JP3576571B2 - Ad変換装置 - Google Patents

Ad変換装置 Download PDF

Info

Publication number
JP3576571B2
JP3576571B2 JP35071292A JP35071292A JP3576571B2 JP 3576571 B2 JP3576571 B2 JP 3576571B2 JP 35071292 A JP35071292 A JP 35071292A JP 35071292 A JP35071292 A JP 35071292A JP 3576571 B2 JP3576571 B2 JP 3576571B2
Authority
JP
Japan
Prior art keywords
converter
signal
output
input
converters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35071292A
Other languages
English (en)
Other versions
JPH06177757A (ja
Inventor
輝夫 稗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP35071292A priority Critical patent/JP3576571B2/ja
Priority to US08/160,234 priority patent/US5691821A/en
Publication of JPH06177757A publication Critical patent/JPH06177757A/ja
Application granted granted Critical
Publication of JP3576571B2 publication Critical patent/JP3576571B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は映像信号等のアナログ信号をディジタル信号に変換するためのAD変換装置に関する。
【0002】
【従来の技術】
近年、ディジタル信号処理技術の進歩にともなって、CCD等の撮像素子から得られるアナログの撮像信号をADコンバータを用いてディジタル信号に変換し、このディジタル撮像信号をディジタル信号処理回路に加えて、ガンマ補正、クリップ、ブランキング等の信号処理を行い、複合映像信号を形成する撮像装置が多く提案されている。
【0003】
このような撮像装置においては、ディジタル信号処理部分は、原理的に信号の劣化が非常に少ないので、ADコンバータの変換誤差特性が非常に重要になる。ADコンバータとしては従来より8〜10ビットの変換ビット数を有するものが多く用いられており、その方式としては、撮像信号のデータ速度(10〜20MHz)に対応するために、フラッシュ型、ハーフフラッシュ型が広く用いられている。フラッシュ型は、変換ビットで表わされる階調数(例えば8ビットならば256)より1つ少ない数(例えば255)の基準電圧とアナログ入力信号とを同数のコンパレータで同時に比較する方式である。
【0004】
また、ハーフフラッシュ型は、階調数の少ないフラッシュ型を2段用いて、1段目は粗く変換し、これをDA変換してアナログ入力信号と減算し、その減算出力を再度2段目で今度は細かく変換し、1段目の出力を上位ビット、2段目の出力を下位ビットとして出力する方式である。
【0005】
【発明が解決しようとする課題】
しかしながら上述した従来のADコンバータを用いた撮像装置においては、以下の様な問題があった。
【0006】
ADコンバータの変換特性において、特定のレベルで誤差が増大する様な所があると、画像の一部に輪郭状のノイズ(擬似輪郭)が発生する。特に前述のハーフフラッシュ型のADコンバータを用いた撮像装置の場合は、上位ビットが変化する点において大きな変換誤差が生じる。
【0007】
これを解決する方法として、従来、レーザートリミングによりIC回路上の抵抗等をトリミングして上記基準電圧を微調整する方法があるが、コストが非常に高くなるという問題があった。
【0008】
本発明は上記のような課題を解決するためになされたもので、安価で精度の高いAD変換装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明のAD変換装置は、アナログ入力信号が加えられる第1のADコンバータと、上記第1のADコンバータの出力信号が加えられる複数のDAコンバータと、上記第1のADコンバータの出力信号に応じて切換え信号を発生する切換え信号発生回路と、上記切換え信号に応じて上記複数のDAコンバータに含まれる1つのDAコンバータの出力信号を切換え出力するスイッチと、上記1つのDAコンバータの出力信号と上記アナログ入力信号とを減算する減算器と、上記減算器の出力が加えられ上記第1のADコンバータより細かい分解能を有する第2のADコンバータとをそれぞれ具備し、上記切換え信号発生回路は、上記複数のDAコンバータに関する情報として入力信号の各々のレベルにおける誤差情報を予め記憶しており、上記誤差情報に応じて上記切換信号を発生する点に特徴を有する。
【0013】
【作用】
本発明によれば、第1のADコンバータよりアナログ入力信号をAD変換したデータの上位ビットが得られると共に、減算器からはアナログ入力信号より第1のADコンバータ及びDAコンバータによる誤差分を除いたアナログ情報が得られ、これを第2のADコンバータに加えることにより、この第2のADコンバータより精度の高い下位ビットが得られる。
【0014】
【実施例】
以下、本発明を撮像装置に適用した場合について第1〜6の実施例を説明する。
【0015】
図1は本発明の第1の実施例を示す。
【0016】
図1において、1は撮像レンズ、光学フィルタ等を含む光学系、2は撮像素子としてのCCD、3はサンプルアンドホールド回路、4はADコンバータ、5、6、7はDAコンバータ、8は減算器、9はADコンバータ、10はディジタル信号処理回路により構成されたプロセス回路、11はDAコンバータ、12は出力端子である。
【0017】
次に上記構成による動作について説明する。
【0018】
被写体像は光学系1によりCCD2の撮像面に結像され、CCD2の各々の画素で光電変換されるこにより撮像信号が生成される。この撮像信号は、サンプルアンドホールド回路3により連続信号としてのアナログ入力信号VAに変換された後、ADコンバータ4によりAD変換される。この出力は、ディジタル撮像信号の上位ビットVB1として、プロセス回路10に入力されると共に、DAコンバータ5、6、7に入力される。DAコンバータ5、6、7では、それぞれ入力信号をDA変換して、その結果のアナログ信号を出力する。
【0019】
この時、各々の出力はDAコンバータ5、6、7を構成する例えば抵抗群やスイッチ群のばらつきにより、それぞれ誤差を含んでいる。これらの出力は、サンプルアンドホールド回路3の出力と共に減算器8に入力される。減算器8においては、サンプルアンドホールド回路3の出力VAから3つのDAコンバータ5、6、7の出力の平均値が減算される。
【0020】
この減算器8の出力はADコンバータ9によりAD変換され、ディジタル撮像信号の下位ビットVB2として、上記上位ビットVB1と共にプロセス回路10に入力される。
【0021】
この場合、ADコンバータ4の入力レンジは、このADコンバータ4は上位ビットを生成するため、サンプルアンドホールド回路3の出力のフルレンジに設定する。また、ADコンバータ9の入力レンジは、このADコンバータ9は下位ビットを生成するため、ADコンバータ4のほぼ最小分解能に設定する。例えば、ADコンバータ4が4ビットの分解能の場合、ADコンバータ9の入力レンジはADコンバータ4の1/16に設定する。
【0022】
プロセス回路10では、入力されたディジタル撮像信号を、ディジタル信号処理回路により、ガンマ補正、黒、白クリップ、ブランキング処理などの所定の処理を行って、ディジタル映像信号を形成する。次にDAコンバータ11により、DA変換して複合映像信号として出力端子12より出力し、後段のテレビ、VTR等の外部機器に供給する。
【0023】
図2は本発明の第2の実施例を示し、図1と同一符号は同一機能部分を示す。
【0024】
図2において、13はDAコンバータ5、6、7の出力を切換えるスイッチである。
【0025】
次に動作について説明する。
DAコンバータ5、6、7までの動作は前述した図1と同様である。DAコンバータ5、6、7の出力はスイッチ13に入力される。スイッチ13は3つの入力信号のうちの1つを選択して減算器8に入力する。減算器8の出力はサンプルアンドホールド回路3の出力信号VAと減算され、その減算出力がADコンバータ9に加えられることにより下位ビットVB2が生成され、以下前述と同様に動作する。
【0026】
スイッチ13は、例えば装置の製造時に、DAコンバータ5、6、7のうちの最も誤差の少ないものを選別し、これを選択するように構成する。あるいは、電源電圧等の使用条件により、3つのうちの1つを誤差が最も少なくなる様に設定する。
【0027】
図3は本発明の第3の実施例を示すもので、図1、図2と異なる部分のみを示している。
【0028】
図3において、14は切換え信号発生回路である。ADコンバータ4の出力は前述と同様にディジタル撮像信号の上位ビットVB1となり、プロセス回路10及び3つのDAコンバータ5、6、7に入力されると共に、切換え信号発生回路14にも入力される。切換え信号発生回路14は入力される上位ビットVB1を示す入力信号に応じて切換え信号を発生し、スイッチ13を切換えて、DAコンバータ5、6、7の出力信号のうちの1つを減算器8に出力する。
【0029】
切換え信号発生回路14のある入力信号に対応する出力信号としては、入力信号の各々のレベルにおいて、DAコンバータ5、6、7のうちの最も誤差の少ないものを選択するように、あらかじめ誤差を測定して、切換え信号発生回路14の内部のメモリに記憶させておけばよい。
【0030】
また別の例としては、切換え信号発生回路14の内部に順序回路又は乱数回路を設け、時系列的に変化する切換え信号を発生するようにしてもよい。このようにすれば、DAコンバータ5、6、7の誤差が分散されるようになる。
【0031】
なお、上記各実施例においては、減算器8と組み合わせるDAコンバータ5、6、7を3つとしたが、これに限定されず、効果が十分であれば2つでもよく、またさらに高い精度が必要であれば、4つ以上のDAコンバータを用いてもよく、用いる数を多くすれば、DAコンバータの誤差が軽減される。
【0032】
図4は本発明の第4の実施例を示すもので、図1の回路を単一半導体チップ上に構成した場合の実施例である。
【0033】
図4においては、図1におけるADコンバータ4、9、DAコンバータ5、6、7、減算器8を単一半導体チップ15上に図示のように配置して構成している。また、サンプルアンドホールド回路3に接続される入力端子16及びプロセス回路10に接続される出力端子17が設けられている。これらの配置上で特に、DAコンバータ6、7の配置方向が、DAコンバータ5に対して直角方向に配置され、さらに、DAコンバータ6と7とが線対称に配置されている。このように配置することにより、DAコンバータ5、6、7それぞれで発生する誤差のうちの半導体製造プロセス上の偏りにより発生したものを分散することが可能になる。
【0034】
また、図4における単一半導体チップ15上に構成される部分はこれに限定されず、プロセス回路10、サンプルアンドホールド回路3なども同一半導体チップ15上に構成することができる。さらに図2、図3におけるスイッチ13、切換え信号発生回路14等を構成してもよい。
【0035】
図5は本発明の第5の実施例を示し、図1と同一部分には同一符号を付す。
【0036】
図5において、18は切換え信号発生回路で、水平同期信号HD、垂直同期信号VDに応じてADコンバータ4の動作を切換える切換え信号Sを出力する。尚、本実施例ではADコンバータ4の出力は1つのDAコンバータ5に加えられるように成されている。
【0037】
図6はADコンバータ4の実施例を示すもので、101はサンプルアンドホールド回路3からのアナログ入力信号VAの入力端子、102は上記切換え信号Sの入力端子、V1、V2は基準電圧、103、104はスイッチ、105、106、107、108は直列接続された抵抗、109、110、111はコンパレータ、112は入力信号を2進数に変換するデコーダである。
【0038】
次に動作について説明する。図5において、切換え信号発生回路18は、水平同期信号HD、垂直同期信号VDに応じてADコンバータ4の誤差を分散するための切換え信号Sを生成する。ADコンバータ4は切換え信号Sに応じて内部の動作を切換え、変換誤差を分散する。
【0039】
図6において入力端子101から入力されたアナログ入力信号VAはコンパレータ109、110、111により、それぞれの他方の入力端子の基準電圧と比較され、その結果がデコーダ112に入力され、ディジタルデータとして出力される。各コンパレータ109〜111の他方の入力端子には基準電圧V1、V2、スイッチ103、104及び抵抗105〜108により構成される回路で発生された基準電圧が入力されている。スイッチ103、104は入力端子102からの切換え信号Sに応じて切換えられる。
【0040】
この時の電流の経路は、切換え信号Sが0の時は、V1、スイッチ103、抵抗105、106、107、108、スイッチ104、V2となる。また、切換え信号Sが1の時は、V1、スイッチ104、抵抗108、107、106、105、スイッチ103、V2の経路になり、抵抗105〜108に流れる電流の方向が、切換え信号Sが0の時と逆になる。この時、各々の抵抗は製造上の誤差を含んでおり、また、コンパレータ109〜111の入力オフセット特性にもばらつきがあるが、上述のようにスイッチ103、104を切換えることにより、このばらつきを分散することができる。この時、コンパレータ109〜111の出力と2進数との対応関係がスイッチ103、104の切換えに応じて変わるため、デコーダ112では、切換え信号Sに応じてこれを補正して上位ビットVB1を出力する。
【0041】
切換え信号Sは、このようにばらつきを分散させるために、ライン毎あるいはフィールド毎に、順次にあるいは乱数的に切換えるように、切換え信号発生回路18より発生される。
【0042】
図5において、デコーダ112の出力VB1はDAコンバータ5に出力され、そのDA変換出力は、サンプルアンドホールド回路3の出力VAと共に減算器8に入力される。減算器8においては、DAコンバータ5の出力がVAより減算されてADコンバータ9に出力される。
【0043】
なお、図6においては、説明の簡略化のためにコンパレータ数を3個として2ビットのADコンバータ4を構成しているが、これに限定されるものではなく、任意の変換ビット数nのADコンバータは、2のn乗−1のコンパレータにより実現できる。
【0044】
図7はADコンバータ4の他の実施例を示すもので、図6と同一符号は同一機能部分を示す。
【0045】
図7において、113、114、115、116、117はスイッチで、それぞれ端子0〜3を切換え信号Sにより切換えられる。アナログ入力信号VAは、図6と同様にコンパレータ109、110、111に入力され、その出力は、デコーダ112により2進数に変換され、上位ビットVB1として出力される。
【0046】
また、V1、V2、スイッチ113〜116、抵抗105〜108により基準電圧を生成し、コンパレータ109〜111の他方の入力端子に入力される。
【0047】
切換え信号Sにより、スイッチ113〜117が切換えられると、抵抗105〜108に流れる電流の経路も変化する。説明の簡略のために、電流の経路に対応する抵抗のみを挙げると、
【0048】
S=0の時 105−106−107−108
S=1の時 106−105−108−107
S=2の時 107−108−105−106
S=3の時 108−107−106−105
となり、Sに応じて、電流の経路が変わる。また、スイッチ117は、コンパレータ110に常に電流経路の中点の電圧が加わるように切換えられる。デコーダ112は、Sの4つの値に応じて、入力と2進数との関係を切換え、2進数出力信号としての上位ビットVB1を出力する。
【0049】
図8は本発明の第6の実施例を示し、図5と同一符号は同一機能部分を示す。
【0050】
図8において、19は補正データ発生部で、あらかじめ補正データが書き込まれるROM20と、その補正データをDA変換して減算器8に出力するDAコンバータ21とにより構成される。
【0051】
図9はADコンバータ4の構成例を示すもので、図6、図7と対応する部分には同一符号を付している。
【0052】
尚、ADコンバータ9も、4個の直列抵抗、3個のコンパレータ及びデコーダ等によりADコンバータ4と同様に構成されている。
【0053】
ADコンバータ4、9におけるコンパレータの数は説明の簡略のために上位ビット用が3個、下位ビット用が3個で構成されているがこれに限定されず、例えば8ビットのADコンバータ4、9を構成するためには、それぞれコンパレータを15個用いた組み合わせも可能である。
【0054】
次に動作について説明する。図9において、入力端子101より入力されたアナログ入力信号VAは、まず、コンパレータ109〜111により、抵抗105〜108で基準電圧V1を分圧した各々の基準電圧と比較される。この場合基準電圧V1はアナログ入力信号VAのダイナミックレンジに合わせて、例えば、VAが0〜2Vの場合はV1も2Vに設定される。この結果、抵抗105〜108により、1.5V、1V、0.5Vの基準電圧が発生される。
【0055】
コンパレータ109〜111の出力はデコーダ112によって、2進数に変換される。その出力は上位ビットVB1として出力されると共に、DAコンバータ5に入力される。従って、この例においてはDAコンバータ5より0V、0.5V、1V、1.5Vの何れかの出力が得られる。デコーダ112の出力はさらに図8の補正データ発生部19にROM20のアドレスとして入力される。ROM20には上記抵抗105〜108、コンパレータ109〜111及びDAコンバータ5の誤差を補正する補正データがあらかじめ書き込まれている。
【0056】
このROM20より読み出された補正データは、DAコンバータ21によりDA変換される。この時のDAコンバータ21の出力レンジは発生する誤差の最大値に合わせる。概略は下位ビット用のADコンバータ9を構成する3つの抵抗より出力される基準電圧群の1〜数階調分の正負の値に設定される。
【0057】
このDAコンバータ21の出力とDAコンバータ5の出力とアナログ入力信号VAとは減算器8に入力され、アナログ入力信号VAから2つのDAコンバータ5、21の出力が減算される。その減算出力はADコンバータ9を構成する3つのコンパレータに入力され、4つの直列抵抗により分圧された基準電圧と比較される。4つの直列抵抗の一端に加えられる基準電圧としては、ADコンバータ4で発生される基準電圧群の1階調分とする。この例では、1階調分が0.5Vなので、4つの直列抵抗に加えられる基準電圧は0.5Vに設定され、各々の抵抗より、0.3725、0.25、0.125Vの基準電圧群が発生される。
【0058】
ADコンバータ9の出力は下位ビットVB2として前述の上位ビットVB1と共に出力される。
【0059】
図10は図8の動作説明図である。図10(a)はADコンバータ4の変換特性、(b)はその時の上位ビットVB1の値、(c)はその時の下位ビットVB2の値、(d)はその時の補正データのレベルを示している。
【0060】
まず、(a)において、補正データが入力されていない場合の変換特性がA(実線)で示されている。この時、(b)において、上位ビットVB1が変化する際、前述の様に抵抗105〜108、コンパレータ109〜111及びDAコンバータ5の誤差によりB(破線)で示されている理論特性と誤差eだけずれた特性になっている。
【0061】
補正データ発生部19は(b)の上位ビットVB1の値に応じて(d)の補正データを発生するが、この時の値fをe=fとすれば、Aの特性を理論値Bの特性に補正することができる。
【0062】
図11は補正データ発生部19の他の実施例を示すもので、図9と同一機能部分には同一符号を付している。
【0063】
図11において、22は電源投入時所定幅の電源検出信号を発生する電源検出回路、23は電源検出信号に応じて所定の順番で、所定のアドレスを発生するアドレス発生回路、24、25はスイッチ、26はRAMである。
【0064】
電源が投入されると、電源検出回路22がこれを検出し所定幅の電源検出信号を発生し、スイッチ24をアドレス発生回路23の出力側に、スイッチ25をROM20の出力側にそれぞれ接続すると共に、RAM26を書き込み動作に切換える。次にアドレス発生回路23より前述の様に所定の順番で所定のアドレスが発生され、これがRAM26及びROM20へアドレスとして入力される。ROM20からは所定の補正データが読み出され、これがRAM26に書き込まれる。
【0065】
その後、アドレス発生回路23からのアドレスが止まり、また電源検出信号がなくなってスイッチ24がADコンバータ4側に、スイッチ25がDAコンバータ21側に切換わる。そして入力される上位ビットVB1に応じてRAM26に書込まれている補正データが読み出され、DAコンバータ21によりDA変換されて補正信号としてADコンバータ4に入力される。
【0066】
図12は上記の動作説明図である。電源が投入され、図12(a)のように電源電圧が立上ると、電源検出回路22から(b)のように電源検出信号がT1遅れて、T2期間に出力される。このT2期間に、(c)のアドレスが順次出力され、(d)の様に書き込みモードになっているRAM26にROM20のデータが書き込まれる。
【0067】
このように、RAM26を用いることにより変換速度が劣化することなく補正を行うことができる。
【0068】
以上述べた各実施例1〜6は、本発明を撮像装置に適用した場合であるが、本発明は他の電子機器において、アナログ信号をディジタル信号に変換する場合に用いることができるのは勿論である。
【0069】
【発明の効果】
以上のように、本発明は、アナログ入力信号が加えられる第1のADコンバータの出力信号に応じて切換え信号を発生させ、発生させた切換え信号に応じて、第1のADコンバータの出力信号が加えられる複数のDAコンバータに含まれる1つのDAコンバータの出力信号を切換え出力し、出力した1つのDAコンバータの出力信号とアナログ入力信号とを減算するよう構成した。
【0070】
従って、本発明によれば、ADコンバータ自身の精度を上げることなく、簡単な構成により、アナログ入力信号に対して高い精度を有する出力データを得ることができる。また、撮像装置に用いた場合は、高画質を得ることのできる装置を安価に得ることができる効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示すブロック図である。
【図2】本発明の第2の実施例を示すブロック図である。
【図3】本発明の第3の実施例を示すブロック図である。
【図4】本発明の第4の実施例を示すブロック図である。
【図5】本発明の第5の実施例を示すブロック図である。
【図6】ADコンバータの実施例を示す構成図である。
【図7】ADコンバータの他の実施例を示す構成図である。
【図8】本発明の第6の実施例を示すブロック図である。
【図9】ADコンバータの他の実施例を示す構成図である。
【図10】第6の実施例の動作を示すタイミングチャートである。
【図11】補正データ発生部の実施例を示すブロック図である。
【図12】第6の実施例の他の動作を示すタイミングチャートである。
【符号の説明】
4 ADコンバータ
5、6、7 DAコンバータ
8 減算器
9 ADコンバータ
18 切換え信号発生回路
19 補正データ発生部
103、104、113〜116 スイッチ

Claims (1)

  1. アナログ入力信号が加えられる第1のADコンバータと、
    上記第1のADコンバータの出力信号が加えられる複数のDAコンバータと、
    上記第1のADコンバータの出力信号に応じて切換え信号を発生する切換え信号発生回路と、
    上記切換え信号に応じて上記複数のDAコンバータに含まれる1つのDAコンバータの出力信号を切換え出力するスイッチと、
    上記1つのDAコンバータの出力信号と上記アナログ入力信号とを減算する減算器と、
    上記減算器の出力が加えられ上記第1のADコンバータより細かい分解能を有する第2のADコンバータとをそれぞれ具備し、
    上記切換え信号発生回路は、上記複数のDAコンバータに関する情報として入力信号の各々のレベルにおける誤差情報を予め記憶しており、上記誤差情報に応じて上記切換信号を発生することを特徴とするAD変換装置。
JP35071292A 1992-12-04 1992-12-04 Ad変換装置 Expired - Fee Related JP3576571B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP35071292A JP3576571B2 (ja) 1992-12-04 1992-12-04 Ad変換装置
US08/160,234 US5691821A (en) 1992-12-04 1993-12-02 A/D converting apparatus and image sensing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35071292A JP3576571B2 (ja) 1992-12-04 1992-12-04 Ad変換装置

Publications (2)

Publication Number Publication Date
JPH06177757A JPH06177757A (ja) 1994-06-24
JP3576571B2 true JP3576571B2 (ja) 2004-10-13

Family

ID=18412343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35071292A Expired - Fee Related JP3576571B2 (ja) 1992-12-04 1992-12-04 Ad変換装置

Country Status (1)

Country Link
JP (1) JP3576571B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6024968B2 (ja) * 2012-12-07 2016-11-16 国立大学法人豊橋技術科学大学 差動増幅器およびこれを使用する信号増幅装置

Also Published As

Publication number Publication date
JPH06177757A (ja) 1994-06-24

Similar Documents

Publication Publication Date Title
US7492397B2 (en) CMOS active pixel sensor with a sample and hold circuit having multiple injection capacitors and a fully differential charge mode linear synthesizer with skew control
US8896738B2 (en) Solid-state image pickup device and signal processing method therefor
US8358361B2 (en) A/D converter unit for image sensor
KR101459138B1 (ko) 고체 촬상 장치, 촬상 장치, 및 고체 촬상 장치의 구동방법
JP2011041205A (ja) 電圧発生回路、デジタルアナログ変換器、ランプ波発生回路、アナログデジタル変換器、イメージセンサシステム及び電圧発生方法
JP2013229852A (ja) 光電変換装置および撮像システム
US8797410B2 (en) Image pickup apparatus, image pickup system, and method for driving image pickup apparatus
US5691821A (en) A/D converting apparatus and image sensing apparatus
US7728888B2 (en) Clamping circuit and digital camera system having the clamping circuit
US4768015A (en) A/D converter for video signal
JP2002247411A (ja) ガンマ補正機能を有するアナログ/デジタル変換器
JPS6340071B2 (ja)
JP3825949B2 (ja) 電子回路およびそれを用いた液晶表示装置
JP3576571B2 (ja) Ad変換装置
JP6112871B2 (ja) 撮像素子及び撮像装置
JP2016076997A (ja) 光電変換装置および撮像システム
JP3091084B2 (ja) 信号処理回路
JP2002290980A (ja) A/d変換器及びこのa/d変換器を備えた撮像装置
JPH05259909A (ja) 自動オフセット電圧補正方法
JP6676983B2 (ja) 光電変換素子、画像読取装置、画像形成装置及び画像読取方法
EP0673149A1 (en) Method and apparatus for correcting dark-signal non-uniformity of a photo-sensor
US5093733A (en) Image signal processing device
JPH0619221Y2 (ja) アナログデイジタル変換回路
JPH01865A (ja) 画信号補正回路
JP3259145B2 (ja) 画像読み取り装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees