JP3572865B2 - Latent three-dimensional crimp self-extending yarn, method for producing the same, and composite yarn - Google Patents

Latent three-dimensional crimp self-extending yarn, method for producing the same, and composite yarn Download PDF

Info

Publication number
JP3572865B2
JP3572865B2 JP12871597A JP12871597A JP3572865B2 JP 3572865 B2 JP3572865 B2 JP 3572865B2 JP 12871597 A JP12871597 A JP 12871597A JP 12871597 A JP12871597 A JP 12871597A JP 3572865 B2 JP3572865 B2 JP 3572865B2
Authority
JP
Japan
Prior art keywords
yarn
self
dimensional crimp
crimp
latent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12871597A
Other languages
Japanese (ja)
Other versions
JPH10317245A (en
Inventor
敏昭 清水
澄男 菱沼
弘至 土倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP12871597A priority Critical patent/JP3572865B2/en
Publication of JPH10317245A publication Critical patent/JPH10317245A/en
Application granted granted Critical
Publication of JP3572865B2 publication Critical patent/JP3572865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリエステルマルチフィラメントからなる潜在3次元捲縮発現性自己伸長糸とその製造方法および複合糸に関するものであり、さらに詳しくは製織あるいは編立て時にはフラットヤーンでありながら通常の染色加工を実施することによって実質的に3次元捲縮発現方向へ自己伸長性を示すことで、従来にない膨らみ・ソフト感を有する布帛を提供できるポリエステルマルチフィラメントからなる潜在3次元捲縮発現性自己伸長糸とその製造方法および複合糸に関する。
【0002】
【従来の技術】
従来より、ポリエステルマルチフィラメントを用いた織編物は、薄地から中厚地にいたるまで多数上市されており、熱収縮差を利用して織編物にふくらみ感を与えた異収縮混繊糸が利用されている。
【0003】
異収縮混繊糸の構成として、2種以上の糸が共に収縮糸でありながら、熱処理により収縮の大なるフィラメントと収縮の小なるフィラメントを組み合わせたものは十分な熱収縮差を得るため収縮の大なるフィラメントの熱収縮率を大きくする必要があるが、ふくらみ感は出るものの芯のある硬い風合いになりやすい欠点を有している。
【0004】
この点を改善し、かつふくらみやソフト感に富む織編物を得る手段として、熱処理により収縮するフィラメントと自己伸長性を示すフィラメントとを混繊あるいは合撚した糸条を用いて製織編し、染色加工工程等の熱処理により自己伸長性糸状を織編物表面へ浮き出させる提案、例えば特公昭61−36099号公報、特公昭62−60504号公報、特公平3−42334号公報、特公平4−1097号公報、特公平4−18051号公報など多数提案され一応の効果は得られている。
【0005】
しかしながら、これらに提案された手法では、染色加工工程等の熱処理により結晶配向化が進み、自己伸長性を示すものであるが、自己伸長性の構成フィラメントが一様に繊維軸方向に伸長してしまうため、均整な表面感となるばかりでなく、ポリエステル特有のヌメリ感が残存したものであった。
【0006】
そこで単純で均整な自己伸長性を示さないものとして、糸に捲縮を付与する提案が特開平8−325871号公報、特開平9−3739号公報、特開平9−21026号公報などに示されているが、熱処理前の段階ですでに捲縮を有しているために、通常の仮ヨリ加工糸のようにふかつきの強いものであったり、熱処理後に捲縮が発現するものであっても捲縮発現力が弱いばかりでなく、2次元捲縮のため織物拘束力下で十分に嵩高性を発揮できないものであった。さらにはこれらの提案に開示されている製造方法では、捲縮あるいは潜在的捲縮を付与するために糸加工を低速で行わなければならなかったり、特殊な設備が必要であり、生産性に劣るものであった。
【0007】
【発明が解決しようとする課題】
本発明は上記従来の問題点に鑑み、染色加工時の沸水処理および/または乾熱処理によって、あるいはこれらに準ずる熱処理によって、3次元捲縮発現と自己伸長性を同時に発現させ、織編物とした時に十分な膨らみとソフト感を提供できるポリエステルマルチフィラメントからなる潜在3次元捲縮発現性自己伸長糸とその製造方法および複合糸を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明の潜在3次元捲縮発現性自己伸長糸の製造方法は上記の課題を解決するため次の構成を有する。すなわち、
[1]複屈折率が20×10 -3 〜80×10 -3 のポリエステルマルチフィラメント未延伸糸を該未延伸糸の自然延伸倍率(NDR)以上破断倍率以下の延伸倍率でガラス転移点プラス20℃以下の温度下で、かつ仮ヨリ数(K)が下記式(4)を満足する条件下に延伸仮ヨリした後、オーバーフィード率25%以上でかつ処理温度(T)が下記式(5)を満足する条件下で糸条を収縮させることを特徴とする潜在3次元捲縮発現性自己伸長糸の製造方法。
【0010】
[2]延伸仮ヨリ加工時に摩擦仮ヨリツイスターを用いることを特徴とする前記[1]項記載の潜在3次元捲縮発現性自己伸長糸の製造方法。
【0011】
[3]収縮熱処理に非接触式ヒータを用いることを特徴とする前記[1]項または[2]項に記載の潜在3次元捲縮発現性自己伸長糸の製造方法。
【0016】
【発明の実施の形態】
以下、本発明について詳細に説明する。
【0017】
まず、本発明の潜在3次元捲縮発現性自己伸長糸は、熱処理前は捲縮やトルクを有さないフラットヤーンでありながら、通常の染色加工工程での熱処理を受けることで十分な3次元捲縮と自己伸長性を同時に発現するものである。
【0018】
熱処理前に捲縮やトルクを有していないことで織物にする際は通常のポリエステル延伸糸と同様の取扱い性となるばかりでなく、熱処理前後で織物交錯点での空隙変化が大きくなり、風合いがふかつくことなく、織物を曲げたり圧縮したり剪断した際に自由度が大きくなることで回復性が良くなり、いわゆる反発性の向上につながるのである。このときに十分空隙を増加させるためには通常の仮ヨリ加工糸で知られる3次元捲縮が有効である。
【0019】
伸縮伸長率(CS)は2%以上とすることが重要であり、これを下回ると嵩高効果に劣るものとなり、また10%を越えると通常の仮ヨリ加工糸のようなふかつき感が強く好ましくない。さらにこの時の伸縮弾性率(CD)は60%以上とすることが重要であり、60%に満たないと嵩高効果にへたりが見られるため好ましくない。
【0020】
ここで述べる3次元捲縮とは、いわゆる押し込み賦型による折りたたみ捲縮を2次元捲縮と定義したときに、通常の仮ヨリ加工糸の単糸が有する螺旋、反転構造を示すものである。
【0021】
また、本糸条は捲縮発現と同時に自己伸長性を示すものであるが、ここで言う自己伸長性とは繊維に張力をかけない状態で熱処理したとき、熱処理後の糸長が熱処理前の糸長に比べ長くなる性質を示すものである。すなわち、熱処理により捲縮発現と同時に伸長することで単糸間の空隙が増大し、先に述べた反発性の向上に加え、糸および織編み物とした際に見掛けカバーファクターは密でありながら空隙を有し、膨らみとソフト感を向上させる効果があるのである。ここで自己伸長性は大きいほど空隙増大の方向であるが、180℃乾熱処理で伸長率が12%を越えるとふかつきが出てくるので好ましくない。
【0022】
なお、本発明の糸条はポリエステルマルチフィラメントで構成されるものであれば、繊度やフィラメント数、断面形状などは特に限定されるものではなく、例えばカチオン染料でも染められるように第3成分が共重合されたポリマーであったり、前記成分や粘度差のあるものを含むポリマーをブレンド紡糸やサイドバイサイドに貼合わせたものであってもよく、同様に断面形状についても中空や三角の異形断面糸であってもよい。
【0023】
次に本発明の複合糸は、前記した潜在3次元捲縮発現性自己伸長糸と沸水収縮率が2%以上20%以下の熱収縮性糸の少なくとも2糸条で構成されているものである。
【0024】
熱収縮性糸と混用して用いることにより、前記した潜在3次元捲縮発現性自己伸長糸が熱処理により捲縮発現と同時に自己伸長性を示す一方で、熱収縮する糸を含むため、糸自体の空隙拡大を増長することができるものである。
【0025】
熱収縮性糸の収縮性は、沸水収縮率が2〜20%のものであることが好ましい。沸水収縮率が2%に満たないと、先に述べた混用効果が得にくくなり、また沸水収縮率が20%を越えると、潜在3次元捲縮発現性自己伸長糸との糸長差が大きくなり過ぎ、ふかついた風合いやアイロンによるあたりが出たり、収縮率が大きいために織編み物とした際に密度が高くなり過ぎたり、荷重下での歪み回復率が低下し、いわゆる膝抜け現象が出やすくなるばかりか、かえって繊維軸収縮により織編み物内の空隙増大効果をスポイルし、芯のある硬い風合いのものになるため好ましくない。
【0026】
ここで、熱収縮性糸は、繊度やフィラメント数、断面形状などに特に限定はなく、いわゆる仮ヨリ加工糸に代表される捲縮を有していても差支えない。
【0027】
また熱収縮性糸と混用する際には後工程でのしごき等で複合糸が分離して後の加工工程通過性に悪影響を及ぼさない程度に集束されていればよく、一般に知られる流体交絡や合撚されていることが好ましい。特に、本発明糸を複合する際に流体乱流処理である、いわゆるタスラン加工を採用すると、複合糸構成糸間で発現する糸長差に加え、ループ調の形態変化をも加えられるため、変化に富んだ織編み物が得られ、効果的である。
【0028】
次に、本発明の潜在3次元捲縮発現性自己伸長糸の製造方法について説明する。
【0029】
本発明において、供給糸としては、例えば通常の高速紡糸方法によって得られる複屈折率が20×10−3〜80×10−3のポリエステルマルチフィラメント未延伸糸を用いる。未延伸糸の複屈折率が20×10−3未満では配向度が低すぎて繊維の特性が経時変化しやいため一定品質の原糸を加工に供給できにくくなるため好ましくない。また、複屈折率が80×10−3を越えると、配向度が高くなり、以下に説明する仮ヨリ延伸の際十分にヨリ歪みを記憶させにくくなって、染色加工時の熱処理による捲縮発現が不十分であったり、延伸仮ヨリ後の熱収縮性が低下し、自己伸長性を付与しにくくなるため好ましくない。
【0030】
本発明では、まず上記の特性を有するポリエステルマルチフィラメント未延伸糸を、該未延伸糸の自然延伸倍率(以下NDRと称す)以上の延伸倍率でガラス転移点プラス20℃未満の温度下で延伸同時仮ヨリする。
【0031】
延伸倍率が供給未延伸糸のNDRに満たないと、仮ヨリ張力が低くなって加工安定性に欠け、糸切れを起こしやすいことに加え、繊維軸方向および仮ヨリ歪み方向への分子配向が高められず、ひき続き行うオーバーフィード収縮熱処理を施しても、自己伸長性を付与しにくくなり、好ましくない。
【0032】
また、自己伸長性糸を得るためには、分子配向を高めつつ、繊維の結晶化を急激に促進させないことが重要であり、そのために仮ヨリ延伸時にはガラス転移点+20℃以下の温度とすることが重要である。さらに通常の染色加工工程で自己伸長性と同時に十分な3次元捲縮を発現させるためには、仮ヨリ数も重要なファクターであり、仮ヨリ数(K)は下記式(4)を満足する条件下に設定するものである。仮ヨリ数(K)がこの範囲を下回ると、ヨリ歪みの記憶が不十分となり、目的とする十分な3次元捲縮が得られにくくなり、逆にこの範囲を上回ると、糸加工安定性に欠けるため好ましくない。
【0033】

Figure 0003572865
ここで、D:延伸後デニール(d)
K:仮ヨリ数(T/m)
また、この延伸仮ヨリ時には、摩擦仮ヨリツイスターを用いることが、糸加工の生産性向上および主に毛羽発生に関する糸質問題の点から有効であり、例えば3軸フリクションツイスターやベルトニップツイスターが好ましい。
【0034】
上記条件で延伸仮ヨリした後、引き続いてオーバーフィード条件下で収縮熱処理を施し、仮ヨリによる捲縮およびトルクを潜在化させ、見掛け上捲縮を有さないフラットヤーンとなし、染色加工工程で自己伸長性と同時に3次元捲縮発現を示す状態にするものである。なお、捲縮発現処理は、染色加工工程に限定されるものではなく、これらに準ずる熱処理によっても可能である。
【0035】
自己伸長性と同時に3次元捲縮発現を示す状態とは、延伸仮ヨリによって繊維の結晶部および非晶部が繊維軸方向や仮ヨリ加撚歪み方向に配向した後、収縮熱処理により結晶部は繊維軸方向と仮ヨリ加撚歪み方向に成長せずに配向したまま非晶部が十分に緩和した状態にあるものと思われるが、推定の域はでない。
【0036】
ここで非晶部を十分に緩和させるためには、収縮熱処理時のオーバーフィード率を25%以上とすることが重要である。25%未満では染色加工工程で3次元捲縮の発現は認められるものの、同時に自己伸長性を示さなくなるため好ましくない。
【0037】
また自己伸長性を持たせるためには、先にも述べたように、収縮熱処理時に繊維の結晶化を急激に促進させずにかつ非晶部を十分に緩和させることが重要であり、このため収縮熱処理温度は仮ヨリ加工時の受熱温度(加熱温度)(TK)に対し、プラス40℃以上、170℃以下とすることが重要である。プラス40℃に満たなければ十分なオーバーフィード条件が取れないため、非晶部の緩和が不足して自己伸長性を示さなくなり、またプラス170℃を越えると結晶化が促進し自己伸長性を示さなくなるため好ましくない。
【0038】
この収縮熱処理時には通常の接触式プレートヒータを用いてもよいが、好ましくは非接触式ヒータを採用することが糸加工性の安定のため好ましい。
【0039】
図1は、本発明に係る潜在3次元捲縮発現性自己伸長糸の一例を示す側面図であり、図2は、本発明に係る潜在3次元捲縮発現性自己伸長糸を熱処理により3次元捲縮発現と自己伸長発現した状態の一例を示す側面図である。
【0040】
また、図3は、本発明における潜在3次元捲縮発現性自己伸長糸の製造方法の一例を示す概略工程図である。
【0041】
図3において、ポリエステル高配向未延伸糸1は、ガイド2を介して、供給ローラ3に供給され、1次ヒータ4により加熱されるとともに、仮ヨリツイスター5により仮ヨリが付与されつつ供給ローラ3と第1の送り出しローラ6との間で延伸される。第1の送り出しローラ6から送り出された糸条は第2の送り出しローラ8との間でオーバーフィードされつつ2次ヒータ7により加熱され、ワインダー9に巻き取られるようになっている。
【0042】
【実施例】
次に、本発明を実施例および図面により具体的に説明するが、本発明はこれにより限定されるものではない。なお本文中および実施例記載の各物性値は以下の測定方法によるものである。
【0043】
(1)伸縮伸長率(CS)および伸縮弾性率(CD)
JIS−L1090 伸縮性A法に準ずる(詳細は以下の通り)
試料を乾燥機に入れて荷重をかけない状態下に乾熱180℃で10分間処理する。試料を取り出して冷却後、試料の上端をクランプで固定し、2mg/dの初荷重をかけて垂下し、30秒後上部クランプから正しく20cm(LC1)を量って印を付け、次に0.1g/dの荷重をかけて30秒後の試料の長さ(LC2)を測り、除重後、2分間放置して再び初荷重をかけて30秒後の試料の長さ(LC3)を測り、次の式によって伸縮伸長率(%)および伸縮弾性率(%)を算出する。試験回数は20回とし、その平均値を少数点以下1けたまでで表す。
【0044】
伸縮伸長率={(LC2−LC1)/LC1}×100
伸縮弾性率={(LC2−LC3)/(LC2−LC1)}×100
なお、試料の長さが十分にないときは初荷重下の試長(LC1)を任意とする。
【0045】
(2)自己伸長率(ΔSH)
試料に0.1g/dの荷重を掛け、その長さL1(mm)を測定する。次いでその荷重を取り除き、試料を乾燥機にいれて乾熱180℃で10分間処理する。試料を取り出して冷却後再度試料に0.1g/dの荷重をかけ、その長さL2(mm)を測定する。上記L1、L2を下記式に代入し180℃自己伸長率(ΔSH)を算出する。なお、測定回数5回の平均値をもってその測定値とする。
【0046】
ΔSH(%)={(L2−L1)/L1}×100
(3)沸水収縮率(ΔSW)
試料を枠周1.125mの検尺機を使用し、1/30(g/d)の初荷重をかけて巻き返し、巻き回数が10回のかせを作る。このかせに0.1(g/d)の荷重をかけ、その長さL3(mm)を測定する。次いで試料をガーゼ等に包んだ状態でバスに入れ、沸騰水常圧98℃で10分間処理する。試料を取り出して自然乾燥後再度0.1g/dの荷重をかけ、その長さL4(mm)を測定する。上記L3、L4を下記式に代入し、沸水収縮率を算出する。なお、測定回数5回の平均値をもってその測定値とする。
【0047】
ΔSW(%)={(L3−L4)/L3}×100
(4)複屈折率
通常の偏光顕微鏡コンペンセータを用いて干渉縞法により測定する。
【0048】
(5)自然延伸倍率(NDR)
INSTRON社製の引張り試験機を用いて、試長20cm、初荷重0.1g/d、引張り速度20cm/minの条件で糸の引張り試験を行い、強伸度曲線を得る。強伸度曲線上で一定強力伸張領域の延長線と同伸張領域を越えて破断に至る立上がり部分の延長線との交点の伸度を読みとる。なお、測定回数5回の平均値をもってその測定値とする。
【0049】
(実施例1)
ポリエチレンテレフタレートを紡速3000m/minで溶融紡糸し、55デニール24フィラメントで複屈折率が35×10−3、NDRが53%の高配向未延伸糸を得た。この高配向未延伸糸(ガラス転移点77℃)を用い、図3に示す工程で仮ヨリツイスターに3軸フリクションツイスターを使用して、表1に示す条件下で加工した。
【0050】
得られた加工糸を荷重をかけない状態下で乾熱180℃で10分間処理したところ、図2に示すように、微細な捲縮を発現すると共に、自己伸長性を示し、糸条は嵩高性に富んでおり、伸縮伸長率は5.3%、伸縮弾性率は79.2%、自己伸長率は3.5%であった。
【0051】
該収縮熱処理糸と沸水収縮率9.7%のポリエステルマルチフィラメント通常延伸糸50デニール24フィラメントをHemajet製タスランノズルを使用し、常温の高圧空気流にて混繊加工し、105デニール48フィラメントを得た。この糸に通常法で800T/mの撚糸を施し、タテおよびヨコ糸に用い、綾羽二重を製織した。製織した布帛をリラックス精練した後、180℃でセットし、17%のアルカリ減量加工を施し、引き続き液流染色機を用い分散染料で染色した後160℃でファイナルセットした。得られた織物は適度な膨らみと張り腰を有しており、特に微妙な表面タッチと反発性にすぐれた風合いを有するものであった。またこの織物の表面を走査型電子顕微鏡を使用して観察したところ、収縮熱処理糸が微細な捲縮を発現していることが確認された。
【0052】
(実施例2)
実施例1で用いたのと同じ55デニール24フィラメントの高配向未延伸糸を用い、1次ヒータ温度を70℃とし、その他の条件は表1に示す条件下に図3に示す工程で加工した。得られた加工糸を荷重をかけない状態下で乾熱180℃で10分間処理したところ、微細な捲縮を発現すると共に、自己伸長性を示し、伸縮伸長率は7.8%、伸縮弾性率は72.3%、自己伸長率は1.0%であった。
【0053】
(比較例1)
実施例1で用いたのと同じ55デニール24フィラメントの高配向未延伸糸を用い、1次ヒータ温度を150℃とし、その他の条件は表1に示す条件下に図3に示す工程で加工した。得られた加工糸を荷重をかけない状態下で乾熱180℃で10分間処理したところ、微細な捲縮の発現は見られたが、自己伸長性は示さず、熱収縮性の糸であった。この糸の伸縮伸長率は13.8%、伸縮弾性率は68.1%、自己伸長率は−8.2%であった。
【0054】
(比較例2)
実施例1で用いたのと同じ55デニール24フィラメントの高配向未延伸糸を用い、仮ヨリツイスターにスピンドルタイプを使用して、仮ヨリ数を1800T/mに変更し、その他の条件は表1に示す条件下に図3の工程で加工した。得られた加工糸を荷重を掛けない状態下で乾熱180℃で10分間処理したところ、自己伸長性は示したものの、捲縮発現は不十分であった。この糸の伸縮伸長率は1.3%、伸縮弾性率は87.2%、自己伸長率は2.0%であった。
【0055】
この収縮熱処理糸と沸水収縮率9.7%のポリエステルマルチフィラメント通常延伸糸50デニール24フィラメントをHemajet製タスランノズルを使用し、常温の高圧空気流にて混繊加工し、105デニール48フィラメントを得た。この糸を用い実施例1と同一条件で綾羽二重を製織し、精練−セット−アルカリ減量−染色−ファイナルセットした。得られた織物は適度な膨らみを有していたがヌメリ感のある風合いを持つものであった。またこの織物の表面を走査型電子顕微鏡を使用して観察したところ収縮熱処理糸はほぼストレートであることが確認された。
【0056】
(比較例3)
実施例1で用いたのと同じ55デニール24フィラメントの高配向未延伸糸を用い、収縮熱処理率を20%とし、その他の条件は表1に示す条件下に図3に示す工程で加工した。得られた加工糸を荷重をかけない状態下で乾熱180℃で10分間処理したところ、微細な捲縮の発現は見られたが、自己伸長性は示さず、熱収縮性の糸であった。この糸の伸縮伸長率は6.3%、伸縮弾性率は73.2%、自己伸長率は−13.1%であった。
【0057】
(比較例4)
実施例1で用いたのと同じ55デニール24フィラメントの高配向未延伸糸を用い、延伸倍率を1.1倍とし、その他の条件は表1に示す条件下に図3に示す工程で加工したが仮ヨリ張力が変動し、しばらくするうちに糸切れが発生しサンプリングできなかった。
【0058】
(比較例5)
実施例1で用いたのと同じ55デニール24フィラメントの高配向未延伸糸を用い、2次ヒータ温度を50℃とし、その他の条件は表1に示す条件下に図3に示す工程で加工を試みたが、2次ヒータ入口で走行糸がたるみ、糸切れが発生してサンプリングできなかった。
【0059】
(比較例6)
ポリエチレンテレフタレートを紡速5000m/minで溶融紡糸し、75デニール36フィラメントで複屈折率が85×10−3、破断伸度60%の糸を得た。この高配向未延伸糸を用い、図3に示す工程で加工を試みたが、2次ヒータ入口で走行糸がたるみ、糸切れが発生してサンプリングできなかった。
【0060】
【表1】
Figure 0003572865
【0061】
【発明の効果】
上述の通り、本発明の潜在3次元捲縮発現性自己伸長糸および複合糸は、織編み物とした後に通常の染色工程を施すことにより、潜在3次元捲縮発現性自己伸長糸が実質的に3次元捲縮発現と同時に自己伸長発現することによって織編み物の交錯点および表面にランダムな多層構造をもたらすことで適度なふくらみ、張り、腰およびソフト感を合わせもつ素晴らしい風合いが得られ、また上述の製造方法によれば本発明の糸が特殊な設備を用いることなく安価に安定して得られるものである。
【図面の簡単な説明】
【図1】本発明に係る潜在3次元捲縮発現性自己伸長糸の一例を示す側面図である。
【図2】本発明に係る潜在3次元捲縮発現性自己伸長糸が熱処理により3次元捲縮発現と自己伸長発現した状態の一例を示す側面図である。
【図3】本発明における潜在3次元捲縮発現性自己伸長糸の製造方法の一例を示す概略工程図である。
【符号の説明】
1:ポリエステル高配向未延伸糸
2:ガイド
3:供給ローラ
4:1次ヒータ
5:仮ヨリツイスター
6:第1送り出しローラ
7:2次ヒータ
8:第2送り出しローラ
9:ワインダー[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a latent three-dimensional crimp-developing self-stretching yarn composed of polyester multifilaments, a method for producing the same, and a composite yarn. More specifically, a normal dyeing process is performed while weaving or knitting while using a flat yarn. A latent three-dimensional crimp-developing self-stretching yarn made of polyester multifilament, which can provide a fabric having an unprecedented swelling and soft feeling by exhibiting self-extensibility substantially in the three-dimensional crimp developing direction by performing The present invention relates to a production method and a composite yarn.
[0002]
[Prior art]
Conventionally, many woven and knitted fabrics using polyester multifilaments have been put on the market from thin fabrics to medium-weight fabrics. I have.
[0003]
As for the composition of the different shrinkage mixed fiber, the combination of a filament that shrinks greatly by heat treatment and a filament that shrinks little by heat treatment, while two or more yarns are both shrinkable yarns, has a sufficient shrinkage to obtain a sufficient heat shrinkage difference. Although it is necessary to increase the heat shrinkage of a large filament, it has a drawback that it tends to have a hard cored texture, although it has a swelling feeling.
[0004]
As a means to improve this point and to obtain a woven or knitted fabric rich in swelling and softness, weaving and knitting using a yarn obtained by blending or twisting a filament that shrinks by heat treatment and a filament that shows self-extensibility, Proposal for embossing a self-extensible thread on the surface of a woven or knitted fabric by heat treatment such as a processing step, for example, Japanese Patent Publication No. 61-36099, Japanese Patent Publication No. 62-60504, Japanese Patent Publication No. 3-34334, Japanese Patent Publication No. 4-1097. A number of proposals have been made, such as Japanese Patent Application Publication No. 4-18051, and a tentative effect has been obtained.
[0005]
However, in the methods proposed in these, the crystal orientation is advanced by heat treatment such as a dyeing process, and the self-extensibility is exhibited, but the self-extensible constituent filaments uniformly elongate in the fiber axis direction. As a result, not only a uniform surface feeling but also a slimy feeling peculiar to the polyester remained.
[0006]
Therefore, proposals for imparting a crimp to a yarn as a material that does not exhibit simple and uniform self-extensibility are disclosed in JP-A-8-325871, JP-A-9-3739, and JP-A-9-21026. However, since it has already crimped at the stage before the heat treatment, even if it is strong as a normal temporary twisted yarn, it may be crimped after heat treatment. Not only was the crimp developing power weak, but also because of the two-dimensional crimping, it was not possible to sufficiently exhibit bulkiness under the binding force of the fabric. Furthermore, in the production methods disclosed in these proposals, yarn processing must be performed at a low speed in order to impart crimp or potential crimp, or special equipment is required, and productivity is poor. Was something.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned conventional problems, by simultaneously exhibiting three-dimensional crimp development and self-extensibility by a boiling water treatment and / or a dry heat treatment at the time of dyeing processing, or a heat treatment equivalent thereto, to obtain a woven or knitted fabric. It is an object of the present invention to provide a latent three-dimensional crimp-developing self-extending yarn made of polyester multifilament capable of providing a sufficient swelling and soft feeling, a production method thereof, and a composite yarn.
[0008]
[Means for Solving the Problems]
The method for producing a latent three-dimensional crimp developing self-extending yarn of the present invention has the following configuration to solve the above-mentioned problems. That is,
[1] A polyester multifilament unstretched yarn having a birefringence of 20 × 10 −3 to 80 × 10 −3 is obtained by stretching the unstretched yarn at a draw ratio of not less than the natural draw ratio (NDR) and not more than the breaking ratio plus a glass transition point plus 20. After stretching and twisting at a temperature of not more than 0 ° C. and a condition that the number of temporary twists (K) satisfies the following formula (4), the overfeed rate is 25% or more and the processing temperature (T) is the following formula (5) A method for producing a latent three-dimensional crimp-developing self-elongating yarn, comprising shrinking the yarn under conditions that satisfy the condition (1).
[0010]
[2] The method for producing a latently three-dimensional crimp-expressing self-extending yarn according to the above [1], wherein a temporary friction twister is used at the time of drawing temporary twisting.
[0011]
[3] The method for producing a latent three-dimensional crimp developing self-extending yarn according to the above item [1] or [2], wherein a non-contact type heater is used for the shrinkage heat treatment.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0017]
First, the latent three-dimensional crimp developing self-elongating yarn of the present invention is a flat yarn having no crimp or torque before heat treatment, but is sufficiently three-dimensional when subjected to a heat treatment in a usual dyeing process. It exhibits crimping and self-extension simultaneously.
[0018]
When the fabric is not crimped or torqued before heat treatment, not only does it have the same handling properties as ordinary polyester drawn yarn, but also the gap change at the intersection of the fabric before and after heat treatment increases, When the woven fabric is bent, compressed, or sheared, the degree of freedom is increased, and the recovery is improved, leading to an improvement in resilience. At this time, in order to sufficiently increase the gap, a three-dimensional crimp known as a normal temporary twisted yarn is effective.
[0019]
It is important that the stretch ratio (CS) is 2% or more. If it is less than this, the bulking effect is inferior. If it exceeds 10%, the feeling of flapping like a normal temporary twisted yarn is strongly preferred. Absent. Further, it is important that the elastic modulus of elasticity (CD) at this time is 60% or more, and if it is less than 60%, the bulking effect is unfavorably observed.
[0020]
The term “three-dimensional crimp” as used herein refers to a spiral or inversion structure of a single yarn of a normal provisionally twisted yarn when a folding crimp by so-called indentation molding is defined as a two-dimensional crimp.
[0021]
In addition, the present yarn exhibits self-extensibility simultaneously with the appearance of crimp, and the self-extensibility referred to here means that when heat treatment is performed without applying tension to the fiber, the yarn length after heat treatment is equal to that before heat treatment. It shows the property of becoming longer than the yarn length. That is, the gap between the single yarns is increased by elongation at the same time as the appearance of crimp by heat treatment. In addition to the improvement of the resilience described above, when the yarn and the knitted fabric are used, the apparent cover factor is dense while the gap is small. It has the effect of improving swelling and softness. Here, the larger the self-extensibility is, the larger the voids are. However, if the elongation exceeds 12% by the dry heat treatment at 180 ° C., it is not preferable because the flapping occurs.
[0022]
The fineness, the number of filaments, the cross-sectional shape, and the like are not particularly limited as long as the yarn of the present invention is composed of polyester multifilaments. For example, the third component is commonly used so as to be dyed with a cationic dye. The polymer may be a polymerized polymer, or a polymer containing the above-mentioned components or those having a difference in viscosity may be bonded by blend spinning or side-by-side. Similarly, the cross-sectional shape may be a hollow or triangular shaped cross-section yarn. You may.
[0023]
Next, the composite yarn of the present invention is constituted by at least two yarns of the latent three-dimensional crimp developing self-extending yarn and a heat-shrinkable yarn having a boiling water shrinkage of 2% or more and 20% or less. .
[0024]
When used in combination with the heat-shrinkable yarn, the latent three-dimensional crimp-developing self-elongating yarn exhibits self-extensibility simultaneously with the onset of crimp by heat treatment, but contains a heat-shrinkable yarn. Can increase the gap expansion.
[0025]
The heat shrinkable yarn preferably has a shrinkage ratio of boiling water of 2 to 20%. If the boiling water shrinkage is less than 2%, the above-mentioned mixing effect becomes difficult to obtain, and if the boiling water shrinkage exceeds 20%, the yarn length difference from the latent three-dimensional crimp developing self-extending yarn is large. Too much, too much texture or ironing, or the shrinkage is too high to increase the density when made into a woven or knitted fabric, or the strain recovery rate under load is reduced. Not only is it easy to come out, but rather, the effect of increasing the voids in the woven or knitted fabric is spoiled due to the contraction of the fiber axis, resulting in a core with a hard texture, which is not preferable.
[0026]
Here, the heat-shrinkable yarn is not particularly limited in terms of fineness, number of filaments, cross-sectional shape and the like, and may have a crimp represented by a so-called temporary twisted yarn.
[0027]
In addition, when mixed with the heat-shrinkable yarn, it is sufficient that the composite yarn is separated by ironing or the like in a later process and is bundled so as not to adversely affect the passability of the subsequent processing step. It is preferably twisted. In particular, when the so-called Taslan processing, which is a fluid turbulent flow treatment, is used when compounding the yarn of the present invention, in addition to the yarn length difference developed between the yarns constituting the composite yarn, a change in the form of the loop tone is also added. Weaving and knitting that is rich in water is obtained and is effective.
[0028]
Next, the method for producing a latent three-dimensional crimp developing self-extending yarn of the present invention will be described.
[0029]
In the present invention, as the supply yarn, for example, a polyester multifilament undrawn yarn having a birefringence of 20 × 10 −3 to 80 × 10 −3 obtained by a normal high-speed spinning method is used. If the birefringence of the undrawn yarn is less than 20 × 10 −3 , the degree of orientation is too low, and the properties of the fiber are likely to change with time. Further, when the birefringence exceeds 80 × 10 −3 , the degree of orientation becomes high, and it becomes difficult to sufficiently memorize the warp distortion during the temporary warp stretching described below, and the appearance of crimp due to heat treatment during dyeing processing Is insufficient, or the heat shrinkage after the temporary twisting of the stretch is reduced, and it is difficult to impart self-extensibility, which is not preferable.
[0030]
In the present invention, first, a polyester multifilament undrawn yarn having the above properties is simultaneously drawn at a draw ratio of not less than the natural drawing ratio (hereinafter referred to as NDR) of the undrawn yarn at a temperature lower than the glass transition point plus 20 ° C. Temporarily twist.
[0031]
If the draw ratio is less than the NDR of the undrawn yarn, the temporary twist tension is low, the processing stability is lacking, yarn breakage is likely to occur, and the molecular orientation in the fiber axis direction and temporary twist strain direction is increased. However, even if a subsequent overfeed shrinkage heat treatment is performed, it becomes difficult to impart self-extensibility, which is not preferable.
[0032]
In addition, in order to obtain a self-extensible yarn, it is important that the crystallization of the fiber is not sharply promoted while increasing the molecular orientation. For this reason, the temperature should be equal to or lower than the glass transition point + 20 ° C. during the temporary twist drawing. is important. Furthermore, in order to express sufficient three-dimensional crimp simultaneously with self-extensibility in the ordinary dyeing process, the number of temporary twists is also an important factor, and the number of temporary twists (K) satisfies the following formula (4). It is set under conditions. If the provisional twist number (K) falls below this range, the memory of the twist distortion becomes insufficient, making it difficult to obtain the desired three-dimensional crimp. Conversely, if the number exceeds the above range, the yarn processing stability will decrease. It is not preferable because it lacks.
[0033]
Figure 0003572865
Here, D: denier after stretching (d)
K: Number of provisional twists (T / m)
In addition, at the time of this temporary stretching, it is effective to use a temporary friction twister in terms of improving yarn processing productivity and yarn quality problems mainly related to generation of fluff. For example, a triaxial friction twister or a belt nip twister is preferable. .
[0034]
After the stretching temporary twist under the above conditions, subsequently subjected to shrinkage heat treatment under overfeed conditions, latently crimping and torque due to the temporary twist, without a flat yarn having no apparent crimp, in the dyeing process This is a state in which three-dimensional crimping is exhibited simultaneously with self-extension. In addition, the crimp development process is not limited to the dyeing process, but can also be performed by a heat treatment corresponding thereto.
[0035]
The state of exhibiting the three-dimensional crimp simultaneously with the self-extensibility means that the crystal part and the amorphous part of the fiber are oriented in the fiber axis direction or the temporary twist twisting direction by the provisional twist, and then the crystal part is subjected to shrinkage heat treatment. It is considered that the amorphous portion is in a state of being sufficiently relaxed while being oriented without growing in the fiber axis direction and the temporary twist twist direction, but the estimated range is not.
[0036]
Here, in order to sufficiently relax the amorphous portion, it is important that the overfeed ratio at the time of the heat treatment for shrinkage be 25% or more. If it is less than 25%, although the development of three-dimensional crimps is observed in the dyeing process, it is not preferable because self-extensibility is not exhibited at the same time.
[0037]
Also, in order to have self-extensibility, as described above, it is important that the amorphous part is sufficiently relaxed without rapidly promoting crystallization of the fiber during the shrinkage heat treatment. It is important that the shrinkage heat treatment temperature is set to be higher than or equal to 40 ° C. and lower than or equal to 170 ° C. with respect to the heat receiving temperature (heating temperature) (TK) at the time of temporary twist processing. If the temperature is lower than + 40 ° C., sufficient overfeeding conditions cannot be obtained, so that the amorphous portion is insufficiently relaxed and does not exhibit self-extensibility. If the temperature exceeds + 170 ° C., crystallization is promoted and self-extensibility is exhibited. It is not preferable because it disappears.
[0038]
At the time of this shrinkage heat treatment, a normal contact type plate heater may be used, but it is preferable to employ a non-contact type heater in order to stabilize yarn workability.
[0039]
FIG. 1 is a side view showing an example of a latent three-dimensional crimp-developing self-elongating yarn according to the present invention, and FIG. It is a side view which shows an example of the state in which crimp expression and self-extension expression were carried out.
[0040]
FIG. 3 is a schematic process diagram showing an example of a method for producing a latent three-dimensional crimp-expressing self-extended yarn according to the present invention.
[0041]
In FIG. 3, a polyester highly oriented undrawn yarn 1 is supplied to a supply roller 3 via a guide 2, is heated by a primary heater 4, and is supplied with a temporary twist by a temporary twist twister 5. And the first feeding roller 6. The yarn fed from the first feed roller 6 is heated by the secondary heater 7 while being over-fed with the second feed roller 8, and is wound around the winder 9.
[0042]
【Example】
Next, the present invention will be described specifically with reference to examples and drawings, but the present invention is not limited thereto. Each physical property value described in the text and in the examples is based on the following measurement methods.
[0043]
(1) Stretch elongation (CS) and stretch elasticity (CD)
According to JIS-L1090 Stretch A method (details are as follows)
The sample is placed in a drier and treated at 180 ° C. for 10 minutes without applying a load. After the sample was taken out and cooled, the upper end of the sample was fixed with a clamp, and the sample was dropped with an initial load of 2 mg / d. After 30 seconds, 20 cm (LC1) was weighed correctly from the upper clamp and marked. Measure the length (LC2) of the sample 30 seconds after applying a load of 0.1 g / d, and after removing the weight, leave the sample for 2 minutes and apply the initial load again to determine the length (LC3) of the sample 30 seconds later. Then, the stretch ratio (%) and the stretch modulus (%) are calculated by the following formulas. The number of tests is 20 times, and the average value is represented by one digit after the decimal point.
[0044]
Stretching elongation rate = {(LC2-LC1) / LC1} × 100
Stretch elastic modulus = {(LC2-LC3) / (LC2-LC1)} × 100
When the length of the sample is not sufficient, the test length under initial load (LC1) is optional.
[0045]
(2) Self-elongation rate (ΔSH)
A load of 0.1 g / d is applied to the sample, and its length L1 (mm) is measured. Next, the load is removed, and the sample is placed in a drier and treated at 180 ° C. for 10 minutes. After the sample is taken out and cooled, a load of 0.1 g / d is applied to the sample again, and its length L2 (mm) is measured. The above L1 and L2 are substituted into the following equation to calculate the 180 ° C. self-elongation rate (ΔSH). In addition, the average value of five times of measurement is defined as the measured value.
[0046]
ΔSH (%) = {(L2−L1) / L1} × 100
(3) Boiling water shrinkage (ΔSW)
Using a measuring machine with a frame circumference of 1.125 m, the sample is rewound with an initial load of 1/30 (g / d) to make a skein with 10 turns. A load of 0.1 (g / d) is applied to this skein, and its length L3 (mm) is measured. Next, the sample is put in a bath in a state of being wrapped in gauze or the like, and is treated for 10 minutes at a boiling water pressure of 98 ° C. The sample is taken out, air-dried, and a load of 0.1 g / d is applied again, and its length L4 (mm) is measured. The above L3 and L4 are substituted into the following formula to calculate the boiling water shrinkage. In addition, the average value of five times of measurement is defined as the measured value.
[0047]
ΔSW (%) = {(L3-L4) / L3} × 100
(4) Birefringence The birefringence is measured by an interference fringe method using an ordinary polarizing microscope compensator.
[0048]
(5) Natural stretch ratio (NDR)
Using a tensile tester manufactured by INSTRON, a yarn tensile test is performed under the conditions of a test length of 20 cm, an initial load of 0.1 g / d, and a tensile speed of 20 cm / min to obtain a strong elongation curve. On the strength-elongation curve, read the elongation at the intersection of the extension of the constant strength extension region and the extension of the rising portion beyond the extension region and leading to fracture. In addition, the average value of five times of measurement is defined as the measured value.
[0049]
(Example 1)
Polyethylene terephthalate was melt spun at a spinning speed of 3000 m / min to obtain a highly oriented undrawn yarn having a birefringence of 35 × 10 −3 and an NDR of 53% with 24 filaments of 55 denier. Using this highly oriented undrawn yarn (glass transition point: 77 ° C.), processing was performed under the conditions shown in Table 1 using a triaxial friction twister as a temporary twist twister in the step shown in FIG.
[0050]
When the obtained processed yarn was treated at a dry heat of 180 ° C. for 10 minutes without applying a load, as shown in FIG. 2, it exhibited fine crimp and exhibited self-extensibility, and the yarn was bulky. The stretchability was 5.3%, the stretch elasticity was 79.2%, and the self-elongation was 3.5%.
[0051]
The shrink heat-treated yarn and the polyester multifilament ordinary drawn yarn having a boiling water shrinkage ratio of 9.7% were subjected to a 50-denier 24-filament blending process using a Hemajet Taslan nozzle in a high-pressure airflow at room temperature to obtain 105-denier 48 filaments. Was. This yarn was twisted at 800 T / m by a conventional method, and used for warp and weft yarns, and Aya feathers were woven. After relaxing and scouring the woven fabric, the fabric was set at 180 ° C., subjected to a 17% alkali weight reduction treatment, subsequently dyed with a disperse dye using a jet dyeing machine, and finally set at 160 ° C. The obtained woven fabric had moderate swelling and tightness, and particularly had a delicate surface touch and a texture excellent in resilience. When the surface of the woven fabric was observed using a scanning electron microscope, it was confirmed that the shrink-treated heat-treated yarn exhibited fine crimp.
[0052]
(Example 2)
Using the same highly oriented undrawn yarn of 55 denier and 24 filaments as used in Example 1, the primary heater temperature was set to 70 ° C., and the other conditions were processed in the steps shown in FIG. 3 under the conditions shown in Table 1. . When the obtained processed yarn is treated at 180 ° C. for 10 minutes without applying a load, it exhibits a fine crimp and exhibits self-extensibility, a stretch rate of 7.8%, and a stretch elasticity of 7.8%. The rate was 72.3%, and the self-elongation rate was 1.0%.
[0053]
(Comparative Example 1)
Using the same highly oriented undrawn yarn of 55 denier and 24 filaments as used in Example 1, the primary heater temperature was set to 150 ° C., and the other conditions were processed in the steps shown in FIG. . When the obtained processed yarn was treated at a dry heat of 180 ° C. for 10 minutes without applying a load, fine crimping was observed, but it did not exhibit self-extensibility and was a heat-shrinkable yarn. Was. The stretch and elongation of this yarn was 13.8%, the stretch elasticity was 68.1%, and the self-elongation was -8.2%.
[0054]
(Comparative Example 2)
Using the same highly oriented undrawn yarn of 55 denier and 24 filaments as used in Example 1, the temporary twist number was changed to 1800 T / m using a spindle type temporary twist twister, and the other conditions were as shown in Table 1. Under the conditions shown in FIG. When the obtained processed yarn was subjected to a dry heat treatment at 180 ° C. for 10 minutes without applying a load, self-extensibility was exhibited, but crimp development was insufficient. This yarn had a stretch and elongation of 1.3%, a stretch and elasticity of 87.2% and a self-elongation of 2.0%.
[0055]
This shrink heat-treated yarn and polyester multi-filament ordinary drawn yarn having a boiling water shrinkage of 9.7% and 24 denier 24 filaments are mixed with a high temperature air stream at room temperature using a Taslan nozzle manufactured by Hemajet to obtain 105 denier 48 filaments. Was. Using this yarn, an Aya feather double was woven under the same conditions as in Example 1, and scouring-setting-alkaline weight reduction-dyeing-final setting was performed. The obtained woven fabric had moderate swelling but had a slimy texture. When the surface of this woven fabric was observed using a scanning electron microscope, it was confirmed that the heat-treated shrink yarn was almost straight.
[0056]
(Comparative Example 3)
The same highly oriented undrawn yarn of 55 denier and 24 filaments as used in Example 1 was used, the shrinkage heat treatment rate was set to 20%, and the other conditions were processed in the steps shown in FIG. When the obtained processed yarn was treated at a dry heat of 180 ° C. for 10 minutes without applying a load, fine crimping was observed, but it did not exhibit self-extensibility and was a heat-shrinkable yarn. Was. The stretch and elongation of this yarn was 6.3%, the stretch elasticity was 73.2%, and the self-elongation was -13.1%.
[0057]
(Comparative Example 4)
Using the same highly oriented undrawn yarn of 55 denier and 24 filaments as used in Example 1, the draw ratio was set to 1.1 times, and the other conditions were processed in the process shown in FIG. 3 under the conditions shown in Table 1. However, the temporary twist tension fluctuated, and after a while, thread breakage occurred and sampling could not be performed.
[0058]
(Comparative Example 5)
Using the same highly oriented undrawn yarn of 55 denier and 24 filaments as used in Example 1, the secondary heater temperature was set to 50 ° C., and the other conditions were the processing shown in FIG. Attempted, however, the running yarn slackened at the entrance of the secondary heater, and the yarn was broken, and sampling could not be performed.
[0059]
(Comparative Example 6)
Polyethylene terephthalate was melt spun at a spinning speed of 5000 m / min to obtain a yarn having 75 denier and 36 filaments, a birefringence of 85 × 10 −3 and a breaking elongation of 60%. Using this highly oriented undrawn yarn, processing was attempted in the process shown in FIG. 3, but the running yarn slackened at the entrance of the secondary heater, and the yarn was broken, and sampling could not be performed.
[0060]
[Table 1]
Figure 0003572865
[0061]
【The invention's effect】
As described above, the latent three-dimensional crimp-developing self-elongating yarn and the composite yarn of the present invention are subjected to a usual dyeing step after being formed into a woven or knitted fabric, whereby the latent three-dimensional crimp-developing self-elongating yarn is substantially reduced. The three-dimensional crimping and self-elongation give rise to a random multi-layer structure at the intersecting points and the surface of the woven or knitted fabric, resulting in a wonderful texture with moderate swelling, tension, waist and softness. According to the production method, the yarn of the present invention can be obtained stably at low cost without using special equipment.
[Brief description of the drawings]
FIG. 1 is a side view showing an example of a latent three-dimensional crimp developing self-extending yarn according to the present invention.
FIG. 2 is a side view showing an example of a state in which a latent three-dimensional crimp developing self-elongating yarn according to the present invention has developed three-dimensional crimp and self-elongation by heat treatment.
FIG. 3 is a schematic process diagram illustrating an example of a method for producing a latent three-dimensional crimp-expressing self-extended yarn according to the present invention.
[Explanation of symbols]
1: Highly oriented polyester unstretched yarn 2: Guide 3: Supply roller 4: Primary heater 5: Temporary twister 6: First delivery roller 7: Secondary heater 8: Second delivery roller 9: Winder

Claims (3)

複屈折率が20×10-3〜80×10-3のポリエステルマルチフィラメント未延伸糸を該未延伸糸の自然延伸倍率(NDR)以上破断倍率以下の延伸倍率でガラス転移点プラス20℃以下の温度下で、かつ仮ヨリ数(K)が下記式(4)を満足する条件下に延伸仮ヨリした後、オーバーフィード率25%以上でかつ処理温度(T)が下記式(5)を満足する条件下で糸条を収縮させることを特徴とする潜在3次元捲縮発現性自己伸長糸の製造方法。
3.16×104 ×1/D1/2 ≧K≧
3.16×104 ×(1/D1/2 )×0.6 …(4)
TK+40≦T≦TK+170 …(5)
ここで、
D:延伸後デニール(d)
K:仮ヨリ数(T/m)
TK:仮ヨリ加工時の加熱温度(℃)
T:仮ヨリ加工後の処理温度(℃)
である。
A polyester multifilament undrawn yarn having a birefringence of 20 × 10 -3 to 80 × 10 -3 is drawn at a draw ratio of not less than the natural draw ratio (NDR) of the undrawn yarn and not more than the breaking ratio and the glass transition point plus 20 ° C. or less. After stretching at a temperature and under a condition that the provisional twist number (K) satisfies the following formula (4), the overfeed rate is 25% or more and the processing temperature (T) satisfies the following formula (5). A method for producing a latently three-dimensional crimp-developing self-extending yarn, comprising shrinking the yarn under conditions.
3.16 × 10 4 × 1 / D 1/2 ≧ K ≧
3.16 × 10 4 × (1 / D 1/2 ) × 0.6 (4)
TK + 40 ≦ T ≦ TK + 170 (5)
here,
D: Denier after stretching (d)
K: Number of provisional twists (T / m)
TK: Heating temperature during temporary twisting (° C)
T: Processing temperature after temporary twisting (° C)
It is.
延伸仮ヨリ加工時に摩擦仮ヨリツイスターを用いることを特徴とする請求項記載の潜在3次元捲縮発現性自己伸長糸の製造方法。Potential dimensional crimp of the manufacturing method of the self-extension yarn according to claim 1, characterized by using a friction false twist twister during stretching false twisting. 収縮熱処理に非接触式ヒータを用いることを特徴とする請求項1または2に記載の潜在3次元捲縮発現性自己伸長糸の製造方法。The method for producing a latent three-dimensional crimp developing self-extending yarn according to claim 1 or 2 , wherein a non-contact type heater is used for the shrink heat treatment.
JP12871597A 1997-05-19 1997-05-19 Latent three-dimensional crimp self-extending yarn, method for producing the same, and composite yarn Expired - Fee Related JP3572865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12871597A JP3572865B2 (en) 1997-05-19 1997-05-19 Latent three-dimensional crimp self-extending yarn, method for producing the same, and composite yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12871597A JP3572865B2 (en) 1997-05-19 1997-05-19 Latent three-dimensional crimp self-extending yarn, method for producing the same, and composite yarn

Publications (2)

Publication Number Publication Date
JPH10317245A JPH10317245A (en) 1998-12-02
JP3572865B2 true JP3572865B2 (en) 2004-10-06

Family

ID=14991646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12871597A Expired - Fee Related JP3572865B2 (en) 1997-05-19 1997-05-19 Latent three-dimensional crimp self-extending yarn, method for producing the same, and composite yarn

Country Status (1)

Country Link
JP (1) JP3572865B2 (en)

Also Published As

Publication number Publication date
JPH10317245A (en) 1998-12-02

Similar Documents

Publication Publication Date Title
US6276121B1 (en) Crimped yarn, textile fabric, and process for preparing the same
JP2016125166A (en) Composite false twisted yarn and method for producing the same, and woven or knitted fabric
JP3572865B2 (en) Latent three-dimensional crimp self-extending yarn, method for producing the same, and composite yarn
JP4123646B2 (en) Polyester fiber yarn and fabric
JP3793288B2 (en) Method for producing polyester false twisted yarn
JP3972631B2 (en) Polyester composite false twisted yarn and method for producing the same
JP2925608B2 (en) False twisted composite yarn and method for producing the same
JP4534292B2 (en) Manufacturing method of special crimped yarn
JP4604316B2 (en) Polyester false twisted yarn and woven or knitted fabric using the yarn
JP4380519B2 (en) Method for producing soft stretch yarn
JP2666376B2 (en) Crimped bulky yarn and method for producing the same
JP2000144541A (en) Polyester combined filament yarn
JP4553473B2 (en) Bulky composite processed yarn and manufacturing method thereof
JP2001123343A (en) Polyester blended multifilament yarn and method for producing the same
JP4374704B2 (en) False twisted yarn manufacturing method and false twisted yarn manufacturing device
JPH022976B2 (en)
JP2004143630A (en) Stretchable false-twisted composite yarn and method for producing the same
JP3508326B2 (en) Polyester-based multifilament composite yarn and polyester-based composite fiber woven / knitted fabric using the yarn
JP3589511B2 (en) Polyester low crimped yarn
JP3470618B2 (en) Polyester fabric
JP2003147649A (en) False twisted yarn and method for producing the same
JPH09316744A (en) Composite polyester combined filament yarn having low shrinkage and its production
JP2002249937A (en) False-twist textured yarn
JPH093739A (en) Polyester crimped yarn, its production and composite yarn
JPH0657564A (en) Compound false-twisted processed yarn having silky wool feeling and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

LAPS Cancellation because of no payment of annual fees