JP3563065B2 - レーザビーム均一照射光学系 - Google Patents

レーザビーム均一照射光学系 Download PDF

Info

Publication number
JP3563065B2
JP3563065B2 JP2002091440A JP2002091440A JP3563065B2 JP 3563065 B2 JP3563065 B2 JP 3563065B2 JP 2002091440 A JP2002091440 A JP 2002091440A JP 2002091440 A JP2002091440 A JP 2002091440A JP 3563065 B2 JP3563065 B2 JP 3563065B2
Authority
JP
Japan
Prior art keywords
laser beam
optical system
split
irradiation
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002091440A
Other languages
English (en)
Other versions
JP2003287703A (ja
Inventor
達樹 岡本
和敏 森川
行雄 佐藤
順一 西前
哲也 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPC Electronics Corp
Mitsubishi Electric Corp
Original Assignee
SPC Electronics Corp
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPC Electronics Corp, Mitsubishi Electric Corp filed Critical SPC Electronics Corp
Priority to JP2002091440A priority Critical patent/JP3563065B2/ja
Priority to TW092105755A priority patent/TWI292245B/zh
Priority to CNB031083781A priority patent/CN1249483C/zh
Priority to KR1020030019410A priority patent/KR100541126B1/ko
Publication of JP2003287703A publication Critical patent/JP2003287703A/ja
Application granted granted Critical
Publication of JP3563065B2 publication Critical patent/JP3563065B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、被照射物のレーザ処理に際して照射面における照射レーザビームの均質性を改善したレーザビーム均一照射用の光学系に関する。
【0002】
【従来の技術】
レーザ照射により加熱処理をする例として、多結晶ケイ素膜の製造に際して、予め、適当な基板、例えばガラス基板の上にCVDなどの気相形成法により非晶質のケイ素膜を被着形成しておき、この非晶質ケイ素膜を、レーザビームで走査して、多結晶化する方法が知られている。
【0003】
ケイ素膜の多結晶化方法では、例えば、レーザ光源からのレーザビームをレンズにより非晶質ケイ素膜上に集光してレーザ照射をし、照射の際にケイ素膜を走査させて、溶融凝固の過程で、結晶化させるものがある。このレーザビームは、照射位置でのビームの軸方向強度プロフイルがレーザ源にプロフィルに依存して、通常は、軸対称のガウス分布である。このようなビームの照射により成形した多結晶ケイ素膜は、結晶性の面方向への均一性が非常に低く、これを半導体基板として薄膜トランジスタを製造に使用するのは困難であった。
【0004】
さらに、波長の短いエキシマレーザを用いて、照射ビームのプロフイルを矩形状の分布にして半導体膜に照射加熱する技術が知られている。例えば、特開平11−16851号及び同10−333077号公報には、発振器からのレーザビームを、光軸に垂直な面内で互いに交叉する2つのシリンドリカルレンズダアレイを通して、その前方に収束レンズを通して、半導体膜表面に収束させるものであった。この方法は、ガウス分布を採るレーザビームを、2つのシリンドリカルレンズアレイにより、直交する2方向で均一な強度分布にするものであり、半導体膜表面での照射レーザビームは、半導体表面上で、直交する2方向で異なった幅となっており、照射レーザビームを掃引移動することにより、半導体膜上に一定幅の多結晶帯域を繰り返し成形するものであった。
【0005】
レーザ光源からのレーザビームをこのようなシリンドリカルレンズアレイにより分割し、さらに照射面で合成すると、照射面でレーザ光の干渉が生じて、強度の高低の縞模様になる。このような照射面における重ね合わせたビームに生じる干渉は、長方形状の照射レーザビームを使用して半導体膜の加熱結晶化する場合、レーザビームの移動方向の強度プロフィルが結晶成長に大きく影響するので、ケイ素膜の結晶粒に大きく成長させるには好ましくない。
【0006】
この干渉による照射レーザ強度の不均一性を除く方法が提案されており、特開2001−127003には、光源からビームをコリオメータにより平行光にして、段階状の反射面を有するミラーに照射し、ミラーにより分割したビームを合成するシリンドリカルレンズアレーと収束用のシリンドリカルレンズとにより照射する構成の光学系を開示している。これは、分割したビームに各反射面間の段差によって、レーザビームのコヒーレント長さ以上の光路差を設けて、照射面における分割ビーム間の干渉を防止するものである。
【0007】
また、特開2001−244213号は、光源からのレーザビームをビームコリメータにより平行光にして、小さな複数の反射鏡に照射し、各反射鏡からの反射光を照射面に照射して重ね合わせるもので、各平面鏡を反射するレーザビームの光路差をコヒーレント長さ以上確保することにより、同様に、干渉を防止するものである。
【0008】
【発明が解決しようとする課題】
上記のビーム均一化の技術は、同一の光源からのレーザビームを分割して、照射面で重ね合わせる際の干渉を、複数の反射面を有する反射鏡を利用して光路差を設けて、防止するのであるが、これらの光学系は、特殊な反射鏡を必要としていた。特に、特開2001−244213の光学系は、反射鏡による光学系の光軸を曲げる配置が必要であり、さらに、光学系の各反射鏡は、多数の分割ビームに対応して照射面に対して正確に特定の位置関係を満たすように配置する必要があり、反射鏡の配置が複雑となり、熱処理装置として配置すべき光学系の自由度が低くなる問題があった。特に、全ての分割ビームに光路差を設けるのは、時間的可干渉距離の大きいレーザ発振源に対しては、装置が大きく且つ複雑になり、現実的でなく、且つ、光学的調整が困難であった。
【0009】
本発明は、上記の問題に鑑み、一般に、レーザビームを分割した分割ビームを重ね合わせて照射面上に均一な強度分布を備えた照射ビームを形成する光学系において、重ね合わせによる分割ビーム間の干渉を防止して、照射ビームの一層の均一化を図ることのできるレーザビーム均一照射光学系を提供するものである。本発明は、このような干渉を防止して照射ビームの均一化をするための構成と調整とが簡単で容易な均一照射光学系を提供しようとするものである。
さらに、本発明は、特に、被照射物として非晶質ケイ素膜に適用してその多結晶化をするためのレーザ加熱装置に適用して、結晶面域に亘って格子欠陥の少ない多結晶ケイ素膜を製造可能にする光学系を提供しようとするものである。
【0010】
【課題を解決するための手段】
本発明のレーザビーム均一照射光学系は、レーザ光源からのレーザビームをビーム断面において空間的に分割するレーザビーム分割手段と、分割した複数のビームを照射面上で重ね合わて照射する重ね合せ照射手段と、照射面上のビーム強度を均一にする均一化手段とから、成るものであり、上記のレーザビーム分割手段が、上記のビーム分割幅を、上記ビーム断面における断面方向の空間的可干渉距離の1/2倍以上とするように光源レーザビームをビーム分割して、分割ビームを照射面で重ね合わせたとき分割ビーム相互の干渉を軽減して、照射強度分布を均一化するものである。
【0011】
また、このレーザビーム均一照射光学系は、レーザ光源からのレーザビームをビーム断面において空間的に分割ビームに分割するレーザビーム分割手段と、分割ビームを照射面上で重ね合せて照射する重ね合せ照射手段と、照射面上のビーム強度を均一にする均一化手段とから、成るものであり、上記のレーザビーム分割手段が、上記の分割ビーム幅を、レーザビーム断面における断面方向の空間的可干渉距離の1/2倍以上とするとともに、上記の均一化手段が、上記の分割したビームの互いに隣接する隣接分割ビームの一方を他方に対して該レーザビームの時間的可干渉距離よりも長く遅延させる光学的遅延手段を含むことによって、上記のレーザビームの断面方向の空間的可干渉距離の要素と、光軸方向の時間的可干渉距離の要素とを両方とも低減できるため、照射強度分布を極めて均一にすることができる。
【0012】
上述の分割ビームの分割幅は、レーザビーム分割手段の出射面における分割ビームの幅として規定され、このとき、空間的可干渉距離は、光源からのレーザビームが当該出射面の位置に投射された時の断面内における空間的可干渉距離を言う。この空間的可干渉距離は、レーザビームが二つに分岐され、その後に照射面上で再び重ね合わせた時に生じる干渉が後述のビジビリティが1/eとなる時の2つのビームの最小の重なり距離を言う。
【0013】
本発明においては、分割ビーム幅のビーム断面における断面方向の空間的可干渉距離に対する比を1/2以上とするが、好ましくは、1/√2以上、さらに、好ましくは、1以上とする。即ち、ビーム分割手段により分割される分割ビームの幅は、好ましくは、空間的可干渉距離の1/√2倍以上に、特に、1倍以上に設定される。分割ビーム幅の上限は、レーザビームを分割する分割数により決まるが、分割数は、少なくとも5であり、好ましくは、7以上である。分割数が大きいほど、照射レーザビームの強度の平坦化に有効ではあるが、分割数を大きくして、上記分割ビーム幅が、空間的可干渉距離に対する比1/2未満になるのは好ましくない。実用的な、分割数は、5〜7が利用され、分割ビーム幅を空間的可干渉距離に対して1倍以上に設定する。
【0014】
レーザビーム分割手段には、導波路とシリンドリカルレンズアレイとを含む。いずれも、レーザビームを光軸に対して垂直な面におけるいずれか一方向に分割する。
【0015】
導波路は、互いに対向する反射面を有する中空の又は中実の透光体を含む。中空の導波路は、2つの鏡面を一定間隔で対向して配置したものが利用できる。
中実の導波路は、板状で両方の主面を鏡面にした透光体であり、通常は、光学ガラスの板を利用することができる。このような導波路においては、レーザビーム分割手段には、レーザ源からの放射レーザビームを、導波路内の反射面間に入射させる集光レンズを含む。
【0016】
導波路の出射面からは、導波路内を、反射面で反射しないで、透過する分割ビームと、対向する反射面で反射する反射回数ごとに2組の分割ビームとが得られる。
【0017】
さらに、導波路は、反射しないで通過する分割ビームを生じさせないような構造ないし配置が好ましい。この配置は、単一の光学的遅延手段を、一定の群の分割ビームにだけ挿入することにより、他方の群に挿入することなく、照射面上での干渉を軽減でき、単一の光学的遅延手段の配置を簡便にできる利点がある。
【0018】
このために、好ましくは、反射しないて通過した分割ビームに遮蔽体を挿入して、遮蔽することができる。
別の態様は、導波路への入射光を導波路中心軸に対して非対称に入射させる構造が採用できる。このために、導波路には、導波路に対する入射レーザ光の光軸が上記の導波路の反射面間の中心軸と斜交して、反射面の間を反射しないで通過する分割ビームを生じさせないこともできる。
さらに別の態様は、導波路には中実な透光体を用いて、当該導波路の入射面が導波路の中心軸と斜交する構成にして、入射光が斜交した入射面で屈折させて、少なくとも1回は反射面に反射させて、分割ビームを構成することができる。これらの態様では、反射しないて通過した分割ビームを斜光する構成に比して、全ての分割ビームを照射に利用できる利点がある。
【0019】
他方、レーザビーム分割手段としてのシリンドリカルレンズアレイは、柱状で断面が凸レンズ状の複数のシリンドリカルレンズを平行にして光軸に実質的に直交する一方向に配列したものであり、各微小のシリンドリカルレンズごとに対応する分割ビームを得ることができる。シリンドリカルレンズアレイを使用するレーザビーム分割手段には、好ましくは、シリンドリカルレンズアレイに平行光を入射するコリメータを含む。
【0020】
本発明においては、光学的遅延手段には、好ましくは、ビームの遅延用の透光体、即ち、遅延板を利用して、各分割ビームが互いに空間的に分離した光路に挿入される。このとき、各分割ビームをレーザビームに逆に投影した時の隣り合う分割ビームのうち少なくともいずれか一方に、遅延板を挿入して、互いに隣接する分割ビームの間に光学的に光路差を設ける。遅延板は、光路差をそのレーザビームの時間的可干渉距離より大きして、分離された分割ビームが照射面に照射し重ねあわ節時のレーザ光の干渉を防止することができる。光路差は、遅延板のビーム透過長さと、遅延板の屈折率と空気の屈折率との差とにより規定される。
【0021】
このような遅延板は、重ね合せ照射手段にレーザビーム分割手段からの分割ビームを照射面に転写する転写レンズを含み、転写レンズにより形成した複数分割ビームを空間的分離した領域を形成するときは、このような領域に挿入される。例えば、レーザビーム分割手段が、導波路である場合には、転写レンズにより各分割ビームが収束した焦点位置に配置される。レーザビーム分割手段が、シリンドリカルレンズアレイである場合には、各シリンドリカルレンズの出射側光路上に配置することができる。
【0022】
このようにして、複数の分割ビームは、その一部が、光学的遅延手段を透過し、重ね合せ照射手段が、分割ビームを照射面上で重ね合わて照射し、照射レーザのプロフィルが、矩形状ないし直線状と成るように投影する。照射されたビームのその長手方向の強度分布が一様となる。
【0023】
このような光学系は、ガラス基板上に化学的気相形成法などにより被着形成した非晶質又は多結晶のシリコン皮膜を、加熱溶融して、多結晶化するか又はより粗大な結晶に成長させるためのアニーリング装置に利用するのに適している。
【0024】
特に、上記のアニーリング用光学系においては、シリコン皮膜表面上に、細い広幅状にした線状の照射ビームを形成しビーム線に直交する方向に走査することにより、シリコン皮膜上をそのビーム幅で掃引して均一に加熱するようにして、結晶成長させることができ、ビームが干渉模様の少ない均一な強度分布であるので、均一な高い結晶性を備えた結晶シリコン膜を製造することができる。
【0025】
【発明の実施の形態】
実施の形態1.
本発明の実施の形態において、図1(A)と図1(B)には、レーザビーム均一照射光学系を示すが、この光学系は、照射面上にy方向に均一な分布で広がり、x方向に線状に収束した直線状の照射プロフィルを形成する例を示す。
光学系は、レーザビーム分割手段3と、重ね合せ照射手段6と、光学的遅延手段2とを含み、レーザビーム分割手段3は、導波路4を利用して、レーザビームを所望数の分割ビーム16a〜16eに分割し、分割ビームを重ね合せ照射手段6により照射面上に直線状プロフィルの照射ビーム19として結像している。
【0026】
この実施形態では、レーザビーム分割手段3は、レーザ発振器からのレーザビーム1を導波路4内に入射するための光学系を含み、平行ビームにするためのビーム拡大レンズ31とy方向コリメートレンズ32とx方向コリメートレンズ33を含み、次いでy方向に集光して、導波路4内に入射させるシリンドリカルレンズの集光レンズ34を含む。
【0027】
導波路4は、互いに対向する平行な主表面が反射面41、42を有し、反射面41、42は、この図では、y方向に垂直である。両反射面の間をレーザビーム1が貫通する入射端面43と出射端面44は、レーザビームの光軸と直交している。入射したレーザビーム1は、反射面間を通過して出射端から放射する成分の分割ビーム、反射面41と42のいずれかで1回反射(m=1)した成分の2つ分割ビーム(m=+1,m=−1)と、両方の反射面で2回反射(m=2)の成分の2つの分割ビーム(m=+2, m=−2)、さらに、3回ないしそれ以上の回数の反射したそれぞれ一対の分割ビームが、出射端から放射される各成分とに分割される。
【0028】
導波路4からの分割ビームは、重ね合せ照射手段6により、照射面90上に重ね合わせて投影されるが、重ね合せ照射手段6は、分割ビームを照射面上にy方向に転写するy方向の転写レンズ61(シリンドリカルレンズ)と、x方向に集光する集光レンズ62(シリンドリカルレンズ)から構成することができる。y方向転写レンズ61は、x方向集光レンズ62を通して、照射面90上にy方向に規定の長さに延ばし、x方向集光レンズ62が、x方向に線状に収束させ、これにより、照射面上には直線状プロフイルの照射ビーム19が得られる。
【0029】
重ね合せ照射手段6のy方向の転写レンズ61は、各分割ビームが実焦点を作って、照射面19上に投影するように設定され、実焦点位置近傍で分割ビームが互いに空間的に分離した位置に、光学的遅延手段として、遅延用の透光体2を、配置するが、この遅延板2は、分割ビームが、分割前に互いに隣り合う領域に有る分割ビームについて、いずれか一方の光路を他方の光路に対して遅延させて、光学的に光路差を設けて、照射面19上で重ね合わせた時の2つの分割ビーム間の干渉を防止するものである。図1の例は、転写レンズ61の出射側での実焦点位置で、分割ビーム一つおきに遅延板2を配置している。
【0030】
さらに詳しくは、図2は、レーザビーム分割手段の導波路について、、レーザ発振器からのレーザビームの分割の態様を示しているが、レーザ発振器(不図示)からのレーザビームは、シリンドリカルレンズの集光レンズ34により焦点Fを経て導波路4内に入射される。導波路内では、入射ビームの一部が、反射面での反射なしに透過する分割ビーム(反射回数m=0)があり、互いに対向する反射面41又は42で1回だけ反射した分割ビームがy方向に2種類あり(m=±1)、反射面41及び42で2回反射した分割ビームが同様にy方向に2種類あり(m=±2)、それぞれの分割ビームは、出射面43から放射される。光軸に対して垂直で焦点F0を含む面には、出射面43から放射される各分割ビームの虚像焦点F+1,F−1,F+2,F−2があり、各分割ビームは、これら虚像焦点F+1・・・・から出射面43の開口を経て放射されるように見える。
【0031】
導波路がないと仮定したときの集光レンズ34により焦点を介して広がるレーザビームを、出射面44の位置の面に投影したビームのプロフイルが円14であるとすると、この投影したレーザビーム14は、多数の分割ビームのそれぞれに対応した区分の成分に分解できる。レーザビーム1の断面での各成分を断面上で、y方向に、m=−2,−1,0,+1,+2の順に区分すると、導波路4の出射面44から放射する成分、即ち、分割ビームは、y方向に、反射回数m=+2,−1,0,+1,−2の成分の順の配列になることに注意を要する。
【0032】
図2では、導波路4の出射面44から放射されるm=0,+1,+2の成分の分割ビームの配置だけを示しており、m=+1とm=+2の分割ビームは、反射面の中間面に対して、互いに反対方向に放射される。他方、m=−1、−2の分割ビームは、m=+1,+2の反射面の中心面に対して対称方向にあるが、図中には省略している。
【0033】
図3(A)は、レーザビームを焦点F0から、導波路4で反射させずに、導波路4の出射面44の対応する平面上に投影したレーザビーム14における分割ビームの分割幅を図式化したものである。これは、円形プロフイルのレーザビーム14を、導波路により7分割する例である。
【0034】
導波路4においては、導波路4の出射面44では、互いに隣接する分割ビームが折り返されて重畳される。それで、レーザビーム1の分割による互いに隣接する成分は、その境界部位が、図3(B)において、導波路の出射面での分割ビームの折り返し部で一致する。例えば、図3(A)において、m=+1の成分の境界部IIIとこれに接するm=0の境界部iiiとは、図3(C)に示すように、導波路の出射面44では折り返されて重なり合う。
【0035】
このような折り返した分割ビームを、y方向転写レンズ61とx方向集光レンズ62などを介して、照射面90上に重ね合わせて投影されると、照射面上で照射ビームに干渉を生じて、強度に波状分布が形成される。
【0036】
図4は、導波路からの分割ビームの2つの成分だけ、例えば、反射回数m=+1とm=0の2つの成分を、y方向転写レンズ61とx方向集光レンズ62などを介して、照射面90上に重ね合わせて照射した時の照射面上での強度分布図の例を示すが、元のレーザビーム上で互いに隣接する分割ビーム境界部iiiとIIIでは大きく干渉しあうが、同様にもとのレーザビーム上で互いに離れた分割ビーム境界部IVとiiとでは、干渉のよる強度分布の変動が小さい。この図で、横軸には、分割幅dを取り、縦軸に相対的ビーム強度を取っている。但し、図4は、レーザビームの強度分布をガウス分布に近似させ、分割幅dが、空間的可干渉距離sと等しい場合である。
【0037】
照射面上の重ね合わせによる干渉の程度は、分割幅dとその位置でのレーザビーム空間的可干渉距離sとの比に依存する。ここに、空間的可干渉距離sは、レーザビームのビーム断面における強度分布がガウス分布を保存するとしたとき、図5に模式的に示すように、ビーム直径Dを強度が光軸強度の1/e(ここにeは自然対数の底)になる時の円(1/e円)の径Dであると規定し、単一のレーザビームを2つに分岐し照射面上で光軸を共通にして干渉させた状態から、光軸を互いにずらしてオーバラップした照射領域に干渉縞のビジビリティが1/eに低減した時の双方の1/e円の中心間の距離と定義される。ここに、ビジビリティとは、干渉した強度分布の最高強度と最低強度の差を最高強度と最低強度との和で除した値であり、干渉の程度を示す尺度である。
【0038】
レーザビームの分割幅dを、d=s/2としたとき、互いに隣り合う分割ビームの互いに近接する領域の照射ビームの重なり部ではビジビリティは1に近く、離れた領域の照射ビームの重なり部ではビジビリティは1/eとなる。その中間領域では、1から1/eに漸減する。好ましい実施形態では、分割幅dは、d=s/2以上であり、この場合の離れた領域の照射ビームの重なり部ではビジビリティは、1/e以下に低減する。
【0039】
さらに、レーザビームの分割幅dは、d=s/√2以上としたときは、離れた領域の照射ビームの重なり部ではビジビリティは1/eに低減する。
最も好ましい実施形態では、離れた領域の照射ビームの重なり部ではビジビリティは1/e以下に低減する。
【0040】
分割幅dをd=sにとって、図2に示すように導波路4によりレーザビームを7分割して、照射面上に重ね合せた時の強度分布を図6に示すが、かなり改善された強度分布を示す。この図で、発生する干渉縞の周期Tは、T=λ/sinΔθで決まる。ここにλは、波長であり、Δθは干渉を生じる2つの分割ビーム照射面19上での入射角の差である。
【0041】
さらに、本発明の光学系は、上記の均一化手段が、上記の導波路により形成した分割ビームのうち互いに隣接する隣接分割ビームのいずれか一方を他方に対して時間的可干渉距離よりも長く遅延させる光学的遅延手段を含んでいる。
この光学的遅延手段は、中空なミラーでも、中実な透光体にも利用されるが、互いに隣接する領域からの分割ビームが互いに干渉をし合うのを、両者間に光路差をもうけて、干渉を防止するもののである。
【0042】
レーザビームの時間的可干渉距離ΔLが、
ΔL= cΔt≒ λ/Δλ
で与えられる。ここに、cは光速、Δtは可干渉時間、Δλはレーザの波長幅(スペクトル幅)であり、レーザの波長幅が狭いほど、可干渉距離が長くなる。
例示すれば、Nd:YAGレーザでは、中心波長のλ=1.06μmのビームについてスペクトル幅Δλ=0.12〜0.30nmであるので、時間的可干渉距離ΔLは、ΔL=3.8〜9.4mmとなる。
【0043】
図7は、レーザビームの互いに隣接する領域から分割した2つの分割ビームの照射面におけるビジビリテイと、分割ビームの間に設けた光路の差の距離(即ち、光路差Δa)、 との関係を示しているが、光路差が時間的可干渉距離ΔLであるときには、ビジビリテイは、1/eに低減し、分割ビームの間からの光路差をさらに大きくすることにより、ビジビリテイは、さらに小さくなる。
【0044】
図1には、複数の分割ビームが互いに分離した位置において、互いに干渉を生じやすい分割ビームのいずれかに、光学的遅延手段として、透光性の遅延板2、即ち、光学ガラス板2を挿入して、隣り合う分割ビームの間に光路差を形成している。この例は、導波路4により分割したビームをy方向転写レンズ61により転写し、x方向集光レンズ62により照射面上に、照射ビーム19を形成するが、y方向転写レンズ61とx方向集光レンズ62との間に、y方向転写レンズ61により各ビームに焦点fを形成し、遅延板2としてのガラス板は、隣り合うビームのいずれか一方に焦点位置f又はその前後に挿入して光路差を設ける。この例は、5つの分割ビームの1つおきにガラス板を挿入しており、互いに隣り合う遅延板2、2の間の空間には、他の分割ビームが通過する。このような配列の遅延板2により、照射面上に重ね合わされた照射ビームには、互いに隣接する分割ビーム間の干渉が生じないので、実質的に、強度分布が均一なプロフイルにすることができる。
ガラス板による光路差Δaは、ガラス板の厚みaと、ガラスの屈折率n、空気の屈折率nから、
Δa=a(n−n)/n
で与えられる。
【0045】
ガラス板による光路差Δaは、時間的可干渉距離ΔL以上に設定する(Δa≧ΔL)ので、これらの式から、互いに隣接する分割ビーム間に時間的可干渉距離ΔL以上の光路差を与えるガラス厚みaが求められる。遅延板の厚みは、好ましくは、遅延板により時間的可干渉距離ΔLの2倍以上、さらに好ましくは、4倍以上の光路差を設けるように、設定される。例えば、Nd:YAGレーザでは、光学的遅延手段に石英(n=1.46)を用いたとき、時間的干渉距離ΔLは3.8〜9.4mmに対して、光路差Δaは12〜30mmになる。
【0046】
実施の形態2.
図8は、上記実施形態の変形例であって、x方向から見た光学系の配置を示すが、光学的遅延手段2の配置の相異を除いては、基本的に、図1(A)と図1(B)の光学系と同じレーザビーム均一照射光学系を示す。
【0047】
この実施の形態においては、特に、反射回数m=0の場合の直進ビームを、y方向転写レンズの後の焦点位置fに配置した遮蔽体29により遮断するものある。m=0の直進ビームは、照射面に到達しないので、これが干渉に寄与することはない。従って、光学的遅延手段2としては、直進ビーム(m=0)に対して対称な配置の分割ビームの群(m=+1,−2)又は(m=−1,+2)のいずれか一方のみに挿通して、他方の群れは、光学的遅延手段2を配置しないので、これにより、照射面上の分割ビーム相互間の干渉を軽減且つ、光学的遅延手段2は、一方の分割ビーム群(m=+1,−2)を一括して透過させる一枚のガラス板又はガラスロッドが利用でき、光学システムを簡素化できる利点ある。
【0048】
実施の形態3.
本発明の光学系においては、導波路内を、反射することなく直進する分割ビームを含まないように、全ての分割ビームが少なくとも一回は反射し且つ、2つ以上の反射分割ビームが、同数回反射するのを防止するようにした導波路によるレーザビーム分割手段を提供するものである。このようなレーザビーム分割手段は、図9に示すように、導波路の中心軸に対して、レーザビーム分割手段の入射光学系の光軸を所定の角度で、斜交して配置した構造が採用できる。
【0049】
図10と図11に示すように、導波路4内に入射させるシリンドリカルレンズの集光レンズ34のビームの周辺成分▲1▼が、導波路4の入射面に入射して、反射面で1回反射して出射面から放出され、集光レンズ34からの他のビーム成分▲2▼▲3▼▲4▼が、それぞれ2回反射、3回反射、4回反射され、他の成分がさらに多数回反射されて、出射面から放射されるように、設定される。放射されて分割されたビームは、図10の放出面側に、反射回数mの数字1〜8で表されている。
【0050】
図11には、出射面44上の平面151におけるビーム断面の分割ビーム配置と、出射面における分割ビームの重ね合わせを記載している。反射回数の順番は、レーザビーム断面における分割ビームの配置の順番を表している。
従って、反射回数の順番が1つ違いの分割ビーム同士は、照射面上で干渉しやすいので、いずれか一方だけに、空間的遅延手段として、遅延板を配置するが、この配置は、図9に示すように、y方向転写レンズによる焦点f位置において、反射偶数回数(例えば、m=2、4、6)の分割ビームは、奇数回数の分割ビームに対して一方側に偏っているので、反射偶数回数の分割ビームを、単一の遅延板21を挿入することによって、簡単に実現できる。
【0051】
図11において、分割ビームの幅dは、上記の実施形態に述べたように、空間的可干渉距離sの1/2以上、好ましくは、1/√2以上、特に、1以上に設定される。
【0052】
図12は、導波路内を直進する分割ビームを形成しない他の例を示すものであるが、この例は、導波路4の光軸40を集光レンズ34の光軸30と一致させるが、導波路4の入射面43を、光軸に対して直交させないで、適当な角度でもって斜交させ、斜交した入射面での入射ビームを屈折させることにより、0回反射をなくして、1回、2回、3回などの反射の分割ビームを得るものであり、この例においても、一つの遅延板21を、y方向転写レンズによる焦点f位置において、偶数回反射(例えば、m=2、4、6)の分割ビームは、又は奇数回反射の分割ビームにまとめて挿入することにより、互いに隣接する分割ビーム間の光路差を設けることができる。
【0053】
実施の形態4.
他のビーム分割手段として、シリンドリカルレンズアレイによる実施形態を以下に示すが、この例は、図13に示すように、レーザビーム均一照射光学系は、レーザ発振器からのレーザビーム1をシリンドリカルレンズアレイ5に入射するための光学系を含み、平行ビームにするためのビーム拡大レンズ31とy方向コリメートレンズ32とx方向コリメートレンズ33を含み、コリメートレンズ33からの平行ビームをシリンドリカルレンズアレイ5に入射する。
【0054】
シリンドリカルレンズアレイ5は、図中x方向に柱状にして光軸に向けて断面凸レンズをy方向に積重ねたレンズを指すが、図例は、シリンドリカルレンズ5段から構成され、これにより5つ分割ビームが形成される。
【0055】
分割用のシリンドリカルレンズアレイ5からのy方向への分割ビームは、その前方に配置して別体の転写用のシリンドリカルレンズアレイ51に入射され、転写用シリンドリカルレンズアレイ51からの分割ビームは、x方向に集光する集光レンズ62(シリンドリカルレンズ)により照射面90上に投射されて、y方向に均一で、x方向には細く収束した線状プロフィルを有する照射ビーム19に成形するものである。さらにフィールドレンズ63が、転写用のシリンドリカルレンズアレイ51と集光レンズ62との間に配置されている。
【0056】
分割用のシリンドリカルレンズアレイ5からy方向に分割した分割ビーム15a〜15eには、光学的遅延手段として、遅延板2が挿入されるが、遅延板2は、1つおきの分割ビーム15a,15c,15dに挿入され、他の
分割ビーム15b,15dには、挿入されない。これにより、互いに隣合う分割ビーム間(例えば、分割ビーム15aと15bの間、あるいは分割ビーム15bと15cとの間)の照射面90上での干渉が押さえられ、重ね合わせた照射ビームの干渉のよる強度分布を均一化することができる。
【0057】
図15(A、B)は、シリンドリカルレンズアレイ5におけるレーザビームの分割の態様を示すものであるが、各微小シリンドリカルレンズで分割されたビームは、先の導波路による分割と異なって、照射面での重ね合わせの際に、折り返しがなくて、単に重畳されるだけであり、従って、2つの隣接する分割ビームを転写用シリンドリカルレンズアレイ51とx方向集光レンズ62を介して照射面上にの重ね合わせでも、合成後の強度分布は、y方向での干渉に差異がない。図16は、分割幅dを、上述の空間的可干渉距離sと等しいとした時の互いに隣接する2つの分割ビームの照射面上での重ね合わせによる強度分布がy方向で一定で、そのビジビリティが、1/eで一定であることを示している。図17は、上記の7分割した分割ビームについて、分割幅dをd=sとして、照射面上で重ね合わせた時の強度分布を示すが、y方向で、かなり良い分布を示す。
【0058】
実施の形態5.
図14は、図13に示したレーザビーム均一照射光学系の変形例であるが、分割用のシリンドリカルレンズアレイ5の分割ビームと、その前方の転写用シリンドリカルレンズアレイ51の前方の焦点位置に、それぞれ一対の遅延板22と23を配置したものである。この例では、転写用シリンドリカルレンズアレイ51の前後に遅延板を分けて配置したので、転写される面と転写する面とが共役関係になるようにすることができ、これにより、照射面での回折の影響を最小にすることができる利点がある。
【0059】
実施の形態6.
図18は、図13に示したレーザビーム均一照射光学系の変形例であるが、遅延板2を挿入した分割ビームについての転写用シリンドリカルレンズアレイ51の微小レンズ512と、遅延板を挿入していない分割ビームについての転写用シリンドリカルレンズアレイ51の微小レンズ511とは、照射面での結像が一様になるように異なる焦点距離を有するように調製されている。分割用シリンドリカルレンズアレイ5によりy方向に配列分割された分割ビームの1つおきの分割ビームに光路長さ用の遅延板2を挿入することにより、挿入しない分割ビームに対して焦点位置fのずれが生ずるが、焦点位置のずれを転写用シリンドリカルレンズアレイ51の各微小レンズの焦点距離で補償するものであり、これにより、照射面上に結像される各分割ビームの強度分布を均一にすることができる。
【0060】
実施の形態7.
図19(A)は、図13に示したレーザビーム均一照射光学系の変形例であるが、この例は、y方向に分割されてビーム1つおきに遅延板2が挿入された分割ビームを転写用レンズにより照射面90に照射するに際して、フィールドレンズ63により照射面上y方向にずらして、重ね合せることにより、分割ビーム間の干渉を防止するものである。
【0061】
図19(B)には、照射面90上に、分割ビームをずらして照射した時の照射ビーム19の強度分布を示すが、y方向の照射ビーム19の両端部では、強度分布が階段状に低減するけれども、両端部を除く主要な部分は、干渉の少ない均一な分布が得られる。
【0062】
【発明の効果】
本発明のレーザビーム均一照射光学系は、レーザビーム分割手段を上記の分割ビーム幅を、レーザビーム断面における断面方向の空間的可干渉距離の1/2倍以上とするので、照射面における分割ビームによる干渉を低減して、均一な強度分布の照射ビームを照射面に形成することができる。
【0063】
レーザビーム分割手段により分割したビームを照射面上に照射するときのビーム強度を均一にする均一化手段を含み、上記の均一化手段が、上記の分割したビームの互いに隣接する隣接分割ビームの一方を他方に対して該レーザビームの時間的可干渉距離よりも長く遅延させる光学的遅延手段を含むので、分割ビームを照射面上に照射したとき、互いに隣り合うビーム間の時間的可干渉距離に起因する干渉を防止することができる
【0064】
レーザビーム分割手段に互いに対向する反射面を有する一次元方向の導波路を使用すれば、これにより分割したビームの照射面上での干渉を軽減できる。
【0065】
また、レーザビーム分割手段に、レーザビームを一次元的に分割する分割用のシリンドリカルレンズアレイを使用すれば、これにより分割したビームの照射面上での干渉を軽減できる。
【0066】
レーザビーム分割手段を上記の分割ビーム幅を、レーザビーム断面における断面方向の空間的可干渉距離の1/2倍以上とし、且つ均一化手段が、上記の分割したビームの互いに隣接する隣接分割ビームの一方を他方に対して該レーザビームの時間的可干渉距離よりも長く遅延させる光学的遅延手段を含むようにするので、レーザビーム均一照射光学系は、空間的可干渉距離による干渉と時間的可干渉距離とを効果的に低減できる利点がある。
【0067】
上記のビーム分割幅を空間的可干渉距離の1/√2倍以上とすれば、時間的可干渉距離とともに、空間的可干渉距離に起因する照射面上の照射ビームの干渉による強度分布の不均一を軽減することができる。
【0068】
上記のビーム分割幅を空間的可干渉距離以上とすれば、、空間的可干渉距離に起因する照射面上の照射ビームの干渉による強度分布の不均一を一層軽減することができる。
【0069】
上記のレーザビーム分割手段が、互いに対向する反射面を有する一次元方向の導波路とすれば、導波路による分割ビーム間の空間的可干渉距離による干渉と時間的可干渉距離とを効果的に低減できる。
【0070】
重ね合せ照射手段としてレーザビーム分割手段からの分割ビームを照射面に転写する転写レンズを含み、上記の光学的遅延手段が、転写レンズにより形成した複数の分割ビームを空間的分離した領域で、該空間的に分離した隣接分割ビームのいずれかを透光するように配置された遅延板とすれば、遅延板の配置が容易になり、構造が比較的簡単で、干渉の少ない均一な強度分布の照射ビームを形成することができる。
【0071】
上記の導波路の反射面の間を反射しないで通過した分割ビームを遮断するようにすれば、一個の遅延板により、所要の分割ビームの光路差を設けることができ、構造が比較的簡単で、干渉の少ない均一な強度分布の照射ビームを形成することができる。
【0072】
導波路に対する入射レーザ光の光軸が上記の導波路の反射面間の中心軸と斜交して、反射面の間を反射しないで通過する分割ビームを生じさせない要にすれば、レーザビームのエネルギーを損失させることなく、所要の分割ビーム全部の光路差を設けることができ、構造が比較的簡単で、干渉の少ない均一な強度分布の照射ビームを形成することができる。
【0073】
導波路が、中実な透光体からなり、当該導波路の入射面が導波路の中心軸と斜交して、反射面の間を反射しないで通過する分割ビームを生じさせない要にすれば、光学系を光軸に共軸状に配置することができ、同様に、所要の分割ビーム全部の光路差を設けることができ、構造が比較的簡単で、干渉の少ない均一な強度分布の照射ビームを形成することができる。
【0074】
上記のレーザビーム分割手段が、レーザビームを一次元的に分割する分割用のシリンドリカルレンズアレイとすれば、特に、分割ビームは、互いに離間した平行ビームとして、遅延手段の配置が容易になる利点がある。
【0075】
上記の光学的遅延手段が、分割用のシリンドリカルレンズアレイにより形成した複数の分割ビームを空間的分離した領域で、互いに隣接する分割ビームのいずれかを透光するように配置された遅延板とすれば、互いに離間した平行ビームとして、遅延手段の配置が容易になる利点がある。
【0076】
重ね合せ照射手段が、上記分割用のシリンドリカルレンズアレイからの分割ビームを照射面に転写する転写用シリンドリカルレンズアレイを含むようにすれば、互いに光路差を設けた分割ビームの照射面上への転写が容易に行なえる
【0077】
上記の光学的遅延手段を、該転写用のシリンドリカルレンズアレイの後方と前方とに分割して配置すれば、転写される面と転写する面とが共役関係になるようにすることができ、これにより、照射面での回折の影響を最小にすることができる利点がある。
【0078】
転写用シリンドリカルレンズアレイは、光学的遅延手段を通過する分割ビームを転写する微小シリンドリカルレンズと、光学的遅延手段を通過しない分割ビームを転写する微小シリンドリカルレンズとが、異なる焦点距離を有するようにして、全ての分割ビームが、照射面において、シャープに結像して合成することができる。
【0079】
遅延板が、レーザ光に対して透明なガラスから成るようにすれば、光学系を簡便に構成するにすることができる利点がある。
【0080】
レーザ源を、固体レーザ又は半導体レーザの基本波又は高調波とすれば、良質のレーザ光源を用いて、照射面上に均質な強度分布の照射ビームを形成することができる。特に、高調波レーザは、半導体層に吸収しやすい波長光を利用して、加熱効率を高めることができる利点がある。
【0081】
照射面を基板上に形成された非晶質若しくは多結晶質の半導体膜であり、上記光学系が半導体膜アニーリング用光学系とすれば、半導体膜の結晶化に有効に利用することができる。
【図面の簡単な説明】
【図1】本発明の導波路を利用した実施形態に係るレーザビーム均一照射光学系の配置を示す図で、(A)は、y方向から見た図、(B)は、x方向から見た図を示す。
【図2】導波路におけるレーザビームの分割の態様を説明する断面図。
【図3】導波路におけるレーザビームの分割の態様を説明する図(A、B)。
【図4】導波路により分割した互いに隣接する2つの分割ビームを照射面上で重ね合わせたときの合成照射ビームの強度分布とビジビリテイとを示す図(d=sのとき)。
【図5】レーザビームの空間的可干渉距離sの定義を説明する図。
【図6】導波路により7つに分割した分割ビームを照射面上で重ね合わせたときの合成照射ビームの強度分布とビジビリテイとを示す図(d=sのとき)。
【図7】レーザビームの光路差とビジビリテイとの関係を示す図。
【図8】本発明の他の実施の形態に係るレーザビーム均一照射光学系の配置を示す図1(B)相当の側面図。
【図9】本発明の他の実施の形態に係るレーザビーム均一照射光学系の配置を示す図1(B)類似の図で、入射光の光軸と導波路中心軸とを斜交した配置を示す。
【図10】入射光の光軸と導波路中心軸とを斜交した配置におけるビーム分割を示す図。
【図11】入射光の光軸と導波路中心軸とを斜交しして配置した導波路におけるレーザビームの分割の態様を説明する図3同様図(A、B)。
【図12】本発明の他の実施の形態に係るレーザビーム均一照射光学系の配置を示す図1(B)相当の図で、導波路入射面を導波路中心軸に斜光するように配置してある。
【図13】本発明の分割用シリンドリカルレンズアレイと遅延板とを利用した他の実施の形態に係るレーザビーム均一照射光学系の配置を示す図で、(A)はy方向から見た図、(B)はx方向から見た図をそれぞれ示す。
【図14】変形例にレーザビーム均一照射光学系の配置を示す図13(B)に同様の図。
【図15】分割用シリンドリカルレンズアレイにおけるレーザビームの分割の態様を説明する図(A、B)。
【図16】分割用シリンドリカルレンズアレイにより分割した互いに隣接する2つの分割ビームを照射面上で重ね合わせたときの合成照射ビームの強度分布とビジビリテイとを示す図(d=sのとき)。
【図17】分割用シリンドリカルレンズアレイにより7つに分割した分割ビームを照射面上で重ね合わせたときの合成照射ビームの強度分布とビジビリテイとを示す図(d=sのとき)。
【図18】分割用シリンドリカルレンズアレイを使用して、転写用シリンドリカルレンズアレイの微小シリンドリカルレンズの異なる焦点距離を有する用にした図13(B)同様図。
【図19】さらに、各分割ビームを照射面上でずらして重ね合わせる図18同様の図(A)と、照射面上の照射ビームの強度分布を示す図(B)。
【符号の説明】
1 レーザビーム、2 遅延板、21 遅延板、29 遮蔽体、31 ビーム拡大レンズ、32 y方向コリメートレンズ、33 x方向コリメートレンズ、34 集光レンズ、4 導波路、41 反射面、42 反射面、5 分割用シリンドリカルレンズアレイ、51 転写用シリンドリカルレンズアレイ、61 転写レンズ、62 集光レンズ、9 照射体、90 照射面。

Claims (19)

  1. レーザ光源からのレーザビームをビーム断面において空間的に分割ビームに分割するレーザビーム分割手段と、分割ビームを照射面上で重ね合せて照射する重ね合せ照射手段と、から成るレーザビーム均一照射光学系であって、
    上記のレーザビーム分割手段が、上記の分割ビーム幅を、レーザビーム断面における断面方向の空間的可干渉距離の1/2倍以上とすることを特徴とするレーザビーム均一照射光学系。
  2. 上記のレーザビーム分割手段が、互いに対向する反射面を有する一次元方向の導波路である請求項1に記載の光学系。
  3. 上記のレーザビーム分割手段が、レーザビームを一次元的に分割する分割用のシリンドリカルレンズアレイである請求項1に記載の光学系。
  4. レーザ光源からのレーザビームをビーム断面において空間的に分割ビームに分割するレーザビーム分割手段と、分割ビームを照射面上で重ね合せて照射する重ね合せ照射手段と、照射面上のビーム強度を均一にする均一化手段とから、成るレーザビーム均一照射光学系であって、
    上記のレーザビーム分割手段が、上記の分割ビーム幅を、レーザビーム断面における断面方向の空間的可干渉距離の1/2倍以上とし、且つ上記の均一化手段が、上記の分割したビームの互いに隣接する隣接分割ビームの一方を他方に対して該レーザビームの時間的可干渉距離よりも長く遅延させる光学的遅延手段を含むことを特徴とするレーザビーム均一照射光学系。
  5. 上記のビーム分割幅が、空間的可干渉距離の1/√2倍以上である請求項1ないし4いずれかに記載の光学系。
  6. 上記のビーム分割幅が、空間的可干渉距離以上である請求項1ないし5いずれかに記載の光学系。
  7. 上記のレーザビーム分割手段が、互いに対向する反射面を有する一次元方向の導波路である請求項4ないし6いずれかに記載の光学系。
  8. 重ね合せ照射手段が、レーザビーム分割手段からの分割ビームを照射面に転写する転写レンズを含み、
    上記の光学的遅延手段が、転写レンズにより形成した複数の分割ビームを空間的分離した領域で、該空間的に分離した隣接分割ビームのいずれかを透光するように配置された遅延板である請求項7に記載の光学系。
  9. 上記の導波路の反射面の間を反射しないで通過した分割ビームを遮断するようにした請求項7又は8に記載の光学系。
  10. 導波路に対する入射レーザ光の光軸が上記の導波路の反射面間の中心軸と斜交して、反射面の間を反射しないで通過する分割ビームを生じさせないことを特徴とする請求項7又は8に記載の光学系。
  11. 導波路が、中実な透光体からなり、当該導波路の入射面が導波路の中心軸と斜交して、反射面の間を反射しないで通過する分割ビームを生じさせないことを特徴とする請求項7又は8に記載の光学系。
  12. 上記のレーザビーム分割手段が、レーザビームを一次元的に分割する分割用のシリンドリカルレンズアレイである請求項4ないし6いずれかに記載の光学系。
  13. 上記の光学的遅延手段が、分割用のシリンドリカルレンズアレイにより形成した複数の分割ビームを空間的分離した領域で、互いに隣接する分割ビームのいずれかを透光するように配置された遅延板である請求項12に記載の光学系。
  14. 重ね合せ照射手段が、上記分割用のシリンドリカルレンズアレイからの分割ビームを照射面に転写する転写用シリンドリカルレンズアレイを含む請求項12又は13に記載の光学系。
  15. 上記の光学的遅延手段が、該転写用のシリンドリカルレンズアレイの後方と前方とに分割して配置されている請求項14に記載の光学系。
  16. 上記の転写用シリンドリカルレンズアレイは、光学的遅延手段を通過する分割ビームを転写する微小シリンドリカルレンズと、光学的遅延手段を通過しない分割ビームを転写する微小シリンドリカルレンズとが、異なる焦点距離を有する請求項12ないし15いずれかに記載の光学系。
  17. 上記遅延板が、レーザ光に対して透明なガラスから成る請求項8又は13に記載の光学系。
  18. レーザ源が、固体レーザ又は半導体レーザの基本波又は高調波である請求項1ないし16いずれかに記載の光学系。
  19. 照射面が、基板上に形成された非晶質若しくは多結晶質の半導体膜であり、上記光学系が半導体膜アニーリング用光学系である請求項1ないし17いずれかに記載の光学系。
JP2002091440A 2002-03-28 2002-03-28 レーザビーム均一照射光学系 Expired - Fee Related JP3563065B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002091440A JP3563065B2 (ja) 2002-03-28 2002-03-28 レーザビーム均一照射光学系
TW092105755A TWI292245B (en) 2002-03-28 2003-03-17 An optical system for uniformly irradiating a laser bear
CNB031083781A CN1249483C (zh) 2002-03-28 2003-03-28 激光束均匀照射的光学系统
KR1020030019410A KR100541126B1 (ko) 2002-03-28 2003-03-28 레이저빔 균일 조사 광학계

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002091440A JP3563065B2 (ja) 2002-03-28 2002-03-28 レーザビーム均一照射光学系

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004131615A Division JP3762773B2 (ja) 2004-04-27 2004-04-27 レーザビーム均一照射光学系

Publications (2)

Publication Number Publication Date
JP2003287703A JP2003287703A (ja) 2003-10-10
JP3563065B2 true JP3563065B2 (ja) 2004-09-08

Family

ID=29236521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002091440A Expired - Fee Related JP3563065B2 (ja) 2002-03-28 2002-03-28 レーザビーム均一照射光学系

Country Status (1)

Country Link
JP (1) JP3563065B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104820286A (zh) * 2014-02-05 2015-08-05 恩耐激光技术有限公司 单发射器线束系统
US10095016B2 (en) 2011-01-04 2018-10-09 Nlight, Inc. High power laser system
US10295405B2 (en) 2013-03-14 2019-05-21 Nlight, Inc. Active monitoring of multi-laser systems

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI332682B (en) 2002-09-19 2010-11-01 Semiconductor Energy Lab Beam homogenizer and laser irradiation apparatus and method of manufacturing semiconductor device
SG137674A1 (en) 2003-04-24 2007-12-28 Semiconductor Energy Lab Beam homogenizer, laser irradiation apparatus, and method for manufacturing semiconductor device
JP5089077B2 (ja) * 2005-04-28 2012-12-05 株式会社半導体エネルギー研究所 半導体装置の作製方法
EP1716964B1 (en) 2005-04-28 2009-01-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device and laser irradiation apparatus
JP4442537B2 (ja) * 2005-09-16 2010-03-31 三菱電機株式会社 レーザプロセス装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10095016B2 (en) 2011-01-04 2018-10-09 Nlight, Inc. High power laser system
US11256076B2 (en) 2011-01-04 2022-02-22 Nlight, Inc. High power laser system
US10295405B2 (en) 2013-03-14 2019-05-21 Nlight, Inc. Active monitoring of multi-laser systems
CN104820286A (zh) * 2014-02-05 2015-08-05 恩耐激光技术有限公司 单发射器线束系统
CN104820286B (zh) * 2014-02-05 2021-07-23 恩耐公司 单发射器线束系统

Also Published As

Publication number Publication date
JP2003287703A (ja) 2003-10-10

Similar Documents

Publication Publication Date Title
JP4086932B2 (ja) レーザー照射装置及びレーザー処理方法
EP0905540B1 (en) Beam homogenizer, laser illumination apparatus and method, and semiconductor device
JP4748836B2 (ja) レーザ照射装置
US6304385B1 (en) Laser irradiation apparatus and method
TWI263385B (en) Making method and device of a membrane of crystallization
US7991037B2 (en) Multi-beam laser apparatus
US20090231718A1 (en) Optical illumination system for creating a line beam
US20040120050A1 (en) Beam irradiator and laser anneal device
TW200403711A (en) Crystallization apparatus, optical member for use in crystallization apparatus, crystallization method, manufacturing method of thin film transistor
KR101227803B1 (ko) 감소된 간섭을 갖는 균질화기
JP3563065B2 (ja) レーザビーム均一照射光学系
KR100541126B1 (ko) 레이저빔 균일 조사 광학계
JP3969197B2 (ja) レーザ照射装置
WO2004042807A1 (ja) 光照射装置
JP2000150412A (ja) 半導体処理方法及び半導体処理装置
KR100900685B1 (ko) 다중 빔 레이저 장치 및 빔 스플리터
JP2003287706A (ja) レーザビーム均一照射光学系
JP3762773B2 (ja) レーザビーム均一照射光学系
JP4442537B2 (ja) レーザプロセス装置
JP3537424B2 (ja) レーザビーム均一照射光学系
JP4413528B2 (ja) レーザ照射装置
JP3537423B2 (ja) レーザビーム均一照射光学系
JP2004241561A (ja) レーザプロセス装置
WO2021145176A1 (ja) レーザアニール装置及びレーザアニール方法
JP2018133417A (ja) レーザ照明装置及びラインビームレーザ照射装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040204

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040204

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040601

R150 Certificate of patent or registration of utility model

Ref document number: 3563065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees