JP3567475B2 - Method for producing semi-process non-oriented electrical steel sheet with high magnetic permeability - Google Patents

Method for producing semi-process non-oriented electrical steel sheet with high magnetic permeability Download PDF

Info

Publication number
JP3567475B2
JP3567475B2 JP33012993A JP33012993A JP3567475B2 JP 3567475 B2 JP3567475 B2 JP 3567475B2 JP 33012993 A JP33012993 A JP 33012993A JP 33012993 A JP33012993 A JP 33012993A JP 3567475 B2 JP3567475 B2 JP 3567475B2
Authority
JP
Japan
Prior art keywords
magnetic permeability
steel sheet
less
oriented electrical
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33012993A
Other languages
Japanese (ja)
Other versions
JPH07188749A (en
Inventor
進 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP33012993A priority Critical patent/JP3567475B2/en
Publication of JPH07188749A publication Critical patent/JPH07188749A/en
Application granted granted Critical
Publication of JP3567475B2 publication Critical patent/JP3567475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、セミプロセス無方向性電磁鋼板の製造方法に係わり、特に透磁率の極めて高いセミプロセス無方向性電磁鋼板の製造方法に関するものである。
セミプロセス無方向性電磁鋼板は、ユーザーで打ち抜き等の加工を施したのち歪取り焼鈍を行って使用される。
【0002】
【従来の技術】
無方向性電磁鋼板は、主に回転機や変圧器の鉄心等に使用される。これらのエネルギー効率を高めるためには、無方向性電磁鋼板の透磁率を高め、鉄損値を下げる必要がある。
ところで、一般に透磁率の高い無方向性電磁鋼板を製造するには、特開昭54−68717号公報に代表されるように、 800℃程度の比較的低温で数時間にわたる長時間の熱延板焼鈍を施している。また、低Si材では、特開昭53−109815 号公報に示されているように、表面粗度を小さくするため、中間焼鈍を挟む2回の冷間圧延法が採用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、前記した従来技術の、熱延板焼鈍を低温で長時間行う方法では、生産性を阻害するとともにタイト焼鈍した場合は、温度が不均一となり、長手、幅方向に磁性のムラが発生しやすい。また、2回法材では、コストが高いという問題があった。
【0004】
本発明は、上記した従来技術の状況に鑑みて、熱延板の短時間焼鈍、冷間圧延は1回法を採用し、透磁率の極めて高いセミプロセス用無方向性電磁鋼板の製造方法を提案することを目的とするものである。
【0005】
【課題を解決するための手段】
すなわち、本発明は、重量比で、C:0.005 %以下、Si: 0.5〜3.5 %、Al:0.20〜 1.0%、Sb:0.01〜0.10%を含み、残部実質的にFeからなる珪素鋼スラブを、1200℃以下で加熱した後、熱間圧延で中間厚に仕上げ、該熱延板に 950〜1100℃で10分以下の焼鈍を施した後、冷間圧延により、最終板厚とした後、非酸化性雰囲気で 700〜 900℃で 5分以下の連続焼鈍を施すことを特徴とする透磁率μ 1.5/50 3270 以上を有するセミプロセス無方向性電磁鋼板の製造方法である。
【0006】
【作用】
本発明の一つの特徴は、前記問題点を解決するために、熱延鋼板の高温短時間焼鈍を採用したことである。
透磁率を上げるためには、集合組織の改善(〈111 〉方位の減少)および表面の平滑化、酸化膜の減少が必要である。
【0007】
そのための手段として、本発明では
(1)熱延鋼板の焼鈍温度を高温にし、望ましくは冷間圧延前の結晶粒径を80〜180μmまで大きくし、
(2)熱延鋼板焼鈍時の酸化防止のためにSbを添加し、かつ仕上げ焼鈍を非脱炭雰囲気とするために、C量を0.005 %以下としてエージングを防止したものである。
【0008】
次に、まずスラブ成分の限定理由を説明する。
C:0.005 %以下
Cは前述したように仕上げ焼鈍を非脱炭雰囲気で行っても時効を防止するために0.005 %以下とした。
Si: 0.5〜3.5 %、Al:0.20〜 1.0%、
Si、Alは比抵抗を高める元素であり、透磁率と共に鉄損を低減させるためには、それぞれ 0.5%以上、0.20%以上必要であり、一方、Si 3.5%超では、冷延性を劣化させ、またAl 1.0%超では、冷延性を劣化させると共に大幅なコストアップとなるため、Si、Alの上限をそれぞれ3.5 %、 1.0%とした。
【0009】
Sb:0.01〜0.10%
Sbは0.01%未満では酸化防止効果が小さく、また0.10%を超えると粒成長性を阻害するので、0.01〜0.10%の範囲に限定した。
次に、スラブ加熱温度を1200℃以下に限定した理由は、1200℃超ではMnS の固溶量が増加し、熱延時微細析出して粒成長性を阻害するからである。
【0010】
また次に、熱延板の焼鈍温度を 950〜1100℃の範囲に、またその時間を10分以下に限定した理由は次のとおりである。
熱延板の焼鈍温度は、図1に示すように透磁率と関係があり、Si 1%では 950〜1050℃、Si 2%では1000〜1100℃にベスト値がある。上限を1100℃にしたのは、これを超えても透磁率はもう上がらず、冷延性、表面外観が悪くなるためである。またSiが 1.5%以下の場合は、1050℃を超えると変態を起こし透磁率が劣化するので1050℃以下が望ましい。また下限を 950℃にしたのは、これ未満では透磁率が低くなるためである。
【0011】
また熱延板の焼鈍時間を10分以下に限定したのは、この時間を超えて焼鈍しても透磁率の改善効果は飽和し経済的でないからである。
また次に、冷間圧延により、最終板厚とした後、非酸化性雰囲気で 700〜 900℃で 5分以下の連続焼鈍を施す理由は、以下のとおりである。
非酸化性雰囲気に限定したのは、酸化性雰囲気では、サブスケールが発生し透磁率を下げるからである。
【0012】
700〜 900℃の温度範囲に限定したのは、 700℃未満では結晶粒成長が不十分で加工性も悪いためであり、 900℃超ではそれ以上高温にしても透磁率の向上は期待できないためであるからである。
また5分以下に限定した理由は、長時間焼鈍によるコストアップを防ぐためと、サブスケール形成を防ぐためである。
【0013】
【実施例】
表1に示す組成のスラブを1180℃に加熱し、熱間圧延を行い厚み 2.0mmの熱延板を得た。
この熱延板を表1に示す温度で、一部は1分間焼鈍した後、冷間圧延により厚み0.50mmの冷延板に仕上げ、次いで表1に示す温度で、 0.5分間H+N雰囲気中で連続焼鈍を施した。その後、800 ℃×2Hr、窒素雰囲気中で歪取焼鈍を行った。
【0014】
この場合、歪取り焼鈍は窒素雰囲気中で行ったが、DX又はAXガス中でも同様な結果がえられた。
【0015】
【表1】

Figure 0003567475
【0016】
【発明の効果】
本発明に従い、Sbを添加し、熱延板に高温短時間の焼鈍を施すことにより、従来よりさらに透磁率の高い無方向性電磁鋼板を得ることができる。
【図面の簡単な説明】
【図1】熱延板焼鈍温度と透磁率との関係を示すグラフ。[0001]
[Industrial applications]
The present invention relates to a method for producing a semi-process non-oriented electrical steel sheet, and more particularly to a method for producing a semi-process non-oriented electrical steel sheet having extremely high magnetic permeability.
The semi-process non-oriented electrical steel sheet is used after being subjected to processing such as punching by a user and then subjected to strain relief annealing.
[0002]
[Prior art]
Non-oriented electrical steel sheets are mainly used for iron cores of rotating machines and transformers. In order to increase these energy efficiencies, it is necessary to increase the magnetic permeability of the non-oriented electrical steel sheet and reduce the iron loss value.
Generally, in order to produce a non-oriented electrical steel sheet having a high magnetic permeability, as represented by JP-A-54-68717, a long-time hot-rolled steel sheet at a relatively low temperature of about 800 ° C. for several hours is required. Annealed. In addition, as shown in JP-A-53-109815, in order to reduce the surface roughness of a low Si material, two cold rolling processes including intermediate annealing are employed.
[0003]
[Problems to be solved by the invention]
However, in the method of performing the hot-rolled sheet annealing at a low temperature for a long time in the above-described conventional technique, the productivity is hindered, and when tight annealing is performed, the temperature becomes non-uniform and longitudinal and widthwise magnetic irregularities occur. Cheap. In addition, the two-time method material has a problem that the cost is high.
[0004]
The present invention, in view of the situation of the prior art described above, employs a single method for short-time annealing and cold rolling of a hot-rolled sheet, and provides a method of manufacturing a non-oriented electrical steel sheet for semi-process having extremely high magnetic permeability. It is intended to make a proposal.
[0005]
[Means for Solving the Problems]
That is, the present invention provides a silicon steel slab containing, by weight, C: 0.005% or less, Si: 0.5 to 3.5%, Al: 0.20 to 1.0%, and Sb: 0.01 to 0.10%, and the balance substantially consisting of Fe. After heating at 1200 ° C or less, finishing to an intermediate thickness by hot rolling, annealing the hot-rolled sheet at 950 to 1100 ° C for 10 minutes or less, and then cold rolling to obtain a final sheet thickness, A semi-process non-oriented electrical steel sheet having a magnetic permeability μ 1.5 / 50 : 3270 or more, characterized by performing continuous annealing at 700 to 900 ° C. for 5 minutes or less in a non-oxidizing atmosphere.
[0006]
[Action]
One feature of the present invention is that a high-temperature short-time annealing of a hot-rolled steel sheet is adopted in order to solve the above problem.
In order to increase the magnetic permeability, it is necessary to improve the texture (decrease the <111> orientation), smooth the surface, and reduce the oxide film.
[0007]
As means for that, in the present invention, (1) the annealing temperature of the hot-rolled steel sheet is increased, and the crystal grain size before cold rolling is desirably increased to 80 to 180 μm,
(2) Sb is added to prevent oxidation during hot-rolled steel sheet annealing, and aging is prevented by setting the C content to 0.005% or less in order to make the finish annealing a non-decarburizing atmosphere.
[0008]
Next, the reason for limiting the slab component will be described first.
C: 0.005% or less C is set to 0.005% or less in order to prevent aging even when the finish annealing is performed in a non-decarburizing atmosphere as described above.
Si: 0.5 to 3.5%, Al: 0.20 to 1.0%,
Si and Al are elements that increase the specific resistance. To reduce iron loss together with magnetic permeability, 0.5% or more and 0.20% or more are required, respectively. If the cold-rolling property is deteriorated and Al exceeds 1.0%, the cold-rolling property is deteriorated and the cost is greatly increased. Therefore, the upper limits of Si and Al are set to 3.5% and 1.0%, respectively.
[0009]
Sb: 0.01 to 0.10%
If Sb is less than 0.01%, the antioxidant effect is small, and if it exceeds 0.10%, the grain growth is impaired.
Next, the reason why the slab heating temperature is limited to 1200 ° C. or less is that if the temperature exceeds 1200 ° C., the amount of MnS 2 dissolved increases, and fine precipitation occurs during hot rolling to hinder grain growth.
[0010]
Next, the reason why the annealing temperature of the hot-rolled sheet is limited to 950 to 1100 ° C. and the time is limited to 10 minutes or less is as follows.
The annealing temperature of the hot-rolled sheet is related to the magnetic permeability as shown in FIG. 1, and the best value is 950 to 1050 ° C. for 1% of Si and 1000 to 1100 ° C. for 2% of Si. The reason why the upper limit is set to 1100 ° C. is that even if the temperature exceeds this, the magnetic permeability no longer increases and the cold rolling property and the surface appearance deteriorate. If the Si content is 1.5% or less, transformation occurs when the temperature exceeds 1050 ° C., and the magnetic permeability deteriorates. The lower limit is set to 950 ° C., because if it is lower than 950 ° C., the magnetic permeability becomes low.
[0011]
The reason why the annealing time of the hot-rolled sheet is limited to 10 minutes or less is that even if annealing is performed beyond this time, the effect of improving magnetic permeability is saturated, and it is not economical.
Next, the reason for performing continuous annealing at 700 to 900 ° C. for 5 minutes or less in a non-oxidizing atmosphere after making the final sheet thickness by cold rolling is as follows.
The reason for limiting to the non-oxidizing atmosphere is that in the oxidizing atmosphere, sub-scale is generated and the magnetic permeability is reduced.
[0012]
The reason why the temperature range is limited to 700 to 900 ° C. is that if the temperature is lower than 700 ° C., crystal grain growth is insufficient and workability is poor. Because it is.
The reason for limiting to 5 minutes or less is to prevent cost increase due to long-time annealing and to prevent formation of sub-scale.
[0013]
【Example】
A slab having the composition shown in Table 1 was heated to 1180 ° C. and hot-rolled to obtain a hot-rolled sheet having a thickness of 2.0 mm.
This hot rolled sheet at a temperature shown in Table 1, after some was annealed 1 minute, finishing the cold-rolled sheet having a thickness of 0.50mm by cold rolling, and then at the temperature shown in Table 1, 0.5 min H 2 Continuous annealing was performed in a + N 2 atmosphere. Thereafter, strain relief annealing was performed in a nitrogen atmosphere at 800 ° C. × 2 hours.
[0014]
In this case, although the strain relief annealing was performed in a nitrogen atmosphere, similar results were obtained in DX or AX gas.
[0015]
[Table 1]
Figure 0003567475
[0016]
【The invention's effect】
According to the present invention, by adding Sb and subjecting a hot-rolled sheet to high-temperature and short-time annealing, it is possible to obtain a non-oriented electrical steel sheet having a higher magnetic permeability than before.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a hot-rolled sheet annealing temperature and magnetic permeability.

Claims (1)

重量比で、C:0.005 %以下、Si: 0.5〜3.5 %、Al:0.20〜 1.0%、Sb:0.01〜0.10%を含み、残部実質的にFeからなる珪素鋼スラブを、1200℃以下で加熱した後、熱間圧延で中間厚に仕上げ、該熱延板に 950〜1100℃で10分以下の焼鈍を施した後、冷間圧延により、最終板厚とした後、非酸化性雰囲気で 700〜 900℃で 5分以下の連続焼鈍を施すことを特徴とする透磁率μ 1.5/50 3270 以上を有するセミプロセス無方向性電磁鋼板の製造方法。A silicon steel slab containing, by weight, C: 0.005% or less, Si: 0.5 to 3.5%, Al: 0.20 to 1.0%, Sb: 0.01 to 0.10%, and substantially the remainder of Fe, is heated at 1200 ° C or less. After hot rolling, the hot-rolled sheet is annealed at 950 to 1100 ° C for 10 minutes or less, then cold-rolled to a final sheet thickness, and then heated in a non-oxidizing atmosphere. A method for producing a semi-process non-oriented electrical steel sheet having a magnetic permeability μ 1.5 / 50 : 3270 or more, characterized by performing continuous annealing at ~ 900 ° C for 5 minutes or less.
JP33012993A 1993-12-27 1993-12-27 Method for producing semi-process non-oriented electrical steel sheet with high magnetic permeability Expired - Fee Related JP3567475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33012993A JP3567475B2 (en) 1993-12-27 1993-12-27 Method for producing semi-process non-oriented electrical steel sheet with high magnetic permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33012993A JP3567475B2 (en) 1993-12-27 1993-12-27 Method for producing semi-process non-oriented electrical steel sheet with high magnetic permeability

Publications (2)

Publication Number Publication Date
JPH07188749A JPH07188749A (en) 1995-07-25
JP3567475B2 true JP3567475B2 (en) 2004-09-22

Family

ID=18229136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33012993A Expired - Fee Related JP3567475B2 (en) 1993-12-27 1993-12-27 Method for producing semi-process non-oriented electrical steel sheet with high magnetic permeability

Country Status (1)

Country Link
JP (1) JP3567475B2 (en)

Also Published As

Publication number Publication date
JPH07188749A (en) 1995-07-25

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3456862B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3567475B2 (en) Method for producing semi-process non-oriented electrical steel sheet with high magnetic permeability
JPH055126A (en) Production of nonoriented silicon steel sheet
JP2679928B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
JPH02125815A (en) Manufacture of grain-oriented silicon steel sheet having superior magnetic characteristic
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
JP2757695B2 (en) Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP4241125B2 (en) Method for producing grain-oriented electrical steel sheet without forsterite coating
JPH07278669A (en) Manufacture of mirror surface oriented silicon steel sheet with low iron loss
JP3392695B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics
JPH01139721A (en) Manufacture of semiprocessing non-oriented magnetic steel sheet having low iron loss and high magnetic permeability
JPH0737651B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH01191741A (en) Manufacture of semiprocessing non-oriented electrical steel sheet
JP2653636B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet
JPH046220A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JP2758915B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH07207343A (en) Production of semiprocessed grain nonoriented silicon steel sheet
JPH0897023A (en) Manufacture of nonoriented silicon steel plate of excellent iron-loss characteristics
JPH0645823B2 (en) Method for manufacturing high silicon iron plate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees