplete gas seals and non-uniformity of the temperature distribution in the cell in practical use. On the other hand, the cylindrical fuel cell has the features that the output density is low, but the mechanical strength of the cell is high and the temperature uniformity in the cell can be maintained. Both types of solid oxide fuel cells are being actively researched and developed utilizing their respective features.

【0004】円筒型燃料電池の単セルは、図1に示した
ように開気孔率40%程度のCaO安定化ZrO2 を支
持管1とし、その上にLaMnO3 系材料からなる多孔
性の空気極2を形成し、その表面にY2 3 安定化Zr
2 からなる固体電解質3を被覆し、さらにこの表面に
多孔性のNi−ジルコニアの燃料極4が設けられてい
る。燃料電池のモジュ−ルにおいては、各単セルはC
a、Sr、Mgを固溶させたLaCrO3 系材料からな
るインタ−コネクタ5を介してNiフェルトで接続され
る。このような燃料電池の発電は、各単セルを1000
℃程度の温度で保持するとともに、支持管1内部に空気
(酸素)6を、外部に燃料ガス7、例えば、水素、都市
ガス等を供給することにより行われる。
As shown in FIG. 1, a single cell of a cylindrical fuel cell has a support tube 1 made of CaO-stabilized ZrO 2 having an open porosity of about 40%, and a porous air made of LaMnO 3 material on the support tube 1. A pole 2 is formed, and Y 2 O 3 stabilized Zr is formed on its surface.
A solid electrolyte 3 made of O 2 is covered, and a porous Ni-zirconia fuel electrode 4 is provided on this surface. In a fuel cell module, each single cell is C
The connection is made with Ni felt through an interconnector 5 made of LaCrO 3 -based material in which a, Sr, and Mg are dissolved. Such a power generation by a fuel cell requires 1000 cells for each unit cell.
This is performed by maintaining the temperature at about ° C. and supplying air (oxygen) 6 inside the support tube 1 and supplying a fuel gas 7, for example, hydrogen, city gas, or the like to the outside.

【0005】そして、近年、セル作製工程においてプロ
セス単純化のため、空気極材料であるLaMnO3 系材
料を直接多孔性の支持管として使用する試みがなされて
いる。空気極としての機能を併せ持つ支持管材料として
は、LaをCaあるいはSrで10〜20原子%置換し
たLaMnO3 固溶体材料が用いられている。
In recent years, attempts have been made to directly use a LaMnO 3 -based material, which is an air electrode material, as a porous support tube in order to simplify the process in the cell fabrication process. A LaMnO 3 solid solution material in which La is replaced by Ca or Sr by 10 to 20 atomic% is used as a support tube material having a function as an air electrode.

【0006】また、平板型燃料電池の単セルは、円筒型
セルと同じ材料系を用いて図2に示したように固体電解
質8の一方に多孔性の空気極9が、他方に多孔性の燃料
極10が設けられている。単セル間の接続は、セパレ−
タ11と呼ばれるMgやCaを添加した緻密質のLaC
rO3 材料が用いられる。
A single cell of a flat fuel cell uses the same material system as a cylindrical cell, and as shown in FIG. 2, a solid electrolyte 8 has a porous air electrode 9 on one side and a porous electrolyte 9 on the other side. An anode 10 is provided. Connection between single cells is separated
Dense LaC containing Mg and Ca, called
An rO 3 material is used.

【0007】そして、上記した円筒型および平板型の固
体電解質型燃料電池セルの燃料極は、一般的にNi粉末
とZrO2 (Y2 3 含有)粉末あるいはNiO粉末と
ZrO2 (Y2 3 含有)粉末の混合粉末をスクリ−ン
印刷法により固体電解質表面に塗布するか、あるいは混
合粉末を含有する溶液中に浸漬した後、乾燥し燃料極と
して形成されていた。また、後者のNiO/ZrO
2 (Y2 3 含有)混合粉末の場合は、1000〜14
00℃の還元雰囲気で熱処理して燃料極として形成され
ていた。
The fuel electrodes of the above-mentioned cylindrical and flat solid electrolyte fuel cells are generally made of Ni powder and ZrO 2 (containing Y 2 O 3 ) powder or NiO powder and ZrO 2 (Y 2 O). 3 ) The powder mixture was applied to the surface of the solid electrolyte by a screen printing method or immersed in a solution containing the mixed powder and then dried to form a fuel electrode. In addition, the latter NiO / ZrO
2 (containing Y 2 O 3 ) in the case of a mixed powder,
Heat treatment was performed in a reducing atmosphere at 00 ° C. to form a fuel electrode.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、これら
の方法で作製された燃料極は長時間の発電においてNi
(NiOは発電中に還元されNiとなる)の凝集や粒成
長により発電性能が低下するという大きな問題が発生し
ていた。
However, the fuel electrode produced by these methods cannot be used for a long period of power generation.
(NiO is reduced to Ni during power generation) and a large problem has occurred in that power generation performance is reduced by grain growth.

【0009】また、近年、この問題を解決するため、特
開平7−22032号に開示されるように、Zrおよび
Y元素を含むオクチル酸塩、ナフテン酸塩等の有機金属
化合物を熱分解させ、Ni等の金属粒子表面に微粒のZ
rO2 (Y2 3 含有)セラミック粒子を析出させてN
iの凝集や焼結による性能低下を抑制する方法が提案さ
れているが、この方法においてもNiの凝集や焼結を防
止するには充分ではなかった。
In recent years, in order to solve this problem, as disclosed in JP-A-7-22032, organometallic compounds such as octylates and naphthenates containing the elements Zr and Y are thermally decomposed, Fine Z on the surface of metal particles such as Ni
rO 2 (containing Y 2 O 3 ) ceramic particles are precipitated and N
Although a method has been proposed to suppress performance degradation due to aggregation and sintering of i, this method was not sufficient to prevent aggregation and sintering of Ni.

【0010】[0010]

【課題を解決するための手段】本発明は、上記問題に検
討を加えた結果、燃料極を構成している金属粒子の表面
と同時に金属粒子内部に微粒子のセラミック粒子を析出
せしめることにより、金属の凝集や焼結の抑制効果が著
しく向上することを見出し本発明に至った。また、本発
明ではセラミック粒子により骨格を形成し、その骨格の
空孔中に、表面および/または内部に微粒のセラミック
粒子を析出させた金属粒子を分散させることにより、さ
らに金属の凝集や焼結の抑制効果を向上でき、燃料極の
固体電解質への付着強度も向上できることを見出し本発
明に至った。
SUMMARY OF THE INVENTION As a result of studying the above problems, the present invention has been developed by depositing fine ceramic particles inside the metal particles simultaneously with the surface of the metal particles constituting the fuel electrode. The present inventors have found that the effect of suppressing coagulation and sintering is significantly improved, leading to the present invention. Further, in the present invention, a skeleton is formed by ceramic particles, and metal particles having fine ceramic particles precipitated on the surface and / or inside are dispersed in the pores of the skeleton, thereby further coagulating and sintering the metal. The present inventors have found that the effect of suppressing the occurrence of a fuel electrode can be improved and the adhesion strength of the fuel electrode to the solid electrolyte can be improved.

【0011】即ち、本発明の固体電解質型燃料電池セル
は、固体電解質の片面に多孔性の空気極、他面に多孔性
の燃料極が形成された固体電解質型燃料電池セルにおい
て、前記燃料極が、表面および内部に微粒のセラミック
粒子が析出した金属粒子により構成してなるものであ
る。
That is, the solid oxide fuel cell according to the present invention is a solid oxide fuel cell having a porous air electrode formed on one surface of a solid electrolyte and a porous fuel electrode formed on the other surface. Are composed of metal particles having fine ceramic particles precipitated on the surface and inside.

【0012】また、本発明の固体電解質型燃料電池セル
は、固体電解質の片面に多孔性の空気極、他面に多孔性
の燃料極が形成された固体電解質型燃料電池セルにおい
て、前記燃料極がセラミック粒子を骨格とする多孔質体
からなり、かつ、該多孔質体の空孔内に、表面および/
または内部に微粒のセラミック粒子が析出した金属粒子
を分散してなるものである。
Further, the solid electrolyte fuel cell of the present invention is a solid electrolyte fuel cell in which a porous air electrode is formed on one side of the solid electrolyte and a porous fuel electrode is formed on the other side. Is composed of a porous material having ceramic particles as a skeleton, and the surface and / or
Alternatively, metal particles in which fine ceramic particles are precipitated are dispersed.

【0013】さらに、本発明の固体電解質型燃料電池セ
ルの製造方法は、固体電解質の片面に多孔性の空気極、
他面に多孔性の燃料極が形成された固体電解質型燃料電
池セルの製造方法であって、前記燃料極を、Ni、C
o、FeおよびRuのうち少なくとも1種の金属元素
と、Zrおよび/またはCeを含む有機金属化合物溶液
を前記固体電解質表面に塗布して熱分解させ、表面およ
び内部に微粒のセラミック粒子が析出した金属粒子によ
り形成する方法である。
Further, according to the method for producing a solid oxide fuel cell of the present invention, a porous air electrode is provided on one surface of the solid electrolyte.
A method for manufacturing a solid oxide fuel cell having a porous fuel electrode formed on the other surface, wherein the fuel electrode is formed of Ni, C
An organic metal compound solution containing at least one metal element of o, Fe and Ru and Zr and / or Ce was applied to the surface of the solid electrolyte and thermally decomposed, and fine ceramic particles were deposited on the surface and inside. This is a method of forming with metal particles.

【0014】また、固体電解質の片面に多孔性の空気
極、他面に多孔性の燃料極が形成された固体電解質型燃
料電池セルの製造方法であって、前記燃料極を、Ni、
Co、FeおよびRuのうち少なくとも1種以上の金属
元素と、Zrおよび/またはCeを含む有機金属化合物
溶液を、セラミック粒子を骨格とする多孔質体の空孔内
に注入して熱分解させ、該多孔質体の空孔内に、表面お
よび/または内部に微粒のセラミック粒子が析出した金
属粒子を分散せしめる方法である。
A method for manufacturing a solid electrolyte fuel cell having a solid electrolyte and a porous air electrode formed on one surface and a porous fuel electrode formed on the other surface, wherein the fuel electrode is made of Ni,
An organic metal compound solution containing at least one metal element of Co, Fe and Ru and Zr and / or Ce is injected into pores of a porous body having ceramic particles as a skeleton and thermally decomposed. This is a method of dispersing metal particles having fine ceramic particles precipitated on the surface and / or inside the pores of the porous body.

【0015】さらに、固体電解質の片面に多孔性の空気
極、他面に多孔性の燃料極が形成された固体電解質型燃
料電池セルの製造方法であって、前記燃料極を、Zrお
よび/またはCeを含む有機金属化合物溶液を、Ni、
Co、FeおよびRuからなる金属、これらの金属酸化
物および前記金属の合金のうち少なくとも1種と、セラ
ミック粒子とからなる多孔質体の空孔内に注入して熱分
解させ、該多孔質体の空孔内に、表面および/または内
部に微粒のセラミック粒子が析出した金属粒子を分散せ
しめる方法である。
Further, the present invention provides a method for manufacturing a solid electrolyte fuel cell having a solid electrolyte and a porous air electrode formed on one surface and a porous fuel electrode formed on the other surface, wherein the fuel electrode is made of Zr and / or An organometallic compound solution containing Ce is mixed with Ni,
A metal consisting of Co, Fe and Ru, at least one of these metal oxides and alloys of said metals and ceramic particles are injected into pores of a porous body and thermally decomposed to form the porous body; In this method, metal particles having fine ceramic particles precipitated on the surface and / or inside are dispersed in the pores.

【0016】[0016]

【作用】本発明の固体電解質型燃料電池セルでは、燃料
極中において、有機金属化合物溶液、例えばナフテン酸
塩、オクチル酸塩等を固体電解質表面に塗布し、熱分解
させ、微粒のセラミック粒子、例えば、ZrO2 微粒子
をNi金属表面に析出させると同時に内部にもZrO2
微粒子を析出させることにより、金属の凝集や粒成長が
飛躍的に抑制される。
In the solid oxide fuel cell of the present invention, an organic metal compound solution, for example, naphthenate, octylate, or the like is applied to the surface of the solid electrolyte in the fuel electrode, and thermally decomposed to produce fine ceramic particles, For example, ZrO 2 fine particles are deposited on the Ni metal surface and ZrO 2
By precipitating the fine particles, metal aggregation and grain growth are drastically suppressed.

【0017】また、セラミック粒子により形成された骨
格(多孔質体)の空孔内に、表面および/または内部に
微粒のセラミック粒子を析出させた金属粒子を分散させ
ることにより、金属の凝集や粒成長が抑制されるととも
に、燃料極の固体電解質への付着強度が向上し、その結
果出力密度が向上し、さらに、熱サイクルに対しても安
定した出力が得られる。
In addition, by dispersing metal particles having fine ceramic particles precipitated on the surface and / or inside the pores of the skeleton (porous body) formed by the ceramic particles, metal aggregation and particle The growth is suppressed, the adhesion strength of the fuel electrode to the solid electrolyte is improved, and as a result, the output density is improved, and furthermore, a stable output can be obtained even in a heat cycle.

【0018】[0018]

【発明の実施の形態】本発明の固体電解質型燃料電池セ
ルにおける燃料極の基本構造の一つは、図3に示すよう
に、例えば固体電解質3表面の燃料極4がNi等の金属
粒子31の表面に微粒のセラミック粒子33が膜状およ
び/あるいは微粒子の状態で析出し、さらに内部に微粒
のセラミック粒子33が析出した構造となっている。こ
の微粒なセラミック粒子33の一次粒子径は熱処理条件
等の作成条件により変化するが、平均粒子径としては
0.01〜0.5μmの程度の大きさからなる。金属粒
子の平均粒径は、1〜20μm、電気伝導性およびガス
透過性の観点から5〜10μmであることが望ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One of the basic structures of a fuel electrode in a solid oxide fuel cell unit according to the present invention is, for example, as shown in FIG. Has a structure in which fine ceramic particles 33 are precipitated in the form of a film and / or fine particles on the surface, and fine ceramic particles 33 are further deposited inside. The primary particle diameter of the fine ceramic particles 33 varies depending on the preparation conditions such as heat treatment conditions, but the average particle diameter is about 0.01 to 0.5 μm. The average particle size of the metal particles is desirably 1 to 20 μm, and 5 to 10 μm from the viewpoint of electric conductivity and gas permeability.

【0019】本発明の燃料極4は、金属粒子31として
は、Niの他Co、Fe、Ruの単体およびそれらの合
金が使用される。また、微粒のセラミック粒子33とし
てはZrO2 、CeO2 の単体、およびそれらの固溶体
の他、Y、Yb、Sc、Sm、Nd、Dy、Pr等の希
土類元素を1〜30モル%含有するZrO2 固溶体また
はCeO2 固溶体、およびYや希土類元素を含有したZ
rO2 とCeO2 の固溶体を用いることができる。これ
らの中で経済性の観点から燃料極材料としてはNiとZ
rO3 (Y3 3 含有)あるいはNiとCeO2 の組み
合わせが好ましい。
In the fuel electrode 4 of the present invention, as the metal particles 31, a simple substance of Co, Fe, and Ru in addition to Ni and an alloy thereof are used. The fine ceramic particles 33 include ZrO 2 and CeO 2 , a solid solution thereof, and a ZrO 2 element containing 1 to 30 mol% of a rare earth element such as Y, Yb, Sc, Sm, Nd, Dy, or Pr. 2 solid solution or CeO 2 solid solution, and Z containing Y or rare earth element
A solid solution of rO 2 and CeO 2 can be used. Among them, Ni and Z are used as fuel electrode materials from the viewpoint of economy.
rO 3 (containing Y 3 O 3 ) or a combination of Ni and CeO 2 is preferred.

【0020】このような燃料極構造は、Ni、Co、F
e、Ruの金属元素と、Zrおよび/またはCeとを同
時に含む有機金属化合物溶液、例えば、オクチル酸塩、
ナフテン酸塩、ネオデカン酸塩、エチルヘキサン酸塩、
プロピオン酸塩等をトルエン等の溶剤に溶解させた溶液
を固体電解質表面にスクリ−ン印刷あるいはスラリ−デ
ィップ等の周知の技術により塗布した後、酸化性雰囲気
中で400〜1600℃の温度で1〜10時間熱分解さ
せて作製される。有機金属化合物溶液には、Yおよび希
土類元素から選ばれる元素を含んでも良い。酸化雰囲気
中での熱処理においては、Ni、Co、Fe金属は酸化
されるため、還元雰囲気中での再処理が必要である。金
属酸化物を還元するためには、酸素濃度が1%以下のN
2 、Ar中で熱処理することが望ましい。
Such an anode structure is composed of Ni, Co, F
e, an organometallic compound solution simultaneously containing a metal element of Ru and Zr and / or Ce, for example, octylate;
Naphthenate, neodecanoate, ethylhexanoate,
A solution in which a propionate or the like is dissolved in a solvent such as toluene is applied to the surface of the solid electrolyte by a well-known technique such as screen printing or slurry dipping, and then applied at a temperature of 400 to 1600 ° C. in an oxidizing atmosphere. It is produced by thermal decomposition for 10 hours. The organometallic compound solution may contain an element selected from Y and rare earth elements. In a heat treatment in an oxidizing atmosphere, Ni, Co, and Fe metals are oxidized, and thus need to be reprocessed in a reducing atmosphere. In order to reduce the metal oxide, N 2 having an oxygen concentration of 1% or less is used.
2. It is desirable to perform heat treatment in Ar.

【0021】Ni等の金属粒子31の表面および内部に
微粒のセラミック粒子33を析出させるには、Ni等の
金属粒子と、Zrおよび/またはCeとを同時に含む有
機金属化合物溶液を用いる必要がある。尚、Ni等の金
属粒子31の表面に微粒のセラミック粒子33を析出さ
せるには、Zrおよび/またはCeを含む有機金属化合
物溶液にNi等の金属粉末を分散させた溶液を作製し、
これを塗布することにより得られる。
In order to deposit fine ceramic particles 33 on the surface and inside of metal particles 31 such as Ni, it is necessary to use an organometallic compound solution containing metal particles such as Ni and Zr and / or Ce simultaneously. . In order to precipitate the fine ceramic particles 33 on the surface of the metal particles 31 such as Ni, a solution in which metal powder such as Ni is dispersed in an organic metal compound solution containing Zr and / or Ce is prepared.
It is obtained by applying this.

【0022】図3に示す燃料極においては、Ni、C
o、Fe、Ru金属とYおよび希土類元素から構成され
る酸化物との重量比率は、Ni、Co、Fe,Ruが金
属換算で99〜50重量%、Zrおよび/またはCeの
酸化物(Yおよび希土類元素を含有する場合も含む)が
1〜50重量%の範囲が好ましい。Ni等の金属が99
重量%より多いと、金属の発電時の凝集あるいは粒成長
を充分抑制できない。それに対して、Ni等の金属が5
0重量%より少なくなると、電気伝導性が低下して発電
性能が悪くなる傾向にあるからである。これら金属と酸
化物との重量比率としては、金属が80〜90重量%、
Zrおよび/またはCeの酸化物(Yおよび希土類元素
を含有する場合も含む)が10〜20重量%が特に好ま
しい。
In the fuel electrode shown in FIG. 3, Ni, C
The weight ratio of the metal composed of O, Fe, and Ru to the oxide composed of Y and the rare earth element is such that Ni, Co, Fe, and Ru are 99 to 50% by weight in terms of metal, and the oxide of Zr and / or Ce (Y And the case containing a rare earth element) is preferably in the range of 1 to 50% by weight. 99 metals such as Ni
If the amount is more than the weight percentage, aggregation or grain growth of the metal during power generation cannot be sufficiently suppressed. On the other hand, metals such as Ni
If the amount is less than 0% by weight, the electric conductivity tends to decrease and the power generation performance tends to deteriorate. The weight ratio of the metal to the oxide is 80 to 90% by weight of the metal,
An oxide of Zr and / or Ce (including a case containing Y and a rare earth element) is particularly preferably 10 to 20% by weight.

【0023】また、燃料極の厚みとしては電気伝導性と
ガスの透過率の観点から、平板型セルの場合20〜20
0μmが、円筒型セルの場合は30〜300μmの範囲
が優れる。
The thickness of the fuel electrode is preferably 20 to 20 in the case of a flat cell from the viewpoints of electric conductivity and gas permeability.
In the case where 0 μm is a cylindrical cell, the range of 30 to 300 μm is excellent.

【0024】本発明の燃料極の基本構造のもう一つは、
図4に示すように、固体電解質3表面に粗粒のセラミッ
ク粒子35で構成した多孔質体(骨格)36の空孔中
に、表面または表面と内部に膜状および/または粒子状
に微粒のセラミック粒子37が析出した金属39を分散
させた構造を有する。この様な燃料極4においては、粗
粒のセラミック粒子35が骨格を形成しているため、燃
料極4の固体電解質3への付着強度が高く、温度サイク
ルによる燃料極4の剥離が極めて少なくなり高い出力密
度を有する。骨格を形成するセラミック粒子35および
微粒のセラミック粒子37とも、ZrO2 、CeO2
体、またはこれらの固溶体、あるいはY、Yb、Sc、
Sm、Nd、Dy、Pr等の希土類元素酸化物を含有す
るZrO2、CeO2 から構成されることが好ましい。
Another basic structure of the fuel electrode of the present invention is as follows.
As shown in FIG. 4, fine particles in the form of a film and / or particles are formed on the surface or in the inside of the pores of the porous body (skeleton) 36 composed of coarse ceramic particles 35 on the surface of the solid electrolyte 3. It has a structure in which metal 39 on which ceramic particles 37 are precipitated is dispersed. In such an anode 4, since the coarse ceramic particles 35 form a skeleton, the adhesion strength of the anode 4 to the solid electrolyte 3 is high, and peeling of the anode 4 due to a temperature cycle is extremely small. Has high power density. Both the ceramic particles 35 forming the skeleton and the fine ceramic particles 37 are made of ZrO 2 , CeO 2 alone or a solid solution thereof, or Y, Yb, Sc,
It is preferable to be composed of ZrO 2 and CeO 2 containing a rare earth element oxide such as Sm, Nd, Dy, and Pr.

【0025】この場合、金属が50〜95重量%(金属
換算)、微粒のセラミック粒子が1〜20重量%、粗粒
のセラミック粒子が4〜30重量%の範囲が優れる。金
属が95重量%より多い場合、または微粒のセラミック
粒子が1重量%より少ない場合、または粗粒のセラミッ
ク粒子が4重量%より少ない場合には、発電時の金属の
凝集、粒成長の抑制効果が小さい。また、金属が50重
量%より少ない場合、または微粒のセラミック粒子が2
0重量%より多い場合、あるいは粗粒のセラミック粒子
が30重量%より多い場合には、電気伝導性が低下して
発電性能が悪くなる傾向にある。特に、金属が60〜8
0重量%(金属換算)、微粒のセラミック粒子が10〜
20重量%、粗粒のセラミック粒子が10〜20重量%
の範囲が優れる。
In this case, the range of 50 to 95% by weight of metal (in terms of metal), 1 to 20% by weight of fine ceramic particles, and 4 to 30% by weight of coarse ceramic particles is excellent. When the metal content is more than 95% by weight, when the fine ceramic particles are less than 1% by weight, or when the coarse ceramic particles are less than 4% by weight, the effect of suppressing metal aggregation and grain growth during power generation. Is small. If the metal content is less than 50% by weight or fine ceramic particles
When the content is more than 0% by weight or when the amount of the coarse ceramic particles is more than 30% by weight, the electric conductivity tends to decrease and the power generation performance tends to deteriorate. In particular, if the metal is 60-8
0% by weight (in terms of metal), 10 to 10 fine ceramic particles
20% by weight, 10-20% by weight of coarse ceramic particles
Range is excellent.

【0026】骨格を形成する粗粒のセラミック粒子の大
きさとしては、平均粒子径で0.5〜30μm、特に2
〜10μmの範囲が優れる。また、微粒のセラミック粒
子の一次粒子の大きさとしては、平均粒子径で0.01
〜0.5μm、特に0.1〜0.5μmの範囲が優れ
る。
The size of the coarse ceramic particles forming the skeleton is 0.5 to 30 μm in average particle size, particularly 2 to 30 μm.
The range of 10 to 10 μm is excellent. The size of the primary particles of the fine ceramic particles is 0.01 μm in average particle diameter.
The range of 0.5 to 0.5 μm, particularly 0.1 to 0.5 μm is excellent.

【0027】このような燃料極中のセラミックの骨格
は、まず粗粒のセラミック粒子を固体電解質表面にスク
リ−ン印刷あるいはスラリ−ディップ等の周知の技術に
より塗布した後、酸化性雰囲気中で1000〜1700
℃、好ましくは1200〜1400℃の温度で1〜10
時間熱処理して形成する。その後、Ni、Co、Fe、
Ruの金属元素とZrおよび/またはCeとを同時に含
む有機金属化合物溶液、例えば、オクチル酸塩、ナフテ
ン酸塩、ネオデカン酸塩、エチルヘキサン酸塩、プロピ
オン酸塩をトルエン等の溶剤に溶解させた溶液を骨格中
に含浸した後、酸化性雰囲気中で400〜1600℃の
温度で熱分解させ、金属表面および内部に微粒のセラミ
ックを析出させて燃料極が形成される。
The ceramic skeleton in the fuel electrode is formed by first applying coarse ceramic particles to the surface of the solid electrolyte by a well-known technique such as screen printing or slurry dipping, and then immersing the particles in an oxidizing atmosphere at 1000 gram. ~ 1700
° C, preferably 1 to 10 at a temperature of 1200 to 1400 ° C.
It is formed by heat treatment for a time. Then, Ni, Co, Fe,
An organometallic compound solution simultaneously containing a Ru metal element and Zr and / or Ce, for example, octylate, naphthenate, neodecanoate, ethylhexanoate, propionate was dissolved in a solvent such as toluene. After the solution is impregnated into the skeleton, it is thermally decomposed at a temperature of 400 to 1600 ° C. in an oxidizing atmosphere to deposit fine ceramics on the metal surface and inside to form a fuel electrode.

【0028】あるいは、粗粒のセラミック粒子とNi
O、CoO等のNi、Co金属を含有する酸化物を混合
し、固体電解質表面にスクリ−ン印刷あるいはスラリ−
ディップ等の周知の技術により塗布した後、酸化性雰囲
気中で1000〜1700℃、好ましくは1200〜1
400℃の温度で1〜10時間熱処理して骨格を形成
し、骨格中にNiO、CoO等の金属酸化物を含有させ
る。この後、Zrおよび/またはCeとを同時に含む有
機金属化合物溶液、例えば、オクチル酸塩、ナフテン酸
塩、ネオデカン酸塩、エチルヘキサン酸塩、プロピオン
酸塩をトルエン等の溶剤に溶解させた溶液を骨格中に含
浸した後、酸化性雰囲気中で400〜1600℃の温度
で熱分解させて、微粒のセラミック粒子を金属酸化物表
面に析出させた後、NiO、CoO等の金属酸化物の還
元処理を行なうことにより、粗粒のセラミック粒子から
なる骨格中に、表面に微粒子のセラミック粒子を析出さ
せた金属粒子からなる燃料極が形成される。
Alternatively, coarse ceramic particles and Ni
O, CoO and other oxides containing Ni and Co metals are mixed, and screen printing or slurry is applied to the solid electrolyte surface.
After coating by a known technique such as dip, 1000 to 1700 ° C., preferably 1200 to 1700 ° C. in an oxidizing atmosphere.
Heat treatment is performed at a temperature of 400 ° C. for 1 to 10 hours to form a skeleton, and a metal oxide such as NiO or CoO is contained in the skeleton. Thereafter, an organic metal compound solution containing Zr and / or Ce simultaneously, for example, a solution in which octylate, naphthenate, neodecanoate, ethylhexanoate, and propionate are dissolved in a solvent such as toluene is used. After being impregnated in the skeleton, it is thermally decomposed at a temperature of 400 to 1600 ° C. in an oxidizing atmosphere to deposit fine ceramic particles on the surface of the metal oxide, and thereafter, a reduction treatment of a metal oxide such as NiO and CoO is performed. Is performed, a fuel electrode composed of metal particles having fine ceramic particles precipitated on the surface is formed in a framework composed of coarse ceramic particles.

【0029】あるいは、NiO、CoO等の金属酸化物
を含有した骨格について、NiO、CoO等の金属酸化
物を還元する処理を行なった後、Zrおよび/またはC
eとを同時に含む有機金属化合物溶液、例えば、オクチ
ル酸塩、ナフテン酸塩等をトルエル等の溶剤に溶解させ
た溶液を骨格中に注入した後、酸素濃度が1%以下のA
r、N2 中で熱分解させて微粒のセラミック粒子を析出
させても良い。
Alternatively, a skeleton containing a metal oxide such as NiO or CoO is subjected to a treatment for reducing a metal oxide such as NiO or CoO, and then Zr and / or C
e) and an organic metal compound solution containing, for example, octylate, naphthenate or the like dissolved in a solvent such as toluene is injected into the skeleton.
r, N 2 may be thermally decomposed to precipitate fine ceramic particles.

【0030】尚、燃料極中の金属成分としては、上述の
Ni、Co等の酸化物の他に、熱処理により酸化物を形
成する炭酸塩、酢酸塩、臭酸塩等も使用することができ
る。
As the metal component in the fuel electrode, in addition to the above-mentioned oxides such as Ni and Co, carbonates, acetates, bromates and the like which form oxides by heat treatment can be used. .

【0031】また、上記方法において、有機金属化合物
溶液には、Zrおよび/またはCeの他に、Yおよび希
土類元素から選ばれる元素を含有しても良い。
In the above method, the organometallic compound solution may contain an element selected from Y and rare earth elements in addition to Zr and / or Ce.

【0032】本発明により構成される円筒型燃料電池セ
ルの構造は、例えば、図1に示したように開気孔率40
%程度のY2 3 あるいはCaO安定化ZrO2 を支持
管1とし、その上にスラリ−ディップ法により多孔性の
空気極2としてLaをCa、Srで10〜20原子%置
換したLaMnO2 系材料を塗布し、その表面に気相合
成法(EVD)や、あるいは溶射法により固体電解質3
であるY2 3安定化ZrO2 膜あるいはY2 3 ,Y
2 3 あるいはCaO含有するCeO2 膜を被覆し、
さらにこの表面に多孔性の本発明の燃料極4が形成され
ている。また、本発明の燃料電池セルは、支持管を用い
ることなく、LaをCa、Srで10〜20原子%置換
したLaMnO3 からなる空気極を支持管として用いて
も良い。
The structure of the cylindrical fuel cell constructed according to the present invention has, for example, an open porosity of 40 as shown in FIG.
% Of Y 2 O 3 or CaO-stabilized ZrO 2 as a support tube 1 and a LaMnO 2 system in which La is replaced with Ca and Sr by 10 to 20 atomic% as a porous air electrode 2 by a slurry-dip method. A material is applied, and a solid electrolyte 3 is applied to the surface by vapor phase synthesis (EVD) or thermal spraying.
In a Y 2 O 3 stabilized ZrO 2 film or Y 2 O 3, Y
b 2 O 3, or coated with a CeO 2 film containing CaO,
Further, a porous fuel electrode 4 of the present invention is formed on this surface. Further, in the fuel cell unit of the present invention, an air electrode made of LaMnO 3 in which La is replaced with Ca and Sr by 10 to 20 atomic% may be used as the support tube without using the support tube.

【0033】また、インタ−コネクタ5と呼ばれる集電
体としては、5〜20モル%のCaO、MgOを添加し
たLaCrO3 が気相合成法や溶射法を用いて空気極と
接するように形成される。
As a current collector called an interconnector 5, LaCrO 3 to which 5-20 mol% of CaO or MgO is added is formed so as to be in contact with the air electrode by using a vapor phase synthesis method or a thermal spraying method. You.

【0034】また、平板型セルにおいても、円筒型セル
と同一の材料を用いて、図2のように作製することがで
きる。
Also, a flat cell can be manufactured as shown in FIG. 2 using the same material as that of the cylindrical cell.

【0035】尚、本発明の燃料電池セルは、固体電解質
の一面に空気極、多面に燃料極が形成されたものであれ
ば良く、上記構造に限定されるものではない。
The fuel cell of the present invention is not limited to the above-described structure, as long as it has an air electrode formed on one surface of the solid electrolyte and a fuel electrode formed on multiple surfaces.

【0036】[0036]

【実施例】【Example】

実施例1 純度が99.9%で平均粒子径が0.5μmのZrO2
(Y2 3 10モル%含有)粉末、純度が99.8%で
平均粒子径が2μmのLa0.9 Sr0.1 MnO3 の空気
極粉末をそれぞれ準備した。また、Ni、Co、Fe、
Ruの一種と、Zr、Ce、Y、Yb、Sc、Sm、N
dおよびDyの一種以上を含有するオクチル酸塩をトル
エンに溶解させた溶液も合わせて準備した。上記の0.
5μmのZrO2 粉末をプレス成形した後、大気中15
00℃で3時間焼成して、理論密度比99.5%以上の
厚み0.3mm、直径30mmの固体電解質円板を作製
した。その後、この固体電解質円板の一方の面に平均粒
子径が2μmのLa0.9 Sr0.1 MnO3 ペーストを塗
布して、大気中1200℃で2時間熱処理して固体電解
質への焼き付けを行い空気極を形成した。また、上記オ
クチル酸塩をトルエンに溶解した溶液を、表1および表
2に示す組成になるように調整した後、固体電解質の一
面に塗布し、大気中1200℃で2時間熱処理して熱分
解を行なわせて燃料極を形成した。例えば、試料No.6
では、Ni、Zr、Yをそれぞれ含有するオクチル酸塩
を、Niが80重量%、ZrO2 を20重量%からな
り、ZrO2 中にY2 3 が10モル%含有するように
トルエンに溶解した溶液を用いて燃料極を作製した。こ
の際、空気極および燃料極の厚みをそれぞれ約50μm
とした。
Example 1 ZrO 2 having a purity of 99.9% and an average particle diameter of 0.5 μm
Powder (containing 10 mol% of Y 2 O 3 ) and La 0.9 Sr 0.1 MnO 3 air electrode powder having a purity of 99.8% and an average particle diameter of 2 μm were prepared. Ni, Co, Fe,
Ru, Zr, Ce, Y, Yb, Sc, Sm, N
A solution prepared by dissolving an octylate salt containing at least one of d and Dy in toluene was also prepared. The above 0.
After press forming 5 μm ZrO 2 powder,
By baking at 00 ° C. for 3 hours, a solid electrolyte disc having a thickness of 0.3 mm and a diameter of 30 mm having a theoretical density ratio of 99.5% or more was produced. Thereafter, a La 0.9 Sr 0.1 MnO 3 paste having an average particle diameter of 2 μm is applied to one surface of the solid electrolyte disc, and the paste is heat-treated at 1200 ° C. for 2 hours in the air to bake the solid electrolyte to form an air electrode. Formed. Further, a solution prepared by dissolving the above octylate in toluene was adjusted so as to have the composition shown in Tables 1 and 2, and then applied to one surface of the solid electrolyte, followed by heat treatment at 1200 ° C. in the air for 2 hours for thermal decomposition. To form a fuel electrode. For example, sample No. 6
In dissolving Ni, Zr, octyl acid salt each containing Y, Ni 80 wt%, the a ZrO 2 from 20 wt%, in toluene as in ZrO 2 Y 2 O 3 contains 10 mol% A fuel electrode was prepared using the solution thus obtained. At this time, the thickness of each of the air electrode and the fuel electrode was set to about 50 μm.
And

【0037】発電は上述の固体電解質の空気極側に酸素
を、燃料極側に水素を流し、1000℃で発電を行い、
100時間後の出力密度と、100時間後の出力密度に
対する3000時間後の出力密度の低下率を求めた。
In the power generation, oxygen is supplied to the air electrode side and hydrogen is supplied to the fuel electrode side of the above-mentioned solid electrolyte to generate power at 1000 ° C.
The output density after 100 hours and the reduction rate of the output density after 3000 hours with respect to the output density after 100 hours were determined.

【0038】この実験においては、比較のため従来のボ
−ルミルにより混合した平均粒子径が5μmのNiOと
ZrO2 (10モル%含有Y2 3 )で重量比率がN
i:ZrO2 =80:20の混合粉末を燃料極として用
いた(試料No.1)。また、平均粒子径が5μmのN
iO粉末と、Y、Zrを含有するオクチル酸塩からなる
溶液を用い、該溶液に前記NiO粉末を分散させ、これ
を固体電解質の一面に塗布した後、大気中1200℃で
2時間熱処理して熱分解を行なわせて燃料極を形成した
(試料No.2)。また、金属表面および内部の微粒の
セラミック粒子の析出の有無を走査型電子顕微鏡で観察
した。これらの結果を表1および表2に示す。
In this experiment, for comparison, NiO mixed with a conventional ball mill and having an average particle diameter of 5 μm and ZrO 2 (Y 2 O 3 containing 10 mol%) and a weight ratio of N
i: A mixed powder of ZrO 2 = 80: 20 was used as a fuel electrode (Sample No. 1). Further, N having an average particle diameter of 5 μm
Using a solution consisting of iO powder and an octylate containing Y and Zr, dispersing the NiO powder in the solution, applying this to one surface of the solid electrolyte, and heat-treating at 1200 ° C. in the air for 2 hours. The fuel electrode was formed by pyrolysis (Sample No. 2). In addition, the presence or absence of precipitation of fine ceramic particles on the metal surface and inside was observed with a scanning electron microscope. The results are shown in Tables 1 and 2.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】表1および表2より、金属比率が99重量
%を越える試料No.3は長時間発電による出力密度の
低下がやや大きいことが分かる。また、金属比率が50
重量%より小さな試料No.10、12、46では出力
密度の低下は小さいものの、電気伝導性がやや低いため
出力密度の絶対値が小さいことが分かる。それに対し
て、金属比率が50〜99重量%の範囲のものは全て出
力密度も高く低下率も小さかった。また、走査型電子顕
微鏡による観察から本発明の試料については全て金属粒
子の表面および内部に微粒のセラミック粒子の析出が観
察された。
From Tables 1 and 2, it can be seen that Sample No. 1 has a metal ratio of more than 99% by weight. As for No. 3, it can be seen that the decrease in output density due to long-time power generation is slightly large. Also, if the metal ratio is 50
Sample No. less than wt. In 10, 12, and 46, although the decrease in the output density is small, the absolute value of the output density is small because the electrical conductivity is slightly low. On the other hand, those having a metal ratio in the range of 50 to 99% by weight all had high output densities and small reduction rates. From observation by a scanning electron microscope, precipitation of fine ceramic particles was observed on the surface and inside of the metal particles in all of the samples of the present invention.

【0042】実施例2 純度が99.9%で平均粒子径が3μmのZrO2 (1
0モル%含有Y2 3、Yb2 3 )粉末に約5〜30
体積%のフロ−ビ−ズ(商品名)のポア形成剤を添加し
て混合した後、実施例1の片面に空気極が形成された固
体電解質円板の一面に塗布し、大気中1400℃で2時
間熱処理して固体電解質表面に厚み約50μmの粗粒セ
ラミックからなる多孔質体(骨格)を形成した。この多
孔質体の空孔中に表3の組成になるように実施例1のN
i、Co、Fe、Ruの一種と、Zr、Ce、Y、Y
b、Sc、Smの一種以上を含有するオクチル酸塩をト
ルエンに溶解させた溶液を注入した後、大気中1000
℃で2時間熱処理して熱分解を行なわせ燃料極を形成し
た。この際、表中の骨格を形成している粗粒セラミック
の重量比率は1400℃の熱処理前後の重量変化から求
めた。この後実施例1に従い発電試験と微粒のセラミッ
ク粒子の観察を行い、結果を表3に示した。
Example 2 ZrO 2 (1) having a purity of 99.9% and an average particle diameter of 3 μm
0 mol% containing Y 2 O 3 , Yb 2 O 3 )
After adding and mixing a volume-% flow beads (trade name) pore-forming agent, the mixture was applied to one surface of a solid electrolyte disk having an air electrode formed on one surface in Example 1 and then exposed to air at 1400 ° C. For 2 hours to form a porous body (skeleton) made of coarse-grained ceramic with a thickness of about 50 μm on the surface of the solid electrolyte. The N of Example 1 was set so that the pores of this porous body had the composition shown in Table 3.
i, Co, Fe, Ru, Zr, Ce, Y, Y
After injecting a solution of octylate containing at least one of b, Sc and Sm in toluene, 1000
Heat treatment was performed at 2 ° C. for 2 hours to perform thermal decomposition to form a fuel electrode. At this time, the weight ratio of the coarse-grained ceramics forming the skeleton in the table was obtained from the weight change before and after the heat treatment at 1400 ° C. Thereafter, a power generation test and observation of fine ceramic particles were performed according to Example 1, and the results are shown in Table 3.

【0043】[0043]

【表3】 [Table 3]

【0044】この表3より、金属比率が50重量%より
小さな試料No.53では出力密度の低下は小さいもの
の、電気伝導性が低いため出力密度の絶対値がやや小さ
いことが分かる。また、微粒のセラミック粒子が20重
量%を越える試料No.55および67では出力密度の
絶対値がやや小さいことが分かる。また、走査型電子顕
微鏡による観察から本発明の試料については全て金属粒
子の表面および内部に微粒のセラミック粒子の析出が観
察された。
From Table 3, it can be seen that Sample No. 5 in which the metal ratio is less than 50% by weight. In 53, although the decrease in the output density is small, the absolute value of the output density is slightly small due to the low electrical conductivity. Sample No. 1 in which fine ceramic particles exceeded 20% by weight. At 55 and 67, the absolute value of the output density is slightly smaller. From observation by a scanning electron microscope, precipitation of fine ceramic particles was observed on the surface and inside of the metal particles in all of the samples of the present invention.

【0045】実施例3 純度が99.9%で平均粒子径がそれぞれ5μmのZr
2 (10モル%含有Y2 3 、Yb2 3 )粉末と、
CeO2 粉末と、NiO、CoO、FeO、Ru粉末
と、約5〜30体積%のフロ−ビ−ズ(商品名)のポア
形成剤とを、表4の組成となるように混合した後、実施
例1の片面に空気極が形成された固体電解質円板の一面
に塗布し、1400℃で2時間熱処理して固体電解質表
面に厚み約50μmのNiO、CoO、FeO、Ruを
含有した粗粒セラミックからなる骨格を形成した。
Example 3 Zr having a purity of 99.9% and an average particle diameter of 5 μm each
O 2 (10 mol% containing Y 2 O 3 , Yb 2 O 3 ) powder;
After mixing CeO 2 powder, NiO, CoO, FeO, and Ru powders and about 5 to 30% by volume of a pore-forming agent of flow beads (trade name) so as to have a composition shown in Table 4, Coating on one surface of a solid electrolyte disk having an air electrode formed on one surface of Example 1 and heat treatment at 1400 ° C. for 2 hours, coarse particles containing about 50 μm thick NiO, CoO, FeO, and Ru on the surface of the solid electrolyte A skeleton made of ceramic was formed.

【0046】この骨格中に表4の組成になるようにZ
r、Ce、Y、Yb、Sc、Smを含有するオクチル酸
塩をトルエンに溶解した溶液を注入した後、大気中10
00℃で2時間熱処理して熱分解を行なわせNiO、C
oO、FeO、Ru表面に微粒のセラミックを析出させ
て燃料極を形成した。この際、表中の骨格を形成してい
る粗粒セラミック、金属の重量比率は1400℃の熱処
理前後の重量変化から求めた。この後、実施例1に従い
発電試験と微粒のセラミック粒子の観察を行い、結果を
表4に示した。
In this skeleton, Z is set so as to have the composition shown in Table 4.
After injecting a solution of octylate containing r, Ce, Y, Yb, Sc, and Sm in toluene, 10
NiO, C heat treated at 00 ° C for 2 hours to cause thermal decomposition
The fuel electrode was formed by depositing fine ceramic particles on the surfaces of oO, FeO, and Ru. At this time, the weight ratio of the coarse-grained ceramic and metal forming the skeleton in the table was obtained from the weight change before and after the heat treatment at 1400 ° C. Thereafter, a power generation test and observation of fine ceramic particles were performed according to Example 1, and the results are shown in Table 4.

【0047】[0047]

【表4】 [Table 4]

【0048】この表4より、金属比率が95重量%を越
え、また粗粒のセラミック粒子の比率が4重量%を下回
る試料No.68では出力密度の低下率がやや大きいこ
とが分かる。また、金属比率が50重量%より小さな試
料No.74では出力密度の低下は小さいものの、電気
伝導性が低いため出力密度の絶対値がやや小さいことが
分かる。また、微粒のセラミック粒子が20重量%を越
える試料No.76では出力密度の絶対値がやや小さい
ことが分かる。また、走査型電子顕微鏡による観察から
本発明の試料については全て金属粒子の表面に微粒のセ
ラミック粒子の析出が観察された。 実施例4 実施例1、2および3で作製した試料を室温から100
℃/hの速度で1000℃まで昇温し、1000℃で1
時間保持した後室温まで100℃/hの速度で冷却し
た。この温度変化を1サイクルとし、20サイクル繰り
返した後実施例1に従い発電試験を行ない、出力密度を
求めた。この結果を表5に示す。
From Table 4, it can be seen that Sample No. 1 in which the metal ratio exceeds 95% by weight and the ratio of coarse ceramic particles is less than 4% by weight. In the case of No. 68, it can be seen that the reduction rate of the output density is slightly large. Sample No. having a metal ratio of less than 50% by weight. In the case of No. 74, although the decrease of the output density is small, the absolute value of the output density is slightly small due to the low electric conductivity. Sample No. 1 in which fine ceramic particles exceeded 20% by weight. At 76, it can be seen that the absolute value of the output density is slightly smaller. From observation by a scanning electron microscope, precipitation of fine ceramic particles was observed on the surfaces of the metal particles in all of the samples of the present invention. Example 4 The samples prepared in Examples 1, 2 and 3 were cooled from room temperature to 100
The temperature was raised to 1000 ° C at a rate of
After holding for a time, the mixture was cooled to room temperature at a rate of 100 ° C./h. This temperature change was defined as one cycle, and after repeating 20 cycles, a power generation test was performed in accordance with Example 1 to determine an output density. Table 5 shows the results.

【0049】[0049]

【表5】 [Table 5]

【0050】この表5により燃料極中に粗粒のセラミッ
クの骨格を形成した全ての試料は骨格形成がない試料N
o.88、89に比較して熱処理後の出力密度の低下が
少ないことがわかる。発電試験後、骨格形成がない燃料
極試料No.88、89には剥離が認められたが、骨格を
形成した試料には剥離が認められなかった。
According to Table 5, all the samples in which the coarse-grained ceramic skeleton was formed in the fuel electrode were samples N having no skeleton formation.
o. It can be seen that the decrease in the output density after the heat treatment is smaller than that of 88 and 89. After the power generation test, peeling was observed in fuel electrode samples Nos. 88 and 89 having no skeleton formed, but no peeling was observed in the sample having the skeleton formed.

【0051】実施例5 純度が99.9%で平均粒子径が8μmのLa0.9 Ca
0.1 MnO3 粉末を用いて押し出し成形法により一端を
封じた中空の円筒状成形体を作製し、1500℃で3時
間焼成して開気孔率32%で、厚み2mm,外径15m
m、長さ200mmの空気極支持管を作製した。この
後、溶射法にて空気極支持管表面に厚みがそれぞれ約5
0μmのZrO2 (10モル%Y2 3 含有)電解質お
よびLa0. 9 Ca0.1 CrO3 のインタ−コネクタを形
成した後、固体電解質表面に本発明の燃料極を70μm
の厚みに形成し、円筒型セルを作製した。発電は、空気
極支持管の内側に空気を、外側に水素を流し1000℃
で約5000時間発電を行ない出力密度の時間変化を観
察した。結果を図5に示す。
Example 5 La 0.9 Ca having a purity of 99.9% and an average particle diameter of 8 μm
A hollow cylindrical molded body, one end of which is sealed by an extrusion molding method using 0.1 MnO 3 powder, is prepared and fired at 1500 ° C. for 3 hours, has an open porosity of 32%, a thickness of 2 mm, and an outer diameter of 15 m.
An air electrode support tube having a length of 200 mm and a length of 200 mm was prepared. Thereafter, the thickness of the air electrode support tube is about 5
0μm of ZrO 2 (10 mol% Y 2 O 3 content) electrolyte and of La 0. 9 Ca 0.1 CrO 3 interface - after forming the connector, 70 [mu] m the fuel electrode of the present invention to the solid electrolyte surface
To form a cylindrical cell. Power is generated by flowing air inside the cathode support tube and hydrogen outside,
And power generation was performed for about 5000 hours, and a time change of the output density was observed. FIG. 5 shows the results.

【0052】この図5から、本発明の試料No.6、6
1、85では、従来のセルNo.1および2に比較して
出力密度の低下が極めて小さいことがわかる。この結果
から本発明の円筒型燃料電池セルは出力密度の高い長期
安定性の優れたセルであることが判る。
From FIG. 5, it can be seen that Sample No. 6, 6
1 and 85, the conventional cell No. It can be seen that the decrease in the output density is extremely small as compared with 1 and 2. From these results, it is understood that the cylindrical fuel cell of the present invention is a cell having a high output density and excellent long-term stability.

【0053】[0053]

【発明の効果】本発明の固体電解質型燃料電池セルで
は、燃料極中において、微粒のセラミック粒子を金属表
面に析出させると同時に内部にも析出させることによ
り、飛躍的に金属の凝集や粒成長が抑制される。また、
セラミック粒子により形成された骨格(多孔質体)の空
孔内に、少なくとも表面および/または内部に微粒のセ
ラミック粒子を析出させた金属粒子を含浸、分散させる
ことにより、飛躍的に金属の凝集や粒成長が抑制される
とともに、燃料極の固体電解質への付着強度が向上し、
その結果出力密度が向上すると同時に、熱サイクルに対
しても安定した出力を示すことができる。
In the solid oxide fuel cell unit according to the present invention, in the fuel electrode, fine ceramic particles are deposited on the surface of the metal and at the same time on the inside, so that metal agglomeration and particle growth are dramatically increased. Is suppressed. Also,
By impregnating and dispersing metal particles in which fine ceramic particles are deposited at least on the surface and / or inside the pores of the skeleton (porous body) formed by the ceramic particles, metal aggregation and dispersion can be dramatically achieved. In addition to suppressing grain growth, the adhesion strength of the fuel electrode to the solid electrolyte is improved,
As a result, the output density can be improved, and at the same time, a stable output can be exhibited even in a heat cycle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒型固体電解質型燃料電池セルを示
す斜視図である。
FIG. 1 is a perspective view showing a cylindrical solid oxide fuel cell of the present invention.

【図2】本発明の平板型固体電解質型燃料電池セルを示
す斜視図である。
FIG. 2 is a perspective view showing a flat solid electrolyte fuel cell unit according to the present invention.

【図3】燃料極が、表面および内部に微粒のセラミック
粒子が析出した金属粒子により構成されている状態を示
す概念図である。
FIG. 3 is a conceptual diagram showing a state in which a fuel electrode is composed of metal particles having fine ceramic particles precipitated on the surface and inside.

【図4】燃料極が、セラミック粒子を骨格とする多孔質
体の空孔内に、表面および/または内部に微粒のセラミ
ック粒子が析出した金属粒子を分散して構成した状態を
示す概念図である。
FIG. 4 is a conceptual diagram showing a state in which a fuel electrode is formed by dispersing metal particles having fine ceramic particles precipitated on the surface and / or inside pores of a porous body having a ceramic particle skeleton. is there.

【図5】出力密度の時間変化を示すグラフである。FIG. 5 is a graph showing a time change of an output density.

【符号の説明】[Explanation of symbols]

1・・・支持管 2・・・空気極 3・・・固体電解質 4・・・燃料極 5・・・集電部材 31・・・金属粒子 33、37・・・微粒のセラミック粒子 35・・・粗粒のセラミック粒子 36・・・多孔質体(骨格) 39・・・金属 DESCRIPTION OF SYMBOLS 1 ... Support tube 2 ... Air electrode 3 ... Solid electrolyte 4 ... Fuel electrode 5 ... Current collecting member 31 ... Metal particles 33, 37 ... Fine ceramic particles 35 ...・ Coarse ceramic particles 36 ・ ・ ・ porous body (framework) 39 ・ ・ ・ metal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松崎 良雄 東京都荒川区南千住3−28−70 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshio Matsuzaki 3-28-70 Minamisenju, Arakawa-ku, Tokyo

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】固体電解質の片面に多孔性の空気極、他面
に多孔性の燃料極が形成された固体電解質型燃料電池セ
ルにおいて、前記燃料極が、表面および内部に微粒のセ
ラミック粒子が析出した金属粒子により構成してなるこ
とを特徴とする固体電解質型燃料電池セル。
1. A solid electrolyte fuel cell having a solid electrolyte and a porous air electrode formed on one side and a porous fuel electrode formed on the other side, wherein the fuel electrode has fine ceramic particles on the surface and inside. A solid oxide fuel cell comprising: deposited metal particles.
【請求項2】固体電解質の片面に多孔性の空気極、他面
に多孔性の燃料極が形成された固体電解質型燃料電池セ
ルにおいて、前記燃料極が、セラミック粒子を骨格とす
る多孔質体からなり、かつ、該多孔質体の空孔内に、表
面および/または内部に微粒のセラミック粒子が析出し
た金属粒子を分散してなることを特徴とする固体電解質
型燃料電池セル。
2. A solid electrolyte fuel cell in which a porous air electrode is formed on one side of a solid electrolyte and a porous fuel electrode is formed on the other side, wherein the fuel electrode has a porous body having ceramic particles as a skeleton. A solid electrolyte fuel cell comprising: metal particles having fine ceramic particles deposited on the surface and / or inside the pores of the porous body.
【請求項3】固体電解質の片面に多孔性の空気極、他面
に多孔性の燃料極が形成された固体電解質型燃料電池セ
ルの製造方法であって、前記燃料極を、Ni、Co、F
eおよびRuのうち少なくとも1種の金属元素と、Zr
および/またはCeを含む有機金属化合物溶液を前記固
体電解質表面に塗布して熱分解させ、表面および内部に
微粒のセラミック粒子が析出した金属粒子により形成す
ることを特徴とする固体電解質型燃料電池セルの製造方
法。
3. A method for manufacturing a solid oxide fuel cell comprising a solid electrolyte having a porous air electrode on one surface and a porous fuel electrode on the other surface, wherein the fuel electrode is made of Ni, Co, F
e and Ru, at least one metal element, and Zr
And / or an organic metal compound solution containing Ce is applied to the surface of the solid electrolyte and thermally decomposed, and formed by metal particles having fine ceramic particles precipitated on the surface and inside thereof. Manufacturing method.
【請求項4】固体電解質の片面に多孔性の空気極、他面
に多孔性の燃料極が形成された固体電解質型燃料電池セ
ルの製造方法であって、前記燃料極を、Ni、Co、F
eおよびRuのうち少なくとも1種以上の金属元素と、
Zrおよび/またはCeを含む有機金属化合物溶液を、
セラミック粒子を骨格とする多孔質体の空孔内に注入し
て熱分解させ、該多孔質体の空孔内に、表面および/ま
たは内部に微粒のセラミック粒子が析出した金属粒子を
分散せしめることを特徴とする固体電解質型燃料電池セ
ルの製造方法。
4. A method for manufacturing a solid oxide fuel cell having a porous air electrode formed on one side of a solid electrolyte and a porous fuel electrode formed on the other side, wherein the fuel electrode is made of Ni, Co, F
at least one or more metal elements of e and Ru;
An organometallic compound solution containing Zr and / or Ce,
Injecting into the pores of a porous body having ceramic particles as a skeleton and thermally decomposing, and dispersing metal particles having fine ceramic particles deposited on the surface and / or inside the pores of the porous body. A method for producing a solid oxide fuel cell, comprising:
【請求項5】固体電解質の片面に多孔性の空気極、他面
に多孔性の燃料極が形成された固体電解質型燃料電池セ
ルの製造方法であって、前記燃料極を、Zrおよび/ま
たはCeを含む有機金属化合物溶液を、Ni、Co、F
eおよびRuからなる金属、これらの金属酸化物および
前記金属の合金のうち少なくとも1種と、セラミック粒
子とからなる多孔質体の空孔内に注入して熱分解させ、
該多孔質体の空孔内に、表面および/または内部に微粒
のセラミック粒子が析出した金属粒子を分散せしめるこ
とを特徴とする固体電解質型燃料電池セルの製造方法。
5. A method for manufacturing a solid electrolyte fuel cell having a solid electrolyte and a porous air electrode formed on one side and a porous fuel electrode formed on the other side, wherein the fuel electrode is formed of Zr and / or Zr. An organometallic compound solution containing Ce is mixed with Ni, Co, F
a metal consisting of e and Ru, at least one of these metal oxides and alloys of said metals, and ceramic particles are injected into pores of a porous body and thermally decomposed;
A method for manufacturing a solid oxide fuel cell, comprising dispersing metal particles having fine ceramic particles precipitated on the surface and / or inside the pores of the porous body.
JP16788696A 1996-06-27 1996-06-27 Method for manufacturing solid oxide fuel cell Expired - Fee Related JP3380681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16788696A JP3380681B2 (en) 1996-06-27 1996-06-27 Method for manufacturing solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16788696A JP3380681B2 (en) 1996-06-27 1996-06-27 Method for manufacturing solid oxide fuel cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002151670A Division JP3667297B2 (en) 2002-05-27 2002-05-27 Solid oxide fuel cell and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1021932A true JPH1021932A (en) 1998-01-23
JP3380681B2 JP3380681B2 (en) 2003-02-24

Family

ID=15857901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16788696A Expired - Fee Related JP3380681B2 (en) 1996-06-27 1996-06-27 Method for manufacturing solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3380681B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003208901A (en) * 2002-01-16 2003-07-25 Nissan Motor Co Ltd Porous oxide film, its manufacturing method and cell of fuel cell using the same
WO2005045962A1 (en) * 2003-11-10 2005-05-19 Mitsubishi Materials Corporation Generation cell for solid electrolyte fuel cell
JP2005166640A (en) * 2003-11-10 2005-06-23 Mitsubishi Materials Corp Power generation cell of solid electrolyte fuel cell
JP2005166563A (en) * 2003-12-05 2005-06-23 Nippon Telegr & Teleph Corp <Ntt> Fuel electrode for sofc into which active fine particles are added, and its fabricating method
JP2005285750A (en) * 2004-03-29 2005-10-13 Sulzer Hexis Ag Anode material for high temperature fuel cell
JP2006024545A (en) * 2003-11-10 2006-01-26 Mitsubishi Materials Corp Power generation cell for solid electrolyte fuel battery
WO2006088133A1 (en) * 2005-02-18 2006-08-24 Mitsubishi Materials Corporation Power generation cell for solid electrolyte fuel battery and structure of fuel electrode in said cell
JP2006331798A (en) * 2005-05-25 2006-12-07 Mitsubishi Materials Corp Power generation cell for solid electrolytic fuel cell
JP2006344543A (en) * 2005-06-10 2006-12-21 Tokyo Electric Power Co Inc:The Manufacturing method of cell for solid oxide fuel battery
JP2008198421A (en) * 2007-02-09 2008-08-28 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell and manufacturing method of electrode for same
WO2009028408A1 (en) * 2007-08-29 2009-03-05 Showa Denko K.K. Electrode catalyst layer, membrane electrode assembly and fuel cell
JP2010164576A (en) * 2002-07-19 2010-07-29 Furuya Kinzoku:Kk Electrode for solid electrolytes, method of manufacturing same, solid electrolyte type oxygen sensor, and exhaust gas sensor
EP2760071A1 (en) 2013-01-25 2014-07-30 Kabushiki Kaisha Riken Fuel electrode doubling as support of solid oxide fuel cell and method of producing same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003208901A (en) * 2002-01-16 2003-07-25 Nissan Motor Co Ltd Porous oxide film, its manufacturing method and cell of fuel cell using the same
JP2010164576A (en) * 2002-07-19 2010-07-29 Furuya Kinzoku:Kk Electrode for solid electrolytes, method of manufacturing same, solid electrolyte type oxygen sensor, and exhaust gas sensor
WO2005045962A1 (en) * 2003-11-10 2005-05-19 Mitsubishi Materials Corporation Generation cell for solid electrolyte fuel cell
JP2005166640A (en) * 2003-11-10 2005-06-23 Mitsubishi Materials Corp Power generation cell of solid electrolyte fuel cell
JP2006024545A (en) * 2003-11-10 2006-01-26 Mitsubishi Materials Corp Power generation cell for solid electrolyte fuel battery
JP2005166563A (en) * 2003-12-05 2005-06-23 Nippon Telegr & Teleph Corp <Ntt> Fuel electrode for sofc into which active fine particles are added, and its fabricating method
JP4587663B2 (en) * 2003-12-05 2010-11-24 日本電信電話株式会社 Fuel electrode for solid oxide fuel cell and method for producing the same
JP2005285750A (en) * 2004-03-29 2005-10-13 Sulzer Hexis Ag Anode material for high temperature fuel cell
US20090274941A1 (en) * 2005-02-18 2009-11-05 Takashi Yamada Power Generation Cell for Solid Electrolyte Fuel Cell and Structure of Fuel Electrode Thereof
WO2006088133A1 (en) * 2005-02-18 2006-08-24 Mitsubishi Materials Corporation Power generation cell for solid electrolyte fuel battery and structure of fuel electrode in said cell
JP2006331798A (en) * 2005-05-25 2006-12-07 Mitsubishi Materials Corp Power generation cell for solid electrolytic fuel cell
JP2006344543A (en) * 2005-06-10 2006-12-21 Tokyo Electric Power Co Inc:The Manufacturing method of cell for solid oxide fuel battery
JP2008198421A (en) * 2007-02-09 2008-08-28 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell and manufacturing method of electrode for same
WO2009028408A1 (en) * 2007-08-29 2009-03-05 Showa Denko K.K. Electrode catalyst layer, membrane electrode assembly and fuel cell
JP5461991B2 (en) * 2007-08-29 2014-04-02 昭和電工株式会社 Electrode catalyst layer, membrane electrode assembly, and fuel cell
EP2760071A1 (en) 2013-01-25 2014-07-30 Kabushiki Kaisha Riken Fuel electrode doubling as support of solid oxide fuel cell and method of producing same

Also Published As

Publication number Publication date
JP3380681B2 (en) 2003-02-24

Similar Documents

Publication Publication Date Title
JP5469795B2 (en) Anode-supported solid oxide fuel cell using cermet electrolyte
JP5591526B2 (en) Solid oxide cell and solid oxide cell stack
JP2008538543A (en) Precursor material infiltration and coating methods
AU2010241164B2 (en) Composite oxygen electrode and method
KR20090023255A (en) Ceria and stainless steel based electrodes
JP3380681B2 (en) Method for manufacturing solid oxide fuel cell
JP5389378B2 (en) Composite ceramic electrolyte structure, manufacturing method thereof and related article
JP2008546161A (en) Deposition of electrodes for solid oxide fuel cells
JPH1021931A (en) Solid electrolyte type fuel cell
JP3565696B2 (en) Method for manufacturing electrode of solid oxide fuel cell
JP3667297B2 (en) Solid oxide fuel cell and method for producing the same
KR102261142B1 (en) SOFC cathodes using electrochemical technique and its manufacturing method
JPH1021929A (en) Solid electrolyte type fuel cell
JP3350313B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP2007042422A (en) Electrode material containing copper oxide particles and manufacturing method for fuel electrode for solid oxide fuel cell using it
JP3323029B2 (en) Fuel cell
JP2947495B2 (en) Fuel electrode fabrication method for solid oxide fuel cells
JP3342541B2 (en) Solid oxide fuel cell
KR101218602B1 (en) The Manufacturing method of Low Temperature Operating Solid Oxide Fuel Cell composed Silver Nano Particles and Solid Oxide Fuel Cell manufactured thereby
JP3336171B2 (en) Solid oxide fuel cell
JPH10144337A (en) Fuel electrode of solid electrolytic fuel cell and manufacture thereof
JPH11283642A (en) Solid-electrolyte fuel cell
JP2004273143A (en) Solid oxide fuel cell, and material for air electrode of solid oxide fuel cell
JP3297610B2 (en) Manufacturing method of solid oxide fuel cell
KR100278468B1 (en) Improving the performance of solid oxide fuel cell cathode using yttria-stabilized zirconia sol

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131213

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees