JP3560729B2 - Bonding wire contact prevention method - Google Patents

Bonding wire contact prevention method Download PDF

Info

Publication number
JP3560729B2
JP3560729B2 JP14076096A JP14076096A JP3560729B2 JP 3560729 B2 JP3560729 B2 JP 3560729B2 JP 14076096 A JP14076096 A JP 14076096A JP 14076096 A JP14076096 A JP 14076096A JP 3560729 B2 JP3560729 B2 JP 3560729B2
Authority
JP
Japan
Prior art keywords
bonding wires
bonding
current
wire
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14076096A
Other languages
Japanese (ja)
Other versions
JPH09306938A (en
Inventor
法生 新田
Original Assignee
ユー・エム・シー・ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユー・エム・シー・ジャパン株式会社 filed Critical ユー・エム・シー・ジャパン株式会社
Priority to JP14076096A priority Critical patent/JP3560729B2/en
Publication of JPH09306938A publication Critical patent/JPH09306938A/en
Application granted granted Critical
Publication of JP3560729B2 publication Critical patent/JP3560729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体チップをパッケージに実装する場合において、隣接するボンディングワイヤ同士の接触を防止するボンディングワイヤの接触防止方法に関する。
【0002】
【従来の技術】
一般に、半導体ウェハ上に多数の能動素子を形成することによって高度な信号処理を行う半導体装置を製造する場合は、製造工程の最終段階で、半導体基板がむき出された状態にある半導体チップ(いわゆるベアチップ)をパッケージに実装する必要がある。この実装処理は、半導体チップをパッケージに搭載する処理と、半導体チップに設けられた接続電極とパッケージに設けられた外部引出し用電極とを電気的に接続する処理と、パッケージを封止する処理とからなる。
【0003】
半導体チップに設けられた接続電極とパッケージに設けられた外部引出し用端子とを接続する方法としては、一般に、ワイヤボンディング法が用いられる。ここで、ワイヤボンディング法とは、接続電極と外部引出し用端子とを、ボンディングワイヤと呼ばれる金からなる細線によって接続する方法である。この場合、ボンディングワイヤと接続電極等との接続は、ボンディングワイヤを接続電極等に押し付けて熱及び超音波振動を加えることにより行われる。
【0004】
なお、このワイヤボンディング法としては、一般に、ボールボンディング法が用いられる。ここで、ボールボンディング法とは、電気トーチによりボンディングワイヤの一端にボールを形成し、このボールを半導体チップ上の接続電極に押し付けて熱及び超音波振動を加えることにより、ボンディングワイヤを接続電極に接続する方法である。
【0005】
【発明が解決しようとする課題】
しかしながら、近年、ワイヤボンディング法によって、半導体チップ上の接続電極とパッケージの外部引出し用端子とを接続する場合、ボンディングワイヤが少し曲がっただけでも、隣接するボンディングワイヤ同士が接触することがあるという問題が生じてきた。これは、半導体チップの高性能化によって、半導体チップ上の接続電極のピッチが狭くなってきているとともに、パッケージの外部引出し用端子のピッチ限界の低さから、ボンディングワイヤが長くなってきているためである。
【0006】
この問題に対処するために、従来、ボンディング装置の高性能化やボンディングワイヤのループ形状の改善、さらには、ボンディングワイヤの製造材料の最適化が進められている。しかしながら、現在のところ、これらのいずれの方法でも、十分な効果が得られていない。
【0007】
本発明はかかる問題点に鑑みてなされたもので、その目的は、ボンディングワイヤのピッチが狭く、かつ、長さが長い場合であっても、隣接するボンディングワイヤ同士の接触を防止可能なボンディングワイヤの接触防止方法を提供することにある。
【0008】
【課題を解決するための手段】
請求項1記載のボンディングワイヤの接触防止方法は、半導体チップに設けられた複数の接続電極と半導体チップが実装されるパッケージに設けられた複数の外部引出し用端子とをそれぞれ複数のボンディングワイヤで接続した後、隣接するボンディングワイヤに逆向きの電流を流すように、複数のボンディングワイヤに通電し、この通電電流とこの通電電流によって発生する電流磁界との相互作用によって複数のボンディングワイヤを変形させることにより、隣接するボンディングワイヤ同士の接触を防止するようにしたものである。
【0009】
請求項2記載のボンディングワイヤの接触防止方法は、請求項1記載のボンディングワイヤの接触防止方法において、通電電流と電流磁界とによる相互作用によって変形させられた複数のボンディングワイヤの弾性変形による応力を通電による発熱によって緩和させることにより、隣接するボンディングワイヤ同士の接触を防止するようにしたものである。
【0010】
請求項3記載の接触防止方法は、請求項1記載のボンディングワイヤの接触防止方法において、針状の通電用端子を有する電源を用いて、複数のボンディングワイヤに電流を流すようにしたものである。
【0011】
請求項1記載のボンディングワイヤの接触防止方法では、半導体チップ上の複数の接続電極とパッケージの複数の外部引出し用端子との接続が終了すると、複数のボンディングワイヤは、隣接するボンディングワイヤに逆向きの電流を流すように通電される。これにより、隣接するボンディングワイヤの間に、通電電流と電流磁界との相互作用によって斥力が働く。その結果、隣接するボンディングワイヤは、互いに近づく方向に曲がっている場合であっても、互いに離れる方向に変形させられる。これにより、隣接するボンディングワイヤの接触が防止される。
【0012】
請求項2記載のボンディングワイヤの接触防止方法では、複数のボンディングワイヤは所定時間通電される。これにより、複数のボンディングワイヤの温度がジュール熱によって高められる。その結果、複数のボンディングワイヤの温度が弾性降伏温度を越えると、これら複数のボンディングワイヤの弾性変形による応力が緩和される。これにより、単に電磁力によってボンディングワイヤを変形させる場合よりも、ボンディングワイヤの変形状態の保持効果を高めることができる。その結果、単に電磁力によってボンディングワイヤを変形させる場合より、隣接するボンディングワイヤの接触防止効果を高めることができる。
【0013】
請求項3記載のボンディングワイヤの接触防止方法では、複数のボンディングワイヤは、針状の通電用端子を有する電源を用いて通電される。これにより、針状の通電端子をボンディング部に接触させるだけで、ボンディングワイヤを通電することができるので、ボンディングワイヤの通電処理(電源の接続処理)を簡単にすることができる。
【0014】
【実施の形態】
以下、本発明の実施の形態を図面を参照しながら詳細に説明する。
【0015】
図1は、本発明の第1の実施の形態の構成を示す斜視図である。図において、11(1)〜11(4)は、ボンディングワイヤを示す。これらボンディングワイヤ11(1)〜11(4)は、直径が10〜35[μm]の金線で形成されている。ボンディングワイヤ11(1)〜11(4)の一端は、それぞれリードフレームにダイボンディングされた半導体チップ12上の電極パッド(接続電極)13(1)〜13(4)に接続されている。また、ボンディングワイヤ11(1)〜11(4)の他端は、それぞれリードフレームの銀メッキされたインナリード(外部引出し用端子)14(1)〜14(4)に接続されている。
【0016】
ボンディングワイヤ11(1)〜11(4)と電極パッド13(1)〜13(4)との接続は、例えば、ボールボンディング法によって行われている。すなわち、ボンディングワイヤ11(1)〜11(4)の一端には、電気トーチによりボール15(1)〜15(4)を形成されている。このボール15(1)〜15(4)は、電極パッド13(1)〜13(4)に押し付けて熱及び超音波振動を加えられる。これにより、ボンディングワイヤ11(1)〜11(4)の一端が電極パッド13(1)〜13(4)に接続される。
【0017】
本実施の形態は、電極パッド13(1)〜13(4)とインナリード14(1)〜14(4)とをボンディングワイヤ11(1)〜11(4)で接続した後、隣接するボンディングワイヤ11(m),11(m+1)(m=1,2,3)に逆向きの電流を流すように、ボンディングワイヤ11(1)〜11(4)に通電し、この通電電流とこの通電電流によって発生する電流磁界との相互作用によってボンディングワイヤ11(1)〜11(4)を変形させることにより、隣接するボンディングワイヤ11(m),11(m+1)同士の接触を防止するようにしたものである。
【0018】
ボンディングワイヤ11(1)〜11(4)の通電は、電源16(1)〜16(4)を用いて行われる。電源16(1)〜16(4)は、隣接するボンディングワイヤ11(m),11(m+1)に逆向きの電流を流すように接続されている。すなわち、電源16(1),16(3)の正側端子は、例えば、それぞれボール15(1),15(3)に接続され、負側端子は接地されている。これに対し、電源16(2),16(4)の正側端子は接地され、負側端子はそれぞれボール15(2),15(4)に接続されている。これにより、ボンディングワイヤ11(1),11(3)とボンディングワイヤ11(2),11(4)とには逆向きの電流が流れる。なお、電源16(1),16(3)の負側端子と電源16(2),16(4)の正側端子とが接地されることに合わせて、インナリード14(1)〜14(4)も接地されている。
【0019】
電源16(1),16(3)の正側端子とボール15(1),15(3)との接続は、電源16(1),16(3)の正側端子に設けられた針状の通電用端子(以下「通電用プローブ」という。)17(1),17(3)をボール15(1),15(3)に接触させることにより行われる。同様に、電源16(2),16(4)の負側端子とボール15(2),15(4)との接続は、電源16(2),16(4)の負側端子に設けられた通電用プローブ17(2),17(4)をボール15(2),15(4)に接触させることにより行われる。なお、通電用プローブ17(1)〜17(4)の接触位置は、ボール15(1)〜15(4)ではなく、電極パッド13(1)〜13(4)であってもよい。
【0020】
上記構成において、隣接するボンディングワイヤ11(m),(m+1)の接触を防止するためのワイヤ整形動作を説明する。電極パッド13(1)〜13(4)とインナリード14(1)〜14(4)との接続が終了すると(ワイヤボンディングが終了すると)、ボンディングワイヤ11(1)〜11(4)は、電源16(1)〜16(4)によって通電される。これにより、各ボンディングワイヤ16(n)(n=1,2,3,4)の周囲には、通電電流の大きさに応じた電流磁界が発生する。また、この場合、隣接するボンディングワイヤ11(m),11(m+1)には、逆向きの電流が流される。これにより、隣接するボンディングワイヤ11(m),11(m+1)の間には、通電電流と電流磁界との相互作用により、互いに斥けあう力が働く。
【0021】
この斥力は、隣接するボンディングワイヤ11(m),11(m+1)の間隔に反比例し、通電電流の大きさの二乗に比例する。したがって、通電電流の大きさを大きくすれば、隣接するボンディングワイヤ11(m),11(m+1)が互いに近づく方向に曲がっている場合であっても、これらを互いに離れる方向に変形させることができる。これにより、ワイヤボンディングが終了した時点で、隣接するボンディングワイヤ11(m),11(m+1)同士が接触している場合であっても、これらを離すことができる。
【0022】
但し、通電電流の大きさを大きくしすぎると、ボンディングワイヤ11(m),11(m+1)の温度が上昇し、ボンディングワイヤ11(m),11(m+1)が溶断する恐れがある。したがって、通電電流の大きさとしては、ボンディングワイヤ11(1)〜11(4)を変形させることができるような大きさであって、かつ、これらを溶断させることがないような大きさである必要がある。
【0023】
このような通電電流の大きさを具体例を使って説明する。図2は、隣接するボンディングワイヤ11(m),11(m+1)の間に生じる斥力の具体例を示す。図には、隣接するボンディングワイヤ11(m),11(m+1)の間隔が100[μm],150[μm],200[μm],250[μm],300[μm]である場合において、通電電流の大きさを5[A],10[A],15[A],20[A],30[A]とした場合の斥力を示す。この斥力の単位はニュートン[N]である。
【0024】
通常の半導体装置においては、ボンディングワイヤ11(1)〜11(4)に約0.01N(約1gf)以上の力を与えることにより、ボンディングワイヤ11(1)〜11(4)を変形させることができる。また、通常のボンディングワイヤ11(1)〜11(4)は、15[A]程度の電流を流しても溶断することがない。したがって、図2の例では、5[A]〜15[A]の電流を流すことにより、ワイヤ間隔が100[μm],150[μm],200[μm],250[μm],300[μm]のいずれの場合であっても、ボンディングワイヤ11(1)〜11(4)を溶断させることなく変形させることができる。
【0025】
なお、電磁力だけでボンディングワイヤ11(1)〜11(4)を変形させる構成では、通電を停止した場合、ボンディングワイヤ11(1)〜11(4)が途中までしか戻らない場合と完全に元に戻ってしまう場合とが生じる可能性がある。後者のような場合が生じると、隣接するボディングワイヤ11(m),11(m+1)同士の接触防止を保障することができない。そこで、本実施の形態では、ボンディングワイヤ11(1)〜11(4)を塑性変形させることにより、隣接するボディングワイヤ11(m),11(m+1)同士の接触防止を確実に保障するようになっている。
【0026】
ボンディングワイヤ11(1)〜11(4)を塑性変形させるためには、ボンディングワイヤ11(1)〜11(4)の温度を高めればよい。ボンディングワイヤ11(1)〜11(4)の温度を高めるためには、通電時間を長くすればよい。但し、通電時間をあまり長くすると、ボンディングワイヤ11(1)〜11(4)の温度が融点に達し、ボンディングワイヤ11(1)〜11(4)が溶断してしまう。したがって、通電時間としては、ボンディングワイヤ11(1)〜11(4)の溶断を招くことなく、これを塑性変形させることができるような温度を確保可能な時間である必要がある。
【0027】
上述したような温度としては、融点[°K]の半分程度の温度が望ましい。但し、この温度としては、塑性変形温度以上であることが望ましい。このような温度を得るためには、通電電流の大きさを5[A]〜15[A]に設定するものとすると、放熱のばらつきを考慮して、通電時間を10[μs]〜10[ms]に設定すればよい。なお、この通電時間は、予めボンディングワイヤ11(1)〜11(4)を暖めておくようにすれば短縮することができる。
【0028】
図3は、上述したワイヤ整形動作を示す平面図である。ここで、図3(a)は、ワイヤ整形動作を開始する前(ワイヤボンディングが終了した時点)のボンディングワイヤ11(1)〜11(4)の状態を示し、同図(b)は、ワイヤ整形動作を開始した時点(通電を開始した時点)でのボンディングワイヤ11(1)〜11(4)の状態を示し、同図(c)は、ワイヤ整形動作が終了したときのボンディングワイヤ11(1)〜11(4)の状態を示す。
【0029】
ワイヤ整形動作を開始する前は、図3(a)に示すように、ボンディングワイヤ11(1)〜11(4)は、通常、曲がっている。図3(a)には、ボンディングワイヤ11(1),11(2)が互いに近づく方向に曲がって接触し、ボンディングワイヤ11(3),11(4)が接触はしないが互いに近づく方向に曲がっている場合を示す。
【0030】
この状態で、ボンディングワイヤ11(1)〜11(4)に所定の大きさの電流Iを流すと、図3(b)に示すように、電流Iと電流磁界との相互作用により、隣接するボンディングワイヤ11(m),11(m+1)の間に斥力Fが働く。これにより、隣接するボンディング11(m),11(m+1)が互いに離れる方向に変形する。その結果、隣接するボンディング11(m),11(m+1)の間隔は、例えば、どの部分でもほぼ同じになる。
【0031】
これと並行して、ボンディングワイヤ11(1)〜11(4)には、通電によるジュール熱が発生する。これにより、ボンディングワイヤ11(1)〜11(4)の温度が上昇する。
【0032】
このあと、ボンディングワイヤ11(1)〜11(4)の温度が弾性降伏温度を越えると、ボンディングワイヤ11(1)〜11(4)の弾性変形による応力が消失する。その結果、通電を停止しても、図3(c)に示すように、ボンディングワイヤ11(1)〜11(4)の形状は元に戻らない。これにより、ボンディングワイヤ11(1),11(2)の接触が解消される。
【0033】
以上詳述したように本実施の形態によれば、ワイヤボンディングが終了した後、隣接するボンディングワイヤ11(m),11(m+1)に逆向きの電流を流すように、ボンディングワイヤ11(1)〜11(4)に通電し、この通電電流とこの通電電流による電流磁界との相互作用によってボンディングワイヤ11(1)〜11(4)を変形させるようにしたので、ボンディングワイヤ11(1)〜11(4)のピッチが狭く、かつ、長さが長い場合であっても、隣接するボンディングワイヤ11(m),11(m+1)同士が接触しないようにすることができる。
【0034】
また、本実施の形態によれば、ボンディングワイヤ11(1)〜11(4)に所定の電流を所定時間流すことにより、ボンディングワイヤ11(1)〜11(4)を塑性変形させるようにしたので、単に電磁力によってボンディングワイヤ11(1)〜11(4)を変形させる場合より、変形状態の保持効果を高めることができる。これにより、単に電磁力によってボンディングワイヤ11(1)〜11(4)を変形させる場合より、隣接するボンディングワイヤ11(m),11(m+1)同士の接触防止効果を高めることができる。
【0035】
ちなみに、ボンディングワイヤ11(1)〜11(4)の直径を25[μm]、スパンを2.5[mm]とし、ボール15(1)〜15(4)のピッチを200[μm]とした場合、ワイヤボンディングが終了した時点では、ボンディングワイヤ11(1)〜11(4)の曲がりは、中心で最大100[μm]あった。これに対し、ボンディングワイヤ11(1)〜11(4)に10[A]の電流を5[ms]間流して、ボンディングワイヤ11(1)〜11(4)を整形すると、ボンディングワイヤ11(1)〜11(4)の曲がりは、中心で最大25[μm]となり、ワイヤ整形処理を施す前の25%に減少した。これにより、ワイヤボンディングが終了した時点で、隣接するボンディングワイヤ11(m),11(m+1)同士が接触している場合であっても、これらを確実に離すことができる。
【0036】
また、本実施の形態によれば、ボンディングワイヤ11(1)〜11(4)と電極パッド13(1)〜13(4)との接続部(第1のボンディング部)に対して、電源16(1)〜16(4)を接続する場合、通電用プローブ17(1)〜17(4)を使って接続するようにしたので、電源16(1)〜16(4)の接続処理を簡単にすることができる。
【0037】
図4は、本発明の第2の実施の形態の構成を示す斜視図である。なお、図4において、先の図1とほぼ同一機能を果たす部分には同一符号を付して詳細な説明を省略する。
【0038】
先の実施の形態では、リードフレームにダイボンディングされた半導体チップ12上の接続電極とパッケージの外部引出し用端子とを接続するボンディングワイヤ11(1)〜11(4)を整形する場合を説明した。これに対し、本実施の形態では、TAB(テープオートメイテッドボンディング:tape automated bonding)テープ上にダイボンディングされた半導体チップ12上の接続電極とパッケージの外部引出し用端子とを接続するボンディングワイヤ11(1)〜11(4)を整形するようにしたものである。
【0039】
また、先の実施の形態では、電源16(1),16(3)の負側端子と電源16(2),16(4)の正側端子とを接地する場合を説明した。これに対し、本実施の形態では、これらを通電用プローブを介してボンディングワイヤ11(1)〜11(4)とパッケージの外部引出し用端子との接続部(第2ボンディング部)に接続するようにしたものである。
【0040】
すなわち、図4において、ボンディングワイヤ11(1)〜11(4)の一端は、それぞれTABテープ上にダイボンディングされた半導体チップ12上の電極パッド(接続電極)13(1)〜13(4)に接続されている。また、ボンディングワイヤ11(1)〜11(4)の他端は、それぞれTABテープ上のインナリード(外部引出し用端子)18(1)〜18(4)に設けられた電極パッド19(1)〜19(4)に接続されている。なお、インナリード18(1)〜18(4)及び電極パッド19(1)〜19(4)は、それぞれ、例えば、Au(金)、Ni(ニッケル),Cu(銅)によって構成されている。
【0041】
電源16(1)〜16(4)の一端は、通電用プローブ17(1)〜17(4)を有し、これら通電用プローブ17(1)〜17(4)をボール15(1)〜15(4)に接触させることにより、ボール15(1)〜15(4)に接続されている。同様に、電源16(1)〜16(4)の他端は、通電用プローブ20(1)〜20(4)を有し、これら通電用プローブ20(1)〜20(4)を電極パッド19(1)〜19(4)に接触させることにより、電極パッド19(1)〜19(4)に接続されている。
【0042】
上記構成においては、電源16(1),16(3)の正側端子から流れ出した電流は、通電用プローブ17(1),17(3)、ボール15(1),15(3)、電極パッド13(1),13(2)、ボンディングワイヤ11(1),11(3)、電極パッド19(1),19(3),通電用プローブ20(1),20(2)を介して電源16(1),16(3)の負側端子に戻る。また、電源16(2),16(4)の正側端子から流れ出した電流は、通電用プローブ20(2),20(4)、電極パッド19(2),19(4)、ボンディングワイヤ11(2),11(4)、電極パッド13(2),13(4)、ボール15(2),15(4)、プローブ17(2),17(4)を介して電源16(1),16(3)の負側端子に戻る。これにより、隣接するボンディングワイヤ11(m),11(m+1)の間隔がどの部分でもほぼ同じになるように、ボンディングワイヤ11(1)〜11(4)を整形することができる。
【0043】
以上詳述した本実施の形態においても、先の実施の形態と同様に、ボンディングワイヤ11(1)〜11(4)の直線性を改善することができるので、隣接するボンディングワイヤ11(m),11(m+1)の接触を防止することができる。
【0044】
ちなみに、ボンディングワイヤ11(1)〜11(4)のスパンを3.5[mm]とし、ボール15(1)〜15(4)のピッチと電極パッド19(1)〜19(4)のピッチを200[μm]とした場合、ワイヤボンディングが終了した時点では、ボンディングワイヤ11(1)〜11(4)の曲がりは、中心で最大150[μm]あった。これに対し、ボンディングワイヤ11(1)〜11(4)に10[A]の電流を5[ms]間流して、ボンディングワイヤ11(1)〜11(4)を整形すると、ボンディングワイヤ11(1)〜11(4)の曲がりは、中心で最大30[μm]となり、ワイヤ整形処理を施す前の20%に減少した。これにより、ワイヤボンディングが終了した時点で、隣接するボンディングワイヤ11(m),11(m+1)同士が接触している場合であっても、これらを確実に離すことができる。
【0045】
また、本実施の形態によれば、第1のボンディング部だけでなく、第2のボンディング部においても、通電用プローブ20(1)〜20(4)を使って電源16(1)〜16(4)を接続するようにしたので、先の実施の形態より、電源16(1)〜16(4)の接続処理を簡単にすることができる。
【0046】
さらに、このような構成によれば、インナリード18(1)〜18(4)を接地する処理を省略することができるので、先の実施の形態より、ボンディングワイヤ11(1)〜11(4)の整形処理を簡単にすることができる。
【0047】
以上、本発明の一実施の形態を説明したが、本発明は、上述したような実施の形態に限定されるものではなく、他にも種々様々変形実施可能なことは勿論である。
【0048】
【発明の効果】
以上詳述したように請求項1記載のボンディングワイヤの接触防止方法によれば、ワイヤボンディングが終了した後、隣接するボンディングワイヤに逆向きの電流を流すように、複数のボンディングワイヤに通電し、電磁力によって複数のボンディングワイヤを変形させるようにしたので、複数のボンディングワイヤのピッチが狭く、かつ、長さが長い場合であっても、隣接するボンディングワイヤ同士の接触を防止することができる。
【0049】
また、請求項2記載のボンディングワイヤの接触防止方法によれば、ボンディングワイヤに所定の電流を所定時間流すことにより、ボンディングワイヤを塑性変形させるようにしたので、単に電磁力によってボンディングワイヤを変形させる場合より、変形状態の保持効果を高めることができる。これにより、単に電磁力によってボンディングワイヤを変形させる場合より、隣接するボンディングワイヤ同士の接触防止効果を高めることができる。
【0050】
さらに、請求項3記載のボンディングワイヤの接触防止方法によれば、ボンディング部に電源を接続する場合、通電用プローブを使って接続するようにしたので、電源の接続処理を簡単にすることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の構成を示す斜視図である。
【図2】隣接するボンディングワイヤ間に働く斥力の大きさを示す表図である。
【図3】第1の実施の形態におけるワイヤ整形処理を説明するための平面図である。
【図4】本発明の第2の実施の形態の構成を示す斜視図である。
【符号の説明】
11(1)〜11(4)…ボンディングワイヤ、12…半導体チップ、13(1)〜13(4),19(1)〜19(4)…電極パッド、14(1)〜14(4),18(1)〜18(4)…インナリード、15(1)〜15(4)…ボール、16(1)〜16(4)…電源、17(1)〜17(4),20(1)〜20(4)…通電用プローブ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a bonding wire contact prevention method for preventing adjacent bonding wires from contacting each other when a semiconductor chip is mounted on a package.
[0002]
[Prior art]
2. Description of the Related Art In general, when manufacturing a semiconductor device that performs advanced signal processing by forming a large number of active elements on a semiconductor wafer, a semiconductor chip having a bare semiconductor substrate (a so-called bare chip) is required at the final stage of the manufacturing process. Bare chip) must be mounted on the package. The mounting process includes a process of mounting a semiconductor chip on a package, a process of electrically connecting a connection electrode provided on the semiconductor chip to an external lead-out electrode provided on the package, and a process of sealing the package. Consists of
[0003]
As a method for connecting the connection electrodes provided on the semiconductor chip and the external lead terminals provided on the package, a wire bonding method is generally used. Here, the wire bonding method is a method of connecting a connection electrode and an external lead-out terminal by a thin wire made of gold called a bonding wire. In this case, the connection between the bonding wire and the connection electrode or the like is performed by pressing the bonding wire against the connection electrode or the like and applying heat and ultrasonic vibration.
[0004]
Note that a ball bonding method is generally used as the wire bonding method. Here, the ball bonding method is to form a ball at one end of a bonding wire using an electric torch, press the ball against a connection electrode on a semiconductor chip, and apply heat and ultrasonic vibration to connect the bonding wire to the connection electrode. How to connect.
[0005]
[Problems to be solved by the invention]
However, in recent years, when a connection electrode on a semiconductor chip is connected to an external lead-out terminal of a package by a wire bonding method, there is a problem that even if the bonding wire is slightly bent, adjacent bonding wires may come into contact with each other. Has arisen. This is because the pitch of the connection electrodes on the semiconductor chip is becoming narrower due to the higher performance of the semiconductor chip, and the bonding wire is becoming longer due to the lower pitch limit of the external lead terminals of the package. It is.
[0006]
In order to cope with this problem, conventionally, higher performance of a bonding apparatus, improvement of a loop shape of a bonding wire, and optimization of a material for manufacturing a bonding wire have been advanced. However, at present, no sufficient effect has been obtained by any of these methods.
[0007]
The present invention has been made in view of such a problem, and an object thereof is to provide a bonding wire capable of preventing contact between adjacent bonding wires even when the pitch of the bonding wires is narrow and long. To provide a contact prevention method.
[0008]
[Means for Solving the Problems]
In the method for preventing contact of a bonding wire according to claim 1, a plurality of connection electrodes provided on a semiconductor chip and a plurality of external lead-out terminals provided on a package on which the semiconductor chip is mounted are respectively connected by a plurality of bonding wires. Then, a current is supplied to the plurality of bonding wires so that a current in the opposite direction flows to the adjacent bonding wire, and the plurality of bonding wires are deformed by an interaction between the supplied current and a current magnetic field generated by the supplied current. Thus, contact between adjacent bonding wires is prevented.
[0009]
According to a second aspect of the present invention, there is provided the bonding wire contact preventing method according to the first aspect, wherein the stress caused by the elastic deformation of the plurality of bonding wires deformed by the interaction between the flowing current and the current magnetic field. By alleviating the heat generated by energization, contact between adjacent bonding wires is prevented.
[0010]
According to a third aspect of the present invention, in the first aspect, a current is supplied to the plurality of bonding wires by using a power supply having a needle-like conducting terminal. .
[0011]
In the method for preventing contact of a bonding wire according to claim 1, when the connection between the plurality of connection electrodes on the semiconductor chip and the plurality of external lead-out terminals of the package is completed, the plurality of bonding wires are turned in the opposite direction to the adjacent bonding wires. Is supplied so that a current of? As a result, a repulsive force acts between adjacent bonding wires due to the interaction between the flowing current and the current magnetic field. As a result, even if adjacent bonding wires are bent in a direction approaching each other, they are deformed in a direction away from each other. As a result, contact between adjacent bonding wires is prevented.
[0012]
In the method for preventing contact of a bonding wire according to claim 2, the plurality of bonding wires are energized for a predetermined time. Thereby, the temperature of the plurality of bonding wires is increased by Joule heat. As a result, when the temperature of the plurality of bonding wires exceeds the elastic yield temperature, the stress due to the elastic deformation of the plurality of bonding wires is reduced. Thereby, the effect of holding the deformed state of the bonding wire can be enhanced as compared with the case where the bonding wire is simply deformed by the electromagnetic force. As a result, the effect of preventing contact between adjacent bonding wires can be enhanced as compared with the case where the bonding wires are simply deformed by the electromagnetic force.
[0013]
According to the third aspect of the present invention, the plurality of bonding wires are energized by using a power supply having needle-like energizing terminals. Accordingly, the bonding wire can be energized only by bringing the needle-shaped energizing terminal into contact with the bonding portion, so that the energizing process of the bonding wire (the process of connecting the power supply) can be simplified.
[0014]
Embodiment
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1 is a perspective view showing the configuration of the first exemplary embodiment of the present invention. In the figure, 11 (1) to 11 (4) indicate bonding wires. These bonding wires 11 (1) to 11 (4) are formed of gold wires having a diameter of 10 to 35 [μm]. One ends of the bonding wires 11 (1) to 11 (4) are connected to electrode pads (connection electrodes) 13 (1) to 13 (4) on the semiconductor chip 12 die-bonded to the lead frame, respectively. The other ends of the bonding wires 11 (1) to 11 (4) are connected to silver-plated inner leads (external lead terminals) 14 (1) to 14 (4) of the lead frame, respectively.
[0016]
The connection between the bonding wires 11 (1) to 11 (4) and the electrode pads 13 (1) to 13 (4) is performed by, for example, a ball bonding method. That is, balls 15 (1) to 15 (4) are formed at one end of the bonding wires 11 (1) to 11 (4) by an electric torch. The balls 15 (1) to 15 (4) are pressed against the electrode pads 13 (1) to 13 (4) to apply heat and ultrasonic vibration. Thereby, one ends of the bonding wires 11 (1) to 11 (4) are connected to the electrode pads 13 (1) to 13 (4).
[0017]
In the present embodiment, after the electrode pads 13 (1) to 13 (4) and the inner leads 14 (1) to 14 (4) are connected by the bonding wires 11 (1) to 11 (4), the adjacent bonding The bonding wires 11 (1) to 11 (4) are energized so that currents in opposite directions flow through the wires 11 (m) and 11 (m + 1) (m = 1, 2, 3). The bonding wires 11 (1) to 11 (4) are deformed by the interaction with the current magnetic field generated by the current to prevent contact between the adjacent bonding wires 11 (m) and 11 (m + 1). Things.
[0018]
The energization of the bonding wires 11 (1) to 11 (4) is performed using power supplies 16 (1) to 16 (4). The power supplies 16 (1) to 16 (4) are connected so that currents in opposite directions flow through the adjacent bonding wires 11 (m) and 11 (m + 1). That is, the positive terminals of the power supplies 16 (1) and 16 (3) are connected to, for example, the balls 15 (1) and 15 (3), respectively, and the negative terminals are grounded. On the other hand, the positive terminals of the power supplies 16 (2) and 16 (4) are grounded, and the negative terminals are connected to the balls 15 (2) and 15 (4), respectively. As a result, a reverse current flows through the bonding wires 11 (1) and 11 (3) and the bonding wires 11 (2) and 11 (4). The negative leads of the power supplies 16 (1) and 16 (3) and the positive terminals of the power supplies 16 (2) and 16 (4) are grounded, and the inner leads 14 (1) to 14 ( 4) is also grounded.
[0019]
The connection between the positive terminals of the power supplies 16 (1) and 16 (3) and the balls 15 (1) and 15 (3) is made by a needle-shaped connection provided at the positive terminals of the power supplies 16 (1) and 16 (3). This is performed by bringing the current-carrying terminals (hereinafter referred to as "current-carrying probes") 17 (1) and 17 (3) into contact with the balls 15 (1) and 15 (3). Similarly, the connection between the negative terminals of the power supplies 16 (2) and 16 (4) and the balls 15 (2) and 15 (4) is provided at the negative terminals of the power supplies 16 (2) and 16 (4). This is performed by bringing the energizing probes 17 (2) and 17 (4) into contact with the balls 15 (2) and 15 (4). The contact positions of the energizing probes 17 (1) to 17 (4) may be the electrode pads 13 (1) to 13 (4) instead of the balls 15 (1) to 15 (4).
[0020]
In the above configuration, a wire shaping operation for preventing contact between adjacent bonding wires 11 (m) and (m + 1) will be described. When the connection between the electrode pads 13 (1) to 13 (4) and the inner leads 14 (1) to 14 (4) is completed (when the wire bonding is completed), the bonding wires 11 (1) to 11 (4) are Power is supplied by power supplies 16 (1) to 16 (4). As a result, a current magnetic field corresponding to the magnitude of the flowing current is generated around each bonding wire 16 (n) (n = 1, 2, 3, 4). In this case, a current in the opposite direction is applied to the adjacent bonding wires 11 (m) and 11 (m + 1). As a result, forces that repel each other act between the adjacent bonding wires 11 (m) and 11 (m + 1) due to the interaction between the flowing current and the current magnetic field.
[0021]
This repulsive force is inversely proportional to the distance between the adjacent bonding wires 11 (m) and 11 (m + 1), and is proportional to the square of the magnitude of the flowing current. Therefore, if the magnitude of the energizing current is increased, even if the adjacent bonding wires 11 (m) and 11 (m + 1) are bent in a direction approaching each other, they can be deformed in a direction away from each other. . Accordingly, even when adjacent bonding wires 11 (m) and 11 (m + 1) are in contact with each other at the time of completion of wire bonding, they can be separated.
[0022]
However, if the magnitude of the flowing current is too large, the temperature of the bonding wires 11 (m) and 11 (m + 1) rises, and the bonding wires 11 (m) and 11 (m + 1) may be blown. Therefore, the magnitude of the energizing current is large enough to deform the bonding wires 11 (1) to 11 (4) and not to blow them. There is a need.
[0023]
The magnitude of such an energizing current will be described using a specific example. FIG. 2 shows a specific example of a repulsive force generated between adjacent bonding wires 11 (m) and 11 (m + 1). In the figure, when the distance between the adjacent bonding wires 11 (m) and 11 (m + 1) is 100 [μm], 150 [μm], 200 [μm], 250 [μm], 300 [μm], The repulsive force when the magnitude of the current is 5 [A], 10 [A], 15 [A], 20 [A], and 30 [A] is shown. The unit of this repulsive force is Newton [N].
[0024]
In a typical semiconductor device, the bonding wires 11 (1) to 11 (4) are deformed by applying a force of about 0.01 N (about 1 gf) or more to the bonding wires 11 (1) to 11 (4). Can be. Further, the normal bonding wires 11 (1) to 11 (4) do not melt even when a current of about 15 [A] is applied. Therefore, in the example of FIG. 2, by flowing a current of 5 [A] to 15 [A], the wire spacing is 100 [μm], 150 [μm], 200 [μm], 250 [μm], 300 [μm]. In any case, the bonding wires 11 (1) to 11 (4) can be deformed without fusing.
[0025]
In the configuration in which the bonding wires 11 (1) to 11 (4) are deformed only by the electromagnetic force, when the energization is stopped, when the bonding wires 11 (1) to 11 (4) return only halfway, completely. There is a possibility that it may return to the original state. If the latter case occurs, it is not possible to guarantee the prevention of contact between the adjacent boding wires 11 (m) and 11 (m + 1). Therefore, in the present embodiment, the bonding wires 11 (1) to 11 (4) are plastically deformed, so that the prevention of contact between the adjacent boding wires 11 (m) and 11 (m + 1) is ensured. It has become.
[0026]
In order to plastically deform the bonding wires 11 (1) to 11 (4), the temperature of the bonding wires 11 (1) to 11 (4) may be increased. In order to raise the temperature of the bonding wires 11 (1) to 11 (4), the energization time may be increased. However, if the energizing time is too long, the temperature of the bonding wires 11 (1) to 11 (4) reaches the melting point, and the bonding wires 11 (1) to 11 (4) are blown. Therefore, the energization time needs to be a time capable of securing a temperature at which the bonding wires 11 (1) to 11 (4) can be plastically deformed without causing melting.
[0027]
The temperature as described above is desirably about half the melting point [° K]. However, this temperature is desirably equal to or higher than the plastic deformation temperature. In order to obtain such a temperature, if the magnitude of the energizing current is set to 5 [A] to 15 [A], the energizing time is set to 10 [μs] to 10 [A] in consideration of variation in heat radiation. ms]. It is to be noted that this energization time can be shortened by previously heating the bonding wires 11 (1) to 11 (4).
[0028]
FIG. 3 is a plan view showing the above-described wire shaping operation. Here, FIG. 3A shows the state of the bonding wires 11 (1) to 11 (4) before the wire shaping operation is started (at the time when the wire bonding is completed), and FIG. The state of the bonding wires 11 (1) to 11 (4) at the time when the shaping operation is started (at the time when energization is started) is shown. FIG. The states of 1) to 11 (4) are shown.
[0029]
Before the wire shaping operation is started, as shown in FIG. 3A, the bonding wires 11 (1) to 11 (4) are usually bent. In FIG. 3A, the bonding wires 11 (1) and 11 (2) are bent in a direction approaching each other to make contact, and the bonding wires 11 (3) and 11 (4) are not in contact but are bent in a direction approaching each other. Indicates when
[0030]
In this state, when a current I having a predetermined magnitude is applied to the bonding wires 11 (1) to 11 (4), as shown in FIG. A repulsive force F acts between the bonding wires 11 (m) and 11 (m + 1). As a result, the adjacent bondings 11 (m) and 11 (m + 1) are deformed in directions away from each other. As a result, the spacing between the adjacent bondings 11 (m) and 11 (m + 1) is, for example, substantially the same in any part.
[0031]
At the same time, Joule heat is generated in the bonding wires 11 (1) to 11 (4) by energization. Thereby, the temperature of the bonding wires 11 (1) to 11 (4) increases.
[0032]
Thereafter, when the temperature of the bonding wires 11 (1) to 11 (4) exceeds the elastic yield temperature, the stress due to the elastic deformation of the bonding wires 11 (1) to 11 (4) disappears. As a result, the shape of the bonding wires 11 (1) to 11 (4) does not return to the original shape as shown in FIG. Thereby, the contact between the bonding wires 11 (1) and 11 (2) is eliminated.
[0033]
As described in detail above, according to the present embodiment, after the wire bonding is completed, the bonding wire 11 (1) is set so that the current flows in the opposite direction to the adjacent bonding wires 11 (m) and 11 (m + 1). To 11 (4), and the bonding wires 11 (1) to 11 (4) are deformed by the interaction between the supplied current and the current magnetic field generated by the supplied current. Even when the pitch of 11 (4) is narrow and the length is long, it is possible to prevent adjacent bonding wires 11 (m) and 11 (m + 1) from contacting each other.
[0034]
Further, according to the present embodiment, the bonding wires 11 (1) to 11 (4) are plastically deformed by applying a predetermined current to the bonding wires 11 (1) to 11 (4) for a predetermined time. Therefore, the effect of maintaining the deformed state can be enhanced as compared with the case where the bonding wires 11 (1) to 11 (4) are simply deformed by the electromagnetic force. Thereby, the effect of preventing contact between the adjacent bonding wires 11 (m) and 11 (m + 1) can be enhanced as compared with the case where the bonding wires 11 (1) to 11 (4) are simply deformed by the electromagnetic force.
[0035]
Incidentally, the diameter of the bonding wires 11 (1) to 11 (4) was 25 [μm], the span was 2.5 [mm], and the pitch of the balls 15 (1) to 15 (4) was 200 [μm]. In this case, when wire bonding was completed, the bending of the bonding wires 11 (1) to 11 (4) was 100 [μm] at the center at the maximum. On the other hand, when a current of 10 [A] is applied to the bonding wires 11 (1) to 11 (4) for 5 [ms] to shape the bonding wires 11 (1) to 11 (4), the bonding wire 11 ( The bending of 1) to 11 (4) was 25 [μm] at the center at the maximum, and was reduced to 25% before the wire shaping process was performed. Accordingly, even when adjacent bonding wires 11 (m) and 11 (m + 1) are in contact with each other at the time when the wire bonding is completed, they can be surely separated from each other.
[0036]
Further, according to the present embodiment, the power supply 16 is connected to the connection portion (first bonding portion) between the bonding wires 11 (1) to 11 (4) and the electrode pads 13 (1) to 13 (4). When connecting (1) to 16 (4), the connection is performed using the energizing probes 17 (1) to 17 (4), so that the connection processing of the power supplies 16 (1) to 16 (4) is simplified. Can be
[0037]
FIG. 4 is a perspective view showing the configuration of the second exemplary embodiment of the present invention. In FIG. 4, portions performing substantially the same functions as those in FIG. 1 described above are denoted by the same reference numerals, and detailed description is omitted.
[0038]
In the above embodiment, the case where the bonding wires 11 (1) to 11 (4) connecting the connection electrodes on the semiconductor chip 12 die-bonded to the lead frame and the external lead-out terminals of the package have been described. . On the other hand, in the present embodiment, the bonding wires 11 (for connecting the connection electrodes on the semiconductor chip 12 die-bonded to the TAB (tape automated bonding) tape and the external lead terminals of the package). 1) to 11 (4) are shaped.
[0039]
In the above embodiment, the case where the negative terminals of the power supplies 16 (1) and 16 (3) and the positive terminals of the power supplies 16 (2) and 16 (4) are grounded has been described. On the other hand, in the present embodiment, these are connected to the connection portion (second bonding portion) between the bonding wires 11 (1) to 11 (4) and the external lead-out terminal of the package via the conducting probe. It was made.
[0040]
That is, in FIG. 4, one ends of the bonding wires 11 (1) to 11 (4) are respectively connected to electrode pads (connection electrodes) 13 (1) to 13 (4) on the semiconductor chip 12 die-bonded on the TAB tape. It is connected to the. The other ends of the bonding wires 11 (1) to 11 (4) are connected to electrode pads 19 (1) provided on inner leads (external lead terminals) 18 (1) to 18 (4) on the TAB tape, respectively. To 19 (4). The inner leads 18 (1) to 18 (4) and the electrode pads 19 (1) to 19 (4) are made of, for example, Au (gold), Ni (nickel), and Cu (copper). .
[0041]
One end of each of the power supplies 16 (1) to 16 (4) has energizing probes 17 (1) to 17 (4), and these energizing probes 17 (1) to 17 (4) are connected to balls 15 (1) to 17 (4). By making contact with the balls 15 (4), the balls 15 (1) to 15 (4) are connected. Similarly, the other ends of the power supplies 16 (1) to 16 (4) have energizing probes 20 (1) to 20 (4), and these energizing probes 20 (1) to 20 (4) are connected to electrode pads. By making contact with 19 (1) to 19 (4), they are connected to electrode pads 19 (1) to 19 (4).
[0042]
In the above configuration, the current flowing from the positive terminals of the power supplies 16 (1) and 16 (3) is supplied to the energizing probes 17 (1) and 17 (3), the balls 15 (1) and 15 (3), and the electrodes. Via pads 13 (1) and 13 (2), bonding wires 11 (1) and 11 (3), electrode pads 19 (1) and 19 (3), and current-carrying probes 20 (1) and 20 (2). Return to the negative terminals of the power supplies 16 (1) and 16 (3). The current flowing from the positive terminals of the power supplies 16 (2) and 16 (4) is supplied to the energizing probes 20 (2) and 20 (4), the electrode pads 19 (2) and 19 (4), and the bonding wire 11 (2), 11 (4), power supply 16 (1) via electrode pads 13 (2), 13 (4), balls 15 (2), 15 (4), and probes 17 (2), 17 (4). , 16 (3). Thereby, the bonding wires 11 (1) to 11 (4) can be shaped so that the interval between the adjacent bonding wires 11 (m) and 11 (m + 1) is almost the same in any part.
[0043]
In the present embodiment described in detail above, similarly to the previous embodiment, the linearity of bonding wires 11 (1) to 11 (4) can be improved, so that adjacent bonding wires 11 (m) can be improved. , 11 (m + 1) can be prevented.
[0044]
Incidentally, the span of the bonding wires 11 (1) to 11 (4) is 3.5 [mm], and the pitch of the balls 15 (1) to 15 (4) and the pitch of the electrode pads 19 (1) to 19 (4). Is 200 [μm], the bending of the bonding wires 11 (1) to 11 (4) was 150 [μm] at the center at the time when the wire bonding was completed. On the other hand, when a current of 10 [A] is applied to the bonding wires 11 (1) to 11 (4) for 5 [ms] to shape the bonding wires 11 (1) to 11 (4), the bonding wire 11 ( The bending of 1) to 11 (4) was 30 [μm] at the center at the maximum, and was reduced to 20% before the wire shaping process was performed. Accordingly, even when adjacent bonding wires 11 (m) and 11 (m + 1) are in contact with each other at the time when the wire bonding is completed, they can be surely separated from each other.
[0045]
Further, according to the present embodiment, the power supplies 16 (1) to 16 () are provided not only in the first bonding section but also in the second bonding section by using the energizing probes 20 (1) to 20 (4). 4), the connection of the power supplies 16 (1) to 16 (4) can be simplified as compared with the previous embodiment.
[0046]
Furthermore, according to such a configuration, the process of grounding the inner leads 18 (1) to 18 (4) can be omitted, so that the bonding wires 11 (1) to 11 (4) are different from the above embodiment. ) Can be simplified.
[0047]
As described above, one embodiment of the present invention has been described, but the present invention is not limited to the above-described embodiment, and it goes without saying that various other modifications can be made.
[0048]
【The invention's effect】
As described in detail above, according to the method for preventing contact of a bonding wire according to claim 1, after the wire bonding is completed, a current is supplied to a plurality of bonding wires so that a current flows in an opposite direction to an adjacent bonding wire. Since the plurality of bonding wires are deformed by the electromagnetic force, even when the pitch of the plurality of bonding wires is narrow and the length is long, contact between adjacent bonding wires can be prevented.
[0049]
According to the method for preventing contact of a bonding wire according to the second aspect, the bonding wire is plastically deformed by applying a predetermined current to the bonding wire for a predetermined time, so that the bonding wire is simply deformed by an electromagnetic force. As a result, the effect of maintaining the deformed state can be enhanced. Thereby, the effect of preventing contact between adjacent bonding wires can be enhanced as compared with a case where the bonding wires are simply deformed by the electromagnetic force.
[0050]
Further, according to the method for preventing contact of the bonding wire according to the third aspect, when a power supply is connected to the bonding portion, the connection is performed using the energizing probe, so that the connection processing of the power supply can be simplified. .
[Brief description of the drawings]
FIG. 1 is a perspective view illustrating a configuration of a first exemplary embodiment of the present invention.
FIG. 2 is a table showing the magnitude of repulsion acting between adjacent bonding wires.
FIG. 3 is a plan view illustrating a wire shaping process according to the first embodiment.
FIG. 4 is a perspective view showing a configuration of a second exemplary embodiment of the present invention.
[Explanation of symbols]
11 (1) to 11 (4): bonding wire, 12: semiconductor chip, 13 (1) to 13 (4), 19 (1) to 19 (4): electrode pad, 14 (1) to 14 (4) , 18 (1) to 18 (4) ... inner lead, 15 (1) to 15 (4) ... ball, 16 (1) to 16 (4) ... power supply, 17 (1) to 17 (4), 20 ( 1) to 20 (4) ... energizing probe

Claims (3)

半導体チップに設けられた複数の接続電極と前記半導体チップが実装されるパッケージに設けられた複数の外部引出し用端子とをそれぞれ複数のボンディングワイヤで接続した後、隣接するボンディングワイヤに逆向きの電流を流すように、前記複数のボンディングワイヤに通電し、この通電電流とこの通電電流によって発生する電流磁界との相互作用によって前記複数のボンディングワイヤを変形させることにより、隣接するボンディングワイヤ同士の接触を防止することを特徴とするボンディングワイヤの接触防止方法。After connecting a plurality of connection electrodes provided on a semiconductor chip and a plurality of external lead-out terminals provided on a package on which the semiconductor chip is mounted with a plurality of bonding wires, respectively, a current flowing in an opposite direction to an adjacent bonding wire. So that current flows through the plurality of bonding wires and deforms the plurality of bonding wires by an interaction between the current and a current magnetic field generated by the current. A method for preventing contact of a bonding wire. 前記通電電流と前記電流磁界とによる相互作用によって変形させられた前記複数のボンディングワイヤの弾性変形による応力を通電による発熱によって緩和させることにより、隣接するボンディングワイヤ同士の接触を防止することを特徴とする請求項1記載のボンディングワイヤの接触防止方法。By reducing the stress due to the elastic deformation of the plurality of bonding wires deformed by the interaction between the conduction current and the current magnetic field by heat generation due to conduction, contact between adjacent bonding wires is prevented. The method for preventing contact of a bonding wire according to claim 1. 針状の通電用端子を有する電源を用いて、前記複数のボンディングワイヤを通電することを特徴とする請求項1記載のボンディングワイヤの接触防止方法。The method for preventing contact of a bonding wire according to claim 1, wherein the plurality of bonding wires are energized by using a power supply having a needle-shaped energizing terminal.
JP14076096A 1996-05-10 1996-05-10 Bonding wire contact prevention method Expired - Fee Related JP3560729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14076096A JP3560729B2 (en) 1996-05-10 1996-05-10 Bonding wire contact prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14076096A JP3560729B2 (en) 1996-05-10 1996-05-10 Bonding wire contact prevention method

Publications (2)

Publication Number Publication Date
JPH09306938A JPH09306938A (en) 1997-11-28
JP3560729B2 true JP3560729B2 (en) 2004-09-02

Family

ID=15276106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14076096A Expired - Fee Related JP3560729B2 (en) 1996-05-10 1996-05-10 Bonding wire contact prevention method

Country Status (1)

Country Link
JP (1) JP3560729B2 (en)

Also Published As

Publication number Publication date
JPH09306938A (en) 1997-11-28

Similar Documents

Publication Publication Date Title
EP0247644A1 (en) Integrated circuit die-to-lead frame connection using an intermediate bridging member
JPH0321047A (en) Semiconductor package sealed in capsule
CN107230668B (en) Structure and method for stabilizing leads in wire-bonded semiconductor devices
US6780679B2 (en) Semiconductor device and method of manufacturing the same
JPH0455341B2 (en)
JPH06132454A (en) Method of wiring between package output end and hybrid element
JP3116412B2 (en) Method for forming bump electrode of semiconductor device, display device and electronic printing device
JP3560729B2 (en) Bonding wire contact prevention method
JP3459291B2 (en) Electronic components with semiconductor chips
JPH04352436A (en) Semiconductor device
JP4007917B2 (en) Semiconductor device and manufacturing method thereof
US20140021640A1 (en) Method for electrically connecting vertically positioned substrates
JP2531099B2 (en) Wire-bonding method
JPH05326817A (en) Multichip package
JPH0525236Y2 (en)
JPH0684991A (en) Semiconductor device
JPS6379331A (en) Wire bonding equipment
JPH0855856A (en) Semiconductor device and its manufacture
JP2613233B2 (en) Aging method for semiconductor device
JP4521954B2 (en) IC module manufacturing method
JP2929764B2 (en) Semiconductor device
JPH0590355A (en) Method and apparatus for wire bonding
JP3550946B2 (en) TAB type semiconductor device
JP3336328B2 (en) Resin-sealed semiconductor device and lead frame used for manufacturing the same
JP2728067B2 (en) Resin-sealed semiconductor device and wire bonding device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees