JP3566330B2 - マイクロ波ディジタル伝送システムにおけるi/qチャネル信号の調整装置 - Google Patents

マイクロ波ディジタル伝送システムにおけるi/qチャネル信号の調整装置 Download PDF

Info

Publication number
JP3566330B2
JP3566330B2 JP35179393A JP35179393A JP3566330B2 JP 3566330 B2 JP3566330 B2 JP 3566330B2 JP 35179393 A JP35179393 A JP 35179393A JP 35179393 A JP35179393 A JP 35179393A JP 3566330 B2 JP3566330 B2 JP 3566330B2
Authority
JP
Japan
Prior art keywords
signal
component
phase
digital
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35179393A
Other languages
English (en)
Other versions
JPH06326737A (ja
Inventor
ティッタネン エリッキ
マッティラ ヘイッキ
ラウタバ タピオ
マテロ ヨルマ
オストマン クエル
ハルットゥネン ミッコ
Original Assignee
ノキア モービル フォーンズ リミティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ノキア モービル フォーンズ リミティド filed Critical ノキア モービル フォーンズ リミティド
Publication of JPH06326737A publication Critical patent/JPH06326737A/ja
Application granted granted Critical
Publication of JP3566330B2 publication Critical patent/JP3566330B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • H04L27/364Arrangements for overcoming imperfections in the modulator, e.g. quadrature error or unbalanced I and Q levels
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • H03C3/38Angle modulation by converting amplitude modulation to angle modulation
    • H03C3/40Angle modulation by converting amplitude modulation to angle modulation using two signal paths the outputs of which have a predetermined phase difference and at least one output being amplitude-modulated
    • H03C3/406Angle modulation by converting amplitude modulation to angle modulation using two signal paths the outputs of which have a predetermined phase difference and at least one output being amplitude-modulated using a feedback loop containing mixers or demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2053Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
    • H04L27/206Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers
    • H04L27/2067Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states
    • H04L27/2071Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states in which the data are represented by the carrier phase, e.g. systems with differential coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ベクトル変調システムに関するものであり、さらに具体的にはI/Q変調器を有するベクトル変調システムとその調整技術に関するものである。
【0002】
【従来の技術並びに発明が解決しようとする課題】
ディジタル変調技術を用いたマイクロ波通信では、ベクトルあるいは直角変調を行う信号変調器が必要である。ベクトル変調においては、2つの変調入力信号によって独立に搬送波の同相成分(I成分)と直角成分(Q成分)とが変調される。正しい動作をするためには、変調器のIおよびQチャネルは利得が等しくなるように較正されていなければならない、すなわち平衡している必要がある。また、IおよびQチャネルは正確に90゜の位相差を有していることが、すなわち直交していることが必要である。
【0003】
ベクトル変調器の較正を行う1つの方法として、ネットワークアナライザをRFキャリア入力と、RF変調出力に接続して行う方法がある。IおよびQ変調入力にいろいろなDC電圧を印加し、そのときに得られるRF変調出力の振幅と位相をネットワークアナライザで測定する。これらの測定から、変調器の利得と位相に関する精度を求め、較正を行うことが可能である。しかし、この方法は高価であり、また複雑な技術を必要とし、精度にも限界がある。
【0004】
【課題を解決するための手段】
本発明は、ネットワークアナライザを必要としないベクトル変調器の較正技術と構成とを提供するものである。上記目的を達成するための本発明は、変調されたRF搬送波のIおよびQ成分の相対的な位相を調節するための位相シフト手段を標準的なベクトル変調回路システムに組み込んで用いるようにするものである。また、変調信号の相対振幅を調節するために可変減衰手段をIおよびQ変調システムに備えるようにする。
【0005】
本発明は、IおよびQ変調信号のパワーレベルを測定することによってマイクロ波送信機のIおよびQ位相差を測定する技術を提供するものである。パワーレベルを比較し、較正値をリードオンリメモリに記憶して、誤差の補正を行うのに用いられる。
【0006】
さらに具体的には、誤差補正は、まず、振幅誤差すなわちIおよびQ信号パワー測定値の非平衡値を求め、振幅補正信号を記憶し、次に、パワー測定を位相補正に対して実行し、位相補正信号を記憶することによって達成される。この振幅および位相補正信号を用いてI/Qディジタル入力信号を変化させる。
【0007】
本発明の目的は、振幅および位相誤差をディジタル信号処理によって補正する改良されたベクトル変調器を提供することである。
【0008】
本発明の他の目的は、補正計算値を記憶してこれによって変調器の調整を行う改良されたベクトル変調器を提供することである。
【0009】
本発明のさらに他の目的は、変調器の出力信号のパワーを測定し、これを記憶されている補正値と比較することによって補正信号を生成するベクトル変調器を提供することである。
【0010】
【実施例】
図1は、本発明による改良されたベクトル変調器を示したものである。ベクトル変調器はI/Q変調器とも呼ばれ、セルラ電話などに用いられるマイクロ波送信機に採用されている。ベクトル変調器は、2つの別々の変調信号を搬送波信号の同相成分(I成分)および直交成分(Q成分)として変調を行うものである。図1において、10は、従来技術において普通に用いられている典型的なシステムを示し、このシステムは、第1のディジタル信号(I)をリード14上に生成し、第2のディジタル信号(Q)をリード16上に生成するI/Qエンコーダを含んでいる。リード14上のIディジタル信号は、ディジタル・アナログ変換器(DAC)18によってアナログ信号に変換され、このアナログ信号はベースバンドフィルタ20によって平滑化される。同様に、リード16上のQディジタル信号がディジタル・アナログ変換器(DAC)22によってアナログ信号に変換されてベースバンドフィルタ手段24によって平滑化される。
【0011】
RF搬送波信号が局部発振器26によって生成され、さらに90度パワー分割器手段28によって分割されて、同相I信号成分がリード30に供給され、また+90度直角Q信号成分がリード32に供給される。
【0012】
フィルタ20からリード34に出力されるアナログI成分信号によって、リード30上の搬送波信号のI成分が乗算器36において変調される。同様に、フィルタ24からリード38に出力されるアナログQ成分信号によって、リード32上の搬送波信号のQ成分が乗算器40において変調される。リード42および44上の変調されたIおよびQ搬送波信号は、0度パワー結合器46によって合成され、ベクトル変調されたRF出力信号が生成されてパワー制御ユニット50を通った後にアンテナ48を介して送信される。
【0013】
すでに述べたように、このようなI/Q変調器は当該技術として知られているものである。
【0014】
本発明の原理に従って、アンテナ48から出力されるRF出力信号の選択された周波数における出力パワーが狭帯域パワーメータ52によって測定される。狭帯域パワーメータ52の出力(これについては後にさらに詳細に説明する)が測定プロセッサ54に印加され、ここでIおよびQ信号の任意の振幅および位相誤差に対する所定の補正が算出され、補正信号が、I/Qコーダ12に送られて、変調システムの較正あるいは調整が行われる。
【0015】
このような調整によって、ディジタル移動電話に用いられる直交変調器、すなわちベクトル変調器の振幅を平衡させることが可能である。従来技術においては、この調整はトリマー抵抗器を用いて行われているが、本発明においては、調整はディジタル技術を用いて行われる。ベクトル変調器に用いられるIおよびQ信号は符号化回路によって生成されるディジタル信号であり、従って、これらの信号振幅はディジタル補正信号によって効果的に調整することが可能である。
【0016】
本発明によれば、DAC、フィルタ、ミクサ、および加算回路における利得とIおよびQブランチの差異との両方を補正することができ、また、温度変化によって生じる直交搬送波間の振幅差についても補正することが可能である。
【0017】
振幅調整値は電気的に消去可能なプログラマブル・リード・オンリー・メモリ(EEPROM)などのメモリ回路に記憶することができる。
【0018】
誤差補正の調整処理は、まず最初にI信号成分およびQ信号成分のパワーレベルをデフォルトのI/Q座標(0、±1、±√2)に対して測定する。次に補正項をIおよびQ座標に加えると、その結果として得られるベクトルが、位相誤差を除いて補正される。位相誤差(90゜−I成分とQ成分との間の実際の位相差)が1゜変化するごとに誤差ベクトルは例えば以下に示すようになる。
Figure 0003566330
【0019】
パワーレベルの差異が小さくなってくると、位相誤差は向きが逆となり、先の例は次のようになる。
Figure 0003566330
【0020】
狭帯域パワーメータ52からのパワーレベル測定情報はデータバスを介してデータプロセッサ54に送られる。
【0021】
図1に示したシステムにおいては、ベクトル変調部10は、既知の符号化・ベクトル変調技術、および既知の送信音声信号処理段を用いている。音声符号化IおよびQ信号成分は、0から1へ、および1から0への遷移からなっているが、これらはそれぞれディジタル・アナログ変換器(DAC)18および22へ供給され、ここで広帯域アナログ信号が生成されて、ベースバンドフィルタ20および24に供給される。ベースバンドフィルタ20および24からの出力は、リード30および32の搬送波信号のIおよびQ成分を変調するのに用いられる。
【0022】
なお、用いている変調方法は当該技術において、π/4シフト符号化直交位相シフトキーイングとして知られているものである。
【0023】
π/4シフト符号化直交位相シフトキーイング技術においては、搬送波の変調はコサイン成分とサイン成分とからなっている。信号ベクトルのコサイン成分は同相信号すなわちI信号であり、信号ベクトルのサイン成分は直交信号、すなわちQ信号である。
【0024】
IおよびQ信号ベクトル成分は搬送波信号のIおよびQ成分と混合され、さらに足し合わされて送信信号が生成される。信号ベクトルの位相シフトであるベクトル成分IおよびQを表す信号の生成が、搬送波の位相シフトが±3π/4ラジアンだけ生じるように信号ベクトルのシフトを行うことによってなされる。各位相シフト(−3π/4、+3π/4、+π/4、−π/4)によって、取り得る4つの信号の1つが符号化される。
【0025】
この変調方式は、図3に示した位相配置を用いている。なお、この配置にはグレーコードが用いられていることに注意すべきである。すなわち、隣接する信号位相に対応する2つの双ビット符号は1つのビットのみが変わる。雑音によって起こり得るエラーのほとんどは、誤って隣接の位相を選択してしまうことになるものであり、そのため、ほとんどの双ビット符号エラーは、シングルビットエラーのみ含んでいる。
【0026】
【外1】
Figure 0003566330
【0027】
π/4変調においては、情報は差分符号化されて、すなわち符号は絶対位相としてではなく位相変化として伝送される。図4は差分符号化を示すブロック図である。変調器に入力された2進データストリームbはシリアル・パラレル変換器によって2つの別々の2進ストリーム(X)および(Y)に変換される。ストリームbのビット1から始まって、時間的な順番で奇数番目のビットがストリームXを形成し、偶数番目のビットがYを形成する。
【0028】
ディジタルデータ列(X)および(Y)は以下に示す式に従って(I)および(Q)に符号化される。
Figure 0003566330
ここで、Ik−1 およびQk−1 は直前のパルス時点における振幅であり、またkはビット対のインデックスである。また、位相変換Δφは次の表に示したように定まる。
Δφ
1 1 −3π/4
0 1 3π/4
0 0 π/4
1 0 −π/4
【0029】
図4において、差分位相符号化手段からの出力信号IおよびQは5つの値、0、±1、±1/√2のうちのいずれかの値をとることができ、その結果として図3に示したような配置となる。
【0030】
図1のI/Q符号器12からのパルスIおよびQはDAC18およびDAC22によってアナログ信号に変換されてIおよびQベースバンドフィルタ20および24の入力端子に印加される。ベースバンドフィルタは線形な位相特性を有し、また以下の式に示すような周波数のコサインの1/2乗の応答特性を有している。
【0031】
【数1】
Figure 0003566330
ここで、Tは符号周期であり、また、ロールオフ係数aによって遷移帯域が定まる。
【0032】
この結果、図1のパワー結合器46から送信される信号s(t)は次のようになる。
s(t)=Σg(t−nT)cosφcosωt−Σg(t−nT)sinφsinω
ここで、g(t)はパルス形状関数であり、ωは搬送波角周波数である。また、Tは符号周期、φは第n番目の符号区間に対応する絶対位相である。
【0033】
また、差分符号化の結果として得られるφは次のようになる。
φ = φn−1 + Δφ
【0034】
なお、先に引用した位相表に指定されたs(t)を生成するのであれば、どのような方法を用いてもよい。
【0035】
本発明によるI/Q調整の処理手順の例を以下に示す。
1.初期送信機設定
−モード:ディジタル
−チャネル 300 (Fo =834MHz)
−TXパワーレベル 0
−AFCを前回のアナログ調整AFC値に設定
−位相補正値を開始時にプロセッサにロードする
−振幅補正値を開始時にプロセッサにロードする
−振幅レベル値を開始時にプロセッサにロードする
−連続送信 オン
−変調符号 1チェイン
【0036】
2.測定:
−アンテナコネクタに接続された2.5kHzフィルタパワーメータを用いて狭帯域RFパワーを測定する
【0037】
3.ローカル・シーケンス
−変調器調整
−以下に対して補正値を設ける
−振幅レベル
−振幅補正
−位相補正
−連続送信
【0038】
4.調節
1.スケール係数を設定(36.0dBm)
2.振幅
Fo −9.1125kHzおよびFo +9.1125kHzの搬送波周波数のパワーレベルを測定する。これらのパワーレベルを比較する。このとき、SSB減衰(レベル差)が可能な限り大きくなければならない(Fo −9.1125kHzのレベルの方が大きい)。調節を行い振幅補正値をロード。測定を反復実行。これを最大のSSB減衰が得られるまで繰り返す。値を測定プロセッサのEEPROMに保存する。
3.位相補正
SSB減衰を2.に説明したようにして実行。調節を行い、位相補正の新しい値をロードして上記2つの周波数について測定を繰り返す。位相補正値は最大のSSB減衰が達成されるまで調節を行う。これらの2つの補正SSB減衰値は32dB以上でなければならない。値を測定プロセッサのEEPROMに記憶する。
4.変調器出力レベル
振幅レベル値を減少し、送信機ユニットにロードしてRFパワーを測定する(BW>30kHz)。これを、RFパワーが36.0dBmよりも0.5dBmだけ下がる(35.5dBm)まで反復する。このレベルが達成されたら、2つの補正レベル(IおよびQ)を乗算器で増大する(ITXおよびQTX信号振幅の1.5dBの増大に対応)。スケール係数をEEPROMに記憶する。
【0039】
通常の送信機のパワー制御の拡張として、出力パワーをIおよびQ信号の振幅を用いて調整することも可能である。これは、パワー制御幅が狭すぎるときには必要である。
【0040】
構成部品のばらつきと、温度変化によって、出力パワーの上限および下限においてパワー制御ができなくなる可能性があるが、本発明を用いることによってこの問題を解決することが可能である。
【0041】
生産時において、パワー制御幅位置は、IおよびQ振幅を用いて調整される。このような調整を行うことによって、構成部品のばらつきに起因するパワー制御幅位置のばらつきが補正される。
【0042】
生産時調整の後に、システムが移動電話において用いられているときに、もし温度あるいは経時変化によってTXパワー制御ができなくなった場合には、出力パワーの調整をIおよびQ振幅を用いて行うことができる。
【0043】
【発明の効果】
以上に説明したように、本発明の改良されたベクトル変調器においては、ディジタル信号処理によって位相が補正される。また記憶された演算値を用いて調整が行われる。また、位相誤差補正信号は、変調器出力のパワーレベルを測定することによって求められる。
【0044】
以上に本発明を、好適な実施例について具体的に説明したが、本発明の範囲と精神から逸脱することなく、構成および詳細を変更することが可能であることは当業者には明らかなことであろう。
【図面の簡単な説明】
【図1】本発明の原理に基づいて位相補正を行うベクトル変調システムを示した概略ブロック図である。
【図2】位相誤差がベクトル変調器のIおよびQ信号成分に対して与える影響を示した図である。
【図3】位相配置について示したものであり、本発明の説明に供するための図である。
【図4】本発明の実施例において用いられる差分符号器を示した概略ブロック図である。
【符号の説明】
10…ベクトル変調回路部
12…I/Q符号化回路
18、22…D/A変換回路
20、24…フィルタ
26…局部発振器
28…パワー分割器
48…アンテナ
50…パワー制御ユニット
52…パワーメータ
54…測定プロセッサ

Claims (7)

  1. データ信号の同相I成分であるディジタル信号およびデータ信号の直交Q成分であるディジタル信号を供給するためのI/Qディジタル符号化手段と、ディジタルIおよびQデータ信号をアナログIおよびQデータ信号に変換するためのディジタル・アナログ変換器手段と、同相Iアナログデータ信号成分のためのベクトル経路および直交Qアナログデータ信号成分のためのベクトル経路と、搬送波信号の同相I成分をI成分アナログデータ信号によって変調し搬送波信号の直交Q成分をQ成分アナログデータ信号によって変調するための変調手段と、IおよびQ変調搬送波信号成分を1つの信号に結合するための手段と、上記結合されたIおよびQ変調搬送波信号を送信するためのアンテナ手段と、を具備した型のベクトル変調システムにおいて、該ベクトル変調システムが調整手段を有しており、該調整手段が、
    上記アンテナからの上記の結合されたIおよびQ変調搬送波信号の選択された周波数における出力パワーを測定し、上記変調I搬送波信号成分と変調Q搬送波信号成分との間の振幅差および位相差を供給するためのパワーメータ手段と、
    上記パワーメータ手段に応答して上記IおよびQ変調搬送波信号成分の振幅誤差に対応する振幅補正信号を生成する手段、および、上記パワーメータ手段に応答して上記IおよびQ変調搬送波信号成分の位相誤差に対応する位相補正信号を生成する手段と、
    上記振幅補正信号および上記位相補正信号とから導出されたディジタル誤差補正信号を上記I/Qディジタル符号化手段に供給することによって上記振幅差および位相差を補正するための手段と、
    を具備し、
    上記パワーメータ手段が、第1の周波数値および第2の周波数値における上記出力パワーを測定し、上記パワーメータ手段に応答して振幅補正信号を生成する上記手段が、上記第1の周波数と上記第2の周波数の上記出力パワーの振幅レベルを比較し、上記比較に応じて上記振幅補正信号を生成して上記I/Q符号化手段からの上記ディジタル信号を調節し上記第1の周波数と上記第2の周波数の上記出力パワー間で最大達成可能な振幅レベル差が生じるようにされているベクトル変調システム。
  2. 上記調整手段がさらに、振幅補正値および位相補正値を記憶するメモリ記憶装置を有するプロセッサ手段を含み、上記プロセッサ手段が、上記パワーメータ手段に応じて生成された上記振幅補正信号に応答して、上記の記憶された振幅補正値を上記の測定された出力パワーから上記振幅補正信号に対応する新しい値に調節するようにされている請求項1に記載のベクトル変調システム。
  3. 上記プロセッサ手段が、上記パワーメータ手段に応じて生成された上記位相補正信号にも応答して、上記の記憶された位相補正値を上記の測定された出力パワーから上記位相補正信号に対応する新しい値に調節するようにされている請求項2に記載のベクトル変調システム。
  4. 上記の新しい振幅補正値および位相補正値が上記誤差補正信号の上記I/Qディジタル符号化手段に印加されて上記ディジタル信号を調節するようにされている請求項3に記載のベクトル変調システム。
  5. 上記振幅誤差および位相誤差によって上記I信号成分とQ信号成分との間に90度以外の位相差が生じたとき、上記I/Qディジタル符号化手段に印加された上記振幅成分値および位相成分値によって上記ディジタル信号が調節されて、上記I信号成分とQ信号成分との間に90度の位相差が得られるようにされている請求項4に記載のベクトル変調システム。
  6. 上記振幅補正信号の後に、上記パワーメータ手段からの上記第1の周波数と上記第2の周波数の上記出力パワー間の比較に応じて、上記位相補正信号が生成され、上記I/Q符号化手段からの上記ディジタル信号を調節することによって、上記第1の周波数と上記第2の周波数の上記出力パワー間の差異がさらに大きな達成可能最大振幅レベル差となるようにされている請求項1に記載のベクトル変調システム。
  7. データ信号の同相I成分であるディジタル信号およびデータ信号の直交Q成分であるディジタル信号を供給するためのI/Qディジタル符号化手段と、ディジタルIおよびQデータ信号をアナログIおよびQデータ信号に変換するためのディジタル・アナログ変換器手段と、同相Iアナログデータ信号成分のためのベクトル経路および直交Qアナログデータ信号成分のためのベクトル経路と、搬送波信号の同相I成分をI成分アナログデータ信号によって変調し搬送波信号の直交Q成分をQ成分アナログデータ信号によって変調するための変調手段と、IおよびQ変調搬送波信号成分を1つの信号に結合するための手段と、上記結合されたIおよびQ変調搬送波信号を送信するためのアンテナ手段と、を具備した型のベクトル変調システムであって、
    第1及び第2の搬送波周波数のパワーレベルを測定して比較し、SSB減衰が可能な限り大きくなるように調節を行って振幅補正値をロードした後に、最大のSSB減衰が達成されるまで調節を行って位相補正値をロードする調整手段、を具備することを特徴とするベクトル変調システム。
JP35179393A 1993-03-24 1993-12-29 マイクロ波ディジタル伝送システムにおけるi/qチャネル信号の調整装置 Expired - Fee Related JP3566330B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US036631 1993-03-24
US08/036,631 US5371481A (en) 1993-03-24 1993-03-24 Tuning techniques for I/Q channel signals in microwave digital transmission systems

Publications (2)

Publication Number Publication Date
JPH06326737A JPH06326737A (ja) 1994-11-25
JP3566330B2 true JP3566330B2 (ja) 2004-09-15

Family

ID=21889712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35179393A Expired - Fee Related JP3566330B2 (ja) 1993-03-24 1993-12-29 マイクロ波ディジタル伝送システムにおけるi/qチャネル信号の調整装置

Country Status (4)

Country Link
US (1) US5371481A (ja)
EP (1) EP0617532B1 (ja)
JP (1) JP3566330B2 (ja)
DE (1) DE69431215T2 (ja)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5423082A (en) * 1993-06-24 1995-06-06 Motorola, Inc. Method for a transmitter to compensate for varying loading without an isolator
GB2281830B (en) * 1993-09-11 1998-08-12 Nokia Mobile Phones Ltd I/q-modulator and i/q-demodulator
GB2282287B (en) * 1993-09-25 1998-01-28 Nokia Mobile Phones Ltd A mixer
US5574992A (en) * 1994-04-29 1996-11-12 Motorola, Inc. Method and apparatus for reducing off-channel interference produced by a linear transmitter
JPH0832462A (ja) * 1994-07-15 1996-02-02 Uniden Corp カーテジアンループのdcオフセット回路
DE4430679C1 (de) * 1994-08-29 1995-12-21 Dataradio Eng & Consult Verfahren und Vorrichtung zur Entzerrung von Signalpaaren
US5668842A (en) * 1995-02-28 1997-09-16 Hughes Aircraft Company High-speed digital-to-RF-converter
FI98177C (fi) 1995-06-01 1997-04-25 Nokia Mobile Phones Ltd Menetelmä ja piirijärjestely häiriöllisen signaalin käsittelemiseksi
FI98673C (fi) * 1995-08-07 1997-07-25 Nokia Telecommunications Oy Automaattinen radiolähettimen viritys
EP0760567A3 (de) * 1995-08-30 2000-09-06 Siemens Aktiengesellschaft Digitaler QAM-modulator
FR2739239B1 (fr) * 1995-09-27 1997-11-14 Alcatel Telspace Dispositif de correction d'un defaut de quadrature d'un modulateur en quadrature et/ou d'un demodulateur d'un signal a pluralite d'etats de phase, emetteur et recepteur correspondants
US5995541A (en) * 1995-10-13 1999-11-30 Philips Electronics North America Corporation Method and apparatus for self-calibration and testing of ZPSK transmitter/receiver IC's
JP3336860B2 (ja) * 1996-05-31 2002-10-21 安藤電気株式会社 変調精度の調整装置
US5705949A (en) * 1996-09-13 1998-01-06 U.S. Robotics Access Corp. Compensation method for I/Q channel imbalance errors
FR2755335B1 (fr) 1996-10-24 1998-11-27 Alsthom Cge Alcatel Estimateur du defaut de balance d'un modulateur en quadrature et etage de modulation l'utilisant
GB2320864B (en) 1996-12-31 2001-07-11 Nokia Mobile Phones Ltd Signal Offset Elimination
JP3570843B2 (ja) * 1997-03-21 2004-09-29 日本電気エンジニアリング株式会社 位相変調器
FI105377B (fi) 1997-05-29 2000-07-31 Nokia Mobile Phones Ltd Menetelmä kahden rinnakkaisen kanavan koodijakoiseksi lähettämiseksi sekä menetelmän toteuttava radiolaite
US6618096B1 (en) * 1997-09-29 2003-09-09 Scientific-Atlanta, Inc. System and method for adaptively balancing quadrature modulators for vestigial-sideband generation
FI104133B (fi) 1997-11-28 1999-11-15 Nokia Mobile Phones Ltd Koodaus- ja modulointimenetelmä ja laite sen soveltamiseksi
FI106607B (fi) 1998-01-07 2001-02-28 Nokia Mobile Phones Ltd Solun valinta usean modulaation solukkoradiojärjestelmässä
US6298094B1 (en) * 1998-03-30 2001-10-02 Motorola, Inc. Method and apparatus for power control in a transmitter
US6198419B1 (en) * 1998-06-17 2001-03-06 Lucent Technologies, Inc. Method and apparatus for extending the spurious free dynamic range of a digital-to-analog converter
FI981518A (fi) 1998-07-01 2000-01-02 Nokia Mobile Phones Ltd Tiedonsiirtomenetelmä ja radiojärjestelmä
FI106491B (fi) 1998-08-12 2001-02-15 Nokia Mobile Phones Ltd Menetelmä ja laitteisto radiorajapinnan datanopeuden saumattomaksi muuttamiseksi piirikytketyssä välityksessä
WO2000048312A1 (de) * 1999-02-11 2000-08-17 Siemens Aktiengesellschaft Verfahren und anordnung zur leistungsregelung eines sendeverstärkers
US6512800B1 (en) * 1999-03-12 2003-01-28 Lucent Technologies Inc. Method and system for correcting phase and amplitude imbalances of a quadrature modulated RF signal
US6265949B1 (en) * 1999-12-22 2001-07-24 Lg Information & Communications, Ltd. Phase compensation apparatus and method for a digital modulator
US6421398B1 (en) 2000-01-28 2002-07-16 Alcatel Canada Inc. Modulation system having on-line IQ calibration
US6421397B1 (en) * 2000-01-28 2002-07-16 Alcatel Canada Inc. Modulation system having on-line IQ calibration
US6671336B1 (en) * 2000-05-16 2003-12-30 Motorola, Inc. Gain controller for circuit having in-phase and quadrature channels, and method
US7065154B2 (en) * 2000-12-29 2006-06-20 Nokia Corporation Baseband predistortion method for multicarrier transmitters
US6745015B2 (en) 2001-02-08 2004-06-01 Motorola, Inc. Method for automatic carrier suppression tuning of a wireless communication device
DE50114010D1 (de) * 2001-06-14 2008-07-17 Alcatel Lucent Verfahren und Vorrichtung zur Vorverzerrung eines Sendesignals
DE10132587A1 (de) * 2001-07-05 2002-11-14 Infineon Technologies Ag Sendeanordnung mit Leistungsregelung
US7251290B2 (en) * 2002-12-16 2007-07-31 Nortel Networks Limited Adaptive controller for linearization of transmitter
US7333557B2 (en) * 2002-12-16 2008-02-19 Nortel Networks Limited Adaptive controller for linearization of transmitter with impairments
US6768390B1 (en) * 2003-04-02 2004-07-27 Agilent Technologies, Inc. System and method for generating balanced modulated signals with arbitrary amplitude and phase control using modulation
US7038465B2 (en) * 2003-04-02 2006-05-02 Agilent Technologies, Inc. System and method for calibrating balanced signals
US6907025B2 (en) * 2003-06-06 2005-06-14 Interdigital Technology Corporation Adjusting the amplitude and phase characteristics of transmitter generated wireless communication signals in response to base station transmit power control signals and known transmitter amplifier characteristics
NO321303B1 (no) * 2003-08-20 2006-04-24 Nera Asa Adaptiv ubalansekorrigering i en kvadraturmodulator
KR100602642B1 (ko) * 2004-01-30 2006-07-19 삼성전자주식회사 무선 기지국 시스템에서의 위상 에러 보정장치 및 그 방법
US20080146168A1 (en) * 2004-02-09 2008-06-19 Sige Semiconductor Inc. Methods of Enhancing Power Amplifier Linearity
US7177772B2 (en) * 2004-05-25 2007-02-13 Texas Instruments Incorporated System and method for generating and measuring noise parameters
US7564893B2 (en) * 2005-03-22 2009-07-21 Agilent Technologies, Inc. Test system and method for parallel modulation error measurement of transceivers
US8498590B1 (en) 2006-04-04 2013-07-30 Apple Inc. Signal transmitter linearization
US8886341B1 (en) 2006-04-04 2014-11-11 Microsoft Corporation Adaptive sample-by-sample controller for under-determined systems
US8995502B1 (en) 2006-04-04 2015-03-31 Apple Inc. Transceiver with spectral analysis
US7796960B1 (en) 2006-04-04 2010-09-14 Nortel Networks Limited Signal transmitter linearization
US7944984B1 (en) * 2006-04-11 2011-05-17 Marvell International Ltd. I/Q calibration in the presence of phase offset
US7865160B2 (en) * 2006-06-27 2011-01-04 Motorola Mobility, Inc. Mixed mode power measurement calibration and reporting in wireless communication networks
US7567782B2 (en) * 2006-07-28 2009-07-28 Freescale Semiconductor, Inc. Re-configurable impedance matching and harmonic filter system
US8478222B2 (en) * 2007-01-05 2013-07-02 Qualcomm Incorporated I/Q calibration for walking-IF architectures
US7852969B2 (en) * 2007-07-30 2010-12-14 Mitutoyo Corporation System and method for dynamic calibration of a quadrature encoder
JP5070993B2 (ja) * 2007-08-27 2012-11-14 富士通株式会社 音処理装置、位相差補正方法及びコンピュータプログラム
US20090079497A1 (en) * 2007-09-21 2009-03-26 Nanoamp Solutions, Inc. (Cayman) Phase tuning techniques
JP2018040624A (ja) * 2016-09-06 2018-03-15 三菱電機株式会社 送信機、集積回路、検出部および集積回路の試験方法
JP6742510B2 (ja) 2016-12-21 2020-08-19 パナソニック株式会社 無線周波数電磁エネルギー供給の方法、システム、および装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700151A (en) * 1985-03-20 1987-10-13 Nec Corporation Modulation system capable of improving a transmission system
GB2213006B (en) * 1987-11-27 1992-01-29 Stc Plc Correction of rf errors in quadrature channels of a zero-if transmitter
FI81704C (fi) * 1989-04-11 1990-11-12 Telenokia Oy Kvadraturmodulator.
US5021753A (en) * 1990-08-03 1991-06-04 Motorola, Inc. Splatter controlled amplifier
JP2887987B2 (ja) * 1991-10-23 1999-05-10 日本電気株式会社 ディジタル変調回路

Also Published As

Publication number Publication date
DE69431215D1 (de) 2002-10-02
EP0617532A1 (en) 1994-09-28
JPH06326737A (ja) 1994-11-25
US5371481A (en) 1994-12-06
DE69431215T2 (de) 2003-04-24
EP0617532B1 (en) 2002-08-28

Similar Documents

Publication Publication Date Title
JP3566330B2 (ja) マイクロ波ディジタル伝送システムにおけるi/qチャネル信号の調整装置
CA2240630C (en) Digital calibration of a transceiver
US5193223A (en) Power control circuitry for a TDMA radio frequency transmitter
US7457586B1 (en) Method of in-device phase measurement and correlation to programmable factors
US7469017B2 (en) Multimodulation transmitter
US5767750A (en) Modulator
US5351016A (en) Adaptively self-correcting modulation system and method
US20040264583A1 (en) Electromagnetic wave transmitter, receiver and transceiver systems, methods and articles of manufacture
KR20070024756A (ko) 무선 송수신장치에서 자가 보상장치 및 방법
JPH0777388B2 (ja) 偏移制御を有するデ−タ周波数変調器
CN100530938C (zh) 宽带调制pll、定时误差校正系统、方法和调整方法
JPH05252212A (ja) ディジタル無線変調器
JP3852938B2 (ja) 広帯域変調pllおよびその変調度調整方法
US7346100B2 (en) Estimating gain and phase imbalance in upconverting transmitters
US6034573A (en) Method and apparatus for calibrating modulation sensitivity
JP2004518382A (ja) 2点変調を有するトランシーバのトリミング法
US7243037B2 (en) Signal processing device, use of the signal processing device and method for signal processing
JPH0879320A (ja) 定包絡線形多相位相変調器
JP3349112B2 (ja) オフセット調整方法およびオフセット調整装置
JP2927164B2 (ja) 位相変調器
AU7056094A (en) Self-adjusting modulator
KR19980036822A (ko) 정진폭특성을 갖는 쌍직교진폭변조방법 및 그 장치
Suzuki et al. Design of quadrature modulator for digital FM signaling with digital signal processing
WO1995034126A1 (en) Self-adjusting modulator
JPH06284013A (ja) デジタル変調器

Legal Events

Date Code Title Description
A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20031225

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees