JP3550495B2 - Single crystal manufacturing apparatus and single crystal manufacturing method - Google Patents

Single crystal manufacturing apparatus and single crystal manufacturing method Download PDF

Info

Publication number
JP3550495B2
JP3550495B2 JP06230398A JP6230398A JP3550495B2 JP 3550495 B2 JP3550495 B2 JP 3550495B2 JP 06230398 A JP06230398 A JP 06230398A JP 6230398 A JP6230398 A JP 6230398A JP 3550495 B2 JP3550495 B2 JP 3550495B2
Authority
JP
Japan
Prior art keywords
raw material
crucible
powder
melt
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06230398A
Other languages
Japanese (ja)
Other versions
JPH11240789A (en
Inventor
紘平 小平
Original Assignee
東洋通信機株式会社
紘平 小平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋通信機株式会社, 紘平 小平 filed Critical 東洋通信機株式会社
Priority to JP06230398A priority Critical patent/JP3550495B2/en
Publication of JPH11240789A publication Critical patent/JPH11240789A/en
Application granted granted Critical
Publication of JP3550495B2 publication Critical patent/JP3550495B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は単結晶製造装置に関し、特に引き下げ法により単結晶を製造する製造装置および製造方法に関するものである。
【0002】
【従来の技術】
近年、タンタル酸リチウムLiTaO(以下LTと記す。)、ニオブ酸リチウムLiNbO(以下LNと記す。)、四硼酸リチウムLi(以下LBOと記す。)等の酸化物の単結晶を用いて各種の表面波デバイスが生産されている。
これらの単結晶は、水晶基板に比べて大きな電気機械結合係数(K)が得られ、LTやLBOにあっては零温度係数の切断角度が存在することから、表面波デバイスにこれらの単結晶を使用することにより、携帯電話機器等の端末が小型化、高機能化等されるようになった。上記の酸化物の中でも、LBOは正方晶系4mmに属し、この単結晶は遅延時間温度係数がほぼ0ppm/゜Cであり、また電気機械結合係数は水晶の約6倍と大きく、機械的反射はLTやLNよりも大きいので、表面弾性波デバイスの小型化に適した材料として注目されている。
LBO単結晶の育成方法には大きく分けて次の3つの方法がある。すなわち、チョクラルスキー法(Cz法、回転引き上げ法)、バーティカルブリッジマン法(VB法)、及び引き下げ法である。
チョクラルスキー法は、図2に示すように、結晶化しようとする原料を白金坩堝41に入れ、電気炉42内にて原料を融点以上に昇温し融解させ、その融液43に棒状の種子結晶44の下端部を浸けてゆっくり回転させながら引き上げることにより、種子結晶44の下端部から結晶45を成長させる方法である。
バーティカルブリッジマン法は、図3に示すように、結晶化しようとする原料を白金坩堝51に入れ、電気炉52内にて原料を融点以上に昇温し融解させた後、白金坩堝51の一端に板状の種子結晶53を入れ、電気炉52内に温度勾配を形成した状態で、白金坩堝51を種子結晶53側を先端にして高温側から低温側に徐々に移動させることにより、種子結晶53側より順次結晶を成長させる方法である。
引き下げ法は、本願に係る発明者の一人が文献(Journal of the Ceramic Society of Japan105[7]1997 )に発表した単結晶成長法であり、図4に示すように、底に細孔61aを設けた白金坩堝61の中に多結晶原料を入れ、この白金坩堝61を上側を原料の融点以上、下側を原料の融点以下に保った電気炉62内の最も温度勾配が急峻な位置に配置して原料を融解させ、白金坩堝61の細孔61aから重力によって流出した原料融液に棒状の種子結晶63の上端を接触させた状態で、種子結晶63を回転させながら引き下げることによって結晶させる方法である。この引き下げ法は、白金坩堝61の底の細孔61aから漏れ出た原料融液の白金坩堝61に対する濡れ性及び表面張力を利用して、白金坩堝61と種子結晶63との間に原料融液を保持しつつ結晶育成を行うため、LBOのように溶融時に粘性の大きい物質の結晶育成に適している。
【0003】
【発明が解決しようとする課題】
しかしながら、チョクラルスキー法は、Si(シリコン)、LT、LNなど、融液の粘性が比較的小さい物質の結晶育成には適しているが、LBOはSi、LT、LNなどと比べて融液の粘性が大きいため、育成の過程で気泡やクラックが入り易い。このためチョクラルスキー法によるLBO単結晶の育成速度は0.3mm/h程度と他のSi、LT、LN等の結晶に比べて10分の1以下になるという問題があった。また、チョクラルスキー法による結晶製造装置は、ブリッジマン法、引き下げ法など他の方法による結晶製造装置に比べて一般に高価であるという問題もあった。
また、バーティカルブリッジマン法は、現在LBO単結晶を育成する標準的な方法となっているが、LBO単結晶を一回育成する度毎に白金坩堝を新たに用意しなければならず、製造コストが高くなるという問題がある。そこで多くの場合、白金坩堝への原料充填量を増やして白金坩堝の使用を減らす目的で、粉末原料よりも高価な非晶質LBO焼結体を原料として使用している。また、バーティカルブリッジマン法では結晶の育成状況をその場で観察しながら育成を行うことができないため育成終了後でなければその良否を判断できないといった問題や、育成速度が0.3mm/h〜0.5mm/h程度と遅く結晶育成に時間ががかり過ぎるため製造コストが高くなるという問題もあった。
さらに、チョクラルスキー法、バーティカルブリッジマン法は、いずれもLBO融液の粘性が大きいため、融液内の水分や気泡が残留し易く、結晶中にこれら水分や気泡が含まれてしまう場合が多い。
また、引き下げ法においては、白金坩堝の底の細孔から流出する融液の流量が坩堝内の融液量に伴って変化するため、直胴部すなわち均一な径の部分を多く有する良質な単結晶を得ることが難しいという問題があった。すなわち、坩堝内の融液量が多いときは細孔から流出する融液の流量も多いが、坩堝内の融液量が減少するに連れて流量が減少していくため、直胴部を多く得るためには、育成開始から終わりにかけて徐々に育成速度を低下させていく必要があり、そのための炉内温度制御や種子結晶の引き下げ速度制御などが困難であった。
また、いずれの育成方法においても坩堝内の原料容積が限定されているので、育成される結晶の寸法(長さ、直径など)には制限があった。
本発明は上記問題を解決すべく創案されたものであり、LBOなど融液の粘性が大きい物質をはじめとして、単結晶を連続的に低コストで容易に良質に製造できる単結晶製造装置および単結晶製造方法を提供することにある。
【0004】
【課題を解決するための手段】
上記課題を解決するために、請求項1に記載の発明に係る単結晶製造装置は、電気炉内に原料の入った坩堝を配置してこれを当該原料の融点以上の温度に保ち、坩堝の底部に形成された細孔から漏れ出た原料融液に種子結晶の上端部を接触させた状態で種子結晶を回転させながら引き下げることによって結晶を成長させる引き下げ法を用いた単結晶製造装置において、粉末原料(粉末状態の原料)を融解させて原料融液を生成するための原料融解槽と、この原料融解槽に粉末原料を供給する粉末原料供給手段と、当該原料融解槽内の原料融液を前記坩堝内に導入する原料融液導入手段とを備えており、前記原料融解槽は、前記電気炉内にて前記坩堝よりも高い位置に配置され、且つ、前記坩堝よりも温度の高い電気炉要素部分に配置したことを特徴としている。
上記のように構成された単結晶製造装置によれば、粉末原料供給手段により原料融解槽に粉末原料を供給し、原料融解槽内で粉末原料を融解させて原料融液を生成し、この原料融液を原料融液導入手段により坩堝内に導入することにより、坩堝内に原料融液を供給しつつ結晶育成中を行うことができるので、結晶育成の始めから終わりまで坩堝内の融液量をほぼ一定に保ち、坩堝の底の細孔からの原料融液の流出量をほぼ一定に保ちつつ結晶育成を行うことができる。
また、請求項2に記載の発明に係る単結晶製造装置は、電気炉内に原料の入った坩堝を配置してこれを当該原料の融点以上の温度に保ち、坩堝の底部に形成された細孔から漏れ出た原料融液に種子結晶の上端部を接触させた状態で種子結晶を回転させながら引き下げることによって結晶を成長させる単結晶製造装置において、粉末原料を融解させて原料融液を生成するための原料融解槽と、この原料融解槽に粉末原料を供給する粉末原料供給手段と、当該原料融解槽内の原料融液を前記坩堝内に導入する原料融液導入手段とを備えており、前記粉末原料供給手段が、粉末原料を収容する粉末原料槽と、この粉末原料槽内の粉末原料中へ乾燥気体を導入する乾燥気体導入手段と、この粉末原料槽から原料融解槽へ粉末原料を移送するための原料移送手段とを有するものであることを特徴としている。
上記のように構成された単結晶製造装置によれば、粉末原料中に乾燥空気を導入して原料粉末の湿気を除去することにより、湿気による原料粉末の凝集を防ぎ、原料融解槽へ成分比一定の粉末原料を安定に供給できる。
また、請求項3に記載の発明に係る単結晶製造装置は、請求項2における原料融解槽が、坩堝と共に電気炉内に配置されており、原料移送手段は、原料融解槽へ粉末原料を移送すべくその一端側が粉末原料槽に他端側が電気炉内に挿入された移送管と、この移送管を外部から冷却する冷却手段とを備えたものであることを特徴としている。
上記のように構成された単結晶製造装置によれば、坩堝と原料融解槽とを一つの電気炉で加熱できるので装置構成を簡略化することができるとともに、電気炉外部から電気炉内の原料融解槽に粉末原料を移送する移送管を冷却することにより、移送管の途中で粉末原料が融解するのを防ぎ移送管の詰まりを防止できる。
また、請求項4に記載の発明に係る単結晶製造装置は、電気炉内に原料の入った坩堝を配置してこれを当該原料の融点以上の温度に保ち、坩堝の底部に形成された細孔から漏れ出た原料融液に種子結晶の上端部を接触させた状態で種子結晶を回転させながら引き下げることによって結晶を成長させる単結晶製造装置において、粉末原料を融解させて原料融液を生成するための原料融解槽と、この原料融解槽に粉末原料を供給する粉末原料供給手段と、当該原料融解槽内の原料融液を前記坩堝内に導入する原料融液導入手段とを備えており、前記原料融解槽が、坩堝よりも高い位置に配置されており、原料融液導入手段は、原料融解槽の底部に形成された孔から漏れ出て流下する原料融液をその表面を伝わらせて坩堝内へ案内する案内部材を備えたものであることを特徴としている。
上記のように構成された単結晶製造装置によれば、原料融解槽の底部から漏れ出た原料融液を案内部材の表面を伝わらせて自重により降下させて坩堝内へ供給しつつ、この原料融液中に残存する水分や不純物を坩堝に入る前に電気炉の熱で蒸発させて除去することができる。
また、請求項5記載の発明は、請求項1乃至4の何れかに記載の単結晶製造装置において、前記坩堝は、底部がテーパー角度θを持つ逆円錐形状であって、該底部には複数の細孔を設けたものであることを特徴としている。
また、請求項6記載の発明は、電気炉内に原料の入った坩堝を配置してこれを当該原料の融点以上の温度に保ち、坩堝の底部に形成された細孔から漏れ出た原料融液に種子結晶の上端部を接触させた状態で種子結晶を回転させながら引き下げることによって結晶を成長させる単結晶製造方法において、前記電気炉内の前記坩堝の上方に粉末原料を融解させて原料融液を生成するための原料融解槽を設けると共に、該原料融解槽は、前記坩堝よりも温度の高い電気炉要素部分に配置し、前記電気炉外に粉末原料を収容する粉末原料槽を設け、当該粉末原料槽から移送管を通して当該原料融解槽内に粉末原料を供給し、当該原料融解槽内で粉末原料を融解させてから前記坩堝内に導入することにより、前記坩堝内に原料融液を連続供給して、前記坩堝の底の細孔からの原料融液の流出量をほぼ一定に保ちつつ結晶育成を行うようにしたことを特徴としている。
また、請求項7記載の発明は、電気炉内に原料の入った坩堝を配置してこれを当該原料の融点以上の温度に保ち、坩堝の底部に形成された細孔から漏れ出た原料融液に種子結晶の上端部を接触させた状態で種子結晶を回転させながら引き下げることによって結晶を成長させる単結晶製造方法において、前記電気炉内の前記坩堝の上方に粉末原料を融解させて原料融液を生成するための原料融解槽を設け、前記電気炉外に粉末原料を収容する粉末原料槽を設け、当該粉末原料槽から移送管を通して当該原料融解槽内に粉末原料を供給し、当該原料融解槽内で粉末原料を融解させてから前記坩堝内に導入することにより、前記坩堝内に原料融液を連続供給して、前記坩堝の底の細孔からの原料融液の流出量をほぼ一定に保ちつつ結晶育成を行うようにし、更に、前記粉末原料槽内の粉末原料中へ乾燥気体を導入して当該粉末原料の湿気を除去すると共に、前記粉末原料槽から前記原料融解槽へ粉末原料を移送する移送管を設け、当該移送管を外部から冷却しつつ粉末原料を移送するようにしたことを特徴としている。
また、請求項8記載の発明は、請求項6または7に記載の単結晶製造方法において、前記原料融解槽から前記坩堝内へ原料融液を案内する案内部材を設け、前記原料融解槽の底部に形成された細孔から漏れ出て流下する原料融液を、当該案内部材の表面を伝わらせて前記坩堝内へ供給するようにしたことを特徴としている。
【0005】
【発明の実施の形態】
以下、図面に示す実施の形態により本発明をより詳細に説明する。
図1(a)は本発明に係る単結晶製造装置1の実施の形態の一例を示す概略全体構成図である。この例では、LBO単結晶を製造する場合について説明する。
図1(a)において10は電気炉、20は粉末原料供給装置、30は結晶引き下げ装置である。
電気炉10は円筒形状の3つの電気炉要素10a、10b、10cを上下に積み重ねて連結した構造になっており、電気炉10内の下部には白金坩堝2が、上部には白金製の原料融解槽(以下、プリメルト坩堝という。)3が設けられている。また、プリメルト坩堝3と白金坩堝2との間には、プリメルト坩堝3で生成されたLBOの原料融液5mを白金坩堝2内に導入するための案内部材である白金棒4が設けられている。
電気炉10の最上部の電気炉要素10aはプリメルト坩堝3をLBOの融点以上の温度(例えば、995゜C)に加熱している。中間部の電気炉要素10bは白金坩堝2をLBOの融点以上の温度(例えば、970゜C)に加熱している。また、最下部の電気炉要素10cはLBOの融点よりも低い温度(例えば、690゜C)に設定されている。これにより中間部から最下部にかけて緩やかな温度勾配が形成され、育成された結晶の歪みを除去するアニール効果を有する。また、電気炉10の側壁には、白金坩堝2の下部近傍すなわち結晶成長部を炉外から目視により観察できるように覗き窓17が設けられている。この覗き窓17は耐熱ガラスにて気密に閉塞されている。
粉末原料供給装置20は、LBOの粉末原料5pを収容する粉末原料槽6と、図示しない粉末原料供給源から粉末原料槽6内に粉末原料5pを導入するための原料導入管7と、図示しない乾燥気体発生源から粉末原料槽6内の粉末原料5p中に乾燥気体(乾燥空気、窒素、アルゴン、ヘリウム、等)を導入するための乾燥気体導入管8と、粉末原料槽6から原料融解槽3へ粉末原料5pを移送するための原料移送装置21とを有している。
【0006】
原料移送装置21は、原料融解槽3へ粉末原料5pを移送すべくその上端側が粉末原料槽6の底部6aに下端側が電気炉10内に挿入された移送管9と、この移送管9を冷却するための冷却ジャケット11と、粉末原料5pを強制移送すべく移送管9の途中に設けられた粉末供給ポンプ12とを有する。移送管9及び冷却ジャケット11は、電気炉10の上蓋10dの中央部に形成された貫通孔13内に挿入されており、移送管9の下端部は原料融解槽3内に達している。冷却ジャケット11は、移送管9の外周を取り囲むようにして設けられており、その内部を通過する冷媒により移送管9を外部から冷却することにより、移送管9内を電気炉10からの熱に抗してLBOの融点温度未満に保っている。 結晶引き下げ装置30は、種子結晶14を保持するための保持部15aをその上端部に有する円柱状の回転ロッド15と、この回転ロッド15を鉛直姿勢に保持して軸回転させつつ上下に移動させる回転引き下げ装置16とからなる。 図1(b)に上記プリメルト坩堝3及び白金棒4の部分の構造を、図1(c)に白金坩堝2の構造を示す。
【0007】
図1(b)に示すように、プリメルト坩堝3の底部には中央に孔3aが開いており、この孔3aに白金棒4の上端部が挿入されている。孔3aの径は白金棒4の径よりも若干大きく設定されており、孔3aから漏れ出た原料融液5mが白金棒4の表面を伝って流下することにより白金坩堝2内へ自然に案内される仕組みになっている。
図1(c)に示すように、白金坩堝2の底部は漏斗状(逆円錐形状)に形成されるとともに、底部中央及びその周辺部には同一口径(例えば、0.5mm)複数の細孔2a、2a、・・が設けられており、複数の細孔2a、2a、・・から原料融液5mを流出させることにより、白金坩堝2の下面全体を有効に利用して育成中の結晶18の上面との間に原料融液5mを保持しつつ結晶育成を行える構造になっている。
【0008】
以上のように構成された単結晶製造装置1によれば以下のようにしてLBO単結晶を製造することができる。
まず、電気炉10の電気炉要素10a及び10bの温度をLBOの融点温度以上、電気炉要素10cの温度をLBOの融点温度未満にそれぞれ設定して炉内の加熱を開始し、炉内が設定温度になったらその状態を維持する。冷却ジャケット11には冷媒を常時流し、粉末原料槽6内の粉末原料5p中には乾燥気体導入管8を通して乾燥気体を常時導入しておく。
その後、粉末供給ポンプ12を作動させ、粉末原料槽6から移送管9を通してプリメルト坩堝3内に粉末原料5pを所定量供給する。プリメルト坩堝3内に供給された粉末原料5pは電気炉10により加熱されて融解し、原料融液5mとなってプリメルト坩堝3の底部の孔3aから漏れ出し始める。そして、この原料融液5mが白金棒4の表面を伝って流下することにより、白金坩堝2内に原料融液5mが導入されていく。
白金坩堝2内に原料融液5mが溜まると、白金坩堝2の底部の複数の細孔2a、2a、・・から原料融液5mが漏出し始める。この状況は電気炉10の覗き窓17を通して観察することができるので、原料融液5mの漏れ出しが確認されたら、回転引き下げ装置16により回転ロッド15を上昇させ、回転ロッド15に保持されている種子結晶14の先端(上端)を白金坩堝2の下面を濡らしている原料融液5mに接触させる。
その後、種子結晶14の先端を原料融液5mに接触させた状態を維持しつつ、回転引き下げ装置16により回転ロッド15を一定の向きに所定の速度(例えば、30rpm)で回転させながら一定の速度(例えば、0.75mm/h)で下降させることにより、種子結晶14の先端から結晶18を成長させていく。
【0009】
その際、プリメルト坩堝3内への粉末原料5pの供給量を制御して白金坩堝2内への原料融液5mの導入量を制御することにより、結晶育成の始めから終わりまで白金坩堝2内の原料融液5mの量をほぼ一定に保って、白金坩堝2の底の細孔2a、2a、・・からの原料融液5mの流出量をほぼ一定に保ちつつ結晶18の育成を行う。
このように白金坩堝2の底の細孔2a、2a、・・からの原料融液5mの流出量をほぼ一定に保つことにより、育成中の結晶18の上面に単位時間あたりに供給される原料融液5mの量が結晶育成中ほぼ一定に保たれる。
【0010】
したがって、本実施の形態の単結晶製造装置1によれば以下のような優れた利点を有する。
すなわち、育成中の結晶18の上面に単位時間あたりに供給される原料融液5mの量を結晶育成中ほぼ一定に保つことができるので、粉末原料槽6からプリメルト坩堝3へ粉末原料5pを連続的に供給しつつ結晶を育成することにより、直胴部を多く有する長寸のLBO単結晶を得ることができる。
また、粉末原料槽6に入れる粉末原料5pとして、LBOの粉末や、Li OとB との混合粉末など自由に選択できるので、非晶質LBO焼結体を原料として使用するバーチカルブリッジマン法と比較して原料コストを安くできる。また、チョクラルスキー法と同様に棒状種子を使用できることも製造コストを削減する上で有利である。
【0011】
また、LBO等の多元系単結晶は原料融解時の蒸気圧が原料成分毎に異なるため、原料融液の組成変動が生じ、育成結晶の組成変動を引き起こしたり、原料融液の粘性変化により均一な結晶育成が不可能となる場合が多いが、本実施の形態の単結晶製造装置1によれば、予め原料融解時の組成変動を見越して原料粉末5pの成分比率を調整しておくことにより、組成変動のない均一な結晶を育成することができる。
また、粉末原料槽6内の粉末原料5p中に乾燥空気を導入して原料粉末5pの湿気を除去するようにしたので、湿気による原料粉末5pの凝集を防ぎ、プリメルト坩堝3へ成分比一定の粉末原料5pを安定に供給できる。
また、電気炉10の外部から電気炉10内のプリメルト坩堝3に粉末原料5pを移送する移送管9を冷却するようにしたので、移送管9の中で粉末原料5pが融解するのを防いで移送管9の詰まりを防止してプリメルト坩堝3に粉末原料5pを安定に供給できる。
また、プリメルト坩堝3の底部に形成された孔3aから漏れ出て流下する原料融液5mを白金棒4の表面を伝わらせて白金坩堝2内へ案内するようにしたことにより、プリメルト坩堝3内で生成された原料融液5m中に残存していた水分や不純物を白金坩堝2に入る前に電気炉の熱で蒸発除去できるので、気泡や不純物を含まない高品質の結晶を育成することができる。
【0012】
また、電気炉10の側壁に覗き窓17を設けて結晶育成部をその場で観察できるようにしたので、種付け部やショルダー部の制御が容易である。
また、白金坩堝2の底部の複数の細孔2a、2a、・・の数、位置、大きさ、白金坩堝2の底形状、テーパ角度θ(図1(c)参照)等を適切に設定することで育成結晶の直径を大きくすることが可能である。
また、上記電気炉10、粉末原料供給装置20、原料移送装置21、結晶引き下げ装置30等をコンピュータ制御することにより良質なLBO単結晶を自動育成することも可能である。
なお、上記実施の形態ではLBOの単結晶を製造する場合を例にとり説明したが、上記構成の単結晶製造装置1は、光アイソレータの材料に使用されるルチル、シンチレータの材料に使用されるBGO、BSO、非線形光学材料の一種であるCLBO、圧電・光学材料として知られるLN、LT、等の単結晶製造用としても応用できるものである。
【0013】
【発明の効果】
以上説明したように、本発明は以下のような優れた効果を奏するものである。請求項1に記載の発明では、引き下げ法を用いた単結晶製造装置において、粉末原料供給手段により原料融解槽に粉末原料を供給し、原料融解槽内で粉末原料を融解させて原料融液を生成し、この原料融液を原料融液導入手段により坩堝内に導入することにより、坩堝内に原料融液を連続的に供給しつつ結晶育成を行えるようにしたので、LBOなど融液の粘性が大きい物質の単結晶を低コストで容易に且つ良質に製造できる。
また、請求項2に記載の発明では、粉末原料中に乾燥空気を導入して原料粉末の湿気を除去するようにしたので、湿気による原料粉末の凝集を防ぎ、原料融解槽へ成分比一定の粉末原料を安定に供給できる。
また、請求項3に記載の発明では、坩堝と原料融解槽とを一つの電気炉で加熱できるので装置構成を簡略化することができる。また、電気炉外部から電気炉内の原料融解槽に粉末原料を移送する移送管を冷却するように構成したので、移送管の中で粉末原料が融解して詰まりが発生するの防いで原料融解槽へ粉末原料を安定に供給できる。
また、請求項4に記載の発明では、原料融解槽の底部に形成された孔から漏れ出て流下する原料融液を案内部材の表面を伝わらせて坩堝内へ案内するようにしたことにより、原料融解槽内で生成された原料融液中に残存していた水分や不純物を坩堝に入る前に電気炉の熱で蒸発除去できるので、気泡や不純物を含まない高品質の結晶を育成することができる。
また、請求項5に記載の発明では、引き下げ法を用いた単結晶製造方法において、電気炉内の坩堝の上方に粉末原料を融解させて原料融液を生成するための原料融解槽を設け、電気炉外に粉末原料を収容する粉末原料槽を設け、当該粉末原料槽から移送管を通して当該原料融解槽内に粉末原料を供給し、当該原料融解槽内で粉末原料を融解させてから前記坩堝内に導入することにより、坩堝内に原料融液を連続供給して、坩堝の底の細孔からの原料融液の流出量をほぼ一定に保ちつつ結晶育成を行うようにしたので、LBOなど融液の粘性が大きい物質の単結 晶を低コストで容易に且つ良質に製造できる。
また、請求項6に記載の発明では、粉末原料中に乾燥空気を導入して原料粉末の湿気を除去するようにしたので、湿気による原料粉末の凝集を防ぎ、原料融解槽へ成分比一定の粉末原料を安定に供給できる。
また、請求項7に記載の発明では、坩堝と原料融解槽とを一つの電気炉で加熱できるので単結晶製造に使用する装置構成を簡略化することができる。また、電気炉外部から電気炉内の原料融解槽に粉末原料を移送する移送管を冷却するように構成したので、移送管の中で粉末原料が融解して詰まりが発生するの防いで原料融解槽へ粉末原料を安定に供給できる。
また、請求項8に記載の発明では、原料融解槽の底部に形成された孔から漏れ出て流下する原料融液を案内部材の表面を伝わらせて坩堝内へ供給するようにしたことにより、原料融解槽内で生成された原料融液中に残存していた水分や不純物を坩堝に入る前に電気炉の熱で蒸発除去できるので、気泡や不純物を含まない高品質の結晶を育成することができる。
【図面の簡単な説明】
【図1】(a)は本発明に係る単結晶製造装置の実施の形態の一例を示す概略全体構成図、(b)、(c)は(a)に示す単結晶製造装置の部分拡大断面図である
【図2】従来の単結晶製造装置の一例を示す説明図である。
【図3】従来の単結晶製造装置の一例を示す説明図である。
【図4】従来の単結晶製造装置の一例を示す説明図である。
【符号の説明】
1:単結晶製造装置 2:白金坩堝 2a:細孔
3:プリメルト坩堝(原料融解槽) 3a:孔 4:白金棒(融液導入手段、案内部材)
5p:末原料 6:粉末原料槽 6a:底部 7:原料導入管
8:乾燥気体導入管 9:移送管
10:電気炉 10a、10b、10c:電気炉要素 10d:上蓋
11:冷却ジャケット(冷却手段) 12:粉末供給ポンプ
14:種子結晶 15:回転ロッド 16:回転引き下げ装置
17:覗き窓 20:粉末原料供給装置 21:原料移送装置
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal manufacturing apparatus, and more particularly to a manufacturing apparatus for manufacturing a single crystal by a pulling-down method.And manufacturing methodIt is about.
[0002]
[Prior art]
Recently, lithium tantalate LiTaO3(Hereinafter referred to as LT), lithium niobate LiNbO3(Hereinafter referred to as LN), lithium tetraborate Li2B4O7Various surface acoustic wave devices have been produced using a single crystal of an oxide such as LBO.
These single crystals have a larger electromechanical coupling coefficient (K2) Is obtained, and LT and LBO have a cutting angle of zero temperature coefficient. Therefore, by using these single crystals for the surface acoustic wave device, terminals such as mobile phone devices can be downsized and highly functional. It became to be. Among the above oxides, LBO belongs to a tetragonal system of 4 mm, and this single crystal has a delay time temperature coefficient of almost 0 ppm / ° C, an electromechanical coupling coefficient of about 6 times larger than that of quartz, and mechanical reflection. Since is larger than LT and LN, it is drawing attention as a material suitable for miniaturization of a surface acoustic wave device.
LBO single crystal growth methods are roughly classified into the following three methods. That is, the Czochralski method (Cz method, rotation raising method), the Vertical Bridgman method (VB method), and the lowering method.
In the Czochralski method, as shown in FIG. 2, a raw material to be crystallized is placed in a platinum crucible 41, and the raw material is heated to a melting point or higher in an electric furnace 42 and melted. This is a method of growing a crystal 45 from the lower end of the seed crystal 44 by immersing the lower end of the seed crystal 44 and pulling it up while rotating it slowly.
In the vertical Bridgman method, as shown in FIG. 3, a raw material to be crystallized is placed in a platinum crucible 51, and the raw material is heated to a melting point or higher in an electric furnace 52 and melted. The plate-shaped seed crystal 53 is put into the furnace, and the platinum crucible 51 is gradually moved from the high-temperature side to the low-temperature side with the seed crystal 53 side as a tip in a state where a temperature gradient is formed in the electric furnace 52, so that the seed crystal This is a method of sequentially growing crystals from the 53 side.
One of the inventors of the present application describes the reduction method in the literature (Journalof the Ceramic Society of Japan 105 [7] 1997), and as shown in FIG.Pore 61aThe polycrystalline raw material is placed in a platinum crucible 61 provided with the above, and the platinum crucible 61 is placed at the position where the temperature gradient is steepest in the electric furnace 62 in which the upper side is kept at the melting point of the raw material or more and the lower side is kept at the melting point of the raw material or less. Dispose the raw materials by placing them,Pore 61aThis is a method in which the seed crystal 63 is rotated and pulled down while the upper end of the rod-shaped seed crystal 63 is in contact with the raw material melt that has flowed out by gravity. This lowering method is based on the method ofPore 61aUtilizing the wettability and surface tension of the raw material melt leaked from the platinum crucible 61 and growing the crystal while holding the raw material melt between the platinum crucible 61 and the seed crystal 63, as in the case of LBO Suitable for growing crystals with high viscosity during melting.
[0003]
[Problems to be solved by the invention]
However, the Czochralski method is suitable for growing crystals of a material having a relatively low melt viscosity such as Si (silicon), LT, and LN. However, LBO is more suitable for melt growth than Si, LT, and LN. Because of its high viscosity, bubbles and cracks are liable to enter during the growth process. For this reason, there is a problem that the growth rate of the LBO single crystal by the Czochralski method is about 0.3 mm / h, which is one tenth or less as compared with other crystals of Si, LT, LN and the like. Further, there is a problem that a crystal manufacturing apparatus using the Czochralski method is generally more expensive than a crystal manufacturing apparatus using another method such as the Bridgman method or the pulling-down method.
In addition, the vertical Bridgman method is currently a standard method for growing LBO single crystals, but a platinum crucible must be newly prepared every time an LBO single crystal is grown, and the manufacturing cost is increased. Is high. Therefore, in many cases, an amorphous LBO sintered body, which is more expensive than a powder raw material, is used as a raw material in order to increase the amount of the raw material charged into the platinum crucible and reduce the use of the platinum crucible. Further, in the vertical Bridgman method, it is not possible to perform crystal growth while observing the state of crystal growth on the spot, and it is not possible to judge the quality of the crystal only after the completion of the growth, or the growth rate is 0.3 mm / h to 0 mm. There was also a problem that the production cost was increased because crystal growth took too long, as slow as about 0.5 mm / h.
Furthermore, in both the Czochralski method and the Vertical Bridgman method, since the viscosity of the LBO melt is large, moisture and bubbles in the melt are likely to remain, and the moisture and bubbles may be included in the crystal. Many.
Further, in the pulling-down method, since the flow rate of the melt flowing out of the pores at the bottom of the platinum crucible changes according to the amount of the melt in the crucible, a high-quality unit having many straight body portions, that is, portions having a uniform diameter. There was a problem that it was difficult to obtain crystals. That is, when the amount of melt in the crucible is large, the flow rate of the melt flowing out of the pores is also large, but since the flow rate decreases as the amount of melt in the crucible decreases, the straight body part is increased. In order to obtain it, it was necessary to gradually decrease the growth rate from the start to the end of the growth, and it was difficult to control the furnace temperature and the seed crystal pull-down speed for that purpose.
In addition, in any of the growing methods, the raw material volume in the crucible is limited, so that the size (length, diameter, etc.) of the grown crystal is limited.
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and is a single crystal manufacturing apparatus capable of continuously and easily manufacturing high quality single crystals at low cost, including materials having a high viscosity such as LBO.And single crystal manufacturing methodIs to provide.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a single crystal production apparatus according to the invention of claim 1 arranges a crucible containing a raw material in an electric furnace, maintains the crucible at a temperature equal to or higher than the melting point of the raw material, and In a single crystal manufacturing apparatus using a pull-down method of growing a crystal by rotating the seed crystal while rotating the seed crystal in a state where the upper end of the seed crystal is in contact with the raw material melt leaked from the pore formed at the bottom, A raw material melting tank for melting a powder raw material (a raw material in a powder state) to generate a raw material melt; a powder raw material supply means for supplying a powder raw material to the raw material melting tank; and a raw material melt in the raw material melting tank And a raw material melt introducing means for introducing the melt into the crucible.The raw material melting tank is provided at a position higher than the crucible in the electric furnace, and is disposed at an electric furnace element part having a higher temperature than the crucible.It is characterized by:
According to the single crystal manufacturing apparatus configured as described above, the powder raw material is supplied to the raw material melting tank by the powder raw material supply means, and the powder raw material is melted in the raw material melting tank to generate a raw material melt. By introducing the melt into the crucible by the raw material melt introducing means, the crystal growth can be performed while supplying the raw material melt into the crucible, so that the amount of the melt in the crucible from the beginning to the end of the crystal growth can be increased. Is maintained substantially constant, and the crystal growth can be performed while maintaining the flow rate of the raw material melt from the pores at the bottom of the crucible substantially constant.
The single crystal manufacturing apparatus according to the invention described in claim 2 isA crucible containing the raw material is placed in an electric furnace and kept at a temperature equal to or higher than the melting point of the raw material, and the upper end of the seed crystal is brought into contact with the raw material melt leaking from the pores formed at the bottom of the crucible. In a single crystal manufacturing apparatus that grows a crystal by rotating and pulling down a seed crystal in a rotated state, a raw material melting tank for melting a raw powder material to produce a raw material melt, and supplying the raw powder material to the raw material melting tank Powder raw material supply means, and a raw material melt introducing means for introducing the raw material melt in the raw material melting tank into the crucible,A powder raw material supply means for storing a powder raw material, a dry gas introducing means for introducing a dry gas into the powder raw material in the powder raw material tank, and a transfer of the powder raw material from the powder raw material tank to the raw material melting tank; And a raw material transfer means for carrying out the process.
According to the single crystal manufacturing apparatus configured as described above, by introducing dry air into the powder raw material to remove the moisture of the raw material powder, the raw material powder is prevented from agglomerating due to moisture, and the component ratio is transferred to the raw material melting tank. A certain powder raw material can be supplied stably.
According to a third aspect of the present invention, there is provided a single crystal manufacturing apparatus, wherein the raw material melting tank in claim 2 is arranged in an electric furnace together with the crucible, and the raw material transfer means transfers the powder raw material to the raw material melting tank. To this end, a transfer tube having one end inserted into the powder material tank and the other end inserted into the electric furnace is provided, and cooling means for cooling the transfer tube from the outside is provided.
According to the single crystal manufacturing apparatus configured as described above, the crucible and the raw material melting tank can be heated by one electric furnace, so that the apparatus configuration can be simplified and the raw material in the electric furnace can be heated from outside the electric furnace. By cooling the transfer pipe for transferring the powder raw material to the melting tank, the powder raw material is prevented from melting in the middle of the transfer pipe and the transfer pipe can be prevented from being clogged.
The single crystal manufacturing apparatus according to the invention described in claim 4 is:A crucible containing the raw material is placed in an electric furnace and kept at a temperature equal to or higher than the melting point of the raw material, and the upper end of the seed crystal is brought into contact with the raw material melt leaking from the pores formed at the bottom of the crucible. In a single crystal manufacturing apparatus that grows a crystal by rotating and pulling down a seed crystal in a rotated state, a raw material melting tank for melting a raw powder material to produce a raw material melt, and supplying the raw powder material to the raw material melting tank Powder raw material supply means, and a raw material melt introducing means for introducing the raw material melt in the raw material melting tank into the crucible,The raw material melting tank is arranged at a position higher than the crucible, and the raw material melt introducing means transmits the raw material melt leaking from the hole formed at the bottom of the raw material melting tank and flowing down the surface of the crucible. It is characterized by having a guide member for guiding inside.
According to the single crystal manufacturing apparatus configured as described above, the raw material melt leaking from the bottom of the raw material melting tank is transmitted down the surface of the guide member, is dropped by its own weight, and is supplied into the crucible. Moisture and impurities remaining in the melt can be removed by evaporating with heat of an electric furnace before entering the crucible.
The invention according to claim 5 is5. The apparatus for producing a single crystal according to claim 1, wherein the crucible has an inverted conical shape having a tapered angle θ at a bottom, and has a plurality of pores at the bottom. It is characterized by.
The invention according to claim 6 is:A crucible containing the raw material is placed in an electric furnace and kept at a temperature equal to or higher than the melting point of the raw material, and the upper end of the seed crystal is brought into contact with the raw material melt leaking from the pores formed at the bottom of the crucible. In a single crystal manufacturing method for growing a crystal by rotating and pulling down a seed crystal in a tilted state, a raw material melting tank for generating a raw material melt by melting a powder raw material above the crucible in the electric furnace is provided. In addition, the raw material melting tank is disposed in an electric furnace element part having a higher temperature than the crucible, a powder raw material tank is provided outside the electric furnace to accommodate the powder raw material, and the raw material melting tank is transferred from the powder raw material tank through a transfer pipe. By supplying the powdered raw material into the melting tank, melting the powdered raw material in the raw material melting tank and then introducing the raw material into the crucible, the raw material melt is continuously supplied into the crucible, and the bottom of the crucible is Raw material melt from pores It is characterized in that to perform the crystal growth while maintaining the outflow substantially constant.
The invention according to claim 7 isA crucible containing the raw material is placed in an electric furnace and kept at a temperature equal to or higher than the melting point of the raw material, and the upper end of the seed crystal is brought into contact with the raw material melt leaking from the pores formed at the bottom of the crucible. In a single crystal manufacturing method for growing a crystal by rotating and pulling down a seed crystal in a tilted state, a raw material melting tank for generating a raw material melt by melting a powder raw material above the crucible in the electric furnace is provided. Providing a powder raw material tank for containing the powder raw material outside the electric furnace, supplying the powder raw material into the raw material melting tank through the transfer pipe from the powder raw material tank, and melting the powder raw material in the raw material melting tank. By introducing the raw material melt into the crucible from above, the crystal is grown while keeping the flow rate of the raw material melt from the pores at the bottom of the crucible substantially constant. , Further, the powder raw material tank A dry gas is introduced into the powder raw material to remove the moisture of the powder raw material, and a transfer pipe for transferring the powder raw material from the powder raw material tank to the raw material melting tank is provided, and the transfer pipe is cooled from the outside. It is characterized in that the powder raw material is transferred.
The invention according to claim 8 isThe method for producing a single crystal according to claim 6, wherein a guide member for guiding the raw material melt from the raw material melting tank into the crucible is provided, and the guide member leaks from a fine hole formed in a bottom portion of the raw material melting tank. The material melt flowing down is transmitted along the surface of the guide member and supplied into the crucible.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings.
FIG. 1A is a schematic overall configuration diagram showing an example of an embodiment of a single crystal manufacturing apparatus 1 according to the present invention. In this example, a case where an LBO single crystal is manufactured will be described.
In FIG. 1A, 10 is an electric furnace, 20 is a powder raw material supply device, and 30 is a crystal pulling-down device.
The electric furnace 10 has a structure in which three cylindrical electric furnace elements 10a, 10b, and 10c are vertically stacked and connected to each other. A platinum crucible 2 is provided at a lower portion of the electric furnace 10, and a platinum raw material is provided at an upper portion. A melting tank (hereinafter, referred to as a pre-melt crucible) 3 is provided. A platinum rod 4 is provided between the pre-melt crucible 3 and the platinum crucible 2 to guide 5 m of the LBO raw material melt generated in the pre-melt crucible 3 into the platinum crucible 2. .
The electric furnace element 10a at the top of the electric furnace 10 heats the premelt crucible 3 to a temperature equal to or higher than the melting point of LBO (for example, 995 ° C.). The middle electric furnace element 10b heats the platinum crucible 2 to a temperature equal to or higher than the melting point of LBO (for example, 970 ° C.). The lowermost electric furnace element 10c is set to a temperature lower than the melting point of LBO (for example, 690 ° C.). As a result, a gentle temperature gradient is formed from the middle portion to the lowermost portion, and has an annealing effect of removing distortion of the grown crystal. A viewing window 17 is provided on the side wall of the electric furnace 10 so that the vicinity of the lower portion of the platinum crucible 2, that is, the crystal growth portion can be visually observed from outside the furnace. The viewing window 17 is hermetically closed with heat-resistant glass.
The powder raw material supply device 20 includes a powder raw material tank 6 for accommodating the LBO powder raw material 5p, a raw material introduction pipe 7 for introducing the powder raw material 5p from the powder raw material supply source (not shown) into the powder raw material tank 6, and a raw material introduction pipe 7 not shown. A dry gas introduction pipe 8 for introducing a dry gas (dry air, nitrogen, argon, helium, etc.) into the powder raw material 5p in the powder raw material tank 6 from the dry gas generation source; And a raw material transfer device 21 for transferring the powder raw material 5p to the raw material 3.
[0006]
The raw material transfer device 21 has a transfer pipe 9 having an upper end inserted into the bottom 6 a of the powder raw material tank 6 and a lower end inserted into the electric furnace 10 for transferring the powder raw material 5 p to the raw material melting tank 3, and cooling the transfer pipe 9. And a powder supply pump 12 provided in the transfer pipe 9 to forcibly transfer the powder raw material 5p. The transfer pipe 9 and the cooling jacket 11 are inserted into a through hole 13 formed in the center of the upper lid 10 d of the electric furnace 10, and the lower end of the transfer pipe 9 reaches the inside of the raw material melting tank 3. The cooling jacket 11 is provided so as to surround the outer circumference of the transfer pipe 9, and the inside of the transfer pipe 9 is cooled by heat from the electric furnace 10 by cooling the transfer pipe 9 from the outside with a refrigerant passing through the inside. In contrast, it is kept below the melting point temperature of LBO. The crystal pulling-down device 30 has a columnar rotating rod 15 having a holding portion 15a for holding the seed crystal 14 at its upper end, and holds the rotating rod 15 in a vertical posture and moves up and down while rotating the shaft. And a rotation lowering device 16. FIG. 1B shows the structure of the premelt crucible 3 and the platinum rod 4, and FIG. 1C shows the structure of the platinum crucible 2.
[0007]
As shown in FIG. 1B, a hole 3a is opened at the center of the bottom of the pre-melt crucible 3, and the upper end of the platinum rod 4 is inserted into the hole 3a. The diameter of the hole 3 a is set slightly larger than the diameter of the platinum rod 4, and the molten material 5 m leaking from the hole 3 a flows down the surface of the platinum rod 4 and is naturally guided into the platinum crucible 2. It is a mechanism that is done.
As shown in FIG. 1C, the bottom of the platinum crucible 2 is formed in a funnel shape (inverted conical shape), and a plurality of pores having the same diameter (for example, 0.5 mm) are formed in the center of the bottom and the periphery thereof. 2a, 2a,... Are provided, and by flowing out the raw material melt 5m from the plurality of pores 2a, 2a,. The structure is such that crystals can be grown while holding 5 m of the raw material melt between itself and the upper surface.
[0008]
According to the single crystal manufacturing apparatus 1 configured as described above, an LBO single crystal can be manufactured as follows.
First, the temperature of the electric furnace elements 10a and 10b of the electric furnace 10 is set to be equal to or higher than the melting point temperature of LBO, and the temperature of the electric furnace element 10c is set to be lower than the melting point temperature of LBO to start heating the furnace. When the temperature is reached, maintain that condition. A coolant is always flowed through the cooling jacket 11, and a dry gas is always introduced into the powder material 5 p in the powder material tank 6 through the dry gas introduction pipe 8.
Thereafter, the powder supply pump 12 is operated to supply a predetermined amount of the powder raw material 5p from the powder raw material tank 6 to the pre-melt crucible 3 through the transfer pipe 9. The powdered raw material 5p supplied into the pre-melt crucible 3 is heated and melted by the electric furnace 10 to become a raw material melt 5m, and starts to leak out from the hole 3a at the bottom of the pre-melt crucible 3. Then, the raw material melt 5m flows down the surface of the platinum rod 4 to introduce the raw material melt 5m into the platinum crucible 2.
When the raw material melt 5m accumulates in the platinum crucible 2, the raw material melt 5m starts leaking from the plurality of fine holes 2a, 2a,. Since this situation can be observed through the viewing window 17 of the electric furnace 10, when leakage of the raw material melt 5 m is confirmed, the rotating rod 15 is raised by the rotating lowering device 16 and held by the rotating rod 15. The tip (upper end) of the seed crystal 14 is brought into contact with 5 m of the raw material melt wetting the lower surface of the platinum crucible 2.
Thereafter, while maintaining the state in which the tip of the seed crystal 14 is in contact with the raw material melt 5 m, the rotating rod 15 is rotated at a predetermined speed (for example, 30 rpm) by the rotation lowering device 16 at a constant speed. The crystal 18 is grown from the tip of the seed crystal 14 by lowering the crystal 18 at, for example, 0.75 mm / h.
[0009]
At this time, by controlling the supply amount of the powder raw material 5p into the pre-melt crucible 3 and controlling the introduction amount of the raw material melt 5m into the platinum crucible 2, the crystal growth in the platinum crucible 2 from the beginning to the end of crystal growth is controlled. The crystal 18 is grown while keeping the amount of the raw material melt 5m substantially constant, and keeping the amount of the raw material melt 5m flowing out from the bottom pores 2a, 2a,... Of the platinum crucible 2 substantially constant.
By keeping the flow rate of the raw material melt 5m from the pores 2a, 2a,... At the bottom of the platinum crucible 2 substantially constant, the raw material supplied per unit time to the upper surface of the growing crystal 18 is maintained. The amount of 5 m of melt is kept almost constant during crystal growth.
[0010]
Therefore, the single crystal manufacturing apparatus 1 of the present embodiment has the following excellent advantages.
That is, since the amount of the raw material melt 5 m supplied per unit time on the upper surface of the growing crystal 18 can be kept substantially constant during the crystal growth, the powder raw material 5 p is continuously transferred from the powder raw material tank 6 to the pre-melt crucible 3. By growing the crystal while supplying it, a long LBO single crystal having many straight bodies can be obtained.
As the powder raw material 5p to be put into the powder raw material tank 6, LBO powder or Li2  O and B2  O3  The raw material cost can be reduced as compared with the vertical Bridgman method using an amorphous LBO sintered body as a raw material. In addition, the use of rod-like seeds as in the case of the Czochralski method is also advantageous in reducing production costs.
[0011]
In addition, since the vapor pressure at the time of melting a raw material of a multi-element single crystal such as LBO differs for each raw material component, the composition of the raw material melt changes, causing a change in the composition of a grown crystal or a uniform change due to a change in viscosity of the raw material melt. In many cases, it is impossible to grow a suitable crystal. However, according to the single crystal production apparatus 1 of the present embodiment, the component ratio of the raw material powder 5p is adjusted in advance in view of the composition change at the time of melting the raw material. In addition, a uniform crystal having no composition fluctuation can be grown.
Further, since dry air is introduced into the powder raw material 5p in the powder raw material tank 6 to remove the moisture of the raw material powder 5p, the raw material powder 5p is prevented from aggregating due to the moisture, and the component ratio is kept constant in the pre-melt crucible 3. Powder material 5p can be supplied stably.
Further, since the transfer pipe 9 for transferring the powder raw material 5p from outside the electric furnace 10 to the pre-melt crucible 3 in the electric furnace 10 is cooled, the powder raw material 5p is prevented from being melted in the transfer pipe 9. The transfer pipe 9 can be prevented from being clogged, and the powder material 5p can be stably supplied to the pre-melt crucible 3.
Further, the raw material melt 5m leaking and flowing down from the hole 3a formed at the bottom of the premelt crucible 3 is guided along the surface of the platinum rod 4 into the platinum crucible 2 so as to be guided into the platinum crucible 2. The water and impurities remaining in the raw material melt 5m generated in the above can be evaporated and removed by the heat of the electric furnace before entering the platinum crucible 2, so that a high-quality crystal containing no bubbles or impurities can be grown. it can.
[0012]
In addition, since the viewing window 17 is provided on the side wall of the electric furnace 10 so that the crystal growing portion can be observed on the spot, the seeding portion and the shoulder portion can be easily controlled.
Also, the number, position, size, bottom shape of the platinum crucible 2, taper angle θ (see FIG. 1 (c)), etc., are appropriately set for the plurality of pores 2a, 2a,. This makes it possible to increase the diameter of the grown crystal.
Further, by controlling the electric furnace 10, the powder raw material supply device 20, the raw material transfer device 21, the crystal lowering device 30 and the like by computer, it is also possible to automatically grow a high quality LBO single crystal.
In the above-described embodiment, the case where an LBO single crystal is manufactured has been described as an example. However, the single crystal manufacturing apparatus 1 having the above-described configuration may be used for rutile used for a material of an optical isolator and BGO used for a material of a scintillator. , BSO, CLBO which is a kind of non-linear optical material, and LN, LT which is known as a piezoelectric / optical material.
[0013]
【The invention's effect】
As described above, the present invention has the following excellent effects. According to the first aspect of the present invention, in a single crystal manufacturing apparatus using a pull-down method, a powder raw material is supplied to a raw material melting tank by a powder raw material supply means, and the raw material melt is melted in the raw material melting tank to form a raw material melt. The raw material melt is produced and introduced into the crucible by the raw material melt introducing means, so that the crystal growth can be performed while the raw material melt is continuously supplied into the crucible. Can easily and at high quality produce a single crystal of a substance having a large value.
According to the second aspect of the present invention, since dry air is introduced into the powder raw material to remove the moisture of the raw material powder, aggregation of the raw material powder due to moisture is prevented, and a constant component ratio is supplied to the raw material melting tank. Powder material can be supplied stably.
According to the third aspect of the present invention, since the crucible and the raw material melting tank can be heated by one electric furnace, the configuration of the apparatus can be simplified. In addition, since the transfer pipe that transfers the powder material from the outside of the electric furnace to the raw material melting tank in the electric furnace is configured to be cooled, the melting of the powder material is prevented by preventing the powder material from melting and clogging in the transfer pipe. The powder raw material can be stably supplied to the tank.
Further, in the invention according to claim 4, the raw material melt leaking from the hole formed at the bottom of the raw material melting tank and flowing down is guided along the surface of the guide member and guided into the crucible, Grow high-quality crystals that do not contain air bubbles or impurities because water and impurities remaining in the raw material melt generated in the raw material melting tank can be removed by evaporation in the electric furnace before entering the crucible. Can be.
Further, in the invention according to claim 5, in the method for producing a single crystal using the pulling-down method, a raw material melting tank for melting a raw material powder to generate a raw material melt is provided above a crucible in an electric furnace, A powder raw material tank for containing the powder raw material is provided outside the electric furnace, the powder raw material is supplied from the powder raw material tank into the raw material melting tank through a transfer pipe, and the powder raw material is melted in the raw material melting tank, and then the crucible is cooled. The raw material melt is continuously supplied into the crucible by introducing it into the crucible, and the crystal is grown while keeping the flow rate of the raw material melt from the pores at the bottom of the crucible almost constant. Solidification of substances with high viscosity of melt Crystals can be produced easily and with good quality at low cost.
Further, in the invention according to claim 6, since dry air is introduced into the powder raw material to remove the moisture of the raw material powder, aggregation of the raw material powder due to moisture is prevented, and a constant component ratio is supplied to the raw material melting tank. Powder material can be supplied stably.
Further, in the invention described in claim 7, the crucible and the raw material melting tank can be heated by one electric furnace, so that the configuration of an apparatus used for producing a single crystal can be simplified. In addition, since the transfer pipe that transfers the powder material from the outside of the electric furnace to the raw material melting tank in the electric furnace is configured to be cooled, the melting of the powder material is prevented in order to prevent the powder material from melting and clogging in the transfer pipe. The powder raw material can be stably supplied to the tank.
In the invention according to claim 8, the raw material melt leaking from the hole formed at the bottom of the raw material melting tank and flowing down is transmitted through the surface of the guide member and supplied into the crucible. Grow high-quality crystals that do not contain bubbles or impurities because water and impurities remaining in the raw material melt generated in the raw material melting tank can be removed by evaporation in the electric furnace before entering the crucible. Can be.
[Brief description of the drawings]
FIG. 1A is a schematic overall configuration diagram showing an example of an embodiment of a single crystal manufacturing apparatus according to the present invention, and FIGS. 1B and 1C are partially enlarged cross-sectional views of the single crystal manufacturing apparatus shown in FIG. It is a figure
FIG. 2 is an explanatory view showing an example of a conventional single crystal manufacturing apparatus.
FIG. 3 is an explanatory view showing an example of a conventional single crystal manufacturing apparatus.
FIG. 4 is an explanatory view showing an example of a conventional single crystal manufacturing apparatus.
[Explanation of symbols]
1: Single crystal production equipment 2: Platinum crucible 2a: Pore
3: Premelt crucible (raw material melting tank) 3a: Hole 4: Platinum rod (melt introduction means, guide member)
5p: End material 6: Powder material tank 6a: Bottom 7: Material introduction pipe
8: Dry gas introduction pipe 9: Transfer pipe
10: electric furnace 10a, 10b, 10c: electric furnace element 10d: top lid
11: Cooling jacket (cooling means) 12: Powder supply pump
14: Seed crystal 15: Rotating rod 16: Rotation lowering device
17: Viewing window 20: Powder material supply device 21: Material transfer device

Claims (8)

電気炉内に原料の入った坩堝を配置してこれを当該原料の融点以上の温度に保ち、坩堝の底部に形成された細孔から漏れ出た原料融液に種子結晶の上端部を接触させた状態で種子結晶を回転させながら引き下げることによって結晶を成長させる単結晶製造装置において、
粉末原料を融解させて原料融液を生成するための原料融解槽と、
この原料融解槽に粉末原料を供給する粉末原料供給手段と、
当該原料融解槽内の原料融液を前記坩堝内に導入する原料融液導入手段とを備えており、
前記原料融解槽は、前記電気炉内にて前記坩堝よりも高い位置に配置され、且つ、前記坩堝よりも温度の高い電気炉要素部分に配置した
ことを特徴とする単結晶製造装置。
A crucible containing the raw material is placed in an electric furnace, and the temperature is kept at a temperature equal to or higher than the melting point of the raw material. In a single crystal production apparatus that grows crystals by pulling down while rotating the seed crystal in the
A raw material melting tank for melting a powder raw material to generate a raw material melt,
Powder raw material supply means for supplying a powder raw material to the raw material melting tank,
Raw material melt introducing means for introducing the raw material melt in the raw material melting tank into the crucible ,
The single crystal production, characterized in that the raw material melting tank is arranged at a position higher than the crucible in the electric furnace, and is arranged in an electric furnace element part having a higher temperature than the crucible. apparatus.
電気炉内に原料の入った坩堝を配置してこれを当該原料の融点以上の温度に保ち、坩堝の底部に形成された細孔から漏れ出た原料融液に種子結晶の上端部を接触させた状態で種子結晶を回転させながら引き下げることによって結晶を成長させる単結晶製造装置において、
粉末原料を融解させて原料融液を生成するための原料融解槽と、
この原料融解槽に粉末原料を供給する粉末原料供給手段と、
当該原料融解槽内の原料融液を前記坩堝内に導入する原料融液導入手段とを備えており、
前記粉末原料供給手段は、
粉末原料を収容する粉末原料槽と、
この粉末原料槽内の粉末原料中へ乾燥気体を導入する乾燥気体導入手段と、
この粉末原料槽から前記原料融解槽へ粉末原料を移送するための原料移送手段とを有する
ことを特徴とする単結晶製造装置
A crucible containing the raw material is placed in an electric furnace and kept at a temperature equal to or higher than the melting point of the raw material, and the upper end of the seed crystal is brought into contact with the raw material melt leaking from the pores formed at the bottom of the crucible. In a single crystal production apparatus that grows crystals by pulling down while rotating the seed crystal in the
A raw material melting tank for melting a powder raw material to generate a raw material melt,
Powder raw material supply means for supplying a powder raw material to the raw material melting tank,
Raw material melt introducing means for introducing the raw material melt in the raw material melting tank into the crucible,
The powder raw material supply means,
A powder raw material tank for storing the powder raw material,
Dry gas introducing means for introducing a dry gas into the powder raw material in the powder raw material tank;
A single crystal production apparatus comprising: a raw material transfer means for transferring a powder raw material from the powder raw material tank to the raw material melting tank.
前記原料移送手段は、
前記原料融解槽へ粉末原料を移送すべくその一端側が前記粉末原料槽に他端側が前記電気炉内に挿入された移送管と、
この移送管を外部から冷却する冷却手段とを備えている
ことを特徴とする請求項2に記載の単結晶製造装置。
The raw material transfer means,
A transfer pipe having one end inserted into the electric furnace and the other end inserted into the powder raw material tank to transfer the powder raw material to the raw material melting tank,
The apparatus for producing a single crystal according to claim 2, further comprising cooling means for cooling the transfer pipe from outside.
電気炉内に原料の入った坩堝を配置してこれを当該原料の融点以上の温度に保ち、坩堝の底部に形成された細孔から漏れ出た原料融液に種子結晶の上端部を接触させた状態で種子結晶を回転させながら引き下げることによって結晶を成長させる単結晶製造装置において、
粉末原料を融解させて原料融液を生成するための原料融解槽と、
この原料融解槽に粉末原料を供給する粉末原料供給手段と、
当該原料融解槽内の原料融液を前記坩堝内に導入する原料融液導入手段とを備えており、
前記原料融解槽は、前記坩堝より高い位置に配置されており、
前記原料融液導入手段は、
前記原料融解槽の底部に形成された細孔から漏れ出て流下する原料融液をその表面を伝わらせて前記坩堝内へ案内する案内部材を備えている
ことを特徴とする単結晶製造装置。
A crucible containing the raw material is placed in an electric furnace and kept at a temperature equal to or higher than the melting point of the raw material, and the upper end of the seed crystal is brought into contact with the raw material melt leaking from the pores formed at the bottom of the crucible. In a single crystal production apparatus that grows crystals by pulling down while rotating the seed crystal in the
A raw material melting tank for melting a powder raw material to generate a raw material melt,
Powder raw material supply means for supplying a powder raw material to the raw material melting tank,
Raw material melt introducing means for introducing the raw material melt in the raw material melting tank into the crucible,
The raw material melting tank is arranged at a position higher than the crucible,
The raw material melt introduction means,
An apparatus for producing a single crystal, comprising: a guide member for guiding a raw material melt leaking from a fine hole formed at a bottom portion of the raw material melting tank and flowing down to the inside of the crucible through the surface thereof .
前記坩堝は、底部がテーパー角度θを持つ逆円錐形状であって、該底部には複数の細孔を設けたものであることを特徴とする請求項1乃至4の何れかに記載の単結晶製造装置。5. The single crystal according to claim 1, wherein the crucible has an inverted conical shape with a bottom portion having a taper angle θ and a plurality of pores provided in the bottom portion. 6. manufacturing device. 電気炉内に原料の入った坩堝を配置してこれを当該原料の融点以上の温度に保ち、坩堝の底部に形成された細孔から漏れ出た原料融液に種子結晶の上端部を接触させた状態で種子結晶を回転させながら引き下げることによって結晶を成長させる単結  A crucible containing the raw material is placed in an electric furnace, and the temperature is kept at a temperature equal to or higher than the melting point of the raw material. To grow the crystal by rotating and pulling the seed crystal down 晶製造方法において、In the method for producing a crystal,
前記電気炉内の前記坩堝の上方に粉末原料を融解させて原料融液を生成するための原料融解槽を設けると共に、該原料融解槽は、前記坩堝よりも温度の高い電気炉要素部分に配置し、  A raw material melting tank is provided above the crucible in the electric furnace to melt the powdery raw material to generate a raw material melt, and the raw material melting tank is disposed in an electric furnace element part having a higher temperature than the crucible. And
前記電気炉外に粉末原料を収容する粉末原料槽を設け、  Providing a powder raw material tank containing the powder raw material outside the electric furnace,
当該粉末原料槽から移送管を通して当該原料融解槽内に粉末原料を供給し、  Supplying the powder raw material into the raw material melting tank through the transfer pipe from the powder raw material tank,
当該原料融解槽内で粉末原料を融解させてから前記坩堝内に導入することにより、前記坩堝内に原料融液を連続供給して、  By melting the powdered raw material in the raw material melting tank and then introducing the raw material into the crucible, the raw material melt is continuously supplied into the crucible,
前記坩堝の底の細孔からの原料融液の流出量をほぼ一定に保ちつつ結晶育成を行うようにした  The crystal was grown while keeping the flow rate of the raw material melt from the pores at the bottom of the crucible almost constant.
ことを特徴とする単結晶製造方法。A method for producing a single crystal, comprising:
電気炉内に原料の入った坩堝を配置してこれを当該原料の融点以上の温度に保ち、坩堝の底部に形成された細孔から漏れ出た原料融液に種子結晶の上端部を接触させた状態で種子結晶を回転させながら引き下げることによって結晶を成長させる単結晶製造方法において、  A crucible containing the raw material is placed in an electric furnace, and the temperature is kept at a temperature equal to or higher than the melting point of the raw material. In the single crystal manufacturing method of growing the crystal by pulling down while rotating the seed crystal in a state where
前記電気炉内の前記坩堝の上方に粉末原料を融解させて原料融液を生成するための原料融解槽を設け、  A raw material melting tank for melting a raw material powder to produce a raw material melt is provided above the crucible in the electric furnace,
前記電気炉外に粉末原料を収容する粉末原料槽を設け、  Providing a powder raw material tank containing the powder raw material outside the electric furnace,
当該粉末原料槽から移送管を通して当該原料融解槽内に粉末原料を供給し、  Supplying the powder raw material into the raw material melting tank through the transfer pipe from the powder raw material tank,
当該原料融解槽内で粉末原料を融解させてから前記坩堝内に導入することにより、前記坩堝内に原料融液を連続供給して、  By melting the powdered raw material in the raw material melting tank and then introducing the raw material into the crucible, the raw material melt is continuously supplied into the crucible,
前記坩堝の底の細孔からの原料融液の流出量をほぼ一定に保ちつつ結晶育成を行うようにし、  In order to grow the crystal while keeping the flow rate of the raw material melt from the pores at the bottom of the crucible substantially constant,
更に、前記粉末原料槽内の粉末原料中へ乾燥気体を導入して当該粉末原料の湿気を除去すると共に、  Further, while introducing a dry gas into the powder raw material in the powder raw material tank to remove the moisture of the powder raw material,
前記粉末原料槽から前記原料融解槽へ粉末原料を移送する移送管を設け、当該移送管を外部から冷却しつつ粉末原料を移送するようにした  A transfer pipe for transferring the powder raw material from the powder raw material tank to the raw material melting tank was provided, and the transfer raw material was transferred while cooling the transfer pipe from the outside.
ことを特徴とする単結晶製造方法。A method for producing a single crystal, comprising:
前記原料融解槽から前記坩堝内へ原料融液を案内する案内部材を設け、  Providing a guide member for guiding the raw material melt from the raw material melting tank into the crucible,
前記原料融解槽の底部に形成された細孔から漏れ出て流下する原料融液を、当該案内部材の表面を伝わらせて前記坩堝内へ供給するようにした  The raw material melt leaking from the pores formed at the bottom of the raw material melting tank and flowing down is transmitted to the surface of the guide member and supplied into the crucible.
ことを特徴とする請求項6または7に記載の単結晶製造方法。The method for producing a single crystal according to claim 6, wherein:
JP06230398A 1998-02-26 1998-02-26 Single crystal manufacturing apparatus and single crystal manufacturing method Expired - Lifetime JP3550495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06230398A JP3550495B2 (en) 1998-02-26 1998-02-26 Single crystal manufacturing apparatus and single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06230398A JP3550495B2 (en) 1998-02-26 1998-02-26 Single crystal manufacturing apparatus and single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPH11240789A JPH11240789A (en) 1999-09-07
JP3550495B2 true JP3550495B2 (en) 2004-08-04

Family

ID=13196245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06230398A Expired - Lifetime JP3550495B2 (en) 1998-02-26 1998-02-26 Single crystal manufacturing apparatus and single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP3550495B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4807669B2 (en) * 2006-12-14 2011-11-02 Tdk株式会社 Raw material supply device for pulling device
JP5218519B2 (en) * 2010-10-18 2013-06-26 Tdk株式会社 Single crystal pulling device
JP5668744B2 (en) * 2012-11-26 2015-02-12 Tdk株式会社 Single crystal pulling device
CN114481051A (en) * 2022-01-11 2022-05-13 先导薄膜材料(广东)有限公司 Germanium target material and preparation device and preparation method thereof
CN117904714A (en) * 2024-01-22 2024-04-19 深圳市东方聚成科技有限公司 Method for synthesizing polycrystalline jadeite

Also Published As

Publication number Publication date
JPH11240789A (en) 1999-09-07

Similar Documents

Publication Publication Date Title
JP3527203B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JPH01119598A (en) Method and apparatus for producing monocrystal
CN112410868B (en) High-quality BIBO crystal growth method
JP3550495B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP2006124223A (en) Method for manufacturing oxide single crystal
JP3551242B2 (en) Method and apparatus for producing oxide single crystal
CN114574949B (en) Method for protecting quartz crucible in germanium single crystal pulling process
JPS61205691A (en) Method for crystal growth
CN104894637B (en) The grower and growing method of a kind of crystal
CN111621849B (en) Magneto-optical crystal, magneto-optical device and preparation method
JPH1192276A (en) Apparatus for producing semiconductor single crystal and production of semiconductor single crystal
JP2001002244A (en) Fixed quantity feeding device for powder and the like
JPS5933552B2 (en) crystal growth equipment
CN111485283A (en) Crystal growth device and method
JP4817670B2 (en) Crystal growth equipment
JP3085072B2 (en) Single crystal pulling device
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JPS6041037B2 (en) Manufacturing equipment for high dissociation pressure compound single crystal for semiconductors
JP3887444B2 (en) Method for producing lithium tetraborate single crystal
JPH0920596A (en) Device for producing lithium tetraborate single crystal
JPH0312385A (en) Method for pulling up single crystal of silicone
JP2022146327A (en) MANUFACTURING METHOD OF FeGa ALLOY SINGLE CRYSTAL
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPS61281100A (en) Production of silicon single crystal
JPH03183682A (en) Method and device for growing single crystal

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term