JP3572538B2 - 発振器および半導体集積回路 - Google Patents

発振器および半導体集積回路 Download PDF

Info

Publication number
JP3572538B2
JP3572538B2 JP16289997A JP16289997A JP3572538B2 JP 3572538 B2 JP3572538 B2 JP 3572538B2 JP 16289997 A JP16289997 A JP 16289997A JP 16289997 A JP16289997 A JP 16289997A JP 3572538 B2 JP3572538 B2 JP 3572538B2
Authority
JP
Japan
Prior art keywords
mos transistor
oscillator
differential
differential pair
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16289997A
Other languages
English (en)
Other versions
JPH1117501A (ja
Inventor
公三郎 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP16289997A priority Critical patent/JP3572538B2/ja
Publication of JPH1117501A publication Critical patent/JPH1117501A/ja
Application granted granted Critical
Publication of JP3572538B2 publication Critical patent/JP3572538B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、発振器、さらにはVCO(電圧制御発振器)を構成するリング発振器に適用して有効な技術に関するものであって、たとえばPLL(位相制御ループ)によって外部と同期した高速クロックを発生するのに利用して有効な技術に関するものである。
【0002】
【従来の技術】
PLLクロック発生回路などに用いられる周波数可変型の発振器としては、たとえば「ISSCC95」pp32,33や「ISSCC96」pp130,131に記載されているように、複数のMOS差動回路をリング状に多段接続して発振ループを形成するとともに、各差動回路のバイアス電流の可変操作により発振周波数を変化させられるようにしたものがある。
【0003】
この場合、各差動回路は、共通のソースバイアス電流が通電され、かつドレインごとに負荷素子が直列接続されたMOSトランジスタ差動対により構成され、上記バイアス電流の可変操作により各MOS差動回路での伝達遅延時間を変化させて発振周波数を変化させる。
【0004】
ここで、上記発振器の発振周波数域を高くするには、各MOS差動回路の出力信号電圧振幅を小さく抑える必要がある。そこで、各差動回路の出力側にダイオードによるクランプ手段を設けることが行われていた。このクランプ手段はダイオード接続されたpチャネルMOSトランジスタを用いて構成され、MOSトランジスタ差動対の負荷素子に上記ダイオードを並列に接続することにより一定幅以上の電圧振幅を抑えるようにしたものである。
【0005】
【発明が解決しようとする課題】
しかしながら、上述した技術には、次のような問題のあることが本発明者らによってあきらかとされた。
【0006】
すなわち、上述した発振器では、半導体集積回路の製造プロセスにて生じる特性バラツキ、とくに差動対をなすMOSトランジスタのしきい値バラツキにより、発振周波数のバラツキが大きくなるとともに、発振そのものの動作が不安定になりやすいという問題があった。
【0007】
また、発振周波数域を高くするために設けたダイオードによるクランプ手段は、そのダイオードを等価的に形成するpチャネルMOSトランジスタのゲート容量およびドレイン部の接合容量が差動回路の出力点における負荷容量(寄生容量)を増大させる。これにより、その差動回路での伝達遅延時間が増大して、高い周波数域での発振が妨げられるという問題も生じる。
【0008】
本発明の目的は、製造プロセスによるバラツキの影響を少なくするとともに、高い周波数域での安定かつ広範囲な発振を可能にする、という技術を提供することにある。
【0009】
本発明の前記ならびにそのほかの目的と特徴は、本明細書の記述および添付図面からあきらかになるであろう。
【0010】
【課題を解決するための手段】
本願において開示される発明のうち代表的なものの概要を簡単に説明すれば、下記のとおりである。
【0011】
すなわち、共通のソースバイアス電流が通電され、かつドレインごとに負荷素子が直列接続されたMOSトランジスタ差動対により差動回路を形成し、この差動回路をリング状に多段接続して発振ループを形成することで、上記バイアス電流の可変操作により発振周波数を変化させられるようにしたリング発振回路を形成し、さらに上記差動対のMOSトランジスタと同じ導電型のMOSトランジスタを用いたソースフォロワにより、上記差動対の出力信号電圧の基準電位側への振幅を所定レベルでクランプさせるというものである。
【0012】
上述した手段によれば、製造プロセスによる差動MOSトランジスタ対のしきい値バラツキを、それと同じ導電型のMOSトランジスタを用いたクランプ手段のクランプレベルに現れるバラツキで相殺補償させることができるとともに、そのクランプ手段がソースフォロワで形成されていることにより、差動回路の出力点における負荷容量を大幅に軽減させることができる。
【0013】
これにより、製造プロセスによるバラツキの影響を少なくするとともに、高い周波数域での安定かつ広範囲な発振を可能にする、という目的が達成される。
【0014】
また、上記負荷素子を上記差動対のMOSトランジスタと異なる導電型のMOSトランジスタで形成するとともに、上記負荷素子の等価的なインピーダンスを上記差動対の共通ソースバイアス電流に応じて変化させるようにした負荷制御手段を設けるようにした。これにより、各差動回路での出力駆動電流を出力立ち上がり側(ライズ側)と出力立ち下がり側(フォール側)とで互いに連動させて可変制御することができる。
【0015】
さらに、上記クランプ手段を形成するMOSトランジスタのゲート電圧の可変操作により出力信号電圧のクランプレベルを変化させるようにした。これにより各差動回路の出力信号電圧振幅を外部から可変設定することができる。
【0016】
また、上記差動対を形成するMOSトランジスタのソース・ドレイン領域と、上記クランプ手段を形成するMOSトランジスタのソース・ドレイン領域の各一方を共通化した。これにより、素子形成に必要なレイアウト面積を大幅に縮小させることができる。
【0017】
【発明の実施の形態】
図1は本発明の技術が適用された発振器の一実施態様を示す。
【0018】
同図に示す発振器10は、複数(#1〜#5)のMOS差動回路1と、共通の負荷制御回路2および差動アンプ3を用いて構成されている。
【0019】
MOS差動回路1はリング状に多段接続されて発振ループを形成する。各差動回路1はそれぞれ、MOS差動対11をなすnチャネルMOSトランジスタN1,N2と、負荷素子をなすpチャネルMOSトランジスタP1,P2と、定電流のバイアス電流源をなすnチャネルMOSトランジスタN3などにより構成されている。
【0020】
差動対11をなすnチャネルMOSトランジスタN1,N2の各ソースは共通接続され、この共通ソースがnチャネルMOSトランジスタN3によるバイアス電流源を介して基準電位(Vss)に接続されている。また、上記nチャネルMOSトランジスタN1,N2の各ドレインはそれぞれ、pチャネルMOSトランジスタP1,P2による負荷素子を直列に介して電源電位(Vdd)に接続されている。これにより、N1,N2の各ゲートを入力点(IN1,IN2)とし、各ドレインを出力点(OUT1,OUT2)とする差動型インバータ論理回路が形成されている。この差動型インバータ論理回路をなすMOS差動回路1が5つ多段接続されるとともに、その終段(#5)の出力が初段(#1)の入力に接続されることにより、リング発振回路が形成されている。
【0021】
上記差動アンプ3は、終段(#5)の差動回路1の出力点(OUT1,OUT2)から取り出される発振出力信号CKVを所定レベルに増幅して外部へ出力する。各MOS差動回路1ではそれぞれ、トランジスタN1,N2の共通ソースからトランジスタN3を介して基準電位(Vss)側にバイアス電流が流れるが、このバイアス電流は、各差動回路1内のトランジスタN3に共通に与えられる外部からの制御電圧VNにより、一律に可変設定されるようになっている。
【0022】
さらに、各MOS差動回路1には、差動対11をなすnチャネルMOSトランジスタN1,N2と同じ導電型のnチャネルMOSトランジスタN4,N5が設けられている。このnチャネルMOSトランジスタN4,N5は、N1,N2のドレイン側にて負荷素子をなすpチャネルMOSトランジスタP1,P2にドレイン同士およびソース同士で並列に接続されるとともに、外部から共通に与えられるゲート電圧VGにより、各差動回路1の出力点(OUT1,OUT2)を基準電位(Vss)に対して所定レベル以上に保持するソースフォロワを形成する。つまり、このソースフォロワは、上記出力点(OUT1,OUT2)に現れる出力信号電圧の基準電位(Vss)側への振幅を所定レベルでクランプする電圧クランプ手段12を形成する。
【0023】
負荷制御回路2は、上記制御電圧VNによりドレイン電流が制御されるnチャネルMOSトランジスタN0と、このMOSトランジスタNOのドレイン電流を各差動回路1内のpチャネルMOSトランジスタP1,P2にカレントミラー転写するpチャネルMOSトランジスタP0により構成されている。pチャネルMOSトランジスタP0はドレインとゲートが共通接続され、この共通接続点に現れる電圧VPがMOS差動回路1内のpチャネルMOSトランジスタP1,P2のゲートに分配されるようになっている。これにより、そのMOSトランジスタP1,P2が形成する負荷素子の等価的なインピーダンスが、MOS差動回路1のバイアス電流に応じて変化させられるようになっている。
【0024】
次に、動作について説明する。
【0025】
図1に示した発振器10では、MOS差動回路1の伝達遅延時間で発振周波数が決まる。伝達遅延時間は、出力駆動電流、出力電圧振幅、出力負荷容量で決まる。出力駆動電流が大きく、かつ出力電圧振幅と出力負荷容量が小さいほど、伝達遅延時間は短くなって発振周波数が高くなる。
【0026】
上記MOS差動回路1の場合、出力駆動電流は出力立ち上がり側(ライズ側)と出力立ち下がり側(フォール側)とでそれぞれ別個に決まる。すなわち、出力立ち下がり側の駆動電流はnチャネルMOSトランジスタN3が流すバイアス電流の大きさで決まり、出力立ち上がり側の駆動電流はpチャネルMOSトランジスタP1,P2が流す負荷電流の大きさ(負荷素子の等価インピーダンス)で決まる。
【0027】
出力電圧振幅は、nチャネルMOSトランジスタN4,N5のソースフォロワによるクランプレベルで決まる。このクランプレベルは、nチャネルMOSトランジスタN4,N5のゲート電圧VGと、そのMOSトランジスタN4,N5のしきい値電圧により決まる。ゲート電圧VGを変化させると出力電圧の立ち下がり側でのクランプレベルが変化するため、立ち上がり時と立ち下がり時のレベル差すなわち出力電圧振幅が変化する。
【0028】
上記バイアス電流は、nチャネルMOSトランジスタN3のゲートに印加する制御電圧VNによって可変制御することができる。したがって、その制御電圧VNを変化させることにより、上記出力駆動電流を変化させてMOS差動回路1の伝達遅延時間を変化させることができ、これにより発振器10の発振周波数を変化させることができる。
【0029】
さらに、上記バイアス電流は負荷制御回路2により、負荷素子を形成するpチャネルMOSトランジスタP1,P2にもカレントミラー転写される。これにより、出力立ち上がり側と出力立ち下がり側の駆動電流は、上記制御電圧VNにより、互いに連動して増減すべく可変制御される。
【0030】
ここで、上述した発振器10の発振周波数域を高くするには、上記出力駆動電流を大きくする以外に、各MOS差動回路1の出力電圧振幅と出力負荷容量をそれぞれできるだけ小さくする必要がある。出力電圧振幅は上記クランプ手段12により可変設定することができる。出力負荷容量は出力点(OUT1,OUT2)の寄生容量で決まる。
【0031】
発振周波数域を高めるために出力電圧振幅を小さく設定した場合、従来においては、差動対11をなすMOSトランジスタN1,N2のしきい値バラツキにより、出力電圧振幅がそのMOSトランジスタN1,N2のしきい値を越えられなくなって、発振不能あるいは発振不安定に陥ることがあった。このため、従来においては、MOS差動回路1の出力電圧振幅に十分な余裕を持たせなければならず、このことが発振周波数域を高める上で大きな支障となっていた。
【0032】
しかし、図1に示した本発明の発振器10では、クランプ手段12をなすソースフォロワを、差動対11をなすnチャネルMOSトランジスタN1,N2と同じ導電型のnチャネルMOSトランジスタN4,N5で形成したことにより、製造プロセスによるバラツキが生じたとしても、そのバラツキは両MOSトランジスタN1,N2とN4,N5に同じ傾向で現れるようになり、これにより上記バラツキの影響は互いに相殺される形で補償されるようになる。
【0033】
これとともに、上記クランプ手段12がソースフォロワで形成されていることにより、MOS差動回路1の出力点(OUT1,OUT2)には、大きな容量を持つゲート容量およびドレイン部の接合容量は介在せず、ソースフォロワ出力となるMOSトランジスタのソースが接続するだけとなる。これにより、MOS差動回路1の出力点(OUT1,OUT2)における負荷容量は従来よりも大幅に軽減される。この負荷容量の軽減と上記プロセス・バラツキの補償効果とにより、安定な発振動作が可能な周波数域は大幅に高められる。
【0034】
図2は、上記発振器の構成に適したMOSトランジスタの素子構造の概略レイアウトモデルを示す。
【0035】
同図において、31は半導体基板、32はp導電型拡散層によるnチャネルMOSトランジスタ形成領域、33,34はn導電型拡散層によるソース・ドレイン領域、35,36はゲート電極をそれぞれ示す。
【0036】
図1にて示したように、クランプ手段12を形成するMOSトランジスタN4,N5のソースは、差動対11を形成するnチャネルMOSトランジスタN1,N2のドレインに接続される。したがって、nチャネルMOSトランジスタN1,N2のソース・ドレイン領域とMOSトランジスタN4,N5のソース・ドレイン領域はそれぞれ、図2に示すように、その各一方を互いに共通化させることができる。これにより、半導体集積回路化した場合の素子面積を減らすことができる。
【0037】
図3は、上述した本発明の発振器10を用いたPLLクロック発生回路の構成例を示す。
【0038】
同図に示すクロック発生回路は、位相比較器21、チャージポンプ22、フィルタ容量CF、発振器10、クロック分配回路23、分周器24、ゲート電圧発生回路25などにより構成されている。
【0039】
位相比較器21は、外部から入力される基準信号CINと分周器24にて分周された帰還信号CFB間の位相差を検出する。チャージポンプ22とフィルタ容量CFは、上記位相差に応じた直流電圧を生成し、発振器10に周波数制御電圧VNとして入力する。これにより、発振器10は、上記帰還信号CFBが上記基準信号CINに位相同期するように帰還制御される。この帰還制御下での発振出力信号CKVは、クロック分配回路23から複数系統の回路(図示せず)へそれぞれクロック信号CKとして配分される。
【0040】
ゲート電圧発生回路25は一種のDA変換器25であって、外部から与えられるデジタル設定信号SGに応じたゲート電圧VGを生成して発振器10に入力する。このゲート電圧VGは、クランプ手段12を形成するMOSトランジスタN4,N5のゲートに印加される(図1)。
【0041】
図4は発振器10の周波数可変特性を示す。
【0042】
同図に示すように、発振器10の制御電圧VNに対する発振周波数fcの変化特性曲線は、クランプ手段12を形成するMOSトランジスタN4,N5のゲート電圧VGを変化させることで上下に移動する。したがって、そのゲート電圧VGの設定操作により発振器10の動作周波数域を広範囲に設定することができる。
【0043】
以上、本発明者によってなされた発明を実施態様にもとづき具体的に説明したが、本発明は上記実施態様に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
【0044】
たとえば、差動回路1のMOS差動対11とクランプ手段12をpチャネルMOSトランジスタで形成するような構成であってもよい。
【0045】
以上の説明では主として、本発明者によってなされた発明をその背景となった利用分野であるPLLクロック発生回路に適用した場合について説明したが、それに限定されるものではなく、たとえば無線通信器における搬送波発振あるいは局部発振などにも適用できる。
【0046】
【発明の効果】
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記のとおりである。
【0047】
すなわち、製造プロセスによるバラツキの影響を少なくするとともに、高い周波数域での安定かつ広範囲な発振が可能な発振器を実現することができる。
【図面の簡単な説明】
【図1】本発明の技術が適用された発振器の一実施態様を示す回路図。
【図2】本発明の実施に適したMOSトランジスタの素子構造の概要を示すレイアウトモデル図。
【図3】本発明による発振器を用いたPLLクロック発生回路の構成例を示すブロック図。
【図4】本発明による発振器の周波数可変特性を示す特性図。
【符号の説明】
10 発振器
1 MOS差動回路
11 差動対
12 クランプ手段
2 負荷制御回路
3 差動アンプ
N1,N2 差動対をなすnチャネルMOSトランジスタ
P1,P2 負荷素子をなすpチャネルMOSトランジスタ
N3 バイアス電流源をなすnチャネルMOSトランジスタ
N4,N5 ソースフォロワをなすnチャネルMOSトランジスタ
Vdd 電源電位
Vss 基準電位
IN1,IN2 入力点
OUT1,OUT2 出力点
31 半導体基板
32 nチャネルMOSトランジスタ形成領域
33,34 n導電型拡散層によるソース・ドレイン領域
35,36 ゲート電極
21 位相比較器
22 チャージポンプ
CF フィルタ容量
23 クロック分配回路
24 分周器
25 ゲート電圧発生回路(DA変換器)
CIN 基準信号
CFB 帰還信号
CKV 発振出力信号
CK クロック信号

Claims (5)

  1. 共通のソースバイアス電流が通電され、かつドレインごとに負荷素子が直列接続されたMOSトランジスタ差動対により形成される差動回路と、この差動回路をリング状に多段接続して形成される発振ループであって上記バイアス電流の可変操作により発振周波数を変化させられるようにしたリング発振回路と、上記差動対のMOSトランジスタと同じ導電型のMOSトランジスタを用いたソースフォロワにより上記差動対の出力信号電圧の基準電位側への振幅を所定レベルでクランプさせるようにしたクランプ手段とを備えたことを特徴とする発振器。
  2. 負荷素子を差動対のMOSトランジスタと異なる導電型のMOSトランジスタで形成するとともに、上記負荷素子の等価的なインピーダンスを上記差動対の共通ソースバイアス電流に応じて変化させるようにした負荷制御手段を備えたことを特徴とする請求項1に記載の発振器。
  3. クランプ手段を形成するMOSトランジスタのゲート電圧の可変操作により出力信号電圧のクランプレベルを変化させるようにしたことを特徴とする請求項1または2に記載の発振器。
  4. 差動対を形成するMOSトランジスタのソース・ドレイン領域とクランプ手段を形成するMOSトランジスタのソース・ドレイン領域の各一方を共通化したことを特徴とする請求項1から3のいずれかに記載の発振器。
  5. 請求項1〜4のいずれかに記載の発振器と、入力クロック信号と帰還クロックの位相を比較する位相比較器と、該位相比較器からの位相差に応じた出力に基づいて上記発振器に対する制御電圧を生成するチャージポンプおよびフィルタ容量とを備えたクロック発生回路が1つの半導体チップ上にて構成されてなることを特徴とする半導体集積回路。
JP16289997A 1997-06-19 1997-06-19 発振器および半導体集積回路 Expired - Fee Related JP3572538B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16289997A JP3572538B2 (ja) 1997-06-19 1997-06-19 発振器および半導体集積回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16289997A JP3572538B2 (ja) 1997-06-19 1997-06-19 発振器および半導体集積回路

Publications (2)

Publication Number Publication Date
JPH1117501A JPH1117501A (ja) 1999-01-22
JP3572538B2 true JP3572538B2 (ja) 2004-10-06

Family

ID=15763363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16289997A Expired - Fee Related JP3572538B2 (ja) 1997-06-19 1997-06-19 発振器および半導体集積回路

Country Status (1)

Country Link
JP (1) JP3572538B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057558A (ja) * 2000-08-09 2002-02-22 Fujitsu Ltd 遅延回路
JP2004356800A (ja) 2003-05-28 2004-12-16 Rohm Co Ltd 発振回路
US7362189B2 (en) 2004-05-28 2008-04-22 Rohm Co., Ltd. Oscillator circuit with regulated V-I output stage
JP2007221577A (ja) * 2006-02-17 2007-08-30 Synthesis Corp 遅延回路及びリングオッシレータ型電圧制御発振回路
JP5272254B2 (ja) * 2009-12-25 2013-08-28 邦彦 公山 差動リング発振器型電圧制御発振器
JP2010273386A (ja) * 2010-08-16 2010-12-02 Renesas Electronics Corp 電圧制御発振器
US8604885B2 (en) 2011-07-12 2013-12-10 Kunihiko Kouyama Differential ring oscillator-type voltage control oscillator
CN114296503B (zh) * 2021-12-30 2023-04-18 杭州朔天科技有限公司 一种超低功耗可编程低压差线性稳压源电路

Also Published As

Publication number Publication date
JPH1117501A (ja) 1999-01-22

Similar Documents

Publication Publication Date Title
US6476656B2 (en) Low-power low-jitter variable delay timing circuit
KR100570188B1 (ko) 반도체 집적회로장치
US5596302A (en) Ring oscillator using even numbers of differential stages with current mirrors
EP1056207B1 (en) Voltage-controlled ring oscillator with differential amplifiers
US6759875B2 (en) Voltage controlled oscillation circuit
US8947141B2 (en) Differential amplifiers, clock generator circuits, delay lines and methods
US4236199A (en) Regulated high voltage power supply
US7391825B2 (en) Comparator circuit having reduced pulse width distortion
JP3572538B2 (ja) 発振器および半導体集積回路
JP3586172B2 (ja) 半導体集積回路およびフェーズ・ロックド・ループ回路
KR900008753B1 (ko) 차동 증폭기
JPH09116098A (ja) クロック配給装置
US6504439B1 (en) Voltage controlled oscillation circuit having oscillation frequency variable control units inserted between inversion circuit elements
US6930530B1 (en) High-speed receiver for high I/O voltage and low core voltage
JP2004235875A (ja) タイミング信号発生回路および受信回路
US9300276B2 (en) Oscillation control circuit for biasing ring oscillator by bandgap reference signal and related method
JP2002521906A (ja) 温度、供給電圧及びトランジスタの製造品質に無関係なcmos出力増幅器
US6163226A (en) Current-controlled p-channel transistor-based ring oscillator
JP2006060690A (ja) 適応型インバータ
JPS60111528A (ja) 集積回路装置
JP3767697B2 (ja) 半導体集積回路装置
US20230179184A1 (en) Delay cell circuits
JP3284926B2 (ja) 電圧制御型発振器
KR200323692Y1 (ko) 씨엠오에스 차동 지연셀을 갖는 전압 제어 발진기
JPH11143564A (ja) 差動増幅回路及びこれを用いた基準電圧発生回路

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees