JP3576550B2 - プロセス残留物からの金属有価物の回収 - Google Patents

プロセス残留物からの金属有価物の回収 Download PDF

Info

Publication number
JP3576550B2
JP3576550B2 JP50356394A JP50356394A JP3576550B2 JP 3576550 B2 JP3576550 B2 JP 3576550B2 JP 50356394 A JP50356394 A JP 50356394A JP 50356394 A JP50356394 A JP 50356394A JP 3576550 B2 JP3576550 B2 JP 3576550B2
Authority
JP
Japan
Prior art keywords
uranium
phase
valuables
liquid phase
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP50356394A
Other languages
English (en)
Other versions
JPH08503879A (ja
Inventor
エー. ハード,ロバート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cabot Corp
Original Assignee
Cabot Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabot Corp filed Critical Cabot Corp
Publication of JPH08503879A publication Critical patent/JPH08503879A/ja
Application granted granted Critical
Publication of JP3576550B2 publication Critical patent/JP3576550B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0252Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/003Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • C01G35/003Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/24Obtaining niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0221Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching
    • C22B60/0226Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using acidic solutions or liquors
    • C22B60/0234Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using acidic solutions or liquors sulfurated ion as active agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

発明の利用分野
本発明は、一般に、金属有価物の回収、特にはタンタルの回収に関係し、ウラニウムのような天然に産出する放射性元素に含まれることがある特定の残留物からの金属有価物と酸有価物の回収に関係する。
発明の背景
種々の天然鉱石、濃縮物、スラグ中の金属有価物を処理して回収する方法には多数の方法が提案されている。有用な鉱石や広範囲に入手できる錫スラグからのタンタルとニオブの抽出と分離のための工業的方法は米国特許第2767047号、同2953453号、同2962372号、同3117833号、同3300297号、同3658511号、同3712939号、同4164417号に開示されている。これらの従来方法において原料の固体を一般に高温の濃厚なフッ化水素酸で蒸解し、殆どのタンタルとニオブをフッ化物として溶解していた。溶解した金属有価物を含む液体を未溶解の固体と分離し、多段の液体−液体抽出カスケードで処理し、金属有価物をメチルイソブチルケトン(MIBK)で抽出する。プロセスの初期残留物はウラニウムやトリウムのような不溶性金属を含み、また、連行の不溶性物質の中に或る量の未溶解のタンタルとニオブも含まれる。これらの初期プロセス残留物の備蓄は、未回収金属有価物からの収益の損失になる。
他の鉱石の処理プロセス方式の一般的議論は、文献「題名:ニオブ、タンタル、バナジウムの金属抽出、INTERNATIONAL METALS REVIEW,1984年、vol.29,No26,BB405−444,The Metals Society(London)」と「The Encyclopedia of Chemical Technology,3rd ed.,Vol.22 pp547−550」に見られる。
タンタルの二次回収にフッ化水素酸を使用する方法の改良が、本出願人の米国特許第5023059号(発明の名称:廃棄スラッジからタンタルとニオブ金属有価物とフッ化水素酸の回収)に開示されている。
このように、錯化フッ化物のような金属有価物を含む残留物から付加的な金属有価物を回収し、残留物から酸の回収を行い、EPA(米国環境保護局)により作成されたリストの全ての物質に照らして非毒性であり且つ特性試験において非毒性であり、放射能レベルが低い廃棄物として投棄するに適するように充分にウラニウムとトリウムの含有率が低い固体の廃棄物を生成することは、当該技術において従来より望まれる技術であると考えられる。
本発明の目的は、鉱石、濃縮物及びスラグの溶解の残留物から金属有価物を回収する効率的な方法を提供することである。
本発明のもう1つの目的は、希薄な水系プロセスの流れから金属有価物を回収する改良方法を提供することである。
本発明の別な目的は、流れから硫酸とフッ化水素酸を回収することである。
本発明のさらにもう1つの目的は、希薄な原料固体を取り扱うに適する金属有価物の回収方法の提供であり、EPAの毒性浸出法とEPAによる他の全ての危険物質のリストに照らして無害であり、このため残留するウラニウムとトリウムについては、低レベルの放射性廃棄物として、又は非危険で非放射性の廃棄物として法律的に処分することができる固体と液体の廃棄物を生成することができ方法を提供することである。
本発明のさらにもう1つの目的は、少ない量の固体と液体の廃棄物に帰着する、溶液と濃縮物の残留物から金属有価物を回収する効率的な方法を提供することである。
したがって、本発明は、源物質が硫酸で蒸解してスラリーとなった少なくともタンタル又はニオブと金属フッ化物を含む源物質から金属有価物を回収する方法である。このスラリーは、分離の後、固体と第1の水系液体相の両方を有する。液体相は、タンタル有価物の抽出に適する不混和性の有機物液体と接触する。タンタル有価物を帯びる第1の有機物相と、ウラニウム有価物を帯びる第2の水系相が生成する。第1の有機物相は水系液体と接触し、タンタル有価物を含む第3の水系相を形成する。そこでタンタル有価物を第3の水系相から回収する。
別な態様において、蒸解した源物質から分離した固体を熱加水分解(pyrohydrolysis)に供する。この方法は、固体から硫酸とフッ化水素の回収を提供し、残りの固体残留物をEPAによるリスト特性試験で非危険性にし、したがって低レベルの放射性廃棄物として投棄可能にする。
もう1つの態様において、ウラニウムを帯びた第2の水系液体相をイオン交換樹脂に接触させ、ウラニウムが減少した相を形成する。
【図面の簡単な説明】
図1は、本発明の方法にしたがって、第2の残留物から金属残留物を回収する系の全体を示すブロック図である。
図2は、金属有価物回収プロセスの流れの1つからウラニウムを除去する溶媒抽出プロセスを示すブロック図である。
詳細な説明
本発明の適切な理解、及びそのさらなる目的、長所、能力の理解のため、前記の図面の簡単な説明と発明の要旨に関係する請求の範囲について次に詳細に説明する。
図1に適切に示すように、本発明の方法は1つの系で行うことができ、蒸解過程10、分解過程12、抽出・濃縮過程16、金属回収過程17を含む。熱加水分解過程14は、放射能レベルの低い廃棄物に固体を変化させながら、硫酸とフッ化水素の回収を行う。蒸解過程は放射能源の母岩物質の量を減らす。イオン交換過程18、又は図2に示す溶媒抽出プロセスを使用し、ウラニウムを除去することができ、次いで石灰処理過程に供し、残存する液体と固体を投棄に安全な状態で得ることができる。
本発明は、金属有価物、特に鉱石や濃縮物の処理から生じる二次残留物のような金属フッ化物を含む固体からタンタルを効率的に回収するプロセスを提供する。
本発明によって処理することができる典型的な二次残留物を表1に示す。
Figure 0003576550
図1を詳しく参照して、プロセスの第1過程で、典型的に第2残留物22のスラリーに硫酸を、典型的にスラリー中の固体の1重量部につき約0.3〜約0.5重量部の工業用濃硫酸の割合で完全に混合する。スラリーは約70℃〜約100℃に、少なくとも5分間、好ましくは30分間維持する。外界温度のような低い温度を使用することもできるが、蒸解に必要な時間は長くなる。高い温度は燻蒸活性が増加する。
スラリー24はフィルタープレスのような公知の方法を用いて、12において分離し、タンタルと固体相のような金属有価物を含む第1の水系液体相26を形成する。
表1に示す残留物を処理した場合、得られ液体相26は、典型的に1リットルにつき約3〜8gのタンタルを含んだ。第1の水系液体相26は、抽出単位16において、MIBKのようなタンタルを抽出するに適する水不混和性の液体の有機物抽出剤に接触する。タンタル有価物を含む第1の有価物液体相28と、第1の水系液体相32が生成する。不混和性の液体を分離する通常の方法によって分離を行う。第1の有機物抽出剤28のタンタル及び/又はニオブ有価物を、第1の水系液体相26に存在する濃度値の約5倍まで濃縮する。相の体積比は、抽出剤相が供給相の1/5未満であるように調節する。濃度を高め、金属有価物を抽出する当該技術で知られるこの他の方法も使用可能である。少なくともタンタルとニオブの有価物を完全に除去するため、4規定度以上の遊離酸が望ましい。HClやH2SO4のような強酸が好ましい。錯体化したフッ化物のタンタルとフッ化物を、水29を用いたストリッピングのような公知の方法によって、第1の有機物液体相28から回収することができる。タンタルを含む溶液を通常のタンタル処理法によって処理し、商業的純度のタンタルを得ることができる。また、ニオブが存在するならば、当業者が知る通常の技術によって抽出剤より回収することができる。
タンタル抽出単位16から得られる第2の水系液体相32は、単位18のイオン交換樹脂によって処理し、ウラニウムを除去することができる。一般に第2の水系液体相32は、約0.05〜約0.3グラム/リットルの濃度のウラニウムを含むであろう。イオン交換樹脂は、好ましくは硫酸33でストリッピングする。当業者が知る他のストリッピング剤を使用することもできる。ストリッピング過程は、約10グラム/リットル〜約30グラム/リットルのウラニウムを有する水溶液34を生成する。この溶液は、さらに処理して高純度化したウラニウムを生成することができる。ウラニウムを除去した相35は、石灰による廃棄物処理プラント50に送ることができ、58で濾過処理し、最終的に投棄する。
或いは、上記の濃度のウラニウムを含む第2の水系液体相32を、図2の方法にしたがって溶媒抽出によって処理することもできる。水不混和性の有機溶媒中に有機ホスフェートを含む水不混和性の有機系抽出剤60を典型的に使用し、基本的に全てのウラニウムを抽出する。好ましい抽出剤はジ−2−エチルヘキシルホスホリック(DEPA)とトリオクチルホスフィンオキサイド(TOPO)の混合物である。前記の抽出剤は種々の濃度で使用することができるが、ケロシンのような適当な有機溶媒中に0.9モルのDEPAと0.13モルのTOPOの混合物を使用することが好ましい。この有機系抽出剤を使用し、ミキサー付き沈降タンク単位61の中で第2の水系相32に接触させ、実質的に全てのウラニウムを含む有機物系相62と、非常に少ないレベルのみのウラニウムを含む水系相54を生成する。沈降の後、相54と62が分離する。有機物系相62はストリッピング単位64に移す。炭酸水素アンモニウムの水溶液65のようなストリッピング剤を使用し、抽出剤溶液からウラニウムをストリッピングし、約2〜約20グラム/リットルの濃度のウラニウムを含む水溶液66を生成させる。この水溶液は文献「Encyclopedia of Chemical Technology,supra,vol23,pp520−526」に記載されているような当該技術の関係者が知るウラニウム回収法によって処理することができる。炭酸水素アンモニウムが好ましいが、ウラニウムをU+2の状態に還元するに充分な第一鉄イオンを含む燐酸のような他のストリッピング剤もまた使用できる。ウラニウムを除去した水系相54を石灰66で処理し、例えば濾過によって分離し、本質的にウラニウムを含まない流出液69を生成させる。固体のフィルターケーキは危険のない放射性のない工業廃棄物として投棄するに適する。図2に示したプロセスで処理した後の固体70の典型的な分析値を次の表2に示す。
Figure 0003576550
図1に関して、スルフェートとフッ化物イオンを含む固体相39を液体相から分離し、次のような熱加水分解に供する:まず、固体相をキルン14に供給し、水蒸気の存在下で約外界温度から少なくとも約700℃の高温に加熱する。700℃のような低い温度も使用できるが、生成物の体積を減らすために約1200℃のような高い温度を使用することが好ましい。好ましくは、水蒸気を燃焼ガスによって提供し、熱加水分解過程14に熱を与える。或いは、水蒸気を供給することもできる。ガス状の硫酸40とフッ化水素酸42が生成する。ガス状の硫酸40は希硫酸46を用いて第1スクラバー44で凝縮させ、ガス状のフッ化水素酸42は希フッ化水素酸55を用いて第2スクラバー48で凝縮させる。本発明のプロセスから生じる固体52は化学的に不活性である。用語「化学的に不活性」とは、本願においてはEPAによるリストと特性試験で非危険性であることを言い、したがって低レベルの放射性廃棄物として投棄するに適する。本発明によって、残存固体22の1クォートあたりの乾燥重量から、約30〜50%の低レベル放射性固体52の平均低下が得られる。回収した硫酸20は、所望により、入ってくるスラッジの処理に再利用することができる。また、タンタル以外の金属有価物が金属フッ化物を含む残留物の中に存在する場合、その金属は硫酸を使用して溶解することができる。固体から水溶液を分離し、第1の液体相26を処理し、イオン交換又は溶媒抽出のような当該技術で知られる方法によって特定の望ましい金属を除去する。そのような場合、固体をさらに処理し、前記のような酸回収を行う。
本発明の好ましい態様をより充分に説明するため、次の限定されない詳細な例を用意する。いずれの部、比、%も他に明記がなければ重量単位である。

図1に示すような方法を用い、40%の水を含む約65000部の二次残留物を、約13650部の濃硫酸と約26000部の水を用いて、約30分間、約75℃で蒸解した。その後、高圧プレートとフレームフィルタープレスを用い、得られた2相の混合物を分離する。
高圧フィルタープレスの運転は、約35%の水分を含む固体のフィルターケーキを生じる。焼結キルンに運ぶベルトコンベアーの上にケーキを乗せる。ケーキは、破砕機を通した後、高温アルミナ耐火物で内張りした直径約3フィートで長さ約25フィートにキルンにスクリューで供給する。ケーキ2を約1200℃に加熱し、大部分のHFとH2SO4をガスとして発生させる。これらのガスは、キルンを出た後、チャンバー内で水をスプレーし、同伴する固体を除去し、その後ガスを2つのスクラビングし、最初に硫酸の希薄溶液でスクラビングすることによって硫酸を回収し、次に、先ず希薄なHF溶液でスクラビングし、濃度が40%のレベルに増加するまで処理して40%溶液としてHFを回収する。酸の大部分を除去したガスを、次に最終スクラバーに送り、水酸化ナトリウムでスクラビングし、大気にガスを放出する前に基本的に全ての残存HFを除去する。二次残留物の39000部から約1,170部のHFを回収する。約25000部の固体がキルンから排出される。
フィルタープレスからの濾液は、1リットルあたり約3〜約8グラムの酸化タンタルと酸化ニオブの金属有価物の濃度を有する。また、この濾液は1リットルにつき約0.02〜約0.06グラムの濃度の酸化ウラニウムを含む。タンタルとニオブは、抽出剤としてMIBKを用いて濾液より抽出される。約680部の酸化タンタルと710部の酸化ニオブが、水でストリッピングすることによって抽出剤から回収される。
イオン交換又は溶媒抽出によって約25部のウラニウムを、タンタルを除去した物質より回収することができる。
イオン交換を使用する場合、タンタルを除去した相をイオン交換樹脂と接触させてウラニウムを除去し、ウラニウム有価物はイオン交換樹脂から硫酸によってストリッピングする。
溶媒抽出を使用する場合、当該技術で知られるようなウラニウムに選択性がある有機系抽出剤にタンタル除去相を接触させる。好ましい抽出剤は、前記のように、ケロシン中の0.9モルDEPAと0.13モルのTOPOの混合物である。抽出物からウラニウム有価物をストリッピングするために炭酸水素アンモニウム溶液を使用する。1リットルにつき約0.5モルの濃度の炭酸水素アンモニウムを有機系抽出剤に導入する。1リットルにつき約2〜約20グラムのウラニウム濃度を有する炭酸水素アンモニウム溶液が生成し、この溶液はさらに通常のウラニウム回収方法が処理することができる。通常の方法によってpHを約8.4〜8.65に調節する。3gpmの抽出剤(有機系相)の流れに対し、ストリッピングした抽出剤の流量は約0.04gpmであろう。ストリッピングした有機系抽出剤は、ミキサー付き沈降タンクにリサイクルする。ウラニウムを除去した流れを、1リットルにつき約200グラムの石灰濃度を有する石灰の水溶液で処理し、濾過する。本質的にウラニウムを含まない流出液を、非危険性で非放射性の工業廃棄物として投棄することができる。固体のフィルターケーキは、フッ化カルシウムと硫酸カルシウムからなり、化学的に不活性である。
本発明の好ましいと考えられる態様について例示し、説明してきたが、当業者には種々の変化が明らかであろう。これらの態様は本発明を制限するものとして示したのではなく、添付の請求の範囲に明らかにした本発明の説明として示したものである。

Claims (24)

  1. 少なくともタンタルと金属フッ化物を含む源物質から金属有価物を回収する方法であって、
    (a)硫酸中で源物質を蒸解してスラリーを形成し、
    (b)スラリーを分離し、タンタルと固体相を含む少なくとも1種の第1の水系液体相を形成し、
    (c)第1の水系液体相と、タンタルを抽出するに適切な水不混和性の有機系液体抽出剤とを接触させ、タンタル有価物を含む第1の有機系液体相と第2の水系液体相を形成し、そして
    (d)第1の有機系液体相からタンタル有価物を回収する、
    各工程を含む方法。
  2. 少なくともニオブと金属フッ化物を含む源物質から金属有価物を回収する方法であって、
    (a)硫酸中で源物質を蒸解してスラリーを形成し、
    (b)スラリーを分離し、ニオブと固体相を含む少なくとも1種の第1の水系液体相を形成し、
    (c)第1の水系液体相と、ニオブを抽出するに適切な水不混和性の有機系液体抽出剤とを接触させ、ニオブ有価物を含む第1の有機系液体相と第2の水系液体相を形成し、そして
    (d)第1の有機系液体相からニオブ有価物を回収する、
    各工程を含む方法。
  3. 少なくともタンタルと金属フッ化物を含む源物質から金属有価物を回収する方法であって、
    (a)硫酸中で源物質を蒸解してスラリーを形成し、
    (b)タンタルを含む第1の水系液体相と固体相をスラリーから分離し、
    (c)第1の水系液体相と、タンタルを抽出するに適切な水不混和性の有機系液体抽出剤とを接触させ、タンタル有価物を含む第1の有機系液体相と第2の水系液体相を形成し、
    (d)第1の有機系相からタンタル有価物を回収し、
    (e)第1の有機系相と水系液体を接触させ、タンタル有価物を含む第3の水系相を形成し、そして
    (f)水蒸気の存在下で、固体の温度を約外界温度から少なくとも700℃まで昇温することによって、分離した固体相を熱加水分解し、ガス状の硫酸、ガス状のフッ化水素酸、及び化学的不活性な残留物を生成させる、
    各工程を含む方法。
  4. スラリーを70℃〜100℃の温度範囲に維持する請求の範囲第1項に記載の方法。
  5. スラリーを70℃〜100℃の温度範囲に5分間以上維持する請求の範囲第3項に記載の方法。
  6. 前記源物質が少なくとも1重量%のタンタル又はニオブを含み、
    (a)水蒸気の存在下で、固体の温度を約外界温度から少なくとも800℃まで昇温することによって、分離した固体相を熱加水分解し、ガス状の硫酸、ガス状のフッ化水素酸、及び化学的不活性な残留物を生成させ、
    (b)硫酸の希薄溶液でガスをスクラビングして硫酸有価物を取り出し、
    (c)フッ化水素酸の希薄溶液でガスをスクラビングしてフッ化水素酸有価物を取り出す、
    各工程を含む請求の範囲第4項に記載の方法。
  7. 前記第1の水系相が、1リットルにつき3〜8グラムのタンタルを含む請求の範囲第5項に記載の方法。
  8. 前記スラリーが、1重量部の源物質ごとに 0.3〜0.5重量部の硫酸から構成される請求の範囲第6項に記載の方法。
  9. 前記水不混和性の有機系液体抽出剤がMIBKであり、
    (a)ウラニウムを含む第2の液体相をイオン交換樹脂に接触させて第2の液体相からウラニウムを除去し、ウラニウム除去相を形成し、
    (b)イオン交換樹脂からウラニウム有価物をストリッピングする、
    各工程を含む請求の範囲第6項に記載の方法。
  10. 前記第3の水系相のタンタル有価物を、水でストリッピングして分離する請求の範囲第8項に記載の方法。
  11. (a)ウラニウム除去相に、5以上のpHレベルを生成するに充分な酸化カルシウムを加え、
    (b)得られた湿った固体を液体から分離する、
    工程を含む請求の範囲第9項に記載の方法。
  12. 源物質がウラニウムを含み、
    (a)ウラニウムを含む第2の水系液体相をイオン交換樹脂に接触させて第2の液体相からウラニウムを除去し、ウラニウム除去相を形成し、
    (b)イオン交換樹脂からウラニウム有価物をストリッピングする、
    各工程を含む請求の範囲第3項に記載の方法。
  13. (a)ウラニウム除去相に、5以上のpHレベルを生成するに充分な酸化カルシウムを加え、
    (b)得られた湿った固体を液体から分離する、
    各工程を含む請求の範囲第12項に記載の方法。
  14. 源物質がウラニウムを含み、
    (a)第2水系液体相に、有機溶媒中に有機ホスフェート抽出剤を含む水不混和性の抽出剤溶液を接触させ、水系相よりウラニウム有価物の少なくとも大半を除去し、ウラニウムを除去した水系の液体相と、除去したウラニウムを含む有機物系相を形成し、
    (b)有機物系相からウラニウムをストリッピングする、
    各工程を含む請求の範囲第1項に記載の方法。
  15. 炭酸水素アンモニウムの水溶液によってイオン交換樹脂からウラニウムをストリッピングする請求の範囲第11項に記載の方法。
  16. 源物質がウラニウムを含み、
    (a)第2水系液体相に、有機溶媒中に有機ホスフェート抽出剤を含む水不混和性の抽出剤溶液を接触させ、水系相よりウラニウム有価物の少なくとも大半を除去し、ウラニウムを除去した水系の液体相と、除去したウラニウムを含む有機物系相を形成し、
    (b)有機物系相からウラニウムをストリッピングする、
    各工程を含む請求の範囲第3項に記載の方法。
  17. 源物質がウラニウムを含み、
    (a)第2水系液体相に、有機溶媒中に有機ホスフェート抽出剤を含む水不混和性の抽出剤溶液を接触させ、水系相よりウラニウム有価物の少なくとも大半を除去し、ウラニウムを除去した水系の液体相と、除去したウラニウムを含む有機物系相を形成し、
    (b)有機物系相からウラニウムをストリッピングする、
    各工程を含む請求の範囲第4項に記載の方法。
  18. (a)ウラニウム除去相に、5以上のpHレベルを生成するに充分な酸化カルシウムを加え、
    (b)得られた湿った固体を液体から分離する。
    各工程を含む請求の範囲第16項に記載の方法。
  19. 回収した硫酸を、源物質を蒸解するためにリサイクルする請求の範囲第16項に記載の方法。
  20. スラリーを分離する前に、70℃〜80℃の温度範囲に少なくとも30分間維持する請求の範囲第17項に記載の方法。
  21. ウラニウムのストリッピングの後、有機物系相をリサイクルし、第2の水系液体相に接触させる請求の範囲第16項に記載の方法。
  22. 少なくとも1種の金属の金属フッ化物を含む源物質から金属と酸の有価物を回収する方法であって、
    (a)硫酸中で源物質を蒸解してスラリーを形成し、
    (b)スラリーから金属有価物を含む第1の水系液体相と固体相を分離し、
    (c)金属有価物を抽出するに適する水不混和性の有機系液体抽出剤及び金属有価物を選択的に除去するイオン交換樹脂から選択された分離剤を用い、第1の水系液体相から金属有価物を除去し、
    (d)分離剤から金属有価物を回収し、
    (e)分離した固体相を、約外界温度から少なくとも800℃まで昇温することによって、分離した固体相を熱加水分解し、硫酸、フッ化水素酸、及び化学的不活性な残留物を生成させ、
    (f)ガスを硫酸の希薄溶液でスクラビングして硫酸の有価物を取り出し、そして
    (g)ガスをフッ化水素酸の希薄溶液でスクラビングしてフッ化水素酸の有価物を取り出す、
    各工程を含む方法。
  23. 前記昇温が800〜1200℃である請求の範囲第22項に記載の方法。
  24. 前記化学的不活性な残留物が乾燥重量として源物質の30重量%未満である請求の範囲第22項に記載の方法。
JP50356394A 1992-07-10 1993-07-09 プロセス残留物からの金属有価物の回収 Expired - Fee Related JP3576550B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/911,435 1992-07-10
US07/911,435 US5437848A (en) 1992-07-10 1992-07-10 Recovery of metal values from process residues
PCT/US1993/006539 WO1994001190A1 (en) 1992-07-10 1993-07-09 Recovery of metal values from process residues

Publications (2)

Publication Number Publication Date
JPH08503879A JPH08503879A (ja) 1996-04-30
JP3576550B2 true JP3576550B2 (ja) 2004-10-13

Family

ID=25430231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50356394A Expired - Fee Related JP3576550B2 (ja) 1992-07-10 1993-07-09 プロセス残留物からの金属有価物の回収

Country Status (9)

Country Link
US (1) US5437848A (ja)
JP (1) JP3576550B2 (ja)
AU (1) AU676488B2 (ja)
BR (1) BR9306711A (ja)
CA (1) CA2139642A1 (ja)
DE (1) DE4393314T1 (ja)
RU (1) RU2150430C1 (ja)
UA (1) UA39102C2 (ja)
WO (1) WO1994001190A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09506675A (ja) * 1993-12-14 1997-06-30 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー 使用済み触媒の回収
US5620936A (en) * 1993-12-14 1997-04-15 E. I. Dupont De Nemours And Company Recovery of spent catalyst
US5785820A (en) * 1994-01-07 1998-07-28 Startec Ventures, Inc. On-site manufacture of ultra-high-purity hydrofluoric acid for semiconductor processing
US5881359A (en) * 1995-06-01 1999-03-09 Advanced Recovery Systems, Inc. Metal and fluorine values recovery from fluoride salt matrices
JP4375630B2 (ja) * 1996-03-26 2009-12-02 キャボット コーポレイション 不溶性フッ化物を含有するTa―Nb―鉱石材料から金属有価物を可溶化する方法
US7282187B1 (en) * 1996-03-26 2007-10-16 Caboi Corporation Recovery of metal values
US6843970B1 (en) * 1996-03-26 2005-01-18 Cabot Corporation Process for recovering metal values by dissolving them in a sulfuric acid solution containing a carbon source and a reducing agent
US5787332A (en) * 1996-09-26 1998-07-28 Fansteel Inc. Process for recovering tantalum and/or niobium compounds from composites containing a variety of metal compounds
JP4125877B2 (ja) * 2001-05-25 2008-07-30 三井金属鉱業株式会社 タンタル/ニオブを含有する含油スラッジの処理方法およびタンタル/ニオブの回収方法
CN101808770A (zh) * 2007-10-15 2010-08-18 高温特殊金属公司 利用回收的废料作为源材料制备钽粉末的方法
CA2731170C (en) 2008-07-31 2014-05-27 Urtek, Llc Extraction of uranium from wet-process phosphoric acid
US8883096B2 (en) 2008-07-31 2014-11-11 Urtek, Llc Extraction of uranium from wet-process phosphoric acid
CN102358918B (zh) * 2011-06-13 2013-04-10 江西景泰钽业有限公司 超高纯五氧化二钽和五氧化二铌除锑的方法
US9309116B2 (en) * 2011-09-26 2016-04-12 Honeywell International Inc. Method for producing high concentration aqueous HF solutions
WO2017127650A1 (en) * 2016-01-21 2017-07-27 Archer Daniels Midland Company Methods of recovering catalysts
CN111659530B (zh) * 2020-06-16 2021-03-23 昆明理工大学 一种连生型铜铅锌硫化矿的选冶回收与分离方法
CN114807633B (zh) * 2022-04-09 2023-11-10 信丰华锐钨钼新材料有限公司 一种钨钼萃取分离渣的处理方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2767047A (en) * 1953-10-20 1956-10-16 Harley A Wilhelm Process of separating tantalum and niobium values from each other
US3117833A (en) * 1958-09-25 1964-01-14 Fansteel Metallurgical Corp Process of purifying and separating columbium and tantalum values from each other
US3653850A (en) * 1969-04-14 1972-04-04 Norton Co Process for purifying tantalum fluoride salts
US3658511A (en) * 1969-12-22 1972-04-25 Kawecki Berylco Ind Upgrading the tantalum and columbium contents of oxidic metallurgical products
US3712939A (en) * 1971-03-29 1973-01-23 Union Carbide Corp Method for recovering tantalum and/or columbium
DE2435427A1 (de) * 1974-07-23 1976-02-05 Starck Hermann C Fa Verfahren zur verarbeitung von tantalniob-haltigen schlacken und rueckstaenden
US4155982A (en) * 1974-10-09 1979-05-22 Wyoming Mineral Corporation In situ carbonate leaching and recovery of uranium from ore deposits
JPS54104524A (en) * 1978-02-03 1979-08-16 Hitachi Ltd Speed control circuit for dc motor
US4233278A (en) * 1978-03-24 1980-11-11 Davy Powergas Inc. Process for purifying crude phosphoric acid
US4164417A (en) * 1978-04-28 1979-08-14 Kawecki Berylco Industries, Inc. Process for recovery of niobium values for use in preparing niobium alloy products
US4278640A (en) * 1979-03-19 1981-07-14 International Minerals & Chemical Corporation Method for solvent extraction of metallic mineral values from acidic solutions
DE2927835A1 (de) * 1979-07-10 1981-06-04 Hermann C. Starck Berlin, 1000 Berlin Verfahren zur rueckgewinnung von fluorwasserstoffsaeure und deponierfaehigen rueckstaenden bei der verarbeitung niob- und/oder tantal-haltiger rohstoffe
US4320093A (en) * 1979-11-13 1982-03-16 Bohumil Volesky Separation of uranium by biosorption
US4293528A (en) * 1979-11-19 1981-10-06 Mobil Oil Corporation Yellowcake processing in uranium recovery
US4652432A (en) * 1981-02-26 1987-03-24 Prodeco, Inc. Process for recovering uranium using an alkyl pyrophosphoric acid and alkaline stripping solution
US4446116A (en) * 1981-04-02 1984-05-01 Hermann C. Starck Bertin Process for recovering niobium and/or tantalum compounds from such ores further containing complexes of uranium, thorium, titanium and/or rare earth metals
JPS57180388A (en) * 1981-04-27 1982-11-06 Micron Denki Kk Blower motor control circuit for car air conditioner with safety protecting circuit
US4451438A (en) * 1982-03-26 1984-05-29 Herman C. Starck Berlin Process for recovering niobium and/or tantalum metal compounds from such ores further containing complexes of uranium, thorium, titanium and/or rare earth metals
US4412861A (en) * 1982-10-27 1983-11-01 Kreuzmann Alvin B Method for the recovery of uranium values from uranium tetrafluoride
US4490340A (en) * 1984-02-29 1984-12-25 Gte Products Corporation Process for the recovery of high purity tantalum oxide
JPS60244372A (ja) * 1984-05-18 1985-12-04 Katsunori Tanada ペンキ塗布用ローラー付塗装装置
BR8703766A (pt) * 1987-07-20 1989-01-31 Mamore Mineracao E Metalurgica Processo para a abertura de minerios
US4778663A (en) * 1987-08-27 1988-10-18 American Cyanamid Company Uranium recovery from wet process phosphoric acid unsymmetrical phosphine oxides
DE3744031A1 (de) * 1987-12-24 1989-07-06 Metallgesellschaft Ag Verfahren zur reinigung von rauchgasen
DE3819417A1 (de) * 1988-06-07 1989-12-14 Utab Ges Fuer Umwelttechnische Verfahren und vorrichtung zur reinigung von schwefeldioxidhaltigen rauchgasen
US4938936A (en) * 1988-09-01 1990-07-03 Mobil Oil Corporation Hydrogen fluoride vapor containment and neutralization
US5023059A (en) * 1988-11-02 1991-06-11 Bielecki Edwin J Recovery of metal values and hydrofluoric acid from tantalum and columbium waste sludge
JP2982175B2 (ja) * 1989-05-22 1999-11-22 株式会社デンソー モータの回転数制御装置
US4968504A (en) * 1989-10-19 1990-11-06 Gte Laboratories Incorporated Recovery of scandium and uranium

Also Published As

Publication number Publication date
WO1994001190A1 (en) 1994-01-20
UA39102C2 (uk) 2001-06-15
DE4393314T1 (de) 1995-05-11
CA2139642A1 (en) 1994-01-20
RU2150430C1 (ru) 2000-06-10
RU95105447A (ru) 1996-12-27
JPH08503879A (ja) 1996-04-30
US5437848A (en) 1995-08-01
AU4673693A (en) 1994-01-31
BR9306711A (pt) 1998-12-08
AU676488B2 (en) 1997-03-13

Similar Documents

Publication Publication Date Title
JP3576550B2 (ja) プロセス残留物からの金属有価物の回収
JP4267698B2 (ja) 金属価の回収
US5023059A (en) Recovery of metal values and hydrofluoric acid from tantalum and columbium waste sludge
JPH0156128B2 (ja)
US5314527A (en) Mercury contaminated mud treatment
CA2356988A1 (en) Treating niobium and/or tantalum containing raw materials
EP1034014B1 (en) A process for separation of heavy metals and halogen from waste material or residue
JPH0344131B2 (ja)
US7718147B2 (en) Chemical beneficiation of raw material containing tantalum-niobium
CA1094327A (en) Metal extraction process
HU184347B (en) Process regenerating rear-earth-metals-with digesting combustion residues of rear-earth-metal-containing stone coals, first of all brown coals
US5084253A (en) Method of removing niobium from uranium-niobium alloy
EP1218554B1 (en) Reclamation of metals like uranium from contaminated solids such as incinerator ash by fluorination and leaching
US5077020A (en) Metal recovery process using waterglass
EP0113580B1 (en) Heavy metal separation from copper-bearing wastes
JP3315083B2 (ja) フッ化マグネシウムスラグからウラン汚染を除去する方法
US5516496A (en) Metal and fluorine values recovery from fluoride salt matrices
JP2001523330A (ja) フッ化塩基質からの金属及びフッ素有用物の回収
EP0433860B1 (en) Waterglass precipitate recovery process
JPS6024332A (ja) 3−5族化合物半導体スクラツプの処理法
JPH091104A (ja) 飛灰の処理方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees