JP3567073B2 - 時系列データ予測方法および装置 - Google Patents

時系列データ予測方法および装置 Download PDF

Info

Publication number
JP3567073B2
JP3567073B2 JP01228498A JP1228498A JP3567073B2 JP 3567073 B2 JP3567073 B2 JP 3567073B2 JP 01228498 A JP01228498 A JP 01228498A JP 1228498 A JP1228498 A JP 1228498A JP 3567073 B2 JP3567073 B2 JP 3567073B2
Authority
JP
Japan
Prior art keywords
time
series data
value
model
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01228498A
Other languages
English (en)
Other versions
JPH11212947A (ja
Inventor
功 四郎丸
洋 関
幸治 大賀
弘幸 湯地
堅治 富永
喜治 林
武一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Chugoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Hitachi Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP01228498A priority Critical patent/JP3567073B2/ja
Publication of JPH11212947A publication Critical patent/JPH11212947A/ja
Application granted granted Critical
Publication of JP3567073B2 publication Critical patent/JP3567073B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は時系列データの将来値を予測する時系列データ予測方法および装置に係り、特に様々な周波数成分を含む時系列データの将来値を予測できる時系列データ予測方法および装置に関する。
【0002】
【従来の技術】
株価,電力需要,交通量あるいはプラントの状態量などの時系列データの将来値を精度よく予測することは、将来起こりうる事態に適切に対処するために必要とされている。これらの時系列データの将来値を予測するための方法として、予測の対象となる時系列データと、その時系列データに関連する他の時系列データに基づいて、物理モデル,ニューラルネットワークあるいはARMAモデル等によりモデルを作成し、作成したモデルを用いて予測対象である時系列データの将来値を予測する方法がある。ここで、モデルの作成および将来値の予測に用いられる時系列データは、何の処理も施されていない生の時系列データである場合が多い。
【0003】
時系列データの将来値予測の一例として、特開平5−204884 号公報にはニューラルネットワークを用いた時系列データの予測方法が記載されている。その予測方法とは、予測対象である時系列データの過去の値を入力して現在値が出力されるように、ニューラルネットワークの重み係数を設定し、重み係数設定後のニューラルネットワークを用いて、時系列データの将来値を予測するものである。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来技術のように、単一のモデルを用いて時系列データの将来値を予測する場合には、様々な周波数成分を含んで複雑に変化する時系列データに対して、モデルを精度良く作成することができず、そのため将来値予測の精度も低下するという問題が発生する。
【0005】
本発明の目的は、様々な周波数成分を含み複雑に変化する時系列データの将来値を、精度良く予測できる時系列データの予測方法および装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成する第1の発明の特徴は、プロセス状態を示す第1時系列データの将来値を予測するコンピュータによる時系列データ予測装置において、
センサにより取り込んだ第1時系列データを記憶する第1時系列データ記憶手段と、
該第1時系列データ記憶手段に記憶された前記第1時系列データを用いて、前記第1時系列データ及び前記第1時系列データに関連するプロセス関連データの波形を異なる周波数帯域で表されるように複数の第2時系列データに分解する演算手段と、
前記複数の第2時系列データを規格化するパラメータを記憶する時系列データ分解パラメータ記憶手段と、
該時系列データ分解パラメータ記憶手段からのパラメータを用いて、前記複数の第2時系列データを個々に規格化する規格化手段と、
該規格化手段より前記複数の第2時系列データの個々に規格化したデータ値を入力し、該入力した第2時系列データから次の時間ステップの第2時系列データの将来値を予測し、該予測した第2時系列データの将来値を自己回帰して入力するニューラルネットワーク回路と、
該複数のニューラルネットワーク回路により予測された前記複数の第2時系列データの将来値に基づいて、前記第1時系列データの将来値を求めることを特徴とするものである。
【0007】
上記目的を達成する第2の発明の特徴は、プロセス状態を示す第1時系列データの将来値を予測するコンピュータによる時系列データ予測装置において、
センサにより取り込んだ第1時系列データを記憶する第1時系列データ記憶手段と、
該第1時系列データ記憶手段に記憶された前記第1時系列データを用いて、前記第1時系列データ及び前記第1時系列データに関連するプロセス関連データの波形を多重解像度解析により関数に適合する成分として複数の第2時系列データに分解する演算手段と、
前記複数の第2時系列データを規格化するパラメータを記憶する時系列データ分解パラメータ記憶手段と、
該時系列データ分解パラメータ記憶手段からのパラメータを用いて、前記複数の第2時系列データを個々に規格化する規格化手段と、
該規格化手段より前記複数の第2時系列データの個々に規格化したデータ値を入力し、該入力した第2時系列データから次の時間ステップの第2時系列データの将来値を予測し、該予測した第2時系列データの将来値を自己回帰して入力するニューラルネットワーク回路と、
該複数のニューラルネットワーク回路により予測された前記複数の第2時系列データの将来値に基づいて、前記第1時系列データの将来値を求めることを特徴とするものである。
【0023】
【発明の実施の形態】
図1,図5および図9を用いて、本発明の好適な一実施例である時系列データ予測装置について説明する。本実施例の時系列データ予測装置は、入力装置30,データ収集装置40,入出力関係格納ファイル50,収集データ格納ファイル60,時系列データ分解装置70,時系列データ分解パラメータ格納ファイル 80,規格化装置91〜93,予測装置101〜103,変換装置111〜113,モデル作成装置120,異常検出装置130,表示装置140および加算器 150を有する。
【0024】
時系列データ分解装置70は、図5に示すように、ハイパスフィルタ710,バンドパスフィルタ720,加算器730および切替器740,750,760を備える。
【0025】
モデル作成装置120は、図9に示すように、規格化装置1211〜1213,モデル作成制御装置1220,モデル調整装置1231〜1233およびモデル設定装置1240を備える。
【0026】
次に、図1の時系列データ予測装置における各部の動作および信号の流れを説明する。なお、本実施例の時系列データ予測装置は、火力プラントにおいて発生する状態量(例えば、給水流量あるいは発電機出力など)の将来値を予測するものである。また本実施例では、図2に示すような、状態量(変数)x(t), x(t),…x(t),y(t)を入力して状態量(変数)y(t)を出力する系 1100の出力y(t)の将来値を予測する場合について説明する。
【0027】
本実施例の時系列データ予測装置では、まず運転員により、予測を行う状態量の名称,予測秒数Δt、および時系列データ予測装置の動作モードが入力装置 30に入力される。ここで予測秒数Δtとは、予測開始時刻(現在の時刻に相当)から何秒後の将来値を予測するのかを示す値である。また動作モードは、時系列データの予測に用いるモデルを作成するモデル作成モードと、モデルを用いて状態量の将来値をオンラインで予測する予測モードの2つのモードのうち、どちらかが選択される。入力装置30に入力された状態量の名称はデータ収集装置40に出力される。動作モードは時系列データ分解装置70およびモデル作成装置120に出力される。また、予測秒数Δtは規格化装置91,92,93、モデル作成装置120および異常検出装置130に出力される。
【0028】
まず、運転員が動作モードとしてモデル作成モードを入力した場合について説明する。動作モードとしてモデル作成モードを入力した場合、運転員は更に、モデルの作成に用いる時系列データをプラント10およびシミュレータ20のどちらから得るのかを入力装置30に入力する。運転員がどちらを選択したのかはデータ収集装置40に出力される。なお、モデルの作成にシミュレータ20より出力される時系列データを用いることにより、実際にはあまり起こり得ない異常状態などもシミュレータ20で模擬することができるため、異常状態などにも対応したモデルを作成できる。
【0029】
データ収集装置40は、入力装置30から予測を行う状態量の名称が入力されると、その状態量の将来値を予測する際に用いる他の状態量を、入出力関係格納ファイル50より決定する。図3は、入出力関係格納ファイル50の内容の例を示す。入出力関係格納ファイル50は、出力変数y(予測を行う状態量)に対応して、関連入力変数xを複数記憶している。ここで、関連入力変数xとは、出力変数yの変化に影響を与える状態量である。例えば、出力変数yが給水流量である場合は、関連入力変数xは発電機出力,空気流量,燃料流量等となり、出力変数yが発電機出力である場合には、関連入力変数xは給水流量,主蒸気流量,制御弁開度等となる。データ収集装置40は、入出力関係格納ファイル50に記憶されている複数の出力変数yの中から予測を行う状態量の名称を検索し、検索された出力変数yに対応して記憶されている関連入力変数xと出力変数yを取り込む状態量とする。
【0030】
データ収集装置40は、プラント10とシミュレータ20のうち入力装置30において運転員により選択された方より、入出力関係格納ファイル50を用いて決めた状態量(出力変数y,関連入力変数x)の時系列データy(t), x(t)を取り込む。ここで時系列データとは、プラント10あるいはシミュレータ20における状態量の時間的な変化を示したデータである。更にデータ収集装置40は、取り込んだ時系列データy(t),x(t)を収集データ格納ファイル60に出力し、収集データ格納ファイル60は、入力された時系列データ y(t),x(t)を記憶する。図4は、収集データ格納ファイル60に記憶された時系列データの例を示す。収集データ格納ファイル60には、各時刻における、時系列データy(t),x(t)の値が記憶される。なお、シミュレータ20は、入力装置30により操作される。
【0031】
図5は、時系列データ分解装置70の構成を示す。時系列データ分解装置70は、収集データ格納ファイル60に記憶された時系列データy(t)を取り込む。取り込まれた時系列データy(t)は、ハイパスフィルタ710,バンドパスフィルタ720および加算器730に入力される。また、時系列データ分解装置70は、時系列データ分解パラメータ格納ファイル80から時系列データy(t)の分解に用いる周波数帯域1,2を読み出す。
【0032】
図6は時系列データ分解パラメータ格納ファイル80の内容の例を示す。時系列データ分解パラメータ格納ファイル80は、時系列データy(t),x(t)を分解するための周波数帯域1〜3を予め記憶しておく。また、時系列データ分解パラメータ格納ファイル80は、周波数帯域1〜3に対する変数y,xの上限値,下限値を予め記憶しておく。これらの上限値,下限値は、後述する規格化装置91〜93,変換装置111〜113,モデル作成装置120で使用される。なお、上限値,下限値は一定期間の変数y,xの最大値,最小値を計算することにより、時系列データ分解装置70を使って設定することもできる。時系列データ分解パラメータ格納ファイル80は、更に、周波数帯域1〜3に対応して時系列データの取込時間TF1,TF2,TF0も記憶している。
【0033】
時系列データ分解パラメータ格納ファイル80から読み出された周波数帯域1は、ハイパスフィルタ710に入力され、周波数帯域2は、バンドパスフィルタ720に入力される。ハイパスフィルタ710は入力された時系列データy(t)から周波数帯域1の成分yF1(t)を取り出し、加算器730に出力する。一方、バンドパスフィルタ720は入力された時系列データy(t)から周波数帯域2の成分yF2(t)を取り出し、加算器730に出力する。
【0034】
図7は、ハイパスフィルタ710,バンドパスフィルタ720の特性の例を示す。図7に示すフィルタの特性は、必要な周波数帯域の成分以外は0となるような理想的な特性となっている。帯域1のフィルタ特性(ハイパスフィルタ710のフィルタ特性)は、0.025Hz以上 という帯域で利得が1となっており、他の帯域では利得が0である。一方、帯域2のフィルタ特性(バンドパスフィルタ720のフィルタ特性)は0.01Hz〜0.025Hzという帯域で利得が1となっており、他の帯域では利得が0である。ここでは、フィルタ特性の利得が1に近いほど、その周波数の成分が抽出後の時系列データに残ることを意味する。なお、フィルタは必ずしも本実施例のように理想的な特性を持つ必要はなく、各帯域が多少重なっているものでも構わない。このように、パスフィルタを用いることにより、時系列データを容易に周波数帯域毎に分解できる。
【0035】
加算器730では、時系列データy(t)から周波数帯域1の成分yF1(t)および周波数帯域2の成分yF2(t)が減算され、その他の帯域3の成分yF0(t)が取り出される。このように、時系列データ分解装置70では、時系列データy(t)を周波数帯域1〜3毎に複数の時系列データyF1(t),yF2(t),yF0(t)に分解する。
【0036】
時系列データ分解装置70は、入力装置30より入力された動作モードに基づいて、分解により得られた複数の時系列データyF1(t),yF2(t),yF0(t)をモデル作成装置120に出力するのか、規格化装置91〜93に出力するのかを決定する。すなわち、切替器740,750,760がモデル作成モードではモデル作成装置120側に接続され、予測モードでは規格化装置91〜93側に接続される。今、動作モードはモデル作成モードであるので、時系列データ分解装置70は、分解により得られた複数の時系列データyF1(t),yF2(t), yF0(t)をモデル作成装置120に出力する。また、関連入力変数xの時系列データx(t)についても出力変数yの時系列データy(t)と同様に、周波数帯域毎に分解した後、モデル作成装置120に出力する。
【0037】
図8は、周波数帯域毎に分解された出力変数yの時系列データの例を示す。図8(a)は出力変数yの分解前の時系列データy(t)を示す。この時系列データy(t)を図7に示す特性を有するハイパスフィルタ710,バンドパスフィルタ720を用いて分解すると、図8(b)〜(d)に示す時系列データyF1(t),yF2(t),yF0(t)が得られる。図8(b)は、帯域1の成分の時系列データyF1(t)を示し、図8(c)は、帯域2の成分の時系列データyF2(t)を示す。図8(d)は、y(t)からyF1(t),yF2(t)を差し引いた残りの成分の時系列データyF0(t)を示す。図8に示すように、時系列データ分解装置70により、出力変数yの時系列データy(t)は、複数の時系列データyF1(t),yF2(t),yF0(t)に分解される。
【0038】
図9に示すように、モデル作成装置120において、時系列データ分解装置70から入力された時系列データyF1(t),xiF2(t)は規格化装置1211に入力され、時系列データyF2(t),xiF2(t)は規格化装置1212に入力される。また、時系列データyF0(t),xiF0(t)は規格化装置1213に入力される。なお本実施例では、時系列データ分解パラメータ格納ファイル80のTF1,TF2,TF0に基づいて、時系列データyF1(t),xiF1(t),yF2(t), xiF2(t)およびyF0(t),xiF0(t)を取り込む期間が決められる。すなわち、時系列データyF1(t),xiF1(t)は、現時点よりTF1秒前から現時点までのデータが規格化装置1211に入力される。同様に、時系列データyF2(t), xiF2(t)は、現時点よりTF2秒前から現時点までのデータが規格化装置1212に入力され、時系列データyF0(t),xiF0(t)は、現時点よりTF0秒前から現時点までのデータが規格化装置1213に入力される。規格化装置1211〜1213に入力される各時系列データは、(数1)に示す形式のデータとなっている。
【0039】
【数1】
Figure 0003567073
ここで、xiFj は入力変数xのうち周波数帯域Fの成分、yFjは出力変数yのうち周波数帯域Fの成分、mは規格化装置に入力されるデータ数から1を引いた数、δtFj は周波数帯域Fに対するデータの取り込み時間幅である。なお、時間幅δtFj はTFj /mである。
【0040】
規格化装置1211は、まず、取り込んだ時系列データyF1(t)の最大振幅の絶対値が予め定めておいた設定値よりも大きいか否かを判断する。もし、最大振幅の絶対値が設定値よりも小さいと判断した場合、規格化装置1211はその後の処理を行わない。すなわち、時系列データyF1(t)に対するモデルの作成は行われない。一方、最大振幅の絶対値が設定値よりも大きい場合には、モデルの作成を実行する。規格化装置1212,1213においても同様に、時系列データyF2(t),yF0(t)の最大振幅の絶対値と設定値との大小関係に基づいて、モデルの作成を行うか否かを判断する。なお本実施例では、設定値を1とし、時系列データyF1(t),yF2(t),yF0(t)のぞれぞれに対してモデルの作成を行う。
図10は、分解後の各時系列データの振幅が大きく異なる例を示す。図10 (a)に分解前の時系列データz(t)、図10(b)に周波数帯域Fの成分の時系列データzFa(t)、図10(c)に周波数帯域Fの成分の時系列データzFb(t)をそれぞれ示す。ここで、設定値を5に設定すると、図10(b)の時系列データzFa(t)の最大振幅の絶対値はしきい値よりも小さい。一方、図10(c)の時系列データzFb(t)の最大振幅の絶対値はしきい値よりも大きい。このような場合、時系列データzFa(t)に対してモデルの作成は行わない。このように、最大振幅の小さな時系列データについてモデルを作成しないのは、最大振幅の小さな時系列データによる最終的な予測結果への影響が小さいためである。最大振幅の小さな時系列データについてモデルを作成しないことにより、作成するモデルの数を減らすことができ、モデル作成を効率化できる。
【0041】
規格化装置1211は、時系列データ分解パラメータ格納ファイル80の上限値,下限値に基づき、(数2)を用いて、取り込んだ時系列データyF1(t)の上限値を0.8,下限値を0.2に対応させて規格化する。
【0042】
【数2】
Figure 0003567073
【0043】
関連入力変数の時系列データxiF1(t)についても同様に規格化を行う。また、時系列データyF2(t),xiF2(t)およびyF0(t),xiF0(t)の規格化も、規格化装置1212,1213において同様に行う。規格化された各時系列データYF1(t),XiF1(t),YF2(t),XiF2(t)およびYF0(t),XiF0(t)の形式を(数3)に示す。
【0044】
【数3】
Figure 0003567073
ここで、XiFjは規格化したxiFj、YFjは規格化したyFjである。
【0045】
この規格化は各時系列データの変化し得る範囲内での高精度なモデルを作るために必要となる。
【0046】
規格化装置1212は規格化した時系列データYF1(t),XiF1(t)と、入力装置30より入力された予測秒数Δtに基づいて求められた教師データYF1(t+Δt)をモデル調整装置1231に出力する。また、規格化装置1212は、規格化した各時系列データYF2(t),XiF2(t)および教師データYF2(t+Δt)をモデル調整装置1232に出力する。規格化装置1213は、規格化した各時系列データYF0(t),XiF0(t)および教師データYF0(t+Δt)を、モデル調整装置1233に出力する。なお、各教師データは、過去の履歴やシミュレーション結果などから得られる。
【0047】
モデル作成制御装置1220には、入力装置30から出力された動作モードが入力される。モデル作成制御装置1220は、動作モードがモデル作成モードである場合に、モデル作成装置1231〜1233に対してモデル作成指令を出力する。
【0048】
モデル作成装置1231は時系列データYF1(t),XiF1(t)および教師データYF1(t+Δt)を用いて、モデルとなるニューラルネットワークの重み係数の設定を行う。
【0049】
図11は、モデルとなるニューラルネットワークの例を示す。このニューラルネットワークは、規格化後の時系列データYF1(t),XiF1(t)の過去TF1秒前(mδtF1秒前)から現時点までのデータを入力し、YF1(t)のΔt秒だけ将来の値を出力するモデルになっている。このニューラルネットワークにより得られる予測値YF1p(t+Δt)が教師データYF1(t+Δt)と等しくなるように、ニューラルネットワークの重み係数が調節(学習)される。なお、モデルとしてニューラルネットワークを用いることにより、他のモデルを用いる場合と比較して、モデルの作成および将来値の予測を容易に行うことができる。
【0050】
続いて、モデル調整装置1231は、ニューラルネットワークにより得られる予測値YF1p(t+Δt)と教師データYF1(t+Δt)との差が、予め設けておいた設定値よりも小さいかを判断する。もし、予測値YF1p(t+Δt)と教師データYF1(t+Δt)との差が、予め設けておいた設定値よりも小さい場合には、モデル調整装置1231は、モデル作成制御装置1220にモデル作成終了信号を出力すると共に、ニューラルネットワークにおいて調節した重み係数の情報WF1をモデル設定装置1240に出力する。逆に、予測値YF1p(t+Δt)と教師データYF1(t+Δt)との差が、予め設けておいた設定値よりも大きい場合には、重み係数の調節を規定の回数繰り返したかを判断する。ここで、重み係数の調節を規定の回数繰り返したと判断した場合には、モデル作成終了信号をモデル作成制御装置1220に出力すると共に、ニューラルネットワークにおいて調節した重み係数の情報WF1をモデル設定装置1240に出力する。一方、重み係数の調節を規定の回数繰り返していないと判断した場合には、モデル作成継続信号をモデル作成制御装置1220に出力する。なお、重み係数調節の規定の回数は、予め与えられる。
【0051】
モデル作成制御装置1220は、モデル調整装置1231からモデル作成継続信号が入力された場合に、再びモデル作成指令をモデル調整装置1231に出力する。一方、モデル作成終了信号が入力された場合には、モデル調整装置1231におけるモデルの作成が終了したことを認識する。このように、ニューラルネットワークにより得られる予測値YF1p(t+Δt)と教師データYF1(t+Δt)との差が、予め設けておいた設定値よりも小さくなるか、もしくは、重み係数の調節を規定の回数繰り返すまでは、ニューラルネットワークの重み係数の設定が繰り返される。なお、モデル調整装置1232,1233においてもモデル調整装置1231と同様の処理が行われ、調節された重み係数の情報WF2,WF0がモデル設定装置1240に入力される。
【0052】
モデル設定装置1240は、入力された重み係数の情報WF1,WF2,WF0に基づいて、予測装置101〜103のニューラルネットワークの重み係数を設定する。従って、予測装置101〜103には、周波数帯域に応じたニューラルネットワーク(モデル)がそれぞれ設定される。
【0053】
以上説明したように、動作モードとしてモデル作成モードが選択された場合には、予測装置101〜103にモデルが設定される。
【0054】
次に動作モードとして予測モードが選択された場合について説明する。運転員により予測モードが選択された場合、データ収集装置40は、プラント10より時系列データを取り込む。なお、データ収集装置40において時系列データを取り込み、その時系列データを時系列データ分解装置70で複数の時系列データに分解するまでの各装置の動作は、予測モードの場合でもモデル作成モードの場合と同様である。
【0055】
時系列データ分解装置70は、入力された動作モードが予測モードであるため、分解して得られた時系列データyF1(t),xiF1(t)を規格化装置91に入力する。また、時系列データyF2(t),xiF2(t)を規格化装置92に入力し、時系列データyF0(t),xiF0(t)を規格化装置93に入力する。
【0056】
規格化装置91〜93では、入力された各時系列データを上限値を0.8 ,下限値を0.2 に対応させて規格化する。規格化装置91〜93における時系列データの規格化は、モデル作成装置120の規格化装置1211〜1213における規格化と同様に行われる。規格化装置91〜93において規格化された時系列データは、それぞれ予測装置101〜103に入力される。
【0057】
予測装置101は、規格化装置91から入力された時系列データYF1(t),XiF1(t)に基づいて、時系列データYF1(t)の予測値YF1p(t+Δt)を出力する。本実施例の予測装置101は、予測値YF1p(t+Δt)を求めるために、モデル設定装置1240により重み係数が設定されたニューラルネットワークを使用する。予測装置101には図11に示すようなニューラルネットワークが設定されており、規格化装置91において規格化された各時系列データYF1(t),XiF1(t)を入力することにより、予測秒数Δt後の時系列データYF1(t)の値、すなわち予測値YF1p(t+Δt)が出力される。予測装置101は、求めた予測値YF1p(t+Δt)を変換装置111に出力する。予測装置102,103においても、ニューラルネットワークを用いて予測値YF2p(t+Δt)および
F0p(t+Δt)の演算が行われる。予測装置102において求められた将来値YF2p(t+Δt)は、変換装置112に出力される。また、予測装置103において求められた将来値YF0p(t+Δt)は、変換装置113に出力される。
【0058】
変換装置111は、将来値YF1p(t+Δt)が入力されると、まず、時系列データ分解パラメータ格納ファイル80から周波数帯域1に対応する出力変数yの上限値,下限値を検索して、取り込む。変換装置111は、取り込んだ上限値,下限値に基づき、(数4)に従い、予測値YF1p(t+Δt)を規格化前の値に変換する。
【0059】
【数4】
Figure 0003567073
【0060】
変換装置112,113においても、変換装置111と同様に予測値YF2p(t+Δt)およびYF0p(t+Δt)の変換が行われる。変換装置111〜113において変換された各予測値yF1p(t+Δt),yF2p(t+Δt),yF0p(t+Δt) は、加算器150に出力される。
【0061】
加算器150は、入力された各予測値の総和を求める。この総和が出力変数yの予測値y(t+Δt)となる。なお、この予測値y(t+Δt)は、異常検出装置130に出力される。
【0062】
図12は、図8に示す時系列データの20s先の将来値を、本実施例の時系列データ予測装置により予測した結果を示す。図12(b)〜(d)は、図8(b)〜(d)に示した分解後の各時系列データyF1(t),yF2(t),yF0(t)と、その予測結果yF1p(t),yF2p(t),yF0p(t)を示す。図中にも示されているように、分解後の各時系列データごとに過去のデータの取込時間範囲を変えることにより、それぞれのモデルを作成しやすいニューラルネットワークの構造となっている。また、図12(a)には時系列データy(t)と、図12(b)〜(d)の予測結果の和y(t)を示す。
【0063】
図13は、図8(a)に示す時系列データy(t)について、本実施例で説明したとおりに時系列データを分解して将来値を予測した場合と、分解を行わずに単一のモデルを用いて将来値を予測した場合のそれぞれの予測結果を示す。分解を行わずに将来値を予測した場合は、図13(a)に示すように、予測結果y(t)′と実際の値y(t)との差が大きく、予測精度が良くない。一方、図13(b)に示すように、分解した時系列データの予測結果の和y(t)は実際の値y(t)との差が小さく、図13(a)に比べて予測精度が向上している。
【0064】
このように、本実施例によれば、時系列データの将来値の予測を精度良く行うことができる。これは、様々な周波数成分を含み複雑に変化する時系列データを複数の時系列データに分解することにより、変化が単純な時系列データが複数得られ、その時系列データについては将来値の予測が精度良く行えるため、その将来値に基づいて、予測対象である時系列データの将来値を精度良く求めることができる。
【0065】
次に、異常検出装置130の動作について、時刻がTである場合を例に説明する。異常検出装置130は、時刻Tにおける出力変数yの実際の値y(T)を収集データ格納ファイル60から取り込み、その実際の値y(T)と予測値y(T)との差を求める。異常検出装置130は、その差の絶対値と予め定められたしきい値Eとを比較する。もし、実際の値y(T)と予測値y(T)との差の絶対値がしきい値Eよりも大きい場合、予測値y(T)と警報を表示装置140に出力する。また、異常検出装置130は実際の値y(T)と予測値y(T)の差の絶対値があらかじめ定めたしきい値Eよりも小さい場合、予測値y(T)を表示装置140に出力する。表示装置140は、入力された予測値y(T)および警報を表示する。
【0066】
図14に予測値および異常検出結果の表示の例を示す。出力変数yの実際の値y(t)は表示装置140に、時間の経過とともにトレンドグラフとして表示する。同様に将来値y(t)も同じトレンドグラフ上に重ね合わせて表示する。ここで、実際の値y(t)からしきい値Eを差し引いた値をy,y(t)にしきい値Eを加算した値をyとする。このグラフにおいて、yとyから形成される帯の中に予測値y(t)が入っていれば、予測は正常に行われていることになる。もし、帯の外側に予測値y(t)が出た場合には、プラント10から収集された入力変数xと出力変数yとの関係が、モデルにおける入力変数xと出力変数yとの関係に対応していないと考えられる。この場合に異常検出装置130は異常と判定し、警報が表示装置140に表示される。図14の例では、時刻Tの時点での予測値y(T)がyとyで形成される帯を外れている。このため、時刻Tにおいて異常発生という表示がなされている。また、このとき予測値y(t)はT+Δtの時点までの値が得られている。この異常検出装置の異常の判定に使用する予測値の精度を上げるために、予測秒数Δtを0sにしてもよい。また、Δt後の将来の出力変数yの値を予測する予測モデルの他に、現時刻の出力変数yの値を推定する推定モデルを別に持たせることにより推定値の精度を上げてもよい。現時刻の出力変数を推定するためのモデルの作成は、図11に示す教師データy(t+Δt)を現時刻のものにすることによって、予測モデルの作成の場合と同様に行うことができる。このように、本実施例によればプラントにおける異常を正確に検出することができる。
【0067】
以上説明した本実施例では、時系列データの分解方法として、周波数帯域ごとに時系列データを分解するバンドパスフィルタおよびハイパスフィルタを用いたが、その他にローパスフィルタを使用することもできる。
【0068】
本発明の他の実施例である時系列データ予測装置について図15および図16を用いて説明する。本実施例は第1の実施例における時系列データの分解方法として、関数に適合する成分を分解時系列データとして抽出する方法を用いたものである。本実施例の構成について、主に第1の実施例と構成が異なる時系列データ分解装置について説明する。
【0069】
本実施例では、関数に適合する成分を分解時系列データとして抽出する方法として多重解像度解析と呼ばれる方法を用いる。図15は多重解像度解析による時系列データの分解方法を示す。ここでは、時刻t,t,t,tでそれぞれa,a,a,aの値を持つ時系列データs(t)を多重解像度解析で分解する例について説明する。なお、時刻t,t,t,tの間隔は、等間隔(dt)である。図15(b)に示すように、時系列データs(t)に周期2dtの矩形波を適合させると、t,t,tでそれぞれ(a−a)/2,(a−a)/2,(a−a)/2となる時系列データs(t)が得られる。また、時系列データs(t)に周期4dtの矩形波を適合させるとtで(a+a−(a+a))/4となる時系列データs(t)が得られる(図15(c))。時系列データs(t)から時系列データs(t),s(t)を差し引くと、残りの低周波成分s(t)として時刻tで(a+a+(a+a))/4となる成分が得られる(図15(d))。
このような、多重解像度解析を用いた時系列データ分解装置70Aの構成を図16を用いて説明する。図16において、時系列データ分解装置70Aに入力された時系列データy(t),x(t)は、演算装置770,780,790に入力される。なお、時系列データy(t)として、a,a,a,a,…というデータが演算装置770,780,790に入力された場合を説明する。演算装置770では、時系列データy(t)に対して、(a−a)/2,(a−a)/2,(a−a)/2を演算し、切替器740に出力する。演算装置780は、(a+a−(a+a))/4を演算し、切替器750に出力する。また、演算装置790は、(a+a+(a+a))/4を演算し、切替器760に出力する。演算装置770,780,790において、上記の演算を行うことにより、時系列データy(t)は、図15に示されたs(t)と同様に3つの時系列データに分解される。また、時系列データx(t)についても時系列データy(t)と同様に分解される。なお、切替器740,750,760の動作は第1の実施例と同様である。このように時系列データを分解した場合も、第1の実施例と同様に予測値を求めることができる。また、この多重解像度解析は演算量が少ないため、オンラインで時系列データを分解するのに適している。
【0070】
本実施例においても、第1の実施例と同様の効果を得ることができる。
【0071】
本実施例では、周期の異なる複数の矩形波を時系列データに作用させて、各矩形波に適合する成分を分解時系列データとして抽出する方法を説明したが、矩形波以外にも正弦波などの関数を利用することもできる。
【0072】
本発明の他の実施例である時系列データ予測装置を図17および図18を用いて説明する。本実施例は、予測値の演算と同時にモデルの作成を行い、モデルの作成が終わり次第モデルを更新していくものである。本実施例について、主に第1の実施例と異なる箇所について説明する。
【0073】
本実施例では、予測値の演算とモデルの作成を同時に行うため、第1の実施例のような動作モードの選択は行わない。入力装置30では、動作モードの入力に代わり、モデルの作成を開始するモデル作成開始指令を入力する。入力装置30に入力されたモデル作成開始指令は、時系列データ分解装置70およびモデル作成装置120Aに出力される。なお、予測を行う状態量の名称、および予測秒数Δtも、第1の実施例と同様に入力装置30に入力される。また、状態量の時系列データをプラント10およびシミュレータ20のどちらから取り込むのかも入力装置30において選択される。
【0074】
データ収集装置40は、予測する状態量の名称が入力されると、入力装置30において選択された、プラント10あるいはシミュレータ20より時系列データを取り込む。時系列データを取り込む状態量の決定は、第1の実施例と同様に、入出力関係格納ファイル50に基づいて行われる。また、データ収集装置40において取り込んだ時系列データに基づいてモデルを作成し、予測装置101〜103に設定する方法は、図1の実施例と同様である。なお、時系列データ分解装置70は、モデル作成開始指令が入力された場合に、分解後の時系列データをモデル作成装置120Aに出力する。また、モデル作成装置120Aは、モデル作成開始指令が入力された場合にモデルの作成を行う。
【0075】
本実施例のモデル設定装置1240は、予測装置101〜103にニューラルネットワークの重みを設定するのと同時に、予測開始指令をデータ収集装置40および時系列データ分解装置70に出力する。データ収集装置40は予測開始指令が入力されると、プラント10から時系列データを取り込む。取り込んだ時系列データは時系列データ分解装置70において複数の時系列データに分解される。時系列データ分解装置70は、予測開始指令が入力された場合には、分解した時系列データを規格化装置91〜93およびモデル作成装置120に出力する。
規格化装置91〜93に入力された時系列データは、第1の実施例と同様に将来値の予測に用いられる。また、モデル作成装置120Aは、入力された時系列データに基づいて新たにモデルを作成する。モデル作成装置120Aにおいて、新たにモデルが完成すると、モデル設定装置1240は、予測装置101〜103にニューラルネットワークの重みを新たに設定するのと同時に、再び予測開始指令をデータ収集装置40および時系列データ分解装置70に出力する。なお、モデル作成中も将来値の予測は継続する。
【0076】
このように本実施例では、モデルの作成と予測値の演算が同時に行われ、予測値の演算に用いるモデルは、新たなモデルができ次第次々に更新される。
【0077】
図19は、本実施例におけるモデルと時系列データの関係を示す。図に示されるように、時系列データy(t)のうち時間範囲9011の部分を用いて、モデルNが作成される。作成されたモデルNは、時間範囲9021の時系列データを用いて予測を行う。また、モデルNによって予測が行われるのと同時に、時間範囲9012の時系列データを用いてモデルNが作成される。モデルNの作成が終わると、モデルNに代わりモデルNにより予測が行われる。モデルNは、時間範囲9022の時系列データを用いて予測を行う。また、モデルNによって予測が行われるのと同時に、時間範囲9013の時系列データを用いてモデルNが作成される。このように本実施例では、予測とモデルの作成が同時に行われ、予測に用いるモデルを次々に更新していく。
【0078】
本実施例によれば、プラントの時系列データをオンラインで逐次取り込んでモデルの作成を行っており、作成されたモデルを逐次、予測に使用しているので、運転モードの変更や異常発生などでプラントの各状態量の時系列データの変化傾向が変わり、予測に使用している入出力変数間の関係が変わっても対応することができる。
【0079】
本発明の他の実施例である時系列データ予測装置を図20を用いて説明する。本実施例は、第1の実施例の異常検出装置130における異常検出を、他の方法により行う時系列データ予測装置である。本実施例について、第1の実施例と異なる箇所について説明する。
【0080】
本実施例の異常検出装置130は、予測値y(t)と予め定められた設定値Rとを比較する。ここで設定値Rは、時系列データy(t)が異常となったときの値に設定する。もし、予測値y(t)が設定値Rよりも大きい場合、予測値y(t),時刻tおよび警報を表示装置140に出力する。また、異常検出装置130は予測値y(t)が設定値Rよりも小さい場合、予測値y(t)を表示装置140に出力する。表示装置140は、入力された予測値y(t),時刻tおよび警報を表示する。
【0081】
図20に予測値および異常検出結果の表示の例を示す。出力変数yの予測値y(t)は、表示装置140に時間の経過と共にトレンドグラフとして表示される。このグラフにおいて、予測値y(t)が設定値R以下であれば、時系列データy(t)は、予測秒後も正常な範囲内にあると予測される。図20に示すように、時系列データy(t)が時刻tで設定値Rを超えた場合、実際の時系列データy(t)も時刻tで異常値となることが予測されるので、表示装置140には警報が表示される。このように、予測値y(t)と設定値Rを常に比較することにより、時系列データy(t)が異常値となることを前もって運転員に知らせることができる。なお、表示装置140には、実際の値y(t)もトレンドグラフとして表示してもよい。このように、予測値を用いて状態量を監視することにより、これから起こる異常を前もって認識することができるため、プラントにおける事故などを防止できる。
【0082】
以上説明した本発明の各実施例では、時系列データを3つの成分に分解する場合について説明したが、その数は3つに限られるものではない。
【0083】
また、モデルとしてはニューラルネットワーク以外に、ARMAモデル,物理モデルなどもモデルとして用いることができる。ARMAモデル,物理モデルなどをモデルとして用いる場合は、モデル作成に必要なパラメータを外部から運転員が与える。
【0084】
更に、予測値をプラント10の制御装置へ入力し、その予測値に基づいてプラント10を制御することによって、プラント10に対し適切な制御を実施することもできる。
【0085】
【発明の効果】
以上説明したように、第1の発明によれば、採用しているニューラルネットワーク回路として、ニューラルネットワーク回路が出力した値を戻して入力する自己回帰タイプのニューラルネットワーク回路を用い、また、第1時系列データ及び前記第1時系列データに関連するプロセス関連データの波形を異なる周波数帯域であらわされるように複数の第2時系列データに分解し、この第2時系列データをこのニューラルネットワーク回路に入力する際に、データを規格化する規格化手段、更には規格化を行うためのパラメータを記憶する時系列データ分解パラメータ記憶手段も設けることでニューラルネットワーク回路の学習処理を良く行うことが可能になり、プロセス状態を示す時系列データの将来値の予測を高精度に行うことを実現できる。
【0086】
また、第2の発明によれば第1の発明と異なり第1時系列データ及び前記第1時系列データに関連するプロセス関連データの波形を第2時系列データに分解する際に多重解像度解析により関数に適合する成分として分解するようにしたものであり、多重解像度解析は演算量が少なくても時系列データを分解するのに適していることからオンラインでプロセス状態を示す時系列データの将来値の予測を高精度に行うことを実現できる。
【図面の簡単な説明】
【図1】本発明の好適な一実施例である時系列データ予測装置の構成図である。
【図2】図1の時系列データ予測装置の予測の対象となる系の概念図である。
【図3】図1の入出力関係格納ファイル50の内容を示す図である。
【図4】図1の収集データ格納ファイル60の内容を示す図である。
【図5】図1の時系列データ分解装置70の構成図である。
【図6】図1の時系列データ分解パラメータ格納ファイル80の内容を示す図である。
【図7】図5のハイパスフィルタ710およびバンドパスフィルタ720の周波数特性を示す図である。
【図8】図1の時系列データ分解装置70により分解された時系列データを示す図である。(a)は分解前の時系列データy(t)を示す図、(b)は図5のハイパスフィルタ710により抽出された時系列データyF1(t)を示す図、(c)は図5のバンドパスフィルタ720により抽出された時系列データyF2(t)を示す図、 (d)は時系列データy(t)から時系列データyF1(t),yF2(t)を減算して得られた時系列データyF0(t)を示す図である。
【図9】図1のモデル作成装置120の構成図である。
【図10】図1の時系列データ分解装置70により分解された時系列データの最大振幅が異なる例を示した図である。(a)は時系列データs(t)を示す図、(b)は時系列データs(t)から抽出された周波数帯域Fの時系列データsFa(t)を示す図、(c)は時系列データs(t)から抽出された周波数帯域Fの時系列データsFb(t)を示す図である。
【図11】図1の予測装置101〜103および図9のモデル作成装置1231〜1233のニューラルネットワークの構造を示した図である。
【図12】図1の予測装置101〜103において予測された予測値と実際の時系列データを示す図である。(a)は分解前の時系列データy(t)とその予測結果y(t)を示す図、(b)は図8の時系列データyF1(t)とその予測結果yF1p(t)を示す図、(c)は図8の時系列データyF2(t)とその予測結果yF2p(t)を示す図、(d)は図8の時系列データyF0(t)とその予測結果yF0p(t)を示す図である。
【図13】図1の時系列データ予測装置により求めた予測値と、従来の時系列データ予測装置により求めた予測値とを示す図である。(a)は時系列データy(t)と従来の時系列データ予測装置により求めた予測値y(t)′を示す図、(b)は時系列データy(t)とその予測値y(t)を示す図である。
【図14】図1の表示装置140における予測結果の表示例である。
【図15】本発明の他の実施例における時系列データの分解方法を示す図である。(a)は時系列データs(t)を示す図、(b)は時系列データs(t)に周期が2dtである矩形波を適合させて得られた時系列データs(t)を示す図、(c)は時系列データs(t)に周期が4dtである矩形波を適合させて得られた時系列データs(t)を示す図、(d)は時系列データs(t)から時系列データs(t),s(t)を減算して得られる時系列データs(t)を示す図である。
【図16】本発明の他の実施例である時系列データ予測装置の時系列データ分解装置70Aの構成図である。
【図17】本発明の他の実施例である時系列データ予測装置の構成図である。
【図18】図17のモデル作成装置120Aの構成図である。
【図19】本発明の他の実施例である時系列データ予測装置におけるモデルの作成と予測の関係を示す図である。
【図20】本発明の他の実施例である時系列データ予測装置の表示装置140における予測結果の表示例である。
【符号の説明】
10…プラント、20…シミュレータ、30…入力装置、40…データ収集装置、50…入出力関係格納ファイル、60…収集データ格納ファイル、70…時系列データ分解装置、80…時系列データ分解パラメータ格納ファイル、91〜93…規格化装置、101〜103…予測装置、111〜113…変換装置、120…モデル作成装置、130…異常検出装置、140…表示装置、150…加算器。

Claims (9)

  1. プロセス状態を示す第1時系列データの将来値を予測するコンピュータによる時系列データ予測装置において、
    センサにより取り込んだ第1時系列データを記憶する第1時系列データ記憶手段と、
    該第1時系列データ記憶手段に記憶された前記第1時系列データを用いて、前記第1時系列データ及び前記第1時系列データに関連するプロセス関連データの波形を異なる周波数帯域で表されるように複数の第2時系列データに分解する演算手段と、
    前記複数の第2時系列データを規格化するパラメータを記憶する時系列データ分解パラメータ記憶手段と、
    該時系列データ分解パラメータ記憶手段からのパラメータを用いて、前記複数の第2時系列データを個々に規格化する規格化手段と、
    該規格化手段より前記複数の第2時系列データの個々に規格化したデータ値を入力し、該入力した第2時系列データから次の時間ステップの第2時系列データの将来値を予測し、該予測した第2時系列データの将来値を自己回帰して入力するニューラルネットワーク回路と、
    該複数のニューラルネットワーク回路により予測された前記複数の第2時系列データの将来値に基づいて、前記第1時系列データの将来値を求めることを特徴とするコンピュータによる時系列データ予測装置。
  2. 請求項1のコンピュータによる時系列データ予測装置において、
    求められた前記第1時系列データの将来値と予め設定された設定値の大きさを比較し、前記第1時系列データの将来値が前記設定値を超えることを判定する演算手段と、
    該判定演算手段により前記第1時系列データの将来値が前記設定値を超えると判定された場合は、前記第1時系列データの将来値が前記設定値を超える時間と、その時の前記第1時系列データの将来値を表示する表示手段を備えたことを特徴とするコンピュータによる時系列データ予測装置。
  3. 請求項1又は請求項2のコンピュータによる時系列データ予測装置において、
    前記第1時系列データは、フィルタ回路により周波数帯域毎に分解されることを特徴とするコンピュータによる時系列データ予測装置。
  4. 請求項1又は請求項2のコンピュータによる時系列データ予測装置において、
    前記第2時系列データに基づき前記ニューラルネットワーク回路を用いてモデルを作成し、該作成されたモデルを用いて前記第2時系列データの将来値を求めることを特徴とするコンピュータによる時系列データ予測装置。
  5. 請求項4のコンピュータによる時系列データ予測装置において、
    前記モデルの作成は、絶対値の最大値が予め設けられた設定値よりも大きな第2時系列データに対して行うことを特徴とするコンピュータによる時系列データ予測装置。
  6. プロセス状態を示す第1時系列データの将来値を予測するコンピュータによる時系列データ予測装置において、
    センサにより取り込んだ第1時系列データを記憶する第1時系列データ記憶手段と、
    該第1時系列データ記憶手段に記憶された前記第1時系列データを用いて、前記第1時系列データ及び前記第1時系列データに関連するプロセス関連データの波形を多重解像度解析により関数に適合する成分として複数の第2時系列データに分解する演算手段と、
    前記複数の第2時系列データを規格化するパラメータを記憶する時系列データ分解パラメータ記憶手段と、
    該時系列データ分解パラメータ記憶手段からのパラメータを用いて、前記複数の第2時
    系列データを個々に規格化する規格化手段と、
    該規格化手段より前記複数の第2時系列データの個々に規格化したデータ値を入力し、該入力した第2時系列データから次の時間ステップの第2時系列データの将来値を予測し、該予測した第2時系列データの将来値を自己回帰して入力するニューラルネットワーク回路と、
    該複数のニューラルネットワーク回路により予測された前記複数の第2時系列データの将来値に基づいて、前記第1時系列データの将来値を求めることを特徴とするコンピュータによる時系列データ予測装置。
  7. 請求項6のコンピュータによる時系列データ予測装置において、
    求められた前記第1時系列データの将来値と予め設定された設定値の大きさを比較し、前記第1時系列データの将来値が前記設定値を超えることを判定する演算手段と、
    該判定演算手段により前記第1時系列データの将来値が前記設定値を超えると判定された場合は、前記第1時系列データの将来値が前記設定値を超える時間と、その時の前記第1時系列データの将来値を表示する表示手段を備えたことを特徴とするコンピュータによる時系列データ予測装置。
  8. 請求項6又は請求項7のコンピュータによる時系列データ予測装置において、
    前記第2時系列データに基づき前記ニューラルネットワーク回路を用いてモデルを作成し、該作成されたモデルを用いて前記第2時系列データの将来値を求めることを特徴とするコンピュータによる時系列データ予測装置。
  9. 請求項8のコンピュータによる時系列データ予測装置において、
    前記モデルの作成は、絶対値の最大値が予め設けられた設定値よりも大きな第2時系列データに対して行うことを特徴とするコンピュータによる時系列データ予測装置。
JP01228498A 1998-01-26 1998-01-26 時系列データ予測方法および装置 Expired - Fee Related JP3567073B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01228498A JP3567073B2 (ja) 1998-01-26 1998-01-26 時系列データ予測方法および装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01228498A JP3567073B2 (ja) 1998-01-26 1998-01-26 時系列データ予測方法および装置

Publications (2)

Publication Number Publication Date
JPH11212947A JPH11212947A (ja) 1999-08-06
JP3567073B2 true JP3567073B2 (ja) 2004-09-15

Family

ID=11801070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01228498A Expired - Fee Related JP3567073B2 (ja) 1998-01-26 1998-01-26 時系列データ予測方法および装置

Country Status (1)

Country Link
JP (1) JP3567073B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006048319A (ja) * 2004-08-04 2006-02-16 Sony Corp 情報処理装置および方法、記録媒体、並びにプログラム
JP4802112B2 (ja) * 2007-02-08 2011-10-26 株式会社東芝 トラッキング方法及びトラッキング装置
JP5018809B2 (ja) * 2009-03-04 2012-09-05 沖電気工業株式会社 時系列データ予測装置
JP4840494B2 (ja) * 2009-09-16 2011-12-21 沖電気工業株式会社 時系列データ予測ニューラルネットワーク装置
RU2600099C1 (ru) * 2015-03-23 2016-10-20 Юрий Анатольевич Кропотов Способ нейросетевого прогнозирования изменения значений функции с её предварительной вейвлет-обработкой и устройство его осуществления
JP2018073241A (ja) * 2016-11-01 2018-05-10 日本電信電話株式会社 検知装置、検知方法および検知プログラム
JP6904418B2 (ja) * 2017-08-02 2021-07-14 日本電気株式会社 情報処理装置、情報処理システム、情報処理方法、及び、プログラム
US11200134B2 (en) 2018-03-26 2021-12-14 Nec Corporation Anomaly detection apparatus, method, and program recording medium
US11699065B2 (en) * 2019-08-08 2023-07-11 Nec Corporation Ensemble of clustered dual-stage attention-based recurrent neural networks for multivariate time series prediction
JP2022028338A (ja) * 2020-08-03 2022-02-16 オムロン株式会社 予測システム、情報処理装置および情報処理プログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392795A (ja) * 1989-09-05 1991-04-17 Toshiba Corp 原子力発電プラントの診断方法
JPH06149863A (ja) * 1992-11-05 1994-05-31 Yukio Tanaka 時系列データ解析装置
JPH06187030A (ja) * 1992-12-17 1994-07-08 Hitachi Ltd 時系列モデルによる制御系異常診断方法、及び表示方法
JPH06337852A (ja) * 1993-05-31 1994-12-06 Hitachi Ltd ニューラルネットワークによる時系列予測方法
JP3083677B2 (ja) * 1993-06-02 2000-09-04 シャープ株式会社 波形生成装置
JPH07281714A (ja) * 1994-04-06 1995-10-27 Kawasaki Heavy Ind Ltd シミュレーション方法およびそれに用いる装置
JPH07302393A (ja) * 1994-05-09 1995-11-14 Mitsubishi Heavy Ind Ltd 運転支援方法及び装置
JPH0895948A (ja) * 1994-09-28 1996-04-12 Hitachi Ltd トレンドに基づく時系列予測方法および装置
JPH1020925A (ja) * 1996-07-05 1998-01-23 Toshiba Corp プラント診断装置

Also Published As

Publication number Publication date
JPH11212947A (ja) 1999-08-06

Similar Documents

Publication Publication Date Title
Wang et al. Fault prognostics using dynamic wavelet neural networks
US20230114296A1 (en) Automated analysis of non-stationary machine performance
CA2433941C (en) Adaptive modeling of changed states in predictive condition monitoring
CN110119339A (zh) 工业设备的健康状态的评估方法、系统、设备和存储介质
JP3637412B2 (ja) 時系列データ学習・予測装置
TWI663510B (zh) 設備保養預測系統及其操作方法
JP7201844B2 (ja) グラディエントベースのセンサ識別を利用した障害予測
JP2007249997A (ja) 工業プロセスの監視方法及び監視システム
JP3567073B2 (ja) 時系列データ予測方法および装置
GB2142758A (en) Method and system for diagnosing a thermal power plant system
Cross et al. Model-based and fuzzy logic approaches to condition monitoring of operational wind turbines
CN110688617B (zh) 风机振动异常检测方法及装置
CN110597235A (zh) 一种通用智能故障诊断方法
CN115236469B (zh) 一种无人值守变电站在线监控方法、系统、介质及设备
EP3703250A1 (en) Servo driver and state change detecting method
WO2021127646A1 (en) Device and method for monitoring a system
US20080288213A1 (en) Machine condition monitoring using discontinuity detection
EP0633536A1 (en) Diagnosis method and system for predictive machine maintenance
CN115327990A (zh) 一种基于ai的电气设备状态监测预警模型及其方法
KR20050031809A (ko) 센서 퓨징을 이용한 무인 이동체의 위치 추정 방법 및 장치
JP2007108107A (ja) 設備診断装置
CN112214911B (zh) 一种电源的健康状态预测方法
CN102830341A (zh) 基于rs-cmac的功率电子电路在线智能故障预测方法
JP3176692B2 (ja) プロセス運用支援システム
JP2645017B2 (ja) プラント診断方法及びその装置

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees