JP3563949B2 - プラズマ処理方法 - Google Patents

プラズマ処理方法 Download PDF

Info

Publication number
JP3563949B2
JP3563949B2 JP36522297A JP36522297A JP3563949B2 JP 3563949 B2 JP3563949 B2 JP 3563949B2 JP 36522297 A JP36522297 A JP 36522297A JP 36522297 A JP36522297 A JP 36522297A JP 3563949 B2 JP3563949 B2 JP 3563949B2
Authority
JP
Japan
Prior art keywords
moving average
sampling
period
plasma
average value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36522297A
Other languages
English (en)
Other versions
JPH11186239A (ja
Inventor
進 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP36522297A priority Critical patent/JP3563949B2/ja
Priority to KR10-1998-0056094A priority patent/KR100423195B1/ko
Priority to US09/215,165 priority patent/US6231774B1/en
Publication of JPH11186239A publication Critical patent/JPH11186239A/ja
Application granted granted Critical
Publication of JP3563949B2 publication Critical patent/JP3563949B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32926Software, data control or modelling

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Plasma Technology (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,プラズマ処理方法に関する。
【0002】
【従来の技術】
従来,半導体製造装置の分野においては,各種プラズマ源を用いたプラズマ処理装置の構成が提案されている。その内の一つに,処理室内に対向配置された上部電極と下部電極との間に電界を形成し,その電界により処理室内に導入された処理ガスをプラズマ化して,被処理体に対して所定のプラズマ処理を施すことが可能なプラズマ処理装置がある。さらに,上記プラズマ処理装置の中には,処理室内に回転磁界を形成可能な磁石を備えた,いわゆる磁場アシスト型のプラズマ処理装置がある。かかる構成を採用することにより,処理室内に形成された磁界によりプラズマ中の電子をトラップし,処理ガス粒子との衝突回数を増加させて,高密度プラズマを励起することが可能となり,さらに磁界を回転させることにより,プラズマ密度を均一化させ,高速かつ均一なプラズマ処理を実現することが可能である。
【0003】
ところで,エッチングなどのプラズマ処理工程においては,プラズマ処理の終了時点を正確に判定して,プラズマ処理を遅滞なく終了することが重要である。そして,従来,処理室内のプラズマ中に含まれる特定物質のスペクトラム光の変化を検出し,その変化に基づいて終点検出を行う方法が提案されている。かかる方法は,被処理体に対するエッチングの進行とともにプラズマ中に含まれる成分も変化することに着目し,ある特定物質のスペクトラム光の強度変化を観測することにより,エッチング処理の終点を正確に実時間で検出しようとするものである。
【0004】
しかし,上述のような磁場アシスト型プラズマ処理装置では,処理室内に形成される磁界方向に応じて,プラズマ中に密度の異なる領域が形成されるが,磁界の回転に応じて,プラズマの密度分布も変動してしまう。そのため,例えば,処理室の一壁に設けられた検出窓などから,プラズマ光を定点観測する場合には,回転磁界に従うプラズマの変動も考慮に入れる必要がある。
【0005】
そのため,例えば,特開平4−338663号公報においては,磁石の回転と同期してパルスを発生するロータリエンコーダをエッチング装置に設けて,そのパルスに応じてプラズマ光をサンプリングして,磁石の回転周期に伴うノイズ成分を除去し,正確な終点検出を行おうとする技法が開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら,上記のようにハードウェア的に磁石の回転周期を求め,その回転周期に応じてサンプリングを行う構成では,ロータリエンコーダなどの装置を処理装置に付加せねば成らず,装置構成が複雑となるとともに,装置のイニシャルコストを押し上げるという問題があった。
【0007】
また,上記のようにハードウェア的に磁石の回転周期を求め,その回転周期に応じてサンプリング行う構成では,サンプリング周期はその都度変動する変動周期である。しかし,終点検出用の信号処理ソフトウェアによって,サンプリング周期として固定周期を使用した方が効率的な処理を行える場合や,さらには固定周期を要求するようなものある。しかし,上記構成では,そのようなソフトウェア側の要求に柔軟に対応することができないという問題があった。
【0008】
【課題を解決するための手段】
上記課題を解決するため,本発明の第1の観点によれば処理ガスが導入された真空容器内に電界を形成して,未知の変動周期で変動するプラズマを生成し,真空容器内に配された被処理体に対してプラズマ処理を施すプラズマ処理方法において,プラズマのプラズマ光を一定のサンプリング周期でサンプリングし,サンプリング信号のデータ列を求める工程と,サンプリング信号のデータ列から複数の移動平均値算出期間における移動平均値を算出し,各移動平均値に対応する複数のデータ列を求める工程と,各移動平均値のデータ列からそれぞれに対応する複数の近似式を求める工程と,所定期間における各移動平均値のデータ列と各移動平均値のデータ列に対応する各近似式との変位量をそれぞれ求める工程と,各変位量の中から最小の変位量を求める工程と,最小の変位量に対応する移動平均値算出期間をプラズマの変動周期と判定する工程とを含むことを特徴とするプラズマ処理方法が提供される。
【0009】
さらに本発明の別の目的は,相対的に間隔の広いサンプリング周期によるサンプリング信号から疑似サンプリング信号を作ることにより,実際にサンプリングする実サンプリング回数を増やすことなく,相対的に少ない演算量で,あたかも実サンプリング回数を増やしたかのようなより正確な移動平均値を求めることが可能な,新規かつ改良されたプラズマ処理方法を提供することである。
【0010】
【課題を解決するための手段】
上記課題を解決するため,本発明の第1の観点によれば,請求項1に記載の発明のように,処理ガスが導入された真空容器内に電界を形成して,未知の変動周期で変動するプラズマを生成し,真空容器内に配された被処理体に対してプラズマ処理を施すプラズマ処理方法において,プラズマのプラズマ光を一定のサンプリング周期でサンプリングし,サンプリング信号のデータ列を求める工程と,サンプリング信号のデータ列から複数の移動平均値算出期間における移動平均値を算出し,各移動平均値に対応する複数のデータ列を求める工程と,各移動平均値のデータ列からそれぞれに対応する複数の近似式を求める工程と,所定期間における各移動平均値のデータ列と各移動平均値のデータ列に対応する各近似式との変位量をそれぞれ求める工程と,各変位量の中から最小の変位量を求める工程と,最小の変位量に対応する移動平均値算出期間をプラズマの変動周期と判定する工程とを含むことを特徴とするプラズマ処理方法が提供される。
【0011】
かかる構成によれば,一定のサンプリング周期でプラズマ光のサンプリングをした場合であっても,各処理ごとに変化する可能性があるプラズマの変動周期を,ソフトウェア的な統計演算処理のみで算出することができる。従って,特段のハードウェア装置を付加せずとも,各処理ごとにプラズマの変動周期を正確に求めることができる。
【0012】
また,例えば上記移動平均値算出期間の最大値を,予想される変動周期の上限値とし,移動平均値算出期間の最小値を,予想される変動周期の下限値とすることにより,予想される変動周期の全範囲からプラズマの変動周期を求めることができ,その変動周期を正確かつ確実に判定することができる。
【0013】
さらに,上記移動平均値算出期間は,任意に設定することが可能であり,例えば一定のサンプリング周期の整数倍に限定されない。すなわち,本発明によれば,プラズマの変動周期がサンプリング周期の整数倍でない場合であっても,ソフトウェア的にプラズマの変動周期を判定することができる。すなわち,プラズマの変動周期がサンプリング周期の整数倍でない場合であっても,サンプリング周期の整数倍ではない時刻における移動平均値の算出対象となるデータは,時刻の直前と直後のサンプリング信号のデータから疑似サンプリングデータとして算出することができるので,その疑似サンプリングデータに基づいて,プラズマの変動周期をソフトウェア的に求めることができる。
【0014】
さらに,所定期間にわたる各移動平均値のデータ列と各移動平均値のデータ列に対応する各近似式との変位量をそれぞれ求めるにあたっては,例えばその所定期間を予想される変動周期の上限値以上とすれば,プラズマの変動周期を判定するために必要な複数の変位量を全て求めることができる。
【0015】
また,上記課題を解決するため,本発明の第2の観点によれば,処理ガスが導入された真空容器内に電界を形成して,既知の変動周期で変動するプラズマを生成し,真空容器内に配された被処理体に対してプラズマ処理を施すプラズマ処理方法において,プラズマのプラズマ光を一定のサンプリング周期でサンプリングし,サンプリング信号のデータ列を求める工程と,サンプリング信号のデータ列から移動平均値算出期間の移動平均値を算出し,移動平均値のデータ列を求める工程と,移動平均値のデータ列からプラズマ処理の終点を判定する工程とを含み,さらに移動平均値算出期間は,サンプリング周期の整数倍に限定されないことを特徴とするプラズマ処理方法が提供される。
【0016】
かかる構成によれば,一定のサンプリング周期でプラズマ光のサンプリングをした場合であっても,各処理ごとに変化する可能性があるプラズマの変動周期を算出し,その変動分を補償した上で,プラズマ処理の終点をすることができる。従って,特段のハードウェア装置を付加せずとも,ソフトウェア的な処理のみで,各処理ごとに変動するプラズマ処理の終点を正確に求めることができる。
【0017】
また,サンプリング周期の整数倍ではない時刻における移動平均値の算出対象となるデータは,例えば時刻の直前と直後のサンプリングデータから疑似サンプリングデータとして算出し,その疑似サンプリングデータから移動平均値を算出することができる。
【0018】
さらに,移動平均値を算出するに際し,例えばサンプリングデータを疑似サンプリングデータに対して重み付けするように構成してもよい。移動平均値を算出する際に,プロセスに応じた変動値を適宜補償することが可能となり,終点検出の精度を高めることができる。
【0019】
なお,真空容器内におけるプラズマの変動は,回転磁界によって生じることがあるが,このような回転磁界が存在する場合に,特に本発明を好適に適用することができる。
【0020】
【発明の実施の形態】
以下に,添付図面を参照しながら,本発明にかかるプラズマ処理方法をエッチング処理の終点判定方法に適用した実施の一形態について詳細に説明する。
【0021】
まず,かかる終点判定方法を適用可能なエッチング装置100の装置構成について,図1を参照しながら説明する。
【0022】
エッチング装置100の処理室102は,導電性の真空容器104内に形成されている。処理室102内には,サセプタを構成する導電性の下部電極106と,接地された導電性の上部電極108が対向配置されている。下部電極106上には,処理時に,被処理体,例えば半導体ウェハ(以下,「ウェハ」と称する。)Wを載置固定することができる。また,下部電極106には,整合器116を介して高周波電源118が接続されており,処理時には,演算制御器120からの制御信号に応じて所定出力の高周波電力を印加可能である。
【0023】
また,処理室102には,処理室102内に所定の処理ガスを供給するガス供給管124と,処理室102内の雰囲気を排気する排気管126が接続されている。さらに,真空容器104の上方には,処理室102内に所定の回転磁界を形成可能な永久磁石などの磁石128が配置されている。
【0024】
また,処理室102の側壁には検出窓134が形成されており,この検出窓134を透過したプラズマ光が受光部136により検出される。この受光部136は,プラズマ光から特定物質に関する発光スペクトルのみを分光する不図示の分光器や,発光スペクトルの発光強度を検出する不図示の光電変換器や,検出されたアナログ信号をディジタル信号に変換するA/D変換器などを備えており,サンプリングされたデータは適宜演算制御器120に出力される。なお,図示の例では,受光部136は直接プラズマ光を検出構成となっているが,検出窓134と受光部136の間に,例えば光ファイバなどの光伝達手段を介装した構成としても良い。
【0025】
次に,エッチング装置100において,ウェハWに対してエッチング処理を施す場合について説明する。まず,ウェハWを下部電極106に載置して,ガス供給管124から処理室102内に処理ガスを導入するとともに,排気管126から処理室102内の雰囲気を排気して,処理室102内を所定の減圧雰囲気に維持する。次いで,真空容器104上方の磁石128を所定の回転数で回転させ,処理室102内に回転磁界を形成する。
【0026】
しかる後,高周波電源118から下部電極106に高周波電力を印加すると,処理室102内に形成された電界により処理ガスが解離して高密度プラズマPが生成され,所定のエッチング処理がウェハWに施される。さらに,処理室102内に形成された回転磁界によって,プラズマPは所定の回転周期で変動し,密度むらが平均化されて,ウェハWに均一な処理を施すことができる。
【0027】
次に,上述したエッチング装置100に適用される本実施の形態にかかるエッチング処理の終点判定方法について,図2〜図5を参照しながら説明する。かかる終点判定方法は,プラズマの変動(回転)周期判定工程とエッチング処理の終点判定工程から構成されている。変動周期判定工程は,磁石128の回転に応じて変化する磁界の変動周期,すなわちプラズマの変動周期を判定する工程である。また,終点判定工程は,その判定された磁石128の回転周期に基づいて,プラズマの変動に伴って生じたサンプリング信号中のノイズ成分を除去した後,正確な終点判定を行う工程である。以下に,変動周期判定工程(A)と終点判定工程(B)に分けて説明する。
【0028】
(A)変動周期判定工程
まず,図2〜図4を参照しながら回転周期判定工程について説明する。図2には,上記エッチング装置100の受光部136においてサンプリングされたサンプリング信号P(t)の時系列的変化が示されている。図示のように,プラズマ立ち上がり時には,サンプリング信号も不安定に推移するが,プラズマの安定とともにサンプリング信号も安定する。そこで,サンプリング信号が安定した後(図示の例では,時刻a以降)の期間Aにおけるサンプリング信号に基づいて,プラズマの変動周期が求められる。
【0029】
図3は,図2の期間Aにわたるサンプリング信号の推移を拡大して示すものであるが,図示の例では0.1秒間隔でサンプリングが行われているものとする。ここで,処理室102内の磁界の変動周期は,ほぼ磁石128の回転周期に連動しているので,その大凡の周期についてはグローバルに推測することが可能である。例えば,本実施の形態にかかる方法では,プラズマは磁石128の回転周期に応じて3.0〜3.1秒周期で変動しているものとする。
【0030】
したがって,3.0〜3.1秒周期の間において,プラズマの正確な変動周期を例えば0.01秒のオーダーで求めようとする場合には,本来であれば,0.01秒間でサンプリングを行う必要がある。しかし,単純にサンプリング周期を短くしたのでは,サンプリングデータの量がいたずらに増加し,データ処理に時間を要するという問題があった。この点,本実施の形態にかかる方法によれば,0.1秒間隔のサンプリングによっても,0.01秒間隔,あるいはそれ以上に短い間隔でサンプリングを行った場合と同等の精度で,プラズマの変動周期を求めることが可能となる。以下,その方法について詳細に説明する。
【0031】
まず,プラズマが3.0秒周期で変動しているものと仮定する。そして,従来の方法と同様に,サンプリングデータ中に含まれているノイズ成分を除去するために,サンプリングデータの移動平均値H3.00(t)を下記の式(1)に基づいて求める。この場合,移動平均算出期間は,3.0秒である。
Figure 0003563949
【0032】
次いで,プラズマが3.1秒周期で変動しているものと仮定する。そして,先の処理と同様に,サンプリングデータ中に含まれているノイズ成分を除去するために,サンプリングデータの移動平均値H3.10(t)を下記の式(2)に基づいて求める。この場合,移動平均算出期間は,3.1秒である。
Figure 0003563949
【0033】
ここで,上記の場合には,0.1秒のサンプリング周期に対して,移動平均算出期間は,サンプリング周期の整数倍である3.0秒及び3.1秒にそれぞれ設定している。しかしながら,実際のプラズマの変動周期はサンプリング周期の整数倍とは限らない。例えば,実際のプラズマの変動周期が3.03秒であるとすると,その移動平均算出期間は3.03秒であり,0.1秒のサンプリング周期では測定不能であり,移動平均を求めるのであれば,サンプリング周期を0.01秒で行う必要がある。しかしながら,このように,サンプリング周期を細かく設定したのでは,いたずらにデータ量が増えてしまい,処理の効率化を図ることができない。
【0034】
この点,本実施の形態においては,以下に述べるような手順により,0.1秒のサンプリング周期でサンプリングしたデータを,あたかも0.01秒のサンプリング周期でサンプリングしたデータであるかのように疑似し,実際のプラズマの周期変動に即した移動平均を可能にするものである。
【0035】
例えば,プラズマが3.03秒の周期で変動しているものと想定した場合の時刻tにおける移動平均値H3.03(t)は,
Figure 0003563949
で表される式(3)によって求めることができる。なお,式(3)中のS(t−2.9−0.01)や,S(t−2.9−0.02)や,S(t−2.9−0.03)で表されるデータは,実際にサンプリングされたデータではなく,実際にサンプリングされたデータからソフトウェア的に疑似されたデータであるので,本明細書中では疑似サンプリングデータと称することにする。これらの疑似サンプリングデータは,隣接するサンプリング信号のデータ間を直線又は近似曲線で結び,その直線又は近似曲線上における時刻t−2.9−0.01や,時刻t−2.9−0.02や,時刻t−2.9−0.03などの疑似サンプリングタイミングにおける対応値として求めることができる。このように,本明細書においては,疑似サンプリングデータを求めるために想定された時間間隔を疑似サンプリングタイミングと称している。
【0036】
なお,隣接するサンプリング信号のデータ間を結ぶ近似曲線を求めるにあたっては,最小二乗法により1次以上の多項式で近似する方法や,ラグランジュ補間法や,スプライン補間法などの各種統計学手法を用いて,複数点のデータから求めることができる。
【0037】
また,例えば隣接するサンプリング信号のデータ間を直線で結んだ場合には,上記S(t−2.9−0.01)は,
S(t−2.9−0.01)=S(t−2.9)+(S(t−3.0)−S(t−2.9))/10*1 …(4)
で表される式(4)によって求めることができ,またS(t−2.9−0.02)は,
S(t−2.9−0.02)=S(t−2.9)+(S(t−3.0)−S(t−2.9))/10*2 …(5)
で表される式(5)によって求めることができ,さらにS(t−2.9−0.03)は,
S(t−2.9−0.03)=S(t−2.9)+(S(t−3.0)−S(t−2.9))/10*3 …(6)
で表される式(6)によって求めることができる。
【0038】
このように,本実施の形態にかかる回転周期判定工程では,移動平均値H(t)や,疑似サンプリングデータであるS(t−2.9−0.01)などを上述した式(1)〜(3)などや,式(4)〜式(6)など用いて算出することができる。かかる構成により,サンプリング周期の整数倍とはならない期間の移動平均値であっても,より少ないサンプリングデータから求めることができる。例えば上述の如く磁石128の回転周期を最大の回転周期である3.1秒と想定した場合でも,11個のサンプリングデータであるS(t−3.0),……,S(t)から求めることができる。そして,本実施の形態によれば,結果的に,加重平均の手法により,疑似サンプリングデータを含めて303個のデータの移動平均値を少ない演算処理で算出することができる。
【0039】
同様の方法により,磁石128の回転周期を3.01秒〜3.09秒と想定した場合の時刻tにおける移動平均H(t)を求めることができる。
【0040】
すなわち,図2中の期間Aおいて,プラズマ光の信号を0.1秒間隔でサンプリングする度に,3.00秒,3.01秒,3.02秒,3.03秒,3.04秒,3.05秒,3.06秒,3.07秒,3.08秒,3.09秒,3.10秒の各移動平均値算出期間に対する移動平均値を並列的に,すなわち同時に算出する。このようにして,各移動平均値,H3.00(t),H3.01(t),H3.02(t),H3.03(t),H3.04(t),H3.05(t),H3.06(t),H3.07(t),H3.08(t),H3.09(t),H3.10(t)を求めることができる。さらに,複数回のサンプリングを実行することにより,各サンプリング時刻に対応する各移動平均値H3.00(t)〜H3.10(t)のデータ列を求めることができる。図3に,これら各移動平均値のうち,H3.03(t)をある期間にわたってプロットしたものをH(t)として例示した。
【0041】
以上のように,実サンプリング周期の10倍の精度で移動平均値を求める方法について説明したが,本実施の形態はかかる構成に限定されるものではなく,例えば,実サンプリング周期の100倍の精度で移動平均値を求めることができる。すなわち,例えばプラズマの回転周期を3.031秒を想定した場合の時刻tにおける移動平均値H3.031(t)は,
Figure 0003563949
で表される式(7)によって求めることができる。
【0042】
また,式(7)中のS(t−2.9−0.01)と,S(t−2.9−0.02)と,S(t−2.9−0.03)は,それぞれに対応する上記式(4)と,式(5)と,式(6)により求めることができる。さらに,同式中のS(t−2.9−0.03−0.001)は,
S(t−2.9−0.03−0.001)=S(t−2.9)+(S(t−3.0)−S(t−2.9))/100*31 …(8)
で表される式(8)により求めることができる。
【0043】
次に,図4を参照しながら,上記工程により必要な数だけ求めた各移動平均値のデータ列から近似式,例えば一次近似式を求める工程について説明する。図4は,図3に示したH(t)を拡大して示したものである。また,図4に示したK(t)は,所定期間のH(t)の値から,例えば最小二乗法で求めた一次近似式である。なお,回転周期を所定の精度で求めるためには,上記所定の期間は,少なくとも想定される最大の回転周期以上であることが好ましい。ここで,本実施の形態の場合には,プラズマの変動周期,すなわち,磁石128の回転周期が,予め,3.0秒〜3.1秒の範囲内であることがわかっているため,その所定の期間を3.1秒とする。そして,上述したH3.00(t)〜H3.10(t)の各データ列に対応する一次近似式を求め,それら各一次近似式をそれぞれに対応してK3.00(t)〜K3.10(t)とする。
【0044】
次に,上記各工程により求められた各移動平均値のデータ列と,それら各移動平均値のデータ列に対応する各一次近似式の偏差値の絶対値の平均を求める工程について説明する。かかる偏差値の絶対値の平均Aは,
Figure 0003563949
で表される式(9)によって求めることができる。なお,式(9)中の時刻tは,上述した移動平均値を求める際に用いた式(1)〜式(8)中の時刻tとは異なる時刻を表している。
【0045】
上述した式(9)は,移動平均値を求める期間,すなわち想定される磁石128の回転周期が3.00秒から3.10秒の間のいずれであっても,偏差値の絶対値を求めることができる。ただし,磁石128の回転周期を所定の精度で求めるためには,上記期間は,少なくとも予想される最大の磁石128の回転周期より長いことが好ましい。そして,上記式(9)により,移動平均値H3.00(t)〜H3.10(t)のデータ列と,それら各データ列に対応する一次近似式K3.00(t)〜K3.10(t)のそれぞれに対して,偏差値の絶対値の平均を求め,それぞれA3.00(t)〜A3.10(t)とする。
【0046】
なお,上記偏差値の絶対値の平均Aを求める式は,H3.00(t)〜H3.10(t)のデータ列と,K3.00(t)〜K3.10(t)の変位の度合いを示すものであれば良く,上記の式(9)に限定されるものではない。また,合計平均Aの対象となる時刻は,上述の如くA3.00〜A3.10の全てで共通でなくても良く,例えばA3.03を求める場合には,時刻t−2.9,t−2.8,t−2.7,……,t−0.1,t,t−2.9−0.01,t−2.9−0.02,t−2.9−0.03におけるデータ値,すなわち移動平均値の算出を対象とした時刻におけるデータ値から求めてもよい。
【0047】
次に,上述した工程で求めた偏差値の絶対値の平均から,プラズマの変動周期,すなわち磁石128の回転周期を算出する工程について説明する。上記式(9)により求めた偏差値の絶対値の平均A3.00〜A3.10の中で,最小の値であるものを探し,その値に対する移動平均値算出期間を回転周期Tとする。すなわち,A3.03が最小値である場合には,回転周期Tは,3.03秒に最も近いことになる。この理由としては,次のようなことが考えられる。
【0048】
すなわち,図2中の期間Aでは,処理室102内のプラズマPの状態が相対的に安定しており,回転変動を含まないプラズマ光に基づく元波形は,相対的に滑らかな曲線となる。また,計算を行う期間は,微小であるため,その元波形は直線と近似することができる。さらに,移動平均値を算出する対象期間が磁石128の回転周期に完全に一致していれば,移動平均値は,回転変動を含まない元波形と一致する。従って,回転周期に近い期間で求めた移動平均値のデータ列は,そのデータ列から求めた一次近似式との変位(偏差)が小さくなることから,上記偏差値の絶対値の平均の最小の値が回転周期に最も近い値となる。
【0049】
本実施の形態にかかる回転周期判定工程は,以上のように構成されており,変動するプラズマ光を一定周期でサンプリングした場合でも,プラズマ光の変動周期である磁石128の回転周期を正確に判定することができる。また,上述した演算で加重平均を用いているため,サンプリングデータ数を増やすことなく,かつ相対的に少ない演算処理で,磁石128の回転周期の判定に必要な所定の移動平均値を求めることができる。
【0050】
(B)終点判定工程
次に,図5を参照しながら,プラズマ処理の終点判定工程について説明する。当該終点判定工程は,上述した変動周期判定工程で,プラズマの変動周期を求めた後,さらにプラズマ光の信号P(t)をその磁石128の回転周期に基づいてサンプリングして,サンプリング信号から移動平均値のデータを求めてデータ列を記憶し,移動平均値のデータ列の変化を,例えばソフトウェア的に解析することによりエッチング処理の終点を判定する工程である。
【0051】
図5は,移動平均値のデータ列を示したものであり,この移動平均値は,
Figure 0003563949
で表される式(10)によって求めることができる。なお,この式(10)は,上述した式(3)と同様の式である。また,式(10)中のmは(T/サンプリング周期)の商であり,nは(T/サンプリング周期)の余りの10倍であり,0.1はサンプリング周期である。
【0052】
式(10)中の疑似サンプリングデータであるS(t−0.1*(m−1)−0.01)〜S(t−0.1*(m−1)−0.01*n)は,上述した式(4)〜式(6)と同様にして求めることができる。従って,式(10)を用いて演算することにより,式(4)〜式(6)の如く,サンプリング周期の整数倍ではない期間の移動平均値を少ないサンプリングデータで求めることができると共に,疑似サンプリングデータを含む複数のデータの移動平均値を相対的に少ない演算処理で算出することができる。さらに,上記移動平均値を算出する際に,サンプリングデータを疑似サンプリングデータに対して重み付けすることにより,より一層正確な終点判定を行うことができる。
【0053】
なお,このエッチング処理の終点判定工程は,上述した回転周期判定工程と組み合わせて実施される場合に限定されない。例えば,磁石128の回転周期が予めわかっている場合でも,その回転周期がサンプリング間隔の整数倍ではない場合に,上記式(10)の如く終点判定工程と同様の方法で,移動平均値を求めることにより,磁石128の回転変動の影響を受けていないプラズマ光の信号を取り出すことができる。また,エッチング処理の終点の判定は,一般的に用いられている方法,例えば移動平均値のデータ列を微分し,微分値が所定値以上であればエッチング処理の終点と判定することにより行われる。
【0054】
本実施の形態にかかる終点判定工程は,以上のように構成されており,上述した回転周期判定工程において判定された正確な磁石128の回転周期に基づき,その回転周期の期間の移動平均値のデータ列から得られる信号を用いて処理の終点を判定するため,正確な終点判定を行うことができ,エッチング処理を正確かつ確実に終了させることができる。
【0055】
以上,本発明の好適な実施の一形態について,添付図面を参照しながら説明したが,本発明はかかる構成に限定されない。特許請求の範囲に記載された技術的思想の範疇において,当業者であれば,各種の変更例及び修正例に想到し得るものであり,それら変更例及び修正例についても本発明の技術的範囲に属するものと了解される。
【0056】
例えば,上記実施の形態において,永久磁石から成る磁石128を回転させたときに生じるプラズマ光の信号の変動の変動周期を判定する方法について説明したが,本発明はかかる構成に限定されるものではなく,永久磁石に代えて電磁石を使用した場合や,磁石を回転ではなく往復運動させた場合にも本発明を適用することができる。さらに,本発明は,磁石を使用しなくてもプラズマに変動が生じる場合,例えば電極上で電界を印加する位置を順次周期的に変化させる場合にも適用することができる。
【0057】
【発明の効果】
本発明によれば,プラズマが変動する際に,そのプラズマの変動周期やプラズマ処理の終点を,ソフトウェア的な演算処理のみで正確に判定することができるため,処理装置にその判定を行うためのハードウェアを形成する必要がない。その結果,処理装置の装置構成を容易にすることができると共に,既存の装置に対しても本発明を容易に実施することができる。また,本発明では,一定周期のサンプリング周期でサンプリングされたサンプリング信号に基づいて,上記変動周期や処理の終点を判定することができるため,装置のソフトウェアの都合上,固定周期をサンプリング周期として使用した方がよい場合や,固定周期を使用しなければならない場合などにも適用することができる。
【図面の簡単な説明】
【図1】本発明を適用可能なエッチング装置を示した概略的な断面図である。
【図2】図1に示したエッチング装置に適用される回転周期判定工程を説明するための概略的な説明図である。
【図3】図1に示したエッチング装置に適用される回転周期判定工程を説明するための概略的な説明図である。
【図4】図1に示したエッチング装置に適用される回転周期判定工程を説明するための概略的な説明図である。
【図5】図1に示したエッチング装置に適用される終点判定工程を説明するための概略的な説明図である。
【符号の説明】
100 エッチング装置
102 処理室
106 下部電極
108 上部電極
118 高周波電源
120 演算制御器
128 磁石
134 検出窓
136 受光部
W ウェハ

Claims (7)

  1. 処理ガスが導入された真空容器内に電界を形成して,未知の変動周期で変動するプラズマを生成し,前記真空容器内に配された被処理体に対してプラズマ処理を施すプラズマ処理方法において:
    前記プラズマのプラズマ光を一定のサンプリング周期でサンプリングし,サンプリング信号のデータ列を求める工程と;
    前記サンプリング信号のデータ列から複数の移動平均値算出期間における移動平均値を算出し,前記各移動平均値に対応する複数のデータ列を求める工程と;
    前記各移動平均値のデータ列からそれぞれに対応する複数の近似式を求める工程と;
    所定期間における前記各移動平均値のデータ列と前記各移動平均値のデータ列に対応する前記各近似式との変位量をそれぞれ求める工程と;
    前記各変位量の中から最小の変位量を求める工程と;
    前記最小の変位量に対応する前記移動平均値算出期間を前記プラズマの変動周期と判定する工程とを含み,
    前記移動平均値算出期間は,前記サンプリング周期の整数倍に限定されず,前記サンプリング周期の整数倍ではない時刻における前記移動平均値の算出対象となるデータは,前記時刻の直前と直後の前記サンプリング信号データから算出される疑似サンプリングデータであることを特徴とする,プラズマ処理方法。
  2. 前記移動平均値算出期間の最大値は,予想される前記変動周期の上限値であり,前記移動平均値算出期間の最小値は,予想される前記変動周期の下限値であることを特徴とする,請求項1に記載のプラズマ処理方法。
  3. 前記所定の期間は,予想される前記変動周期の上限値以上であることを特徴とする,請求項1または2に記載のプラズマ処理方法。
  4. 処理ガスが導入された真空容器内に電界を形成して,既知の変動周期で変動するプラズマを生成し,前記真空容器内に配された被処理体に対してプラズマ処理を施すプラズマ処理方法において:
    前記プラズマのプラズマ光を一定のサンプリング周期でサンプリングし,サンプリング信号のデータ列を求める工程と;
    前記サンプリング信号のデータ列から,移動平均値算出期間の移動平均値を算出し,移動平均値のデータ列を求める工程と;
    前記移動平均値のデータ列からプラズマ処理の終点を判定する工程とを含み;
    さらに,前記移動平均値算出期間は,前記サンプリング周期の整数倍に限定されないことを特徴とする,プラズマ処理方法。
  5. 前記サンプリング周期の整数倍ではない時刻における前記移動平均値の算出対象となるデータは,前記時刻の直前と直後の前記サンプリングデータから算出される疑似サンプリングデータであることを特徴とする,請求項に記載のプラズマ処理方法。
  6. 前記移動平均値を算出するに際し,前記サンプリングデータは,前記疑似サンプリングデータに対して重み付けされていることを特徴とする,請求項に記載のプラズマ処理方法。
  7. 前記真空容器内にはさらに回転磁界が形成されることを特徴とする,請求項1〜6のいずれかに記載のプラズマ処理方法。
JP36522297A 1997-12-19 1997-12-19 プラズマ処理方法 Expired - Lifetime JP3563949B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP36522297A JP3563949B2 (ja) 1997-12-19 1997-12-19 プラズマ処理方法
KR10-1998-0056094A KR100423195B1 (ko) 1997-12-19 1998-12-18 플라즈마처리방법
US09/215,165 US6231774B1 (en) 1997-12-19 1998-12-18 Plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36522297A JP3563949B2 (ja) 1997-12-19 1997-12-19 プラズマ処理方法

Publications (2)

Publication Number Publication Date
JPH11186239A JPH11186239A (ja) 1999-07-09
JP3563949B2 true JP3563949B2 (ja) 2004-09-08

Family

ID=18483734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36522297A Expired - Lifetime JP3563949B2 (ja) 1997-12-19 1997-12-19 プラズマ処理方法

Country Status (3)

Country Link
US (1) US6231774B1 (ja)
JP (1) JP3563949B2 (ja)
KR (1) KR100423195B1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020060817A (ko) * 2001-01-12 2002-07-19 동부전자 주식회사 플라즈마 공정 제어 장치 및 그 방법
TWI246725B (en) * 2002-10-31 2006-01-01 Tokyo Electron Ltd Method and apparatus for detecting endpoint
CN100401491C (zh) * 2003-05-09 2008-07-09 优利讯美国有限公司 时分复用处理中的包络跟随器终点检测
US20060006139A1 (en) * 2003-05-09 2006-01-12 David Johnson Selection of wavelengths for end point in a time division multiplexed process
KR100727632B1 (ko) * 2004-11-18 2007-06-13 (주)쎄미시스코 보쉬 공정에 이용되는 건식 식각 장치들, 건식 식각 종료점검출장치들 및 그들을 이용해서 전기소자를 형성하는방법들
JP2007073751A (ja) * 2005-09-07 2007-03-22 Hitachi High-Technologies Corp プラズマ処理装置および処理方法
US7479236B2 (en) * 2006-09-29 2009-01-20 Lam Research Corporation Offset correction techniques for positioning substrates
JP5867701B2 (ja) * 2011-12-15 2016-02-24 東京エレクトロン株式会社 プラズマ処理装置
US9200950B2 (en) * 2014-02-25 2015-12-01 Applied Materials, Inc. Pulsed plasma monitoring using optical sensor and a signal analyzer forming a mean waveform
US9627186B2 (en) * 2014-08-29 2017-04-18 Lam Research Corporation System, method and apparatus for using optical data to monitor RF generator operations
JP6055537B2 (ja) * 2015-12-21 2016-12-27 東京エレクトロン株式会社 プラズマ処理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2978998B2 (ja) 1991-05-15 1999-11-15 東京エレクトロン株式会社 プラズマの測定装置
US5290383A (en) 1991-03-24 1994-03-01 Tokyo Electron Limited Plasma-process system with improved end-point detecting scheme
JP3181388B2 (ja) * 1992-07-15 2001-07-03 東京エレクトロン株式会社 観測信号の変動周期算出方法及びそれを用いたプラズマ装置
US5928532A (en) * 1996-11-11 1999-07-27 Tokyo Electron Limited Method of detecting end point of plasma processing and apparatus for the same

Also Published As

Publication number Publication date
KR100423195B1 (ko) 2004-05-17
US6231774B1 (en) 2001-05-15
KR19990063203A (ko) 1999-07-26
JPH11186239A (ja) 1999-07-09

Similar Documents

Publication Publication Date Title
JP3563949B2 (ja) プラズマ処理方法
JP6837886B2 (ja) プラズマ処理装置およびプラズマ処理方法
JP5583603B2 (ja) アーク検出システムおよび方法
US11424110B2 (en) Plasma processing apparatus and operational method thereof
JP2010251813A (ja) 時分割多重プロセスにおける包絡線フォロア終点検出
JP2009506544A (ja) 時分割多重プロセスで終点のための波長の選択
JPH0773105B2 (ja) プラズマ処理装置
JP7454971B2 (ja) 検出方法及びプラズマ処理装置
JP2001044171A (ja) エッチング終点検出方法および装置
JP7201828B2 (ja) プラズマ処理装置およびプラズマ処理方法
JP4007748B2 (ja) プラズマエッチング処理の終点検出方法
JP2619403B2 (ja) プラズマ処理装置およびプラズマ処理終点判定方法
US20030178390A1 (en) System and method for enhanced monitoring of an etch process
JP4143176B2 (ja) プラズマ処理方法
JPH10189552A (ja) プラズマ処理の終点検出方法およびその装置
JPS62159431A (ja) エツチング終点判定方法
JPS6393115A (ja) 終点判定方法
US20240203713A1 (en) In-situ diagnosis of plasma system
JPH1116889A (ja) プラズマ処理終点検出方法及び終点検出装置
JPH02224232A (ja) エッチング装置
JPH04338663A (ja) プラズマの測定装置
JPH11330054A (ja) プラズマ処理方法とその装置、並びにプラズマ処理監視装置およびプラズマ処理監視制御装置
JP2000058519A (ja) 変化点検出装置および変化点検出方法
Sobolewski Monitoring ion current and ion energy during plasma processing using radio-frequency current and voltage measurements
JP2000173532A (ja) 誘導結合プラズマ3次元四重極質量分析装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term