JP3580531B2 - 希釈冷凍機 - Google Patents

希釈冷凍機 Download PDF

Info

Publication number
JP3580531B2
JP3580531B2 JP2000120089A JP2000120089A JP3580531B2 JP 3580531 B2 JP3580531 B2 JP 3580531B2 JP 2000120089 A JP2000120089 A JP 2000120089A JP 2000120089 A JP2000120089 A JP 2000120089A JP 3580531 B2 JP3580531 B2 JP 3580531B2
Authority
JP
Japan
Prior art keywords
heat exchanger
dilution
refrigerator
gas
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000120089A
Other languages
English (en)
Other versions
JP2001304709A (ja
Inventor
茂 吉田
高裕 梅野
Original Assignee
大陽東洋酸素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陽東洋酸素株式会社 filed Critical 大陽東洋酸素株式会社
Priority to JP2000120089A priority Critical patent/JP3580531B2/ja
Publication of JP2001304709A publication Critical patent/JP2001304709A/ja
Application granted granted Critical
Publication of JP3580531B2 publication Critical patent/JP3580531B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、液体ヘリウム(3He,4He)を用いて1〜10−3Kの超低温を連続的に得るための希釈冷凍機に関するものである。
【0002】
【従来の技術】
良く知られているように、3Heの液相と4Heの液相との混合液は、0.8K以下で2相分離し、低温で3Heを6.4%含む希薄相と、3Heを100%含む濃厚相とが共存する。そして濃厚相の3Heを希薄相へ溶け込ませる(希釈させる)と、外部から熱を吸収し、その結果1〜10−3Kの超低温を得ることができる。このような現象を利用した冷凍機が希釈冷凍機と称され、近年実用化に至っている。
【0003】
希釈冷凍機の原理については、例えば「日本物理学会誌」第37巻第5号(1982)の第409頁〜第418頁(3He−4He希釈冷凍機の原理と設計上の問題点I)、「日本物理学会誌」第37巻第7号(1982)の第595頁〜第600頁(3He−4He希釈冷凍機の原理と設計上の問題点II)などにおいて説明されているが、その原理的な構成を図4に示す。
【0004】
図4において、第1の真空ポンプ1Aは3Heガスを強制循環させるためのものであり、この第1の真空ポンプ1Aから送り出された300K程度の温度の3Heガスは、第2の真空ポンプ1Bにより液体4Heを排気減圧して1.3K程度に保った1Kポット2に熱的に接触する凝縮器(コンデンサ)3において液化し、さらにインピーダンス4を介して分留器5内の熱交換器6に送られる。この分留器5は、後述するように3Heと4Heとの飽和蒸気圧の差を利用して4He−3Heの混合液中から3Heを選択的に排出させるためのものであるが、凝縮器3から送られて来た3Heはこの分留器5に熱接触する熱交換器6において熱交換されて、0.5〜0.7K程度まで冷却される。さらにその3Heは、インピーダンス7を経て熱交換器8において100mK程度まで冷却され、混合室9に送り込まれる。混合室9では、前述のような100%3Heの濃厚相と、3Heが4Heに溶け込んだ4He−6.4%3Heの希薄相とに2相分離しており、密度差により下層が希薄相(4He−6.4%3He)、上層が濃厚相(3He相)となる。そして濃厚相に送り込まれた3Heが希薄相に溶け込む際に、既に述べたように熱吸収が生じ、10mKのオーダーの超低温に冷却される。すなわちこの混合室9が冷凍機としてのコールドヘッドとなるから、この部分に冷却対象物(試料)を保持しておけば、その試料を10mKのオーダーに冷却することができる。
【0005】
混合室9の希薄相における3He濃度は6.4%を保ち、一方前記分留器5内の4He−3He混合液中からは4Heと3Heとの飽和蒸気圧の差によって3Heのみがガス化して排出されて行くから、分留器5内の3He濃度は0.5〜0.7Kで1%程度となり、そのため混合室9の希薄相と分留器5内の混合液とで3Heの濃度差が生じ、そのため両者間の濃度勾配によって混合室9内の希薄相中から3Heが分留器5側へ引込まれ、それに伴なって混合室9においては100%3Heの濃厚相から希薄相への3Heの溶け込みが連続的に生じることになる。そして混合室9から3Heが分留器5へ引込まれる間においてその3Heは熱交換器8を通過し、前述の往路側の3Heを冷却する。
【0006】
分留器5においては、既に述べたように飽和蒸気圧の差によって4He−3He混合液中から3Heのみが蒸発し、前述の真空ポンプ1Aによって排気される。真空ポンプ1Aに吸引された3Heは、再び凝縮器3へ送られて同様な過程を繰返す。
【0007】
以上のようにして、希釈冷凍機では、10mKオーダーの超低温を得ることができる。
【0008】
ところでこのような原理を利用した簡易型の希釈冷凍機が、英国において刊行された「Cryogenics」1993 Vol33, No9,p923〜925の「One−day dilution refrigerator」において提案されている。この簡易型希釈冷凍機については、東京大学低温センター発行の「低温センターたより」第16号(1993年1月)のp15〜p20「簡易型希釈冷凍機の試作」にも示されている。
【0009】
上記提案による簡易型冷凍機の模式的な構成を図5に示す。
【0010】
図5において、外側真空断熱層10によって取囲まれた有底円筒状の外側容器12内には冷媒としての液体ヘリウム(通常の液体4He)14が注入されており、またこの外側容器12の側壁上部には液体ヘリウム減圧口16が設けられており、この減圧口16は第2の真空ポンプ45に導かれている。外側容器12内の液体ヘリウム14中には、有底円筒状の内側容器18が浸漬されている。この内側容器18の下部(液体ヘリウム14中に浸漬されている部分)の壁部には真空断熱層20が設けられており、また内側容器18の上端近くには、3He排出口21が形成されている。
【0011】
さらに内側容器18内の下部には液体ヘリウム(後述する液相23,25)が収容されており、この液体ヘリウム中には、上方から支柱兼真空排気管22によって吊下された状態で中空のプランジャ24が浸漬されている。また支柱兼真空排気管22の中間の位置(プランジャ24よりも上方でかつ液面23Aよりも上方の位置)には、その支柱兼真空排気管22が上下に貫通するように銅等の良熱伝導材料からなる熱伝導ブロック26が固定されており、この熱伝導ブロック26には、これを上下に貫通する3He通路27が形成されている。そして前述のようなプランジャ24と熱伝導ブロック26の配置によって、内側容器18内における熱伝導ブロック26よりも下側の部分はプランジャ24の下側の混合室38と、プランジャ24の上側でかつ熱伝導ブロック26の下側の分留室40とに区分されることになる。なおプランジャ24の外周面と内側容器18の内周面との間には隙間42が存在しており、この隙間42によって混合室38と分留室40とが連通して、分留室40内に液面23Aが位置している。なおまた、熱伝導ブロック26は、図示しない銅製バネ部材などを介して内側容器18の内面に熱的に接触しているが、熱伝導ブロック26の周囲の少なくとも一部には、その熱伝導ブロック26の上方空間と下方空間(分留室40)とを連通させる不可避的な空隙41が存在する。
【0012】
そしてまた内側容器18内には、上方から3He供給管28が挿入されている。この3He供給管28は、内側容器18内を下方へ導かれて、前述の熱伝導ブロック26に一体的に組込まれた銅粉焼結多孔質体などからなる凝縮器(コンデンサ)30に接続され、さらにこの凝縮器30の下方出側は配管32を介してコイル管状の分留室熱交換器34に接続されている。なお分留室熱交換器34は、前記分留室40における液体ヘリウム(液相23)中に浸漬されている。また分留室熱交換器34の下方出側は、プランジャ24と内側容器18の内壁面との間の隙間42に配設された熱交換器36に接続され、さらにこの熱交換器36の下端は、前述の混合室38に導かれて、この混合室38内に3Heを吐出する吐出口44が設けられている。なお前述の3He排出口21と3He供給管28との間には、内側容器18の外部において第1の真空ポンプ46が介在されている。
【0013】
以上のような簡易型希釈冷凍機において、外側容器12の内面と内側容器18の外面との間の空間15には前述のように液体ヘリウム(通常の4He)14が注入され、かつ第2の真空ポンプ45によって液体ヘリウム減圧口16からその空間15内が排気減圧されて、1K近くの低温に保持される。したがってこの空間15の部分が図4における1Kポット2に相当し、熱伝導ブロック26を1.3K程度に冷却するに寄与する。一方内側容器18の分留室40内は、液面23Aが分留室40内の中間に位置するように4He−10%3Heからなる液相23が満たされ、一方混合室38は、100%3Heの濃厚相と4He−6.4%3Heの希薄相からなる液相25で満たされる。このような状態で3Heが第1の真空ポンプ46によって3He供給管28を経て凝縮器30に導かれ、熱伝導ブロック26によって3Heが1.3K程度に冷却されて液化する。液化された3Heは、分留室熱交換器34および熱交換器36を経てさらに冷却され、吐出口44から混合室38内に吐出される。この混合室38においては、既に図4における混合室9について述べたように、吐出された3Heが上側の100%3Heの濃厚相に溶け込み、濃厚相の3Heの一部が下側の4He−6.4%3Heの希薄相に溶け込む。このとき、熱吸収が生じて10mKのオーダーの超低温が得られる。
【0014】
一方混合室38は分留室40と連通しているから、混合室38内の希薄相中の3Heは分留室40に至るが、この分留室40は1K以下の低温となっているため、3Heと4Heの大幅な飽和蒸気圧の差によって3Heのみが蒸発し、この気相の3Heは熱伝導ブロック26の3He通路27を通って内側容器18の上方の空間から3He排出口21を経て第1の真空ポンプ46によって排気される。これに伴なって、分留室40内の液体ヘリウム中の3He濃度は1%程度に低くなるから、分留室40の3He濃度(約1%)と混合室38の希薄相中の3He濃度(6.4%)との濃度勾配により、混合室38内の希薄相から3He原子が分留室40へ導かれる。またこれによって混合室38内の希薄相中の3He濃度が低くなるに伴ない、3He100%の濃厚相から連続的に3Heが希薄相中へ溶け込むことになる。
【0015】
このようにして連続的に3Heが循環され、かつ混合室38における希薄相への3Heの溶け込みにより連続的に10mKオーダーの超低温が維持される。
【0016】
また上述のような図5に示す簡易型希釈冷凍機の一部を改良した希釈冷凍機を、本発明者等は既に特許第2689230号において提案しており、その希釈冷凍機の基本的な機能は図5に示すものと同様である。
【0017】
【発明が解決しようとする課題】
図4あるいは図5に示すような従来の希釈冷凍機においては次のような問題があった。
【0018】
すなわち、図4に示す希釈冷凍機においては、1Kポット2において1.3K程度の低温を得るため、1Kポット2内の液体ヘリウムを第2の真空ポンプ1Bにより排気減圧しており、したがって1Kポット2内の液体ヘリウムは徐々に消費されてその量が減ることになる。また図5に示す希釈冷凍機の場合、外側容器12の内面と内側容器18との間の空間15に液体ヘリウムが保持されるとともに第2の真空ポンプ45によってその空間15内が排気減圧されて、1.3K程度の低温を得るようになっており、その空間部分15が前述の1Kポットに相当することになるが、その場合も排気減圧によって空間部分15内の液体ヘリウムが徐々に減少することになる。
【0019】
上述のように従来の希釈冷凍機では、3Heガスを1.3K程度に冷却するために別に液体ヘリウムを用いかつその液体ヘリウムを排気減圧させているところから、液体ヘリウムが次第に減少し、そのため随時液体ヘリウムの補給を行なわなければならない。この場合一般には液体ヘリウムの補給のために希釈冷凍機の運転を停止させなければならないから、長時間連続して希釈冷凍機を運転することが困難であり、そのため希釈冷凍機を用いた極低温試験等に支障を来たすおそれがある。
【0020】
またそればかりでなく、液体ヘリウムは著しく高価であるから、それを消費する従来の希釈冷凍機では、ランニングコストが著しく高くならざるを得ないという問題もあった。
【0021】
そのほか、前述の図4や図5に示される希釈冷凍機以外にも種々のタイプの希釈冷凍機が提案あるいは実用化されているが、それらの希釈冷凍機では、前述の問題のほか極低温に冷却すべき試料を交換する場合などにおいて希釈冷凍機の各構成部分を断熱するための真空を破らなければならない構造のものが多く、その場合試料交換後の真空排気にかなりの長時間を要するという問題もあった。さらに従来の希釈冷凍機では、希釈冷凍機を構成する各部位、特に超低温となる部位を低温封止するための構造が特殊かつ高価となったり、試料交換後に改めて低温封止するための作業が煩雑となったりすることが多いという問題もあった。
【0022】
この発明は以上の事情を背景としてなされたもので、真空ポンプによって送り込まれる3Heガスを1K近くまで初期冷却するための手段として、従来技術の場合のような排気減圧した液体ヘリウム(液体4He)を用いないようにして、長時間連続運転を可能にするとともにランニングコストを低減し、さらには取扱いも容易で試料交換を簡単に行なうことができ、また試料交換後に真空断熱部部分の真空排気に長時間を要さず、さらには超低温部位での低温封止を不要として低コスト化した希釈冷凍機を提供することを目的とするものである。
【0023】
【課題を解決するための手段】
前述のような課題を解決するため、この発明の希釈冷凍機では、真空ポンプによって希釈冷凍機本体内に送り込まれた3Heガスを数K程度に初期冷却するために、GM冷凍機(ギフォード−マクマホン冷凍機)で代表される小型機械式冷凍機を用いることとし、かつ一般にこの種のGM冷凍機では3Heガスの凝縮・液化温度まで冷却することは困難であることに鑑み、GM冷凍機によって数K程度まで冷却された3Heガスをさらに断熱膨張によって1K近くまで冷却することを前提とし、構造的に抜本的な改良を図ることとした。
【0024】
具体的には、請求項1の発明の希釈冷凍機は、3Heガスを循環させるための真空ポンプと、その真空ポンプにより送出される3Heガスを受入れる希釈冷凍機本体とを有し、前記希釈冷凍機本体は、冷却ヘッドを備えた小型機械式冷凍機と、その小型機械式冷凍機の冷却ヘッドから延長された良熱伝導材料からなる伝熱ブロックと、その伝熱ブロックに熱的に接触しかつ前記真空ポンプから送出された3Heガスを冷却するための主熱交換器と、その主熱交換器により冷却された3Heガスを断熱膨張により3Heガスの凝縮温度以下まで冷却するためのJT膨張器と、4He−3He混合液体を保持しかつ4Heと3Heとの蒸気圧の差により3Heガスが前記真空ポンプの吸気圧により真空ポンプへ向けて吸出される分留器と、前記JT膨張器から導かれた液体3Heが通過してこれを前記分留器内の4He−3He混合液体によりさらに冷却するための分留器熱交換器と、相互に熱交換可能に隔絶された往路側通路および復路路側通路を備えかつ往路側通路に前記分留器熱交換器から導かれた液体3Heが通過して復路側通路の冷熱により往路側通路の液体3Heを0.8K以下の温度に冷却するための往復熱交換器と、底部側が前記往復熱交換器の復路側通路を介して前記分留器の底部側に連通するように作られかつ前記往復熱交換器の往路側通路から液体3Heが導入されるとともに予め液体4Heが収容されるようにした混合室とからなり、前記真空ポンプから送出された3Heガスが、前記主熱交換器を通過する際に冷凍機の冷却ヘッドの冷熱により前記伝熱ブロックを介して所定の低温に冷却され、さらにJT膨張器を通過して凝縮液化され、その液化された液体3Heが往復熱交換器の往路側通路を通って混合室に送り込まれるように構成した希釈冷凍機において、前記希釈冷凍機本体が、真空断熱された容器の内部に、冷却ヘッド室と、その冷却ヘッド室の底部から下方へ延びる希釈冷凍室とが設けられており、かつ容器内には、その上蓋部分から前記冷却ヘッド室内を通って希釈冷凍室の底部まで延びる中空な有底の内管が設けられており、その内管における上下方向の中間位置の一部は良伝熱材料によって主熱交換器用伝熱部とされ、さらに前記内管はその内側空間が冷却ヘッド室の室内空間および希釈冷凍室の室内空間から気密に隔絶されており、前記冷却ヘッド室内には上方から前記小型機械式冷凍機の冷却ヘッドが挿入されていて、その冷却ヘッドから前記伝熱ブロックが前記内管の伝熱部まで延びており、さらに前記内管内には、全体として棒状をなす希釈冷凍ユニットが上方から挿抜可能に挿入されており、その希釈冷凍ユニットは、前記真空ポンプから送出された3Heガスを受入れる受入口および3Heガスを排出して真空ポンプへ導くための還流口が上端部に形成されるとともに、下端部に試料保持部を伴なった前記混合室が形成され、しかも前記受入口から前記混合室に至る往路側流路および混合室から前記送流口に至る復路側流路とを備え、かつその往路側流路および復路側流路に介在するように主熱交換器、JT膨張器、分留器、分留器熱交換器、および往復熱交換器が一体的に形成された構成とされ、また前記内管の伝熱部とそれに対応する位置の前記希釈冷凍ユニット内の往路側流路との間が熱的に接触されてその部分に前記主熱交換器が形成されることを特徴とするものである。
【0025】
このよう請求項1の発明の希釈冷凍機においては、GM冷凍機などの小型機械式冷凍機を用いて数K程度まで3Heガスを冷却し、さらに断熱膨張により凝縮温度以下まで冷却して液化させているため、従来の図4や図5に示される希釈冷凍機の如く初期冷却のために減圧した液体ヘリウムを使用する必要がない。したがって長時間の連続運転が可能となるとともにランニングコストも低減される。しかも請求項1の発明の希釈冷凍機においては、試料交換時には内管内の希釈冷凍ユニットを抜き出して試料交換を行ない、再び希釈冷凍ユニットを内管内に挿入すれば良く、したがって試料交換が極めて簡単となる。また内管と希釈冷凍ユニットとの間の封止は、容器の蓋部付近、すなわち常温付近の部分にて行なえば良いから、特殊かつ高価な低温封止を必要とせず、コスト的に安価となるとともに、封止作業も簡単化される。
【0029】
さらに請求項2の発明は、請求項1に記載の希釈冷凍機において、前記混合室から分留器に至るまでの間の復路側流路が、内管内へ挿抜可能な全体として棒状の希釈冷凍ユニットの外面と内管の内周面との間に形成されることを特徴とするものである。
【0030】
このような請求項2の発明の希釈冷凍機においては、内管の内側の空間のうち、その下部は4He+3He混合液体で満たされ、上部は3Heガスで満たされることになる。そのため希釈冷凍ユニットの一部(例えば往復熱交換器の部分)を除いて、特に内管の内側で真空断熱を行う必要がなく、そのため試料交換時に真空を破って試料交換後に再度真空排気するために長時間を要することがない。
【0033】
【発明の実施の形態】
【0034】
【実施例】
図1にこの発明の前提となる希釈冷凍機の原理的な構成を示す。
【0035】
図1において、51は3Heガスを循環させるための真空ポンプであり、この真空ポンプ51により送り出された3Heガス(通常は室温)は、液体窒素トラップ53および供給配管55を介して希釈冷凍機本体57の受入口59に送り込まれる。ここで液体窒素トラップ53は、真空ポンプ51から送り出される3Heガス中から油分等を除去するためのものである。そして希釈冷凍機本体57内には、前記受入口59を経て後述する混合室61まで3Heガスを導くための往路側流路63と、混合室61から還流口64まで3Heガスを導くため(但し下部の区間では液体4Heが流通している)の復路側流路65とが設けられている。さらにこれらの往路側流路63、復路側流路65には、後に改めて説明するように、主熱交換器67、JT膨張前予冷用熱交換器69、JT膨張器71、分留器73および分留器熱交換器75、往復熱交換器77(往路側通路77Aおよび復路側通路77B)が介在されている。
【0036】
前記希釈冷凍機本体57は、例えば4.2K程度の低温を発生するGM冷凍機などの小型機械式冷凍機(以下特に説明のない限りは、これをGM冷凍機と記す)79を備えており、そのGM冷凍機79の冷却ヘッド79Aが上方から希釈冷凍器本体57の内部へ挿入されており、その冷却ヘッド79Aからは銅等の良伝熱材料からなる伝熱ブロック81が水平に延出されるとともにその先端側が往路側流路63に設けられた主熱交換器67の伝熱部67Aに熱的に接続されて、往路側流路63内を流れる3Heを4.2K程度に冷却するようになっている。なお図示の例では、この主熱交換器67の伝熱部67Aは復路側流路65にも熱的に接触する構成としている。
【0037】
さらに往路側流路63における主熱交換器67の出口側はJT膨張前予冷用熱交換器69に導かれている。この予冷用熱交換器69は、JT膨張器71によって3Heガスを断熱膨張させる前の段階で、例えば2.6K程度に3Heガスを予冷するためのものであり、復路側流路65内を流れる戻りの3Heガスの冷熱を受けるべく、復路側流路65に熱的に接続されている。
【0038】
往路側流路63における主熱交換器69の出口側はJT膨張器71に導かれている。このJT膨張器71は、ジュール・トムソン膨張によって3Heガスをその凝縮温度以下の温度、例えば1.5K程度まで冷却して、3Heガスを凝縮液化させるためのものであり、図示の例では復路側流路65を流れる復路側の3Heガスの冷熱をも利用するべく、復路側流路65に熱的に接続されている。
【0039】
また往路側流路63におけるJT膨張器71の出口側は分留器73に配置された分留器熱交換器75に導かれている。この分留器熱交換器75は、後に改めて説明するような分留器73内の4He−3He混合液体によって往路側の3Heガスを例えば1.1K程度に冷却するためのものであり、分留器73内の4He−3He混合液体に熱的に接触するように設けられている。
【0040】
そして往路側流路63における分留器熱交換器75の出口側は、往復熱交換器77における往路側通路77Aに導かれる。この往復熱交換器77は、往路側通路77Aと復路側通路77Bとを備えており、これらの往路側通路77Aと復路側通路77Bとは構造的には隔絶されているものの、熱的には互いに熱交換可能となるように配設されていて、往路側通路77Aを通る液体3Heが、復路側通路77B内の4He+3He混合液体によって0.8K以下の低温、例えば100mK程度に冷却されるように構成されている。
【0041】
さらに往路側流路63に置ける往復熱交換器77の往路側通路77Aの出口は混合室61の上部に導かれている。この混合室61は、その底部に排出口61Aを形成したものであって、その内部には予め液体4Heが収容されており、往路側流路63から導かれた液体3Heが液体4Heに混合されることになる。そして既に述べた図4や図5の従来技術と同様に、3Heを約6.4%含む希薄相(下層)62Aと3He100%濃厚相(上層)62Bとして2相分離し、濃厚相62B中の3Heが希薄相62Aへ溶け込む際に10mKオーダーの超低温、例えば60mK程度の超低温が得られる。したがってこの混合室61に図示しない試料保持部を設けておくことにより、試料を例えば60mK程度まで冷却することができる。
【0042】
混合室61の底部の排出口61Aからは前述の復路側流路65が還流口64へ向けて上方へ導き出されている。そしてこの復路側流路65における最も混合室61に近い位置には、前述の往復熱交換器77の復路側通路77Bが設けられており、その復路側通路77Bの出口側は前述の分留器73の底部に導かれ、さらにその分留器73の上部は前述の還流口64に導かれて、前記真空ポンプ51により吸引されるようになっている。ここで、分留器73内には4He−3He混合液体が保持されるが、3Heと4Heとの飽和蒸気圧の差により3Heガスが選択的に排出されることになる。そしてこの3Heガスが還流口64を経て真空ポンプ51により再び希釈冷凍機本体57の受入口59に送り込まれることになる。
【0043】
以上のように、図1に原理的に示す希釈冷凍機においては、真空ポンプ51によって希釈冷凍機本体57内に送り込まれた3Heガスは、GM冷凍機79によって4.2K程度に冷却され、さらにJT膨張前予冷用熱交換器69において2.6K程度に冷却され、続いてJT膨張器71において凝縮温度以下の1.5K程度に冷却されて液化し、その液体3Heは分留器熱交換器75において1.1K程度に冷却され、さらに往復熱交換器77の往路側通路77Aにおいて100mK程度に冷却され、最終的に混合室61内においてmKオーダーの超低温、例えば60mKの超低温を得ることができる。
【0044】
次に図1に示される原理的な構成を前提として、構造的に具体化したこの発明の希釈冷凍機の実施例を図2に示す。
【0045】
図2において、希釈冷凍機本体57を構成する容器83は、外壁83Aと内壁83Bとの2重壁構造とされており、また容器83の内室、すなわち内壁83B内の空間は、上側の冷却ヘッド室87Aと下側の希釈冷凍室87Bとの2室に区分されている。下側の希釈冷凍室87Bは、上側の冷却ヘッド室87Aよりも小径に作られていて、冷却ヘッド室87Aの底部の一部から下方へ垂下するように形成されている。ここで、外壁83Aと内壁83Bとの間の空間85および容器83の内室(すなわち冷却ヘッド室87Aおよび希釈冷凍室87B)は相互に連通され、かつ真空断熱されるようになっている。
【0046】
さらに冷却ヘッド室87A内には、容器83の上端の蓋部83CからGM冷凍機79の第2段目の冷却ヘッド79Aが垂直に挿入されている。ここで、GM冷凍機79としては、20K程度の低温を生じる第1段目(第1ステージ)の冷却ヘッド79Bと、4.2K程度の低温を発生する第2段目(第2ステージ)の冷却ヘッド79Aとを有する2段(2ステージ)タイプのものが用いられおり、第1段目の冷却ヘッド79Bは容器83の内壁83Bに熱的に接触され、第2段目の冷却ヘッド79Aが冷却ヘッド室87A内に挿入されている。この第2段目の冷却ヘッド79Aの下端には、水平な厚板状の銅等の良伝熱材料からなる伝熱ブロック81が固定され、この伝熱ブロック81は前述の希釈冷凍室87Bの上端開口部上方の位置へ向けて水平に延出されている。
【0047】
また容器83内には、全体として有底中空円筒状をなす内管89が蓋部83C上から垂直に挿入されている。この内管89は、冷却ヘッド室87Aを上下に貫通して、その下部が希釈冷凍室87B内に挿入され、かつ下端部は希釈冷凍室87Bの底部近くに位置している。内管89における冷却ヘッド室87A内の伝熱ブロック81に対応する部分は、局部的に銅等の良伝熱材料からなる第1の伝熱部89Aとされ、また内管89における容器83の内壁83Bに対応する部分も局部的に銅等の良伝熱材料からなる第2の伝熱部89Bとされている。そして第1の伝熱部89Aと前記伝熱ブロック81とは相互に機械的に結合されて熱的にも接続され、また第2の伝熱部89Bと内壁83Bも相互に機械的に結合されて熱的にも接続されている。なおこれらの伝熱部89A,89Bはその外周面側において伝熱ブロック81もしくは内壁83Bに接続されるばかりでなく、内周面側が内管89の内側空間89Cへ露出するように構成されている。また内管89は、その内側空間89Cが冷却ヘッド室87Aおよび希釈冷凍室87Bに対して気密に隔絶されるように取付けられている。
【0048】
さらに前記内管89内には、上方から希釈冷凍ユニット91が挿抜可能に挿入されている。この希釈冷凍ユニット91は、全体として垂直な棒状をなすものであり、その詳細を図3に示す。
【0049】
図3において、希釈冷凍ユニット91は、上方から下方へ向けて蓋部91A、上段中空管部91B、第2伝熱ブロック91C、中間中空管部91D、第1伝熱ブロック91E、下段中空管部91F、および内部に空室91Hを形成したプランジャ部91Gをその順に相互に連結固定した構成とされており、さらに全体の中心軸線付近には、蓋部91Aの上方からプランジャ部91Gまで貫通する排気管91Iが設けられている。この希釈冷凍ユニット91における上段中空管部91Bはその上部が容器83の蓋部83Cよりも上方へ突出し、その部分にフランジ部93が形成されて、前記内管89の上端フランジ部89Dに対し封止される。なおこの封止は、後述するように特殊な低温封止である必要はなく、常温付近で充分である。
【0050】
希釈冷凍ユニット91における上端の蓋部91Aには、前述の受入口59(図1参照)が形成され、この受入口59から往路側流路63(図1参照)に相当する往路側流路配管95がユニット91の内部に挿入されている。また上段中空管部91Bの側面には前述の還流口64が形成されている。そしてこれらの受入口59、還流口64は図1で示したと同様に、3Heガス循環用の真空ポンプ51、液体窒素トラップ53に接続されるようになっている。
【0051】
往路側流路配管95は、上方から上段中空管部91Bの内側を通って第2の伝熱ブロック91Cに設けられた例えば銅粉焼結多孔質体などからなる副熱交換器101の上端に至る。第2の伝熱ブロック91Cは、銅等の良伝熱材料からなるものであり、前記副熱交換器101に熱的に接触するように作られるとともに、後述するように復路側流路65(図1参照)の一部に相当する連通孔97を上下に貫通するように形成したものであって、内管89内にユニット91を挿入した状態で、その第2伝熱ブロック91Cの外周面が内管89側の第2の伝熱部89Bの内周面に熱的に接触されるように構成されている。具体的には、例えば第2の伝熱部89Bの内周面と第2の伝熱ブロック91Cの外周面とのうち、いずれか一方の面に例えば帯状のベリリウム銅等の良伝熱弾性材料からなる伝熱バネ部材99を取付けておき、その伝熱バネ部材99が他方の面に接するように構成すれば良い。
【0052】
さらに往路側流路配管95における副熱交換器101の出口側(下端)は、中間中空管部91Dの内側を通ってその下方の第1の伝熱ブロック91Eに設けられた例えば銅粉焼結多孔質体などからなる主熱交換器67の上端に至る。第1の伝熱ブロック91Eは、銅等の良伝熱材料からなるものであり、前記主熱交換器67に熱的に接触するように作られるとともに、後述するように復路側流路65(図1参照)の一部に相当する連通孔103を上下に貫通するように形成したものであって、内管89内にユニット91を挿入した状態で、その第1伝熱ブロック91Eの外周面が内管89側の第1の伝熱部89Aの内周面に熱的に接触されるように構成されている。具体的には、例えば第1の伝熱部89Aの内周面と第1の伝熱ブロック91Eの外周面とのうち、いずれか一方の面に例えば帯状のベリリウム銅等の良伝熱弾性材料からなる伝熱バネ部材105を取付けておき、その伝熱バネ部材105が他方の面に接するように構成すれば良い。
【0053】
続いて往路側流路配管95における主熱交換器67の出口側(下端側)は、前記下段中空管部91Fの内側に導かれ、その下段中空管部91Fの内側空間に配設された予冷用熱交換器69およびJT膨張器71(図1参照)にその順に導かれている。
【0054】
さらに下段中空管部91F内におけるJT膨張器71よりも下方の位置には、これを上下に区分する隔壁107が設けられており、この隔壁107から傘状もしくは逆カップ状の3Heガス収集部材109が垂下されている。そしてこの3Heガス収集部材109の内側空間の上端は、前記復路側流路65の一部を構成する連通管111を介して下段中空管部91Fにおける隔壁107よりも上方の空間に連通されている。
【0055】
さらに下段中空管部91Fの下端はプランジャ部91Gの上端に結合されている。但し、下段中空管部91Fの下端部分には、プランジャ部91Gの外周側の空間と下段中空管部91Fの内側下部空間とを連通させるための切欠連通部113が形成されている。ここで、下段中空管部91F内の隔壁107よりも下方でかつプランジャ部91Gの上端より上側の部分は、前述の分留器73(図1参照)を構成しており、この分留器73内に4He+3He混合液体の液面115が位置し、前述の3Heガス収集部材109はその下部が液面115よりも下方に浸漬されるように位置決めされている。そしてまた往路側流路配管95におけるJT膨張器71の出口側(下端側)は、隔壁107を通って分留器73内に至り、その分留器73の液面115よりも下方の位置に設けられた例えばコイル管状の分留器熱交換器75に導かれている。
【0056】
さらに往路側流路配管95における分留器熱交換器75の出口側(下端側)は、例えばプランジャ部91Gの外周上にコイル状に巻回された往復熱交換器往路側通路77A(図1参照)に導かれている。プランジャ部91Gは、内側に真空断熱用の空室91Hを形成し、さらにその空室91Hの下方に、隔壁119を隔てて下面側へ開放された混合室61(図1参照)を形成したものである。そしてプランジャ部91Gの空室91Hは、その上端に接続された前述の排気管91Iを介して外部の真空ポンプ121により真空排気されるようになっている。
【0057】
ここで、プランジャ部91Gの外周側の空間(内管89の内周面との間の空隙)は復路側流路65(図1参照)に介在する往復熱交換器77の復路側通路77Bを構成している。したがって往路側通路77Aは、復路側通路77Bに熱的に接触することになる。
【0058】
往路側流路配管95における往復熱交換器往路側通路77Aの下端(出口側)は、プランジャ部91Gの隔壁119を貫通して混合室61の上部に開口している。そしてこの混合室61内に冷却対象となる試料を保持するための試料保持部123が設けられている。
【0059】
ここで、図2、図3の例では、復路側流路65(図1参照)は、プランジャ部91Gの下端(混合室61の下端)からプランジャ部91Gの外周面と内管89の内周面との間の空間(往復熱交換器77の復路側通路77B)を通って切欠連通部113を介し下段中空管部91F内における隔壁107よりも下側の空間(分留器73)に導かれ、さらに連通管111を介して下段中空管部91F内における隔壁107よりも上側の空間(JT膨張器71および予冷用熱交換器69が位置する空間)を通り、第1の伝熱ブロック91Eの連通孔103を介して中段中空管部91Dの内側空間に至り、さらに第2の伝熱ブロック91Cの連通孔97を介して上段中空管部91Bの内側空間から還流口64に至ることになる。
【0060】
以上のような図2、図3に示される実施例においては、希釈冷凍ユニット91を内管89内に挿入した状態では、第1の伝熱ブロック91E、第2の伝熱ブロック91Cがそれぞれ内管89側の第1の伝熱部89A、第2の伝熱部89Bに熱的に接続される。したがって受入口59から導入された室温程度の3Heガスは、先ずGM冷凍機79の第1段冷却ヘッド79Bの20K程度の冷熱によって、第2の伝熱部89Bおよび第2の伝熱ブロック91Cを介し副熱交換器101において20K近くに予備的に冷却され、続いてGM冷凍機79の第2段冷却ヘッド79Aの4.2K程度の冷熱によって、第1の伝熱部89Aおよび第1の伝熱ブロック91Eを介し主熱交換器67により4.2K近くまで冷却されることになる。その後3Heガスは、予冷用熱交換器69、JT膨張器71を通って既に述べたように凝縮温度以下の例えば1.5K程度に冷却されて液化し、分留器熱交換器75を通って1.1K程度に冷却され、さらにプランジャ部91Gの上部に設けた往復熱交換器77の往路側通路77Aにおいて100mK程度に冷却されて、混合室61に至り、既に述べたような混合室61内における100%3He濃厚相と4He+6.4%3He希薄相との間の作用によって、10mKのオーダーの超低温、例えば60mK程度の超低温を得ることができる。
【0061】
ここで試料交換は、希釈冷凍ユニット91の全体を内管89から引抜くことによって行なうことができる。そして試料交換後には希釈冷凍ユニット91を内管89内へ挿入して、内管89の上端のフランジ部89Dと希釈冷凍ユニット91のフランジ部93との間を封止すれば良いが、この封止部分は常時常温近くの環境下にあるから、特殊な低温封止を行なう必要はなく、常温封止で充分となる。
【0062】
また内管89の内側の部分では、真空断熱は希釈冷凍ユニット91のプランジャ部91Gの空室91Hのみにおいて行なっているが、この部分の真空断熱については試料交換時すなわち希釈冷凍ユニット91の挿抜時において真空を破る必要がなく、したがって材料交換時に断熱のための真空排気のために長時間を要することもない。
【0063】
なお前述の説明では小型機械式冷凍機としてGM冷凍機を用いることとしたが、このほか液体ヘリウムを消費しない小型機械式冷凍機であれば、例えばパルス管冷凍機なども使用することが可能である。
【0064】
【発明の効果】
前述の説明からも明らかなように、請求項1の発明の希釈冷凍機によれば、GM冷凍機などの小型機械式冷凍機を用いて数K程度まで3Heガスを冷却し、さらに断熱膨張により凝縮温度まで冷却して液化させているため、従来の希釈冷凍機の如く初期冷却のために減圧した液体ヘリウムを使用する必要がなく、したがって従来よりも格段に長時間の連続運転が可能となるとともにランニングコストも格段に低減される。さらに請求項1の発明の希釈冷凍機によれば、試料交換時には内管内の希釈冷凍ユニットを抜き出して試料交換を行ない、再び希釈冷凍ユニットを内管内に挿入すれば良く、したがって試料交換が極めて簡単となり、また内管と希釈冷凍ユニットとの間の封止は、容器の蓋部付近、すなわち常温付近の部分にて行なえば良いから、特殊かつ高価な低温封止を必要とせず、コスト的に安価となるとともに、封止作業も簡単化される。
【0066】
また請求項2の発明の希釈冷凍機によれば、内管の内側の空間のうち、下部は4He+3He混合液体で満たされ、上部は3Heガスで満たされることになり、そのため希釈冷凍ユニットの一部の内部(例えば往復熱交換器の部分)を除いて、特に内管の内側で真空断熱を行う必要がなく、そのため試料交換時に真空を破って試料交換後に再度真空排気するために長時間を要さず、そのため希釈冷凍機を用いての超低温試験等の能率を向上させることができる。
【図面の簡単な説明】
【図1】この発明の前提となる希釈冷凍機を原理的に示すブロック図である。
【図2】この発明の希釈冷凍機の一実施例の構成を示す切欠正面図である。
【図3】図2の希釈冷凍機に使用される希釈冷凍ユニットの縦断面図である。
【図4】従来の希釈冷凍機の原理を示すためのブロック図である。
【図5】従来の簡易型希釈冷凍機の一例を示す模式図である。

Claims (2)

  1. 3Heガスを循環させるための真空ポンプと、その真空ポンプにより送出される3Heガスを受入れる希釈冷凍機本体とを有し、
    前記希釈冷凍機本体は、冷却ヘッドを備えた小型機械式冷凍機と、その小型機械式冷凍機の冷却ヘッドから延長された良熱伝導材料からなる伝熱ブロックと、その伝熱ブロックに熱的に接触しかつ前記真空ポンプから送出された3Heガスを冷却するための主熱交換器と、その主熱交換器により冷却された3Heガスを断熱膨張により3Heガスの凝縮温度以下まで冷却するためのJT膨張器と、4He−3He混合液体を保持しかつ4Heと3Heとの蒸気圧の差により3Heガスが前記真空ポンプの吸気圧により真空ポンプへ向けて吸出される分留器と、前記JT膨張器から導かれた液体3Heが通過してこれを前記分留器内の4He−3He混合液体によりさらに冷却するための分留器熱交換器と、相互に熱交換可能に隔絶された往路側通路および復路路側通路を備えかつ往路側通路に前記分留器熱交換器から導かれた液体3Heが通過して復路側通路の冷熱により往路側通路の液体3Heを0.8K以下の温度に冷却するための往復熱交換器と、底部側が前記往復熱交換器の復路側通路を介して前記分留器の底部側に連通するように作られかつ前記往復熱交換器の往路側通路から液体3Heが導入されるとともに予め液体4Heが収容されるようにした混合室とからなり、
    前記真空ポンプから送出された3Heガスが、前記主熱交換器を通過する際に冷凍機の冷却ヘッドの冷熱により前記伝熱ブロックを介して所定の低温に冷却され、さらにJT膨張器を通過して凝縮液化され、その液化された液体3Heが往復熱交換器の往路側通路を通って混合室に送り込まれるように構成した希釈冷凍機において;
    前記希釈冷凍機本体が、真空断熱された容器の内部に、冷却ヘッド室と、その冷却ヘッド室の底部から下方へ延びる希釈冷凍室とが設けられており、かつ容器内には、その上蓋部分から前記冷却ヘッド室内を通って希釈冷凍室の底部まで延びる中空な有底の内管が設けられており、その内管における上下方向の中間位置の一部は良伝熱材料によって主熱交換器用伝熱部とされ、さらに前記内管はその内側空間が冷却ヘッド室の室内空間および希釈冷凍室の室内空間から気密に隔絶されており、前記冷却ヘッド室内には上方から前記小型機械式冷凍機の冷却ヘッドが挿入されていて、その冷却ヘッドから前記伝熱ブロックが前記内管の伝熱部まで延びており、さらに前記内管内には、全体として棒状をなす希釈冷凍ユニットが上方から挿抜可能に挿入されており、
    その希釈冷凍ユニットは、前記真空ポンプから送出された3Heガスを受入れる受入口および3Heガスを排出して真空ポンプへ導くための還流口が上端部に形成されるとともに、下端部に試料保持部を伴なった前記混合室が形成され、しかも前記受入口から前記混合室に至る往路側流路および混合室から前記送流口に至る復路側流路とを備え、かつその往路側流路および復路側流路に介在するように主熱交換器、JT膨張器、分留器、分留器熱交換器、および往復熱交換器が一体的に形成された構成とされ、
    また前記内管の伝熱部とそれに対応する位置の前記希釈冷凍ユニット内の往路側流路との間が熱的に接触されてその部分に前記主熱交換器が形成されることを特徴とする希釈冷凍機。
  2. 請求項1に記載の希釈冷凍機において、
    前記混合室から分留器に至るまでの間の復路側流路が、内管内へ挿抜可能な全体として棒状の希釈冷凍ユニットの外面と内管の内周面との間に形成されることを特徴とする希釈冷凍機。
JP2000120089A 2000-04-20 2000-04-20 希釈冷凍機 Expired - Lifetime JP3580531B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000120089A JP3580531B2 (ja) 2000-04-20 2000-04-20 希釈冷凍機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000120089A JP3580531B2 (ja) 2000-04-20 2000-04-20 希釈冷凍機

Publications (2)

Publication Number Publication Date
JP2001304709A JP2001304709A (ja) 2001-10-31
JP3580531B2 true JP3580531B2 (ja) 2004-10-27

Family

ID=18630960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000120089A Expired - Lifetime JP3580531B2 (ja) 2000-04-20 2000-04-20 希釈冷凍機

Country Status (1)

Country Link
JP (1) JP3580531B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232455A (ja) * 2007-03-16 2008-10-02 Osaka City Univ 希釈冷凍機

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0504345D0 (en) * 2005-03-02 2005-04-06 Oxford Instr Superconductivity Cryostat assembly
JP4595121B2 (ja) * 2005-06-10 2010-12-08 独立行政法人産業技術総合研究所 機械式冷凍機とジュール・トムソン膨張を用いた極低温冷凍装置
FR2914050B1 (fr) * 2007-03-21 2012-12-28 Air Liquide Refrigerateur a basse ou tres basse temperature et procede de refrigeration
JP5047873B2 (ja) * 2008-04-30 2012-10-10 中部電力株式会社 極低温装置
JP5400435B2 (ja) * 2009-03-12 2014-01-29 大陽日酸株式会社 希釈冷凍機の運転方法、及び希釈冷凍機
GB0904500D0 (en) 2009-03-16 2009-04-29 Oxford Instr Superconductivity Cryofree cooling apparatus and method
GB2584135A (en) * 2019-05-23 2020-11-25 Oxford Instruments Nanotechnology Tools Ltd Cryogenic cooling system
CN111023652A (zh) * 2019-12-11 2020-04-17 广东电网有限责任公司 氦气循环冷却系统和设计方法、设备及存储介质
FR3107586B1 (fr) * 2020-02-21 2022-11-18 Air Liquide Dispositif et procédé de réfrigération à dilution
FI129268B (fi) 2020-05-13 2021-10-29 Bluefors Oy Laite ja menetelmä lämpöä johtavan kytkennän tekemiseksi
FR3129201B1 (fr) * 2021-11-16 2024-01-19 Air Liquide Système de pompage cryogénique et intégration innovante pour la cryogénie Sub Kelvin inférieure à 1,5K
FR3129465A1 (fr) * 2021-11-19 2023-05-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif de réfrigération à dilution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232455A (ja) * 2007-03-16 2008-10-02 Osaka City Univ 希釈冷凍機

Also Published As

Publication number Publication date
JP2001304709A (ja) 2001-10-31

Similar Documents

Publication Publication Date Title
JP3580531B2 (ja) 希釈冷凍機
US5381666A (en) Cryostat with liquefaction refrigerator
US7497084B2 (en) Co-axial multi-stage pulse tube for helium recondensation
US7568351B2 (en) Multi-stage pulse tube with matched temperature profiles
US20020002830A1 (en) Circulating cryostat
US7121116B2 (en) Method and device for producing oxygen
EP0142117A2 (en) Apparatus for condensing liquid cryogen boil-off
JP4791894B2 (ja) 希釈冷凍機
JP2008538856A (ja) クライオスタットアセンブリ
JP4520676B2 (ja) 冷却装置
JP5468425B2 (ja) 蓄冷器、蓄冷式冷凍機、クライオポンプ、および冷凍装置
JPH04306472A (ja) 液化冷凍機付きクライオスタット
JP2001248927A (ja) パルス管冷凍機を用いた低温装置
JPH0452468A (ja) 極低温冷凍装置
JP2005090928A (ja) 希釈冷凍機
JP7022221B2 (ja) 循環冷媒の冷却用ヒートステーション
JP5465558B2 (ja) 蓄冷器、蓄冷式冷凍機、クライオポンプ、および冷凍装置
JP2016118372A (ja) 極低温冷凍機および極低温冷凍機の運転方法
JP2006234356A (ja) 低温保持装置およびそのメンテナンス方法
WO2019219928A2 (en) Cryocooler suitable for gas liquefaction applications, gas liquefaction system and method comprising the same
JP2002089983A (ja) 蓄冷式冷凍機およびそれを用いた液化ガス収容装置
JP2001248930A (ja) 極低温冷凍機
JP3644683B2 (ja) 希釈冷凍機
JP2001263841A (ja) パルス管冷凍機
WO2022153713A1 (ja) パルス管冷凍機および超伝導磁石装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040716

R150 Certificate of patent or registration of utility model

Ref document number: 3580531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term