JP3572319B2 - 液体中微粒子分析装置 - Google Patents

液体中微粒子分析装置 Download PDF

Info

Publication number
JP3572319B2
JP3572319B2 JP2001349667A JP2001349667A JP3572319B2 JP 3572319 B2 JP3572319 B2 JP 3572319B2 JP 2001349667 A JP2001349667 A JP 2001349667A JP 2001349667 A JP2001349667 A JP 2001349667A JP 3572319 B2 JP3572319 B2 JP 3572319B2
Authority
JP
Japan
Prior art keywords
fine
liquid
particle
group
classifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001349667A
Other languages
English (en)
Other versions
JP2003149124A (ja
Inventor
内 一 夫 武
山 喜久夫 奥
レンゴロ ウレット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2001349667A priority Critical patent/JP3572319B2/ja
Priority to EP02025413A priority patent/EP1312911A1/en
Priority to US10/294,747 priority patent/US6892142B2/en
Publication of JP2003149124A publication Critical patent/JP2003149124A/ja
Application granted granted Critical
Publication of JP3572319B2 publication Critical patent/JP3572319B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0266Investigating particle size or size distribution with electrical classification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/065Investigating concentration of particle suspensions using condensation nuclei counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1024Counting particles by non-optical means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液体中に浮遊する微粒子を分析する液体中微粒子分析装置に係り、とりわけ、液体中に浮遊するナノサイズの微粒子(以下「ナノ粒子」ともいう。)の粒径分布等を短時間に精度良く測定することができる、液体中微粒子分析装置に関する。
【0002】
【従来の技術】
例えば、半導体製造プロセスにおいては、シリコン基板表面の汚染を除去するため、超純水等の洗浄水を用いた洗浄が行われる。このような洗浄水に微粒子が混入していると、洗浄および乾燥後のシリコン基板表面に微粒子が付着してしまい、シリコン基板表面への集積回路の形成を阻害し、生産時の歩留まりの低下を招くこととなる。
【0003】
また、精密機械製造工程においては、素材に塗布されている防錆油や機械加工時に用いられる切削油等を除去するため、揮発性溶剤を用いた洗浄が行われる。このような揮発性溶剤中に砂や超硬バイトの破片等の高硬度の微粒子が混入していると、精密機械部品の表面に微粒子が付着したまま組み立てが行われ、組立後の精密機械を稼働した際に摺動面等に付着している微粒子に起因して異常摩耗が発生し、精密機械が機能しなくなることがある。
【0004】
このような問題を回避して製品の歩留まりおよび信頼性を向上させるためには、洗浄水や揮発性溶剤等の液体の清浄度を監視し、微粒子汚染に対して適切な対策を講じる必要がある。
【0005】
従来においては、洗浄水や揮発性溶剤等の液体の清浄度を監視するため、洗浄水や揮発性溶剤等の液体中に浮遊する微粒子の粒径や粒子数等を、光散乱法や光透過法等の光学的手法により計測したり、電子顕微鏡の画像解析によって計測する方法が一般的に用いられている。
【0006】
【発明が解決しようとする課題】
しかしながら、上述した従来の方法のうち、光散乱法や光透過法等の光学的手法を用いる方法では、計測可能な微粒子の粒径に制約があり、最も感度の良い装置を用いても、サブミクロンサイズの微粒子の粒径までしか計測することができない。また、電子顕微鏡の画像解析を用いる方法では、高度な技術が必要とされ、また画像解析のために長時間を要するという問題がある。
【0007】
本発明はこのような点を考慮してなされたものであり、液体中に浮遊するナノ粒子等の微粒子の粒径分布等を、比較的安価でかつ操作が容易な装置により、短時間に精度良く測定することができる、液体中微粒子分析装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、液体中に浮遊する微粒子を分析する液体中微粒子分析装置において、分析対象となる液体を供給する液体供給装置と、前記液体供給装置により供給された液体を微細液滴化し、キャリアガス中に浮遊した微細液滴群を生成する微細液滴生成装置と、前記微細液滴生成装置により生成された微細液滴群の液体成分を蒸発させ、キャリアガス中に浮遊したエアロゾル状態の微粒子群を生成するエバポレータと、前記エバポレータにより生成されたエアロゾル状態の微粒子群を粒径ごとに分級する分級器と、前記分級器により粒径ごとに分級された微粒子群を分析する微粒子分析器とを備え、前記微細液滴生成装置は、前記液体供給装置により供給された液体を帯電させた状態で微細液滴化するエレクトロスプレー装置と、このエレクトロスプレー装置により微細液滴化された帯電微細液滴群をキャリアガス中に浮遊させる霧化器とを有し、前記霧化器には、その内壁に衝突した微細液滴が放出する電荷量を測定する電流計が接続されていることを特徴とする液体中微粒子分析装置を提供する。
【0009】
なお、本発明による液体中微粒子分析装置において、前記霧化器は、前記エレクトロスプレー装置により微細液滴化された帯電微細液滴群をボルツマン平衡荷電分布状態に帯電させる放射線源を有することが好ましい。
【0010】
また、本発明による液体中微粒子分析装置において、前記分級器は、前記エバポレータにより生成されたエアロゾル状態の微粒子群を電気移動度に応じて粒径ごとに分級する微分型電気移動度分級器であることが好ましい。
【0011】
さらに、本発明による液体中微粒子分析装置において、前記微粒子分析器は、前記分級器により分級された微粒子群の粒子数を計数する微粒子計数器であることが好ましい。また、前記微粒子計数器は、ファラデーカップ電流計、イオンカウンターまたは核凝縮計数器であることが好ましい。
【0014】
本発明によれば、分析対象となる液体(微粒子が浮遊する液体)を微細液滴化して、キャリアガス中に浮遊した微細液滴群を生成した後、微細液滴群の液体成分を蒸発させて、キャリアガス中に浮遊したエアロゾル状態の微粒子群を生成するようにしているので、液体中に浮遊する、ナノ粒子を含む任意の粒径の微粒子を凝集のない状態でキャリアガス中に浮遊させることができる。このため、このようにして得られたキャリガス中に浮遊する微粒子群を分級器等により粒径ごとに分級した後、分級後の微粒子群を分析することが可能となり、液体中に浮遊するナノ粒子等の微粒子の粒径分布等を短時間に精度良く測定することができる。
【0015】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。図1乃至図6は本発明による液体中微粒子分析装置の一実施の形態を説明するための図である。
【0016】
図1に示すように、液体中微粒子分析装置は、液体中に浮遊する微粒子を分析するものであり、分析対象となる液体を収容する液体の発生源としてのサンプル容器1と、サンプル容器1に収容された液体を圧送するための定量ポンプ2とを備えている。なお、サンプル容器1および定量ポンプ2により液体供給装置が構成されている。
【0017】
また、液体中微粒子分析装置は、サンプル容器1から定量ポンプ2を介して供給された液体を微細液滴化し、キャリアガス中に浮遊した微細液滴群を生成する微細液滴生成装置3と、微細液滴生成装置3により生成された微細液滴群の液体成分を蒸発させ、キャリアガス中に浮遊したエアロゾル状態の微粒子群を生成するエバポレータ4と、エバポレータ4により生成されたエアロゾル状態の微粒子群を電気移動度に応じて粒径ごとに分級する微分型電気移動度分級器5と、微分型電気移動度分級器5により粒径ごとに分級された微粒子群の個数濃度(単位体積当たりの粒子数)を計数するファラデーカップ電流計(微粒子計数器)6とを備えている。
【0018】
なお、サンプル容器1、定量ポンプ2、微細液滴生成装置3、エバポレータ4、微分型電気移動度分級器5およびファラデーカップ電流計6は互いに配管7を介して接続されている。
【0019】
次に、図2乃至図6により、図1に示す液体中微粒子分析装置を構成する微細液滴生成装置3、エバポレータ4、微分型電気移動度分級器5およびファラデーカップ電流計6の詳細について説明する。
【0020】
まず、図2により、微細液滴生成装置3について説明する。
【0021】
図2に示すように、微細液滴生成装置3は、液体を帯電させた状態で微細液滴化するエレクトロスプレー装置8と、エレクトロスプレー装置8により微細液滴化された帯電微細液滴群をキャリアガス中に浮遊させる霧化器13とを有している。
【0022】
このうち、エレクトロスプレー装置8は、サンプル容器1および定量ポンプ2により配管7を介して供給された液体を導入するための本体9と、本体9から導出された液体を微細液滴化して噴霧するためのノズル10とを有している。ここで、本体9は絶縁体からなり、ノズル10は導電体からなっている。また、ノズル10には導線11を介して高圧電源12が接続されており、ノズル10に導入された液体を帯電させるよう、1〜5kV程度の高電圧が印加されるようになっている。
【0023】
ここで、ノズル10の先端部は霧化器13の内部に挿入されており、ノズル10の先端部から液体を噴霧することによって、霧化器13の内部において、液体52の内部に微粒子51を包含した微細液滴50が生成されるようになっている(図3参照)。なお、このようにして生成される微細液滴50の大きさは、一つの微細液滴に一つの微粒子が包含されるよう、例えば5〜100nm程度の大きさとすることが好ましい。ここで、微細液滴の大きさは、ノズル10の寸法やノズル10内を移動する液体の流量や印加される電圧等を制御することにより適宜設定することができる。
【0024】
一方、霧化器13は、円筒形容器14と、円筒形容器14の一方の端面に取り付けられた流入側蓋15と、円筒形容器14の他方の端面に取り付けられた流出側蓋16とを有している。このうち、流入側蓋15は絶縁体からなり、その中心部にはエレクトロスプレー装置8のノズル10が霧化器13の内部へ開口した状態で取り付けられている。また、円筒形容器14の側壁にはキャリアガス流入口14aが設けられており、配管7′を介して接続されたキャリアガス供給器17から窒素等のキャリアガスが霧化器13の内部へ流入されるようになっている。これにより、霧化器13の内部で生成された帯電微細液滴群はキャリアガスに浮遊した状態で運ばれる。さらに、流出側蓋16には、霧化器13の内部で生成された帯電微細液滴群をキャリアガスとともにエバポレータ4へ向けて流出させるための流出口16aが設けられている。ここで、霧化器13の内部の雰囲気は、温度が室温程度、圧力が大気圧程度であることが好ましい。また、霧化器13の内部に流入されるキャリガスの流量は0.5〜5[l/min]程度であることが好ましい。なお、円筒形容器14および流出側蓋16は導電体からなっている。
【0025】
ここで、霧化器13の内部には、アメリシウム同位体等からなる放射線源18が配置されており、放射線の照射により、エレクトロスプレー装置8のノズル10により微細液滴化された帯電微細液滴群をボルツマン平衡荷電分布状態に帯電することができるようになっている。また、霧化器13の円筒形容器14は、導線19aを介してアースに接続されており、その導線19aの途中に電流計19が設けられている。
【0026】
次に、図4により、エバポレータ4について説明する。
【0027】
図4に示すように、エバポレータ4は、両端が閉じられた円筒形容器20を有し、その一方の端面には、微細液滴生成装置3の霧化器13からキャリアガスとともに流出された帯電微細液滴群を流入させるための流入口20aが設けられ、他方の端面には、帯電微細液滴群の液体成分を蒸発させた後のエアロゾル状態の帯電微粒子群をキャリアガスとともに微分型電気移動度分級器5へ向けて流出させるための流出口20bが設けられている。
【0028】
ここで、エバポレータ4の円筒形容器20のうち、上流側部分の外周壁には、微細液滴生成装置3で生成された帯電微細液滴群の液体成分を蒸発させるための加熱手段としてのヒータ21が設けられており、下流側部分の内部には、蒸発された液体成分を凝縮して回収するための冷却手段としてのクーラ22が設けられている。また、円筒形容器20の下流側部分の外周壁には、開閉バルブ24を備えた凝縮液排出管23が設けられている。ここで、ヒータ21による加熱温度は室温〜100℃程度に設定し、クーラ22による冷却温度は10〜15℃程度に設定することが好ましい。なお、ヒータ21による加熱温度およびクーラ22による冷却温度を調整するよう温度調整手段を設けるようにしてもよい。
【0029】
次に、図5により、微分型電気移動度分級器5について説明する。
【0030】
図5に示すように、微分型電気移動度分級器5は、基部25と、基部25に環状絶縁体26を介して連結された中心ロッド27と、基部25に連結されるとともに中心ロッド27を囲むように配置された囲み体28とを有している。
【0031】
ここで、中心ロッド27には、環状スリット27aが設けられており、分級後の帯電微粒子群を微粒子排出管32を介して排出することができるようになっている。また、囲み体28には、エバポレータ4からキャリアガスとともに流出されたエアロゾル状態の帯電微粒子群を流入させるための環状のエアロゾル流入口28aが設けられている。さらに、囲み体28の上部には、シースガス導入口28bが設けられ、またシースガスを層流化するための層流用メッシュ31が取り付けられている。さらに、囲み体28のシースガス導入口28bから導入されたシースガスは囲み体28の下部に設けられた余剰ガス排出口28cからポンプ(図示せず)等を介して排出されるようになっている。なお、中心ロッド27および囲み体28は導電体からなり、中心ロッド27は導線29を介して直流電源30に接続され、また囲み体28はアースに接続されている。
【0032】
なお、微分型電気移動度分級器5における各種のパラメータ(シースガスの流量や、中心ロッド27に印加される電圧、中心ロッド27および囲み体28の寸法等)は、分級対象となる微粒子の粒径に応じて適宜設定されるものである(特開平10−288609号、特開平11−264790号および特開2000−46720号等参照)。
【0033】
次に、図6により、ファラデーカップ電流計6について説明する。
【0034】
図6に示すように、ファラデーカップ電流計6は、微分型電気移動度分級器5により粒径ごとに分級された帯電微粒子群を沈着させるファラデーカップ33と、ファラデーカップ33で沈着された帯電微粒子群が電荷を放出する際に発生する微弱電流を電圧に変換して増幅するプリアンプ42と、プリアンプ42で増幅された電圧値をファラデーカップ33における微弱電流値に換算して表示するエレクトロメータ44とを有している。
【0035】
このうち、ファラデーカップ32は、外部容器34と、外部容器34に環状絶縁体35を介して連結された内部容器36とからなる二重の金属容器として構成されている。外部容器34には、微分型電気移動度分級器5により粒径ごとに分級された帯電微粒子群を流入させるための微粒子流入管37が設けられ、内部容器36には、流入された帯電微粒子群を沈着させるための導電性フィルタ38が取り付けられている。
【0036】
ここで、導電性フィルタ38の下面には導電性ロッド39が取り付けられており、この導電性ロッド39とプリアンプ42の受け部41とがねじ締結により接続されている(特開2000−2722号公報参照)。なお、ファラデーカップ32の外部容器34とプリアンプ42との間には固定リング40が介挿されている。また、プリアンプ42とエレクトロメータ44とは、ノイズ対策のために二重シールド線43を介して接続されている。
【0037】
次に、このような構成からなる本実施の形態の作用について説明する。
【0038】
まず、図1に示すように、サンプル容器1に収容された分析対象となる液体が、定量ポンプ2により配管7を介して圧送され、微細液滴生成装置3に導入される。
【0039】
図2に示すように、微細液滴生成装置3において、配管7を介して圧送された液体は、エレクトロスプレー装置8の本体9を介してノズル10内を移動し、ノズル10の先端部から霧化器13の内部に噴霧される。これにより、図3に示すように、霧化器13の内部において、液体52の内部に微粒子51を包含した微細液滴50が生成される。なおこのとき、ノズル10に導入された液体は、高圧電源12により印加された高電圧により帯電される。また、ノズル10の先端部から噴霧された微細液滴には、液滴になった瞬間に、霧化器13の内部に配置された放射線源18から放射されたアルファ線が照射され、ボルツマン平衡荷電分布状態に帯電される。
【0040】
そして、このようにして霧化器13の内部で生成された帯電微細液滴群は、図2に示すように、円筒形容器14のキャリアガス流入口14aを介してキャリアガス供給器17から流入されたキャリアガス中に浮遊した状態で運ばれ、流出側蓋16の流出口16aを介してキャリアガスとともにエバポレータ4へ向けて流出される。
【0041】
その後、微細液滴生成装置3の霧化器13から流出された帯電微細液滴群は、図4に示すエバポレータ4において、円筒形容器20の流入口20aを介して流入され、円筒形容器20の上流側部分に設けられたヒータ21により加熱されることにより、帯電微細液滴群の液体成分が蒸発される。これにより、キャリアガス中に浮遊したエアロゾル状態の帯電微粒子群が生成され、円筒形容器20の流出口20bを介してキャリアガスとともに微分型電気移動度分級器5へ向けて流出される。なおこのとき、ヒータ21による加熱処理により蒸発された液体成分は、円筒形容器20の下流側部分に設けられたクーラ22により凝縮され、再び液体となって、凝縮液排出管23を介して円筒形容器20の外部へ排出される。
【0042】
そして、エバポレータ4から流出されたエアロゾル状態の帯電微粒子群は、図5に示す微分型電気移動度分級器5において、粒径ごとに分級される。具体的には、エバポレータ4から流出されたエアロゾル状態の帯電微粒子群は、囲み体28のエアロゾル流入口28aを介して、中心ロッド27と囲み体28との間の空間へ流入される。このとき、中心ロッド27と囲み体28との間の空間には、囲み体27のシースガス導入口28bを介して導入されかつ層流用メッシュ31により層流化されたシースガスが流下しており、エアロゾル流入口28aを介して流入されたエアロゾル状態の帯電微粒子群のうち、特定の粒径の帯電微粒子群のみが中心ロッド27に設けられた環状スリット27aに引き込まれ、微粒子排出管32を介してファラデーカップ電流計6へ向けて排出される。なお、このようにして分級された帯電微粒子群の粒径は、主としてシースガスの流量と中心ロッド27に印加された電圧とによって決められる。
【0043】
そして最終的に、微分型電気移動度分級器5により粒径ごとに分級された特定粒径の帯電微粒子群は、図6に示すファラデーカップ電流計6により、その個数濃度(単位体積当たりの粒子数)が測定される。具体的には、微分型電気移動度分級器5から排出された帯電微粒子群は、微粒子流入管37を介して外部容器34内に流入し、内部容器36に取り付けられた導電性フィルタ38上に沈着する。
【0044】
導電性フィルタ38上に帯電微粒子群が沈着すると、帯電微粒子群が電荷を放出するのに伴って微弱電流が発生する。そして、導電性フィルタ38で発生した微弱電流は、導電性ロッド39および受け部41を介して接続されているプリアンプ42に送られ、プリアンプ42により、微弱電流を電圧に変換して増幅する。その後、プリアンプ42で増幅された電圧値は、二重シールド線43を介してエレクトロメータ44に送られ、電流値すなわち帯電微粒子群の持つ電荷量として表示される。
【0045】
なお、エレクトロメータ44に表示された電流値iと、キャリアガス中に浮遊する帯電微粒子群の個数濃度Ngとの関係は次式(1)により表すことができる。
【0046】
Ng=i/(n・η・e・q) … (1)
上式(1)において、nは帯電微粒子群の電荷量、ηは荷電効率、eは電気素量(1.6×10−19クーロン)、qは導入されるキャリアガスの流量である。
【0047】
ここで、分析対象となる液体中に浮遊する微粒子の個数濃度Nlを求めるためには、単位時間当たりのキャリアガスの流量Qgと、微粒子が浮遊する液体流量Qlとの比を、上式(1)で求めた個数濃度Ngに乗じればよい。すなわち、次式(2)のとおり、
Nl=Ng・(Qg/Ql) … (2)
により求められる。
【0048】
これにより、微分型電気移動度分級器5により分級された特定の粒径の帯電微粒子群に関して、分析対象となる液体中での個数濃度(単位体積当たりの粒子数)が求められる。ここで、微分型電気移動度分級器5により分級される帯電微粒子群の粒径は中心ロッド27に印加される電圧に応じて変化させることができるので、微分型電気移動度分級器5により分級される帯電微粒子群の粒径を順次変えながら当該粒径での個数濃度を求めることにより、分析対象となる液体中に浮遊する微粒子の粒径分布(粒径と単位体積当たりの個数濃度との関係)を求めることができる。
【0049】
なお、微細液滴生成装置3の霧化器13の内部において、帯電した微細液滴が円筒形容器14の内壁に衝突すると、微細液滴の電荷が放出されてしまい、ファラデーカップ電流計6により帯電微粒子群の粒子数を計測する際の誤差となる。このため、霧化器13の円筒形容器14に接続された電流計19により、円筒形容器14の内壁に衝突した微細液滴が放出する電荷量すなわち電流値を測定し、その測定結果に基づいてファラデーカップ電流計6による測定結果を補正するようにすることが好ましい。
【0050】
このように本実施の形態によれば、分析対象となる液体(微粒子が浮遊する液体)を微細液滴生成装置3により微細液滴化して、キャリアガス中に浮遊した帯電微細液滴群を生成した後、エバポレータ4内において、帯電微細液滴群の液体成分を蒸発させて、キャリアガス中に浮遊したエアロゾル状態の帯電微粒子群を生成するようにしているので、液体中に浮遊する、ナノ粒子を含む任意の粒径の帯電微粒子を凝集のない状態でキャリアガス中に浮遊させることができる。このため、このようにして得られたキャリガス中に浮遊する帯電微粒子群を微分型電気移動度分級器5により粒径ごとに分級した後、分級後の帯電微粒子群の個数濃度等をファラデーカップ電流計6により測定して分析することが可能となり、液体中に浮遊するナノ粒子等の微粒子の粒径分布を短時間に精度良く測定することができる。
【0051】
なお、上述した実施の形態においては、分析対象となる液体を供給する液体供給装置として、サンプル容器1および定量ポンプ2を用いているが、これに限らず、注射器等の他の任意の装置を用いることができる。
【0052】
また、上述した実施の形態においては、微分型電気移動度分級器5により粒径ごとに分級された帯電微粒子群の粒子数を計数する微粒子計数器として、ファラデーカップ電流計6を用いているが、これに限らず、イオンカウンターや核凝縮計数器等の他の任意の装置を用いることができる。
【0053】
さらに、上述した実施の形態においては、微分型電気移動度分級器5により粒径ごとに分級された帯電微粒子群の粒子数をファラデーカップ電流計6等の微粒子計数器により計数することにより微粒子群を分析しているが、微粒子群を分析する微粒子分析装置として、微粒子計数器の代わりに質量分析計や微粒子捕集器等を設置し、粒径ごとに分級された微粒子群の成分分析等を行うことにより、微粒子の組成や発生源等の同定を行うようにしてもよい。
【0054】
【発明の効果】
以上説明したように本発明によれば、液体中に浮遊するナノ粒子等の微粒子の粒径分布等を短時間に精度良く測定することができる。
【図面の簡単な説明】
【図1】本発明による液体中微粒子分析装置の一実施の形態を示す図。
【図2】図1に示す液体中微粒子分析装置の微細液滴生成装置の詳細を示す図。
【図3】図2に示す微細液滴生成装置のエレクトロスプレー装置により微細液滴が生成される様子を示す模式図。
【図4】図1に示す液体中微粒子分析装置のエバポレータの詳細を示す図。
【図5】図1に示す液体中微粒子分析装置の微分型電気移動度分級器の詳細を示す図。
【図6】図1に示す液体中微粒子分析装置のファラデーカップ電流計の詳細を示す図。
【符号の説明】
1 サンプル容器
2 定量ポンプ
3 微細液滴生成装置
4 エバポレータ
5 微分型電気移動度分級器
6 ファラデーカップ電流計
7,7′ 配管
8 エレクトロスプレー装置
9 本体
10 ノズル
11 導線
12 高圧電源
13 霧化器
14 円筒形容器
14a キャリアガス流入口
15 流入側蓋
16 流出側蓋
16a 流出口
17 キャリアガス供給器
18 放射線源
19 電流計
19a 導線
20 円筒形容器
20a 流入口
20b 流出口
21 ヒータ
22 クーラ
23 凝集液排出管
24 開閉バルブ
25 基部
26 環状絶縁体
27 中心ロッド
27a 環状スリット
28 囲み体
28a エアロゾル流入口
28b シースガス流入口
28c 余剰ガス排出口
29 導線
30 直流電源
31 層流用メッシュ
32 微粒子排出管
33 ファラデーカップ
34 外部容器
35 環状絶縁体
36 内部容器
37 微粒子流入管
38 導電性フィルタ
39 導電性ロッド
40 固定リング
41 受け部
42 プリアンプ
43 二重シールド線
44 エレクトロメータ

Claims (5)

  1. 液体中に浮遊する微粒子を分析する液体中微粒子分析装置において、
    分析対象となる液体を供給する液体供給装置と、
    前記液体供給装置により供給された液体を微細液滴化し、キャリアガス中に浮遊した微細液滴群を生成する微細液滴生成装置と、
    前記微細液滴生成装置により生成された微細液滴群の液体成分を蒸発させ、キャリアガス中に浮遊したエアロゾル状態の微粒子群を生成するエバポレータと、
    前記エバポレータにより生成されたエアロゾル状態の微粒子群を粒径ごとに分級する分級器と、
    前記分級器により粒径ごとに分級された微粒子群を分析する微粒子分析器とを備え、
    前記微細液滴生成装置は、前記液体供給装置により供給された液体を帯電させた状態で微細液滴化するエレクトロスプレー装置と、このエレクトロスプレー装置により微細液滴化された帯電微細液滴群をキャリアガス中に浮遊させる霧化器とを有し、前記霧化器には、その内壁に衝突した微細液滴が放出する電荷量を測定する電流計が接続されていることを特徴とする液体中微粒子分析装置。
  2. 前記霧化器は、前記エレクトロスプレー装置により微細液滴化された帯電微細液滴群をボルツマン平衡荷電分布状態に帯電させる放射線源を有することを特徴とする、請求項1記載の液体中微粒子分析装置。
  3. 前記分級器は、前記エバポレータにより生成されたエアロゾル状態の微粒子群を電気移動度に応じて粒径ごとに分級する微分型電気移動度分級器であることを特徴とする、請求項1または2記載の液体中微粒子分析装置。
  4. 前記微粒子分析器は、前記分級器により分級された微粒子群の粒子数を計数する微粒子計数器であることを特徴とする、請求項1乃至3のいずれか記載の液体中微粒子分析装置。
  5. 前記微粒子計数器は、ファラデーカップ電流計、イオンカウンターまたは核凝縮計数器であることを特徴とする、請求項4記載の液体中微粒子分析装置。
JP2001349667A 2001-11-15 2001-11-15 液体中微粒子分析装置 Expired - Fee Related JP3572319B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001349667A JP3572319B2 (ja) 2001-11-15 2001-11-15 液体中微粒子分析装置
EP02025413A EP1312911A1 (en) 2001-11-15 2002-11-14 Method of and apparatus for analyzing particles suspended in liquid
US10/294,747 US6892142B2 (en) 2001-11-15 2002-11-15 Method of analyzing particles suspended in liquid and liquid-suspended particle analyzer for carrying out the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001349667A JP3572319B2 (ja) 2001-11-15 2001-11-15 液体中微粒子分析装置

Publications (2)

Publication Number Publication Date
JP2003149124A JP2003149124A (ja) 2003-05-21
JP3572319B2 true JP3572319B2 (ja) 2004-09-29

Family

ID=19162302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001349667A Expired - Fee Related JP3572319B2 (ja) 2001-11-15 2001-11-15 液体中微粒子分析装置

Country Status (3)

Country Link
US (1) US6892142B2 (ja)
EP (1) EP1312911A1 (ja)
JP (1) JP3572319B2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060275555A1 (en) * 2004-02-10 2006-12-07 Daniele Colizza Painting method and apparatus
DE102005039915A1 (de) * 2005-08-24 2007-03-08 Robert Bosch Gmbh Elektrostatischer Partikelsensor
KR100614101B1 (ko) 2005-09-15 2006-08-22 한국과학기술연구원 입자 계수기
US20070128291A1 (en) * 2005-12-07 2007-06-07 Tokie Jeffrey H Method and Apparatus for Forming Chromonic Nanoparticles
US7880109B2 (en) * 2005-12-22 2011-02-01 Shimadzu Corporation Classification apparatus and fine particle measuring apparatus
US7659725B2 (en) * 2006-03-24 2010-02-09 3M Innovative Properties Company Method for assessing the suitability of metered dose inhaler actuators
JP4645501B2 (ja) * 2006-03-29 2011-03-09 パナソニック電工株式会社 静電霧化装置
WO2009098215A1 (en) * 2008-02-06 2009-08-13 Basf Se Measurement system for the multidimensional aerosol characterization
US20100031734A1 (en) * 2008-08-05 2010-02-11 Nitto Denko Corporation Method and system for detecting impurities in liquids
JP5254915B2 (ja) * 2009-09-11 2013-08-07 紀本電子工業株式会社 浮遊粒子状物質発生装置
JP5427141B2 (ja) * 2010-08-05 2014-02-26 オルガノ株式会社 液中粒子の計測装置及び計測方法
CN102507416B (zh) * 2011-10-24 2013-09-04 天津城市建设学院 深海高放大倍率水中悬浮颗粒图像仪
FI126815B (en) * 2011-12-08 2017-06-15 Pegasor Oy EQUIPMENT FOR PARTICULATE MONITORING
JP6076680B2 (ja) * 2012-10-15 2017-02-08 アズビル株式会社 不溶性不純物判別方法及びその装置
CN105115870B (zh) * 2015-09-17 2018-05-29 清华大学 一种微米级气溶胶测量仪器标定系统和方法
CN109211743A (zh) * 2018-08-28 2019-01-15 中国计量科学研究院 气溶胶静电计及气溶胶测量方法
CN109238929B (zh) * 2018-09-12 2021-09-17 湖北省纤维检验局 同时检测纺织品中纳米整理剂的化学成分和尺寸的方法
CN111122396B (zh) * 2019-12-13 2021-08-27 中国科学院合肥物质科学研究院 基于动态法拉第杯的差分式高浓度颗粒物测量系统及方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4284496A (en) * 1979-12-10 1981-08-18 Newton William A Particle guiding apparatus and method
JPS60227155A (ja) * 1984-04-25 1985-11-12 Shimadzu Corp 粒度分布測定装置
US4794086A (en) * 1985-11-25 1988-12-27 Liquid Air Corporation Method for measurement of impurities in liquids
US4670137A (en) * 1986-01-27 1987-06-02 Hitachi, Ltd. Impurity detector
JPH0663961B2 (ja) * 1986-03-24 1994-08-22 日本科学工業株式会社 液中不純物測定方法とその測定装置
US4790650A (en) * 1987-04-17 1988-12-13 Tsi Incorporated Condensation nucleus counter
US4894529A (en) * 1988-11-03 1990-01-16 High Yield Technology, Inc. Real-time particle counter for liquids with nebulizer and dryer
US5095451A (en) * 1989-07-13 1992-03-10 E. I. Du Pont De Nemours And Company Centrifuge particle size analyzer
US5076097A (en) * 1990-06-28 1991-12-31 Tsi Incorporated Method and apparatus for determining concentration of macromolecules and colloids in a liquid sample
US5247842A (en) * 1991-09-30 1993-09-28 Tsi Incorporated Electrospray apparatus for producing uniform submicrometer droplets
JPH0612941U (ja) 1992-07-17 1994-02-18 日本科学工業株式会社 不純物濃度測定装置におけるサンプリング装置
JP3213097B2 (ja) * 1992-12-28 2001-09-25 シスメックス株式会社 粒子分析装置及び方法
US5922976A (en) * 1995-10-12 1999-07-13 California Institute Of Technology Method of measuring aerosol particles using automated mobility-classified aerosol detector
JPH10288609A (ja) 1997-04-15 1998-10-27 Teitsuu Denshi Kenkyusho:Kk 超音波探傷装置
US6259101B1 (en) * 1997-09-23 2001-07-10 University Of Delaware Method and instruments for the on-line detection, sizing or analysis of aerosol particles
WO1999041585A2 (en) * 1998-02-13 1999-08-19 Tsi Incorporated Instrument for measuring and classifying nanometer aerosols
US5992244A (en) * 1998-03-04 1999-11-30 Regents Of The University Of Minnesota Charged particle neutralizing apparatus and method of neutralizing charged particles
JP3487756B2 (ja) 1998-03-17 2004-01-19 理化学研究所 微分型電気移動度測定器
JP3421248B2 (ja) 1998-06-15 2003-06-30 理化学研究所 微弱電流計
JP3459359B2 (ja) 1998-07-28 2003-10-20 理化学研究所 微分型電気移動度測定器
US6553849B1 (en) * 1998-10-28 2003-04-29 Dillon F. Scofield Electrodynamic particle size analyzer
US6491872B1 (en) * 1999-09-17 2002-12-10 The United States Of America As Represented By The Secretary Of The Army Method and system for detecting and recording submicron sized particles
JP4708605B2 (ja) * 2000-07-24 2011-06-22 シスメックス株式会社 粒子分析装置とその粒子分画方法
JP3622696B2 (ja) * 2001-07-17 2005-02-23 株式会社島津製作所 浮遊粒子状物質の測定方法および測定装置

Also Published As

Publication number Publication date
US20030093228A1 (en) 2003-05-15
US6892142B2 (en) 2005-05-10
JP2003149124A (ja) 2003-05-21
EP1312911A1 (en) 2003-05-21

Similar Documents

Publication Publication Date Title
JP3572319B2 (ja) 液体中微粒子分析装置
Intra et al. An overview of unipolar charger developments for nanoparticle charging
Gschwind et al. Capabilities of inductively coupled plasma mass spectrometry for the detection of nanoparticles carried by monodisperse microdroplets
Noble et al. Real‐time single particle mass spectrometry: A historical review of a quarter century of the chemical analysis of aerosols
US7882799B2 (en) Method and apparatus for generating charged particles for deposition on a surface
CN107921443B (zh) 带纳米颗粒浓度和粒度测定器件的气溶胶中颗粒收集装置
US6679938B1 (en) Method of producing metal particles by spray pyrolysis using a co-solvent and apparatus therefor
CN107921444A (zh) 根据颗粒尺寸实现选择性气溶胶颗粒收集的方法和装置
JP2011511293A (ja) 多元的エアロゾル特性決定のための測定システム
Oh et al. Effects of particle shape on the unipolar diffusion charging of nonspherical particles
JP3294228B2 (ja) 微粒子計測装置、微粒子捕集装置および微粒子分析装置
JPH05264432A (ja) 粒子含有流体の拡散稀釈装置および方法
Dépée et al. Laboratory study of the collection efficiency of submicron aerosol particles by cloud droplets–Part I: Influence of relative humidity
Han et al. Unipolar charging of nanosized aerosol particles using soft X-ray photoionization
Lenggoro et al. Colloidal nanoparticle analysis by nanoelectrospray size spectrometry with a heated flow
Schlag et al. Nanoparticle gas phase electrodeposition: Fundamentals, fluid dynamics, and deposition kinetics
Pui et al. Advances in instrumentation for atmospheric aerosol measurement
KR101247968B1 (ko) 나노입자 코팅장치, 그를 이용한 코어-쉘 나노입자의 제조방법 및 코팅두께 측정방법
Aardahl et al. Electrodynamic trapping of aerocolloidal particles: experimental and theoretical trapping limits
JP3285068B2 (ja) 標準粒子発生装置
Taira et al. Wet effluent diffusion denuder for sampling of atmospheric gaseous nitric acid
Sinha et al. Mass distribution of chemical species in a polydisperse aerosol: measurement of sodium chloride in particles by mass spectrometry
JP3503931B2 (ja) 微分型電気移動度分析器および微粒子処理装置
Seipenbusch et al. Determination of coating thickness of DEHS on submicron particles by means of low pressure impaction
Karlsson Methods to Generate Size-and Composition Controlled Aerosol Nanoparticles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees