JP3546361B2 - Composting method for siliceous organic materials - Google Patents

Composting method for siliceous organic materials Download PDF

Info

Publication number
JP3546361B2
JP3546361B2 JP7529793A JP7529793A JP3546361B2 JP 3546361 B2 JP3546361 B2 JP 3546361B2 JP 7529793 A JP7529793 A JP 7529793A JP 7529793 A JP7529793 A JP 7529793A JP 3546361 B2 JP3546361 B2 JP 3546361B2
Authority
JP
Japan
Prior art keywords
organic material
calcium
siliceous organic
siliceous
reaction product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7529793A
Other languages
Japanese (ja)
Other versions
JPH07196388A (en
Inventor
康一郎 樋浦
時久 前田
Original Assignee
木村 美津代
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 木村 美津代 filed Critical 木村 美津代
Priority to JP7529793A priority Critical patent/JP3546361B2/en
Publication of JPH07196388A publication Critical patent/JPH07196388A/en
Application granted granted Critical
Publication of JP3546361B2 publication Critical patent/JP3546361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Fertilizers (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、モミガラのように外皮が珪化組織によって覆われている有機資材を分解するのに有効な珪酸質有機資材の堆肥化法に関するものである。
【0002】
【従来の技術】
イネ科、トクサ科、あるいは珪藻類の植物のように、外皮が珪化細胞によって覆われている珪酸質有機資材は、珪化組織が不溶性であるために分解されにくい。例えば、稲作農家や各地のライスセンターで多量に排出されるモミガラは、イナワラやムギワラなどと同様に十分堆肥化資材として利用できる資質を有するものの、珪酸含有量が多いために腐りにくく処分困難な産業廃棄物となっている。モミガラの一般的な処理方法としては、燃料にするか、微生物資材と混合して堆肥化する手段が採られる。
【0003】
【発明が解決しようとする課題】
しかしながら、燃料にする場合には熱源として利用されるだけで、上記した堆肥化資材としての有効利用が図れない。、
微生物資材を利用して堆肥化する従来の技術の場合、処理費用がかさむわりには珪酸質を十分には可溶化しにくい。
【0004】
本発明の目的は、珪酸質の可溶化を促進し、しかも腐敗性廃棄物の処理物を用いてこれを行うことができる、珪酸質有機資材の堆肥化法を提供することにある。
【0005】
【課題を達成するための手段】
本発明は、上記した目的を達成するために、固液混合の腐敗性廃棄物に、(1)酸化カルシウムの含有率が95%以上で水酸化カルシウム、炭酸カルシウム及びその他の物質の含有率が5%以下であり、(2)多孔性を有し、表面積及び比表面積が広大で、細孔組織が高度に発達しており、(3)水に少量を接触させたときに、全方向に広く速やかに分散する性質を有し、(4)水に中量を添加したときに、激しくかつ速やかに反応して水蒸気を発生させ、(5)水に一定量を添加したときに充分に反応し、理論値に近似した温度上昇が認められる、高活性な酸化カルシウムを主成分とする添加材を添加して急激な水和反応による反応生成物を得、この反応生成物に珪酸質有機資材を混合し、適度の水分と空気を供給することにより、珪酸質有機資材中の珪酸質を可溶化して珪酸質有機資材を堆肥化させる点に特徴を有する。
【0006】
珪酸質有機資材が混合される反応生成物の原料としては腐敗性廃棄物が有効利用される。腐敗性廃棄物には、豚し尿(糞を含む)、鶏糞その他の家畜糞尿、動物血液、上下水余剰汚泥、焼酎カス等の食品製造工場から排出される腐敗性残渣などがある。例えば豚し尿の場合には通常86.5%〜94.5%、乾燥鶏糞の場合には通常15〜30%、上下水余剰汚泥の場合には通常75〜97%、食品工場の腐敗性残渣の場合には通常75〜95%の水分をそれぞれ含んでいるが、本発明に用いるには水分を75〜97%の状態に調整することが望ましい。
【0007】
上記腐敗性廃棄物に高活性な酸化カルシウムを主成分とする添加剤を添加し、混合撹拌することによって反応生成物が得られる。具体的には、上記した腐敗性の産業廃棄物100重量部に対して添加剤を5〜25重量部加え、両者を反応させる。
【0008】
高活性な酸化カルシウムを主成分とする添加剤は、次の条件を具備するのが望ましい。
酸化カルシウムの含有率が高く(望ましくは95%以上)、水酸化カルシウム、炭酸カルシウム及びその他の物質の含有率が低いこと。尚、組成成分として酸化マグネシウムが少量(例えば5%以下)含まれていても良い。
多孔性を有し、表面積及び比表面積が広大で、細孔組織が高度に発達していること。
水に少量を接触させたときに、優れた分散性、例えば全方向に広く速やかに分散する性質を有すること。
水に中量を添加したときに、激しくかつ速やかに反応して水蒸気を発生させること。
水に一定量を添加したときに充分に反応し、理論値に近似した温度上昇が認められること。
更に必要によっては、 水と接触後の消石灰を主成分とするスラリーにおいて、沈降速度が小で、沈降現象が認められないこと。
【0009】
上記添加材(イ)が水に添加されたときの昇温速度を、市販の生石灰と比較した結果を図1に示す。市販の生石灰は、空気接触していない開封直後のもの(ロ)と、開封後、湿度90%の環境下に1時間放置したもの(ハ)と、開封後、同様の環境下に4時間放置したもの(ニ)の3種類を用意した。同図は、初期水温20度Cの水100mlに本添加材(イ)と上記3種類の市販生石灰(ロ)〜(ニ)をそれぞれ20g添加したときの昇温速度(度C/秒)の違いをグラフで示してある。
【0010】
この図から明らかなように、本添加材(イ)は他の市販品(ロ)から(ニ)に比べて昇温速度が著しく大、即ち、極めて短時間(1秒前後)で高い温度まで急上昇していることがわかる。このことは、水和反応によって添加材中の酸化カルシウムからカルシウムのほとんどが瞬間的にイオン化して解離されることと、腐敗性廃棄物中に含まれている有機物を熱分解するのに必要な局部的高熱状態が創りだされることを意味している。
【0011】
この急激な水和反応によって酸化カルシウム中のカルシウムイオンが解離されると共に腐敗性廃棄物中のアミノ酸から蟻酸を含む低級脂肪酸が生成され、この低級脂肪酸並びに腐敗性廃棄物中に元々含まれている低級脂肪酸を含む脂肪酸及びアミノ酸を含む酸類と、解離された上記カルシウムイオンとによってカルシウム塩が生成される。
【0012】
即ち、添加材を腐敗性廃棄物中に添加すると、同廃棄物中のセルローズ、リグニン、高分子量蛋白質、リン脂質などがアルカリ性の下で励起され、酸化カルシウムと水との反応による局部的高熱によって低分子化合物に分解される。そして、急速に解離されたカルシウムイオンが、上記分解された低分子化合物の端末基あるいは上記リン脂質、高級脂肪酸のみならず、蟻酸や酢酸といった低級脂肪酸とも結合して、反応生成物中に難溶性の安定したカルシウム塩を生じさせる。この化学反応、特に低級脂肪酸との錯塩反応によって生成されたカルシウム化合物は、例えば消石灰や前記市販の生石灰を添加した場合の凝集作用によって生成される物理的にのみ安定な物質とは全く異質のものとなる。これらの場合には、カルシウムイオンの解離度も低くあるいは解離する速度も緩やかで、また腐敗性廃棄物中の有機物の分解も不十分なために、カルシウム塩を生成し得ない。
【0013】
図2は、腐敗性廃棄物中に含まれるこうした可溶性有機酸及びアミノ酸等の酸類が、上記反応生成物中に難溶性のカルシウム塩として固定されていることを示すための実験結果のグラフである。
【0014】
同図(A)〜(E)は、豚糞尿を原料とする反応生成物(A)〜(C)と、乾燥した豚糞尿(D)と、豚糞尿の従来技術による堆肥化物(E)とを、それぞれ4回の水洗浄をした後に塩酸で洗浄したときの各洗浄時の有機物の溶出量を計測したものである。同図(A)は上記原料に対して前記添加材を20%添加したときの反応生成物の結果を、同図(B)は添加材が10%の場合の反応生成物の結果を、また同図(C)は添加材が5%の場合の反応生成物の結果をそれぞれ示している。
【0015】
この図から明らかなように、乾燥豚糞尿及びその堆肥化物では水洗浄後の酸洗浄によっては有機物の溶出量が僅かであるのに対し、反応生成物では、いずれの場合においても水洗浄によっては溶出しなくなった後で、酸洗浄によって有機物が著しく溶出しているのが分かる。このことは、反応生成物以外のもの(D),(E)については、これらに含まれる有機物のほとんどが水溶性のものであるのに対して、本発明に係る反応生成物は、有機物が水に難溶性で酸に可溶性のカルシウム化合物として存在していることを示すものである。
【0016】
本発明でカルシウム塩として固定される上記蟻酸は、本来、比較的に不安定であって揮散し易い物質である。しかしながら、本発明では上記した反応によって瞬間的に多量に解離されたカルシウムイオンが、蟻酸とすばやく結合してこれを蟻酸カルシウムとして固定する。蟻酸等の低級脂肪酸は、腐敗性廃棄物中に元々含まれているだけでなく、前記した反応熱によって腐敗性廃棄物中の蛋白質やアミノ酸が熱分解されることによっても生成される。新たに生成されたこの蟻酸等を含む低級脂肪酸も、前記カルシウムイオンによってカルシウム塩として固定される。ちなみに水酸化カルシウムを添加材として使用した場合には、蟻酸の固定、即ちカルシウム塩の形成は極めて困難で、蟻酸は残存して空中に揮散するか、雨水などの水分により流出することになる。
【0017】
反応生成物中に蟻酸が蟻酸カルシウムとして固定されていることを示すため、次のような試験を行った。
豚糞尿を主原料とするスラリーに前記添加剤を添加撹拌後、乾燥させたもの(スラリーと添加剤との比率が2:1のものを試料1,同比率が1:1のものを試料2,同比率が1:2のものを試料3とする)と、上記スラリーに消石灰を1:1の割合で添加撹拌後、乾燥させたもの(試料4) と、上記スラリーのみを乾燥させたもの(試料5)とのそれぞれについて、水に浸漬させて所定時間経過後の上澄み中に含まれる蟻酸の有無を高速液体クロマトグラフ法により検定した。次いで、引き続いてこれらの試料1〜5を塩酸溶液に浸漬させてその浸漬中に含まれる蟻酸の有無を再度調べた。その検定結果を総括して表2に示す。
【表1】

Figure 0003546361
【0018】
以上の結果から明らかなように、試料1から3はいずれも酸溶液中に蟻酸の存在が認められているのに対し、消石灰及び未処理スラリーでは酸溶液中には蟻酸が存在せず、むしろ水溶液中に多量に存在している。このことは、試料1から3の場合に蟻酸が酸化カルシウムと反応して錯塩化し、水には溶出しない蟻酸カルシウムが酸によって溶出しており、一方、消石灰の場合には単に凝集作用によって蟻酸が水酸化カルシウムと結合しているにすぎない結果を示す。
【0019】
図3は、図2(B)の反応生成物においてカルシウム塩として固定された低級脂肪酸の種類(同図A)と、同量の豚糞尿に水酸化カルシウムを添加して混合撹拌したときの低級脂肪酸の種類(同図B)とを量的なグラフで示したものである。
本発明中の反応生成物は、水酸化カルシウム添加の場合に比べて約2倍の量の低級脂肪酸を含み、またその内に3%強の蟻酸を含んでいる。水酸化カルシウム添加の場合には低級脂肪酸の量も少なく、蟻酸が検出されていない。このことは、腐敗性廃棄物中に含まれていた低級脂肪酸が上記反応過程で酸化カルシウムと反応してカルシウム塩化されるばかりでなく、腐敗性廃棄物中に含まれている蛋白質等が分解されて生成された低級脂肪酸が同様にカルシウム塩化されていることを示すものである。
【0020】
上記の化学反応によって、腐敗性廃棄物中に含まれる高級脂肪酸も同様にカルシウム塩として形成される。
また腐敗性廃棄物中に含まれる他の有機物、例えば水溶性リン酸は、その約98%が有効態のリン酸カルシウムとして固定される。有効態のリン酸カルシウムは、腐敗性廃棄物中に含まれるリン酸及びリン脂質中に含まれるリン酸と添加材との反応によって生成されるので、反応生成物中からは、原材料たる腐敗性廃棄物中に含まれていた水溶性リン酸及び脂質が著しく減少する。
グリセライドを比較的に多量に含有する腐敗性廃棄物の場合には、このグリセライドも活性力の強い酸化カルシウムによって安定した難溶性のカルシウム塩となる。このため、上記反応生成物自体は嫌気性醗酵やガスあるいは害虫の発生等を生じることがない。
【0021】
カルシウム塩の生成に寄与しないカルシウムイオンの残部は、消和反応によって水酸化カルシウムに、また炭酸ガスと接触して炭酸カルシウムにそれぞれ変換されて反応生成物中に混在する。カルシウム塩を含めたこれらのカルシウム化合物の割合の一例を示すと、添加した酸化カルシウムの量を100とした場合、水酸化カルシウムが約18%、炭酸カルシウムが約48%、カルシウム塩が約34%である。
【0022】
酸化カルシウムを添加することによって、カルシウム化合物が生成されるだけでなく、腐敗性廃棄物中に含有されているアンモニアやアミン類などの塩基性成分がガス状となって除去される。すなわち、水和反応時に脱窒現象が行われる。この結果、反応生成物中の窒素含有量を適量に調整することが可能となる。従って、本発明方法を実施して得られる堆肥では、窒素過多現象や後醗酵による経時変化や嫌気性環境の形成が防止される。
【0023】
添加材による反応時間は、長すぎると練り現象(ペースト化、微細化)を呈し、生成物が団粒構造になりにくく、また乾燥しにくくなることから、一般的には15分以内が望ましい。但し、原料中に、例えばリン脂質、液状油分、塩基性物質、難分解性の高分子化合物などの反応しにくい物質が含まれている場合には反応時間は適宜延長される。
添加材は、一回で上記量を添加せずに、多回に分割して添加するようにしても良い。
【0024】
このようにして反応生成物は、上記したカルシウム化合物と、未反応の有機物及び無機物とが混在し、特にカルシウム化合物が酸化カルシウムの前記した活性により物理的に全方向(立体的全方位)に均一に分散した物質となる。
【0025】
また、前記反応生成物は、水和反応熱と高アルカリ性とによる殺菌によって好アルカリ性微生物などの特定の微生物のみが生息する環境が形成され、この微生物が珪酸質有機資材の珪酸質可溶化に寄与する。
【0026】
反応過程での反応熱は図1に示した通り、瞬間的に急激に上昇しており、また結果物としての反応生成物は、酸化カルシウム添加によりpHが12から13(12.6)の間の強アルカリ状態にある。従って、反応生成物が生成される過程で腐敗性廃棄物中に含まれていた大部分の微生物は滅菌され、この環境変化に生き残った好アルカリ性微生物あるいは耐アルカリ性微生物のみが生息する。即ち、糸状菌は102/gレベルでは検出されず、放線菌は103/gレベルでは検出されない。また、細菌だけは103〜104/gレベルで検出された。ここで検出された細菌は、全てが耐熱胞子を形成し、好気的に生育するものであり、バチルス(Bacillus)属に所属した。この細菌群は、成育可能なpH範囲として、6〜9、7〜9、7〜11の範囲を持つ4グループであった。
【0027】
珪酸質有機資材は、こうした滅菌過程を経て生き残った僅かな特定微生物を有するカルシウム化合物分散物質と混合される。そして、水と空気とが供給されることにより、上記特定微生物が図4に見られるように増殖してpHとECを下げると共にアルカリ醗酵を開始する。これにより悪臭等を発生させることなく醗酵が行われる。
【0028】
そして、反応生成物中の特定微生物の働きによってモミガラ等の珪酸質が可溶化し、モミガラ等中のケイ酸、セルローズ、リグニン、蛋白質、リン脂質などが同微生物によって加水分解され、低分子化してゆく。
珪酸質有機資材に添加される反応処理物の量は、別段制限されるものではないが、経済効率を考え、モミガラ100重量部に対して、GM40重量部くらいが適当である。
【0029】
【実施例】
以下、本発明によるモミガラの可溶化率に関する実施例を説明する。
処理区は、モミガラと前記反応生成物を容積比で60:40に調整したものを10Lの容器に充填し、これに水分42%を加えて良く撹拌し、通気しながら醗酵させた。
【0030】
一方、対照区は、市販の微生物資材を用い、その取扱い説明書に従って行った。即ち、モミガラ100重量部に対して石灰窒素1重量部、微生物資材0.1重量部を加えた後、処理区と同様によく撹伴し、通気性のある袋に充填して発酵させた。
【0031】
処理区を2カ月発酵させたときと対照区を6カ月発酵させたときの珪酸の可溶化率を比較したところ、次の結果が得られた。
全珪酸中の水溶性及びコロイド状珪酸の割合を測定したところ、2カ月発酵後の処理区では、水溶性のものが7.57%、コロイド状のものが1.30%であったのに対して、6カ月間発酵処理した対照区では、水溶性のものが3.47%、コロイド状のものが0.48%であった。
【0032】
対照区に比較して処理区は、1/3の期間で、水溶性珪酸については2.2倍、コロイド状珪酸については3.3倍、可溶化が促進されているのが解る。
【0033】
図5は、上記実施例と同一の条件で処理区と対照区の昇温速度の割合を経時的に比較したものである。
対照区の温度は、試験期間中、外気温と同等もしくはそれ以下であるので、発酵が全く起こっていないと判断される。一方、処理区は、通気を行っていた最初の10日間は温度の上昇は認められなかったが、通気を止めた直後から温度が上昇し始め、20日目には50゜Cまで上昇した。この温度はその後、次の通気開始まで維持された。通気開始により、温度は急速に低下したが、通気停止とともに、再び上昇し、モミガラは約2カ月間で堆肥化した。このことは、処理区の処理物中に混在する炭酸カルシウムによって珪酸質がアルカリ加水分解されたのではなく、資材中に生存する耐熱性菌あるいは好熱性菌によりモミガラが加水分解を受け、その際に発生した発酵熱により温度が上昇したことを示唆している。
【0034】
また、図6は発酵前後の処理区の処理物中の菌数の変化を示している。この図から明らかなように、醗酵前には僅かであった細菌が約数万倍、放線菌が数十万倍に増殖しており、上記醗酵に細菌と放線菌が少なからず関与しているのが解る。
【0035】
【発明の効果】
以上述べたように、本発明によれば、腐敗性廃棄物と高活性な酸化カルシウムとの反応生成物に珪酸質有機資材を混合し、適度の水分と空気を供給することで、上記反応過程中で生き残った微生物の活性化を図ることによってモミガラ等の珪酸質を可溶化させるものであるから、腐敗性の産業廃棄物の有効利用を図ることができるばかりでなく、コストをそれほどかけることなく微生物を利用した珪酸質有機資材の迅速な堆肥化を行うことができる。
【図面の簡単な説明】
【図1】本発明方法に使用される酸化カルシウムの消化反応速度を示すグラフ。
【図2】腐敗性廃棄物中の可溶性有機酸及びアミノ酸等の酸類が、本発明方法における反応生成物中に難溶性のカルシウム塩として固定されていることを示すための実験結果のグラフで、(A)〜(E)は、豚糞尿を原料とする反応生成物(A)〜(C)と、乾燥した豚糞尿(D)と、豚糞尿の堆肥化物(E)とを、それぞれ4回の水洗浄をした後に塩酸で洗浄したときの各洗浄時の有機物の溶出量を計測したものであり、(A)は原材料に対して添加材を20%添加したときの反応生成物の結果を、(B)は添加材が10%の場合の反応生成物の結果を、また(C)は添加材が5%の場合の反応生成物の結果を示す。
【図3】図2(B)の反応生成物においてカルシウム塩として固定された低位脂肪酸の種類(A)と、同量の豚糞尿に水酸化カルシウムを添加して混合攪拌したときの低位脂肪酸の種類(B)とを量的なグラフで示したものである。
【図4】本発明方法に用いられる反応生成物の生成直後と水分及び空気が供給された後の菌数、pH及びEC値の変化を示すグラフ。
【図5】本発明方法を使用した処理区と対照区における昇温速度を比較したグラフ。
【図6】本発明方法を使用した処理区における醗酵前後の処理物中の菌数の変化を示すグラフ。[0001]
[Industrial applications]
TECHNICAL FIELD The present invention relates to a method for composting a siliceous organic material that is effective for decomposing an organic material whose outer skin is covered with silicified tissue, such as fir.
[0002]
[Prior art]
Silicic organic materials whose outer skin is covered with silicified cells, such as plants of the Poaceae, Rhododaceae or Diatomaceae, are hardly decomposed because the silicified tissue is insoluble. For example, a large amount of Japanese fir discharged from rice farmers and rice centers in various regions has sufficient qualities to be used as composting material like Inawawara and Wheatwara, but it has high silicic acid content and is difficult to disintegrate and difficult to dispose of. It has become waste. As a general method of treating peach, a method of composting it by using it as a fuel or mixing it with a microbial material is used.
[0003]
[Problems to be solved by the invention]
However, when it is used as fuel, it is only used as a heat source, and cannot be effectively used as the composting material described above. ,
In the case of the conventional technique of composting using a microbial material, it is difficult to sufficiently solubilize the siliceous material at a high processing cost.
[0004]
It is an object of the present invention to provide a method for composting siliceous organic materials, which promotes the solubilization of siliceous substances and which can be carried out using a treated product of putrefactive waste.
[0005]
[Means for achieving the object]
According to the present invention, in order to achieve the above object, the content of (1) calcium oxide is not less than 95% and the content of calcium hydroxide, calcium carbonate and other substances is in the solid-liquid mixed putrefactive waste. 5% or less, (2) porous, surface area and specific surface area are large, pore structure is highly developed, and (3) when a small amount of water is contacted, It has the property of dispersing widely and quickly. (4) When a medium amount is added to water, it reacts violently and quickly to generate water vapor, and (5) It reacts sufficiently when a certain amount is added to water. Then, a reaction product by a rapid hydration reaction is obtained by adding an additive mainly composed of highly active calcium oxide, at which a temperature rise close to the theoretical value is observed, and a siliceous organic material is added to the reaction product. By mixing and supplying a suitable amount of water and air to reduce the siliceous substance in the siliceous organic material. Characterized in that to compost the siliceous organic materials and soluble.
[0006]
As a raw material of a reaction product mixed with a siliceous organic material, putrefactive waste is effectively used. The putrefactive wastes include putrefactive residues discharged from food manufacturing plants such as pig manure (including feces), poultry manure and other animal manure, animal blood, excess sludge from water and sewage, and shochu waste. For example, in the case of pig manure, usually 86.5% to 94.5%, in the case of dried chicken dung, usually 15 to 30%, in the case of excess sludge from water and sewage, usually 75 to 97%, putrefactive residue in food factories In the case of (1), the water usually contains 75 to 95% of water, however, it is desirable to adjust the water to 75 to 97% for use in the present invention.
[0007]
A reaction product is obtained by adding an additive mainly composed of highly active calcium oxide to the putrefactive waste and mixing and stirring. Specifically, 5 to 25 parts by weight of an additive is added to 100 parts by weight of the above-mentioned putrefactive industrial waste, and both are reacted.
[0008]
It is desirable that the additive mainly composed of highly active calcium oxide satisfy the following conditions.
High content of calcium oxide (desirably 95% or more) and low content of calcium hydroxide, calcium carbonate and other substances. Incidentally, a small amount (for example, 5% or less) of magnesium oxide may be contained as a composition component.
It must be porous, have a large surface area and specific surface area, and have a highly developed pore structure.
Having excellent dispersibility, for example, a property of rapidly and widely dispersing in all directions when a small amount is brought into contact with water.
When a medium amount is added to water, it reacts violently and quickly to generate steam.
It reacts well when a certain amount is added to water, and a temperature rise close to the theoretical value is observed.
Furthermore, if necessary, the sedimentation velocity of the slurry containing slaked lime as the main component after contact with water shall be low and no sedimentation phenomenon shall be observed.
[0009]
FIG. 1 shows the results of comparing the rate of temperature rise when the additive (a) was added to water with commercial quicklime. Commercial quicklime is immediately after opening without contact with air (b), after opening, is left for 1 hour in an environment of 90% humidity (c), and after opening, is left for 4 hours in the same environment. (D) were prepared. The figure shows the rate of temperature rise (degrees C / sec) when 20 g of each of the additive material (a) and the above three types of quicklime (b) to (d) are added to 100 ml of water at an initial water temperature of 20 degrees C. The differences are shown graphically.
[0010]
As is clear from this figure, the additive material (a) has a significantly higher rate of temperature rise than other commercial products (b) to (d), that is, it can reach a high temperature in a very short time (around 1 second). It can be seen that it has soared. This means that most of the calcium is instantaneously ionized and dissociated from the calcium oxide in the additive by the hydration reaction, and it is necessary to thermally decompose the organic matter contained in the putrefactive waste. This means that a localized hyperthermic state is created.
[0011]
This rapid hydration dissociates calcium ions in calcium oxide and produces lower fatty acids containing formic acid from amino acids in putrefactive waste, which are originally contained in the lower fatty acids and putrefactive waste. A calcium salt is formed by the fatty acids including lower fatty acids and the acids including amino acids, and the dissociated calcium ions.
[0012]
That is, when the additive is added to the putrefactive waste, cellulose, lignin, high molecular weight proteins, phospholipids, etc. in the waste are excited under alkalinity, and the local high heat due to the reaction between calcium oxide and water causes. Decomposed into low molecular compounds. Then, the rapidly dissociated calcium ions bind not only to the terminal groups of the decomposed low-molecular compounds or the phospholipids and higher fatty acids, but also to lower fatty acids such as formic acid and acetic acid, and are hardly soluble in the reaction product. To produce a stable calcium salt. Calcium compounds produced by this chemical reaction, especially a complex salt reaction with a lower fatty acid, are completely different from physically only stable substances produced by agglomeration when slaked lime or commercially available quick lime is added, for example. It becomes. In these cases, calcium salts cannot be produced because the dissociation degree of calcium ions is low or the dissociation rate is slow, and the decomposition of organic substances in the putrefactive waste is insufficient.
[0013]
FIG. 2 is a graph of an experimental result showing that such soluble organic acids and acids such as amino acids contained in the putrefactive waste are fixed in the reaction product as a sparingly soluble calcium salt. .
[0014]
The figures (A) to (E) show reaction products (A) to (C) using swine manure as raw materials, dried swine manure (D), and compost (E) of swine manure according to the prior art. Is a measurement of the amount of organic substances eluted at each washing when washing with hydrochloric acid after washing with water four times, respectively. FIG. 3A shows the result of the reaction product when the additive is added to the above-mentioned raw material at 20%, FIG. 3B shows the result of the reaction product when the additive is 10%, and FIG. FIG. 4C shows the results of the reaction products when the additive material is 5%.
[0015]
As is clear from this figure, in the case of dried swine manure and its compost, only a small amount of organic matter was eluted by acid washing after water washing, whereas in the case of the reaction product, the amount of organic substances eluted by water washing in any case was small. After the elution stops, the organic substances are remarkably eluted by the acid washing. This means that most of the organic substances contained in the substances (D) and (E) other than the reaction products are water-soluble, whereas the reaction products according to the present invention have an organic substance This indicates that the calcium compound is hardly soluble in water and soluble in acid.
[0016]
The formic acid fixed as a calcium salt in the present invention is a substance which is inherently relatively unstable and easily volatilizes. However, in the present invention, a large amount of calcium ions instantaneously dissociated by the above-described reaction quickly bind to formic acid and fix it as calcium formate. Lower fatty acids such as formic acid are not only originally contained in putrefactive waste, but also are produced by the thermal decomposition of proteins and amino acids in putrefactive waste by the heat of reaction described above. The newly formed lower fatty acid containing formic acid and the like is also fixed as a calcium salt by the calcium ions. Incidentally, when calcium hydroxide is used as an additive, fixation of formic acid, that is, formation of a calcium salt is extremely difficult, and formic acid remains and volatilizes in the air or flows out by water such as rainwater.
[0017]
The following test was performed to show that formic acid was fixed as calcium formate in the reaction product.
The above additive was added to a slurry containing swine manure as a main raw material, and the mixture was stirred and dried (sample having a ratio of 2: 1 slurry to additive and sample 2 having a ratio of 1: 1). , The same ratio of 1: 2 is referred to as sample 3), slaked lime was added to the slurry at a ratio of 1: 1 and the mixture was stirred and dried (sample 4), and only the slurry was dried Each sample (Sample 5) was immersed in water, and after a lapse of a predetermined time, the presence or absence of formic acid contained in the supernatant was tested by high performance liquid chromatography. Next, these samples 1 to 5 were immersed in a hydrochloric acid solution, and the presence or absence of formic acid contained in the immersion was examined again. Table 2 summarizes the test results.
[Table 1]
Figure 0003546361
[0018]
As is clear from the above results, the presence of formic acid in the acid solution was observed in all of the samples 1 to 3, whereas the formic acid was not present in the acid solution in slaked lime and the untreated slurry. It is present in large amounts in aqueous solutions. This indicates that in the case of samples 1 to 3, formic acid reacts with calcium oxide to form a complex salt, and calcium formate, which does not elute in water, is eluted by the acid, while in the case of slaked lime, formic acid is simply coagulated. The results show only binding to calcium hydroxide.
[0019]
FIG. 3 shows the type of lower fatty acid fixed as a calcium salt in the reaction product of FIG. 2 (B) (FIG. A) and the lower type obtained by adding and mixing calcium hydroxide to the same amount of swine manure. It is a graph showing the types of fatty acids (B in the figure) in a quantitative graph.
The reaction product in the present invention contains about twice the amount of lower fatty acids as compared to the case of adding calcium hydroxide, and contains more than 3% of formic acid. When calcium hydroxide was added, the amount of lower fatty acid was small, and formic acid was not detected. This means that the lower fatty acids contained in the putrefactive waste not only react with calcium oxide in the above reaction process and are converted into calcium, but also the proteins and the like contained in the putrefactive waste are decomposed. This shows that the lower fatty acid produced by the above-mentioned method is also calcium-chlorinated.
[0020]
By the above chemical reaction, higher fatty acids contained in the putrefactive waste are also formed as calcium salts.
About 98% of other organic substances contained in the putrefactive waste, for example, water-soluble phosphoric acid, are fixed as calcium phosphate in an effective state. Calcium phosphate in an effective state is produced by the reaction between phosphoric acid contained in putrefactive waste and phosphoric acid contained in phospholipids and an additive, and therefore, from the reaction product, putrefactive waste as raw material is produced. Water-soluble phosphate and lipid contained therein are significantly reduced.
In the case of a putrefactive waste containing a relatively large amount of glyceride, the glyceride also becomes a stable and hardly soluble calcium salt due to calcium oxide having a strong activity. Therefore, the reaction product itself does not cause anaerobic fermentation, generation of gas or pests, and the like.
[0021]
The remaining calcium ions that do not contribute to the formation of calcium salts are converted into calcium hydroxide by slaking reaction and are converted into calcium carbonate by contact with carbon dioxide gas, and are mixed in the reaction product. As an example of the proportion of these calcium compounds including calcium salts, when the amount of added calcium oxide is 100, calcium hydroxide is about 18%, calcium carbonate is about 48%, and calcium salt is about 34% It is.
[0022]
The addition of calcium oxide not only produces a calcium compound, but also removes basic components such as ammonia and amines contained in the putrefactive waste in gaseous form. That is, a denitrification phenomenon occurs during the hydration reaction. As a result, the nitrogen content in the reaction product can be adjusted to an appropriate amount. Therefore, in the compost obtained by carrying out the method of the present invention, an excessive nitrogen phenomenon, a change with time due to post-fermentation, and formation of an anaerobic environment are prevented.
[0023]
If the reaction time by the additive is too long, a kneading phenomenon (pasting, refinement) is exhibited, and the product is less likely to have an aggregated structure and is less likely to be dried. Therefore, it is generally desirable that the reaction time be within 15 minutes. However, when the raw material contains a substance that is difficult to react such as a phospholipid, a liquid oil, a basic substance, or a hardly decomposable polymer compound, the reaction time is appropriately extended.
The additive material may be added in multiple portions without adding the above amount at one time.
[0024]
In this way, the reaction product is a mixture of the above-mentioned calcium compound, unreacted organic matter and inorganic matter, and in particular, the calcium compound is physically uniform in all directions (sterically all directions) due to the above-described activity of calcium oxide. It becomes a substance dispersed in.
[0025]
In addition, the reaction product forms an environment in which only specific microorganisms such as alkalophilic microorganisms inhabit by sterilization by heat of hydration reaction and high alkalinity, and these microorganisms contribute to siliceous solubilization of siliceous organic materials. I do.
[0026]
As shown in FIG. 1, the heat of reaction in the reaction process sharply rises instantaneously, and the resulting reaction product has a pH between 12 and 13 (12.6) due to the addition of calcium oxide. In a strongly alkaline state. Therefore, most of the microorganisms contained in the spoilage waste during the process of producing the reaction product are sterilized, and only the alkaliphilic microorganisms or the alkali-resistant microorganisms that survive the environmental change inhabit. That is, filamentous fungi are not detected at the 102 / g level, and actinomycetes are not detected at the 103 / g level. In addition, only bacteria were detected at the level of 103 to 104 / g. All of the bacteria detected here form thermospores and grow aerobically, and belong to the genus Bacillus. These bacterial groups were four groups having a viable pH range of 6 to 9, 7 to 9, and 7 to 11.
[0027]
The siliceous organic material is mixed with a calcium compound-dispersed substance having a small number of specific microorganisms that survived through such a sterilization process. Then, by supplying water and air, the specific microorganisms proliferate as shown in FIG. 4 to lower the pH and EC, and start alkaline fermentation. As a result, the fermentation is carried out without generating an odor or the like.
[0028]
The siliceous substances such as peaches are solubilized by the action of specific microorganisms in the reaction product, and the silicic acid, cellulose, lignin, proteins, phospholipids, etc. in the peaches are hydrolyzed by the same microorganisms, resulting in low molecular weight. go.
The amount of the reaction product to be added to the siliceous organic material is not particularly limited, but from the viewpoint of economic efficiency, about 40 parts by weight of GM is suitable for 100 parts by weight of fir.
[0029]
【Example】
Hereinafter, examples relating to the solubilization rate of firgrass according to the present invention will be described.
The treated section was prepared by filling a 10 L container with a mixture of firgrass and the reaction product adjusted to a volume ratio of 60:40, adding 42% of water to the vessel, stirring well, and performing fermentation with aeration.
[0030]
On the other hand, the control was performed using a commercially available microorganism material according to the instruction manual. That is, 1 part by weight of lime nitrogen and 0.1 part by weight of a microbial material were added to 100 parts by weight of fir and the mixture was stirred well in the same manner as in the treatment section, filled into a breathable bag and fermented.
[0031]
The following results were obtained by comparing the solubilization rates of silicic acid when the treated section was fermented for 2 months and when the control section was fermented for 6 months.
When the ratio of water-soluble and colloidal silicic acid in the total silicic acid was measured, in the treated group after fermentation for 2 months, water-soluble and colloidal were 7.57% and 1.30%, respectively. On the other hand, in the control group that had been fermented for 6 months, the water-soluble compound was 3.47% and the colloidal compound was 0.48%.
[0032]
It can be seen that in the treatment group, the solubilization was promoted by 2.2 times for the water-soluble silicic acid and 3.3 times for the colloidal silicic acid in the period of 1/3 as compared with the control group.
[0033]
FIG. 5 is a graph comparing the rate of the temperature increase rate of the treated section and the control section with time under the same conditions as in the above example.
Since the temperature of the control section was equal to or lower than the outside temperature during the test period, it was determined that no fermentation had occurred. On the other hand, in the treated section, the temperature did not rise during the first 10 days of the ventilation, but the temperature started to rise immediately after the ventilation was stopped, and rose to 50 ° C on the 20th day. This temperature was then maintained until the start of the next vent. With the start of aeration, the temperature rapidly decreased, but rose again with the stop of the aeration, and the peach was composted for about two months. This means that siliceous substances were not alkali-hydrolyzed by calcium carbonate mixed in the treated material in the treatment section, but the peach was hydrolyzed by heat-resistant bacteria or thermophilic bacteria living in the material. This suggests that the temperature increased due to the fermentation heat generated in.
[0034]
FIG. 6 shows the change in the number of bacteria in the treated product in the treatment section before and after the fermentation. As is clear from this figure, a few bacteria before fermentation grew about tens of thousands of times, and actinomycetes grew hundreds of thousands of times. Understand.
[0035]
【The invention's effect】
As described above, according to the present invention, the reaction product of the putrefactive waste and highly active calcium oxide is mixed with a siliceous organic material, and an appropriate amount of water and air are supplied to the reaction process. It is intended to activate silicic substances such as firgrass by activating microorganisms that have survived in the plant. Rapid composting of siliceous organic materials using microorganisms is possible.
[Brief description of the drawings]
FIG. 1 is a graph showing the digestion kinetics of calcium oxide used in the method of the present invention.
FIG. 2 is a graph of an experimental result showing that acids such as soluble organic acids and amino acids in putrefactive waste are fixed as a hardly soluble calcium salt in a reaction product in the method of the present invention; (A) to (E) show reaction products (A) to (C) using swine manure as a raw material, dried swine manure (D), and composted swine manure (E) four times each. Is a measurement of the amount of organic substances eluted at each washing when washing with water and then washing with hydrochloric acid, and (A) shows the result of the reaction product when adding 20% of the additive to the raw material , (B) shows the result of the reaction product when the additive is 10%, and (C) shows the result of the reaction product when the additive is 5%.
FIG. 3 shows the type (A) of a lower fatty acid fixed as a calcium salt in the reaction product of FIG. 2 (B) and the lower fatty acid obtained by adding and mixing calcium hydroxide to the same amount of swine manure. The type (B) is shown in a quantitative graph.
FIG. 4 is a graph showing changes in the number of bacteria, pH and EC values immediately after the production of the reaction product used in the method of the present invention and after the supply of moisture and air.
FIG. 5 is a graph comparing the rate of temperature rise between a treatment group using the method of the present invention and a control group.
FIG. 6 is a graph showing a change in the number of bacteria in a treated product before and after fermentation in a treatment zone using the method of the present invention.

Claims (6)

固液混合の腐敗性廃棄物に、(1)酸化カルシウムの含有率が95%以上で水酸化カルシウム、炭酸カルシウム及びその他の物質の含有率が5%以下であり、(2)多孔性を有し、表面積及び比表面積が広大で、細孔組織が高度に発達しており、(3)水に少量を接触させたときに、全方向に広く速やかに分散する性質を有し、(4)水に中量を添加したときに、激しくかつ速やかに反応して水蒸気を発生させ、(5)水に一定量を添加したときに充分に反応し、理論値に近似した温度上昇が認められる、高活性な酸化カルシウムを主成分とする添加材を添加して急激な水和反応による反応生成物を得、
この反応生成物に珪酸質有機資材を混合し、適度の水分と空気を供給することにより、珪酸質有機資材中の珪酸質を可溶化して珪酸質有機資材を堆肥化させる、
ことを特徴とする珪酸質有機資材の堆肥化法。
(1) The content of calcium oxide is 95% or more and the content of calcium hydroxide, calcium carbonate and other substances is 5% or less, and (2) porous The surface area and specific surface area are large, the pore structure is highly developed, and (3) when a small amount is brought into contact with water, it has the property of being rapidly and widely dispersed in all directions, and (4) When a medium amount is added to water, it reacts violently and quickly to generate steam, and (5) reacts sufficiently when a certain amount is added to water, and a temperature rise close to the theoretical value is observed. A reaction product by a rapid hydration reaction is obtained by adding an additive mainly composed of highly active calcium oxide,
By mixing a siliceous organic material with this reaction product and supplying an appropriate amount of moisture and air, the siliceous material in the siliceous organic material is solubilized to compost the siliceous organic material.
A method for composting siliceous organic materials, characterized in that:
前記反応生成物は、前記水和反応によって酸化カルシウム中のカルシウムイオンが解離されると共に腐敗性廃棄物中のアミノ酸から蟻酸を含む低級脂肪酸が生成され、
この低級脂肪酸並びに腐敗性廃棄物中に元々含まれている上記低級脂肪酸を含む脂肪酸及びアミノ酸を含む酸類と、解離された上記カルシウムイオンとによってカルシウム塩が生成されているものである、
ことを特徴とする請求項1に記載の珪酸質有機資材の堆肥化法。
The reaction product dissociates calcium ions in calcium oxide by the hydration reaction and produces lower fatty acids including formic acid from amino acids in putrefactive waste,
A calcium salt is formed by the lower fatty acid and the acid containing an amino acid containing the lower fatty acid and the amino acid originally contained in the putrefactive waste, and the dissociated calcium ion.
The method for composting a siliceous organic material according to claim 1, characterized in that:
前記反応生成物は水和反応熱と高アルカリ性とによる殺菌によって特定の微生物のみが生息する環境が形成されている、
ことを特徴とする請求項1に記載の珪酸質有機資材の堆肥化法。
The reaction product has formed an environment in which only specific microorganisms inhabit by sterilization due to hydration reaction heat and high alkalinity,
The method for composting a siliceous organic material according to claim 1, characterized in that:
反応生成物に珪酸質有機資材を混合し、適度の水分と空気を供給することにより、前記特定微生物が珪酸質有機資材中の珪酸質を可溶化して珪酸質有機資材を堆肥化させる、
ことを特徴とする請求項3に記載の珪酸質有機資材の堆肥化法。
Mixing the siliceous organic material with the reaction product and supplying an appropriate amount of moisture and air, the specific microorganisms solubilize the siliceous material in the siliceous organic material to compost the siliceous organic material,
The method for composting a siliceous organic material according to claim 3, characterized in that:
前記特定微生物が好アルカリ性微生物である、
ことを特徴とする請求項3もしくは請求項4に記載の珪酸質有機資材の堆肥化法。
The specific microorganism is an alkalophilic microorganism,
The method for composting a siliceous organic material according to claim 3 or 4, wherein:
前記珪酸質有機資材がもみがらである
ことを特徴とする請求項1乃至請求項5のいずれかに記載の珪酸質有機資材の堆肥化法。
The method for composting a siliceous organic material according to any one of claims 1 to 5, wherein the siliceous organic material is rice husk.
JP7529793A 1993-03-09 1993-03-09 Composting method for siliceous organic materials Expired - Fee Related JP3546361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7529793A JP3546361B2 (en) 1993-03-09 1993-03-09 Composting method for siliceous organic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7529793A JP3546361B2 (en) 1993-03-09 1993-03-09 Composting method for siliceous organic materials

Publications (2)

Publication Number Publication Date
JPH07196388A JPH07196388A (en) 1995-08-01
JP3546361B2 true JP3546361B2 (en) 2004-07-28

Family

ID=13572177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7529793A Expired - Fee Related JP3546361B2 (en) 1993-03-09 1993-03-09 Composting method for siliceous organic materials

Country Status (1)

Country Link
JP (1) JP3546361B2 (en)

Also Published As

Publication number Publication date
JPH07196388A (en) 1995-08-01

Similar Documents

Publication Publication Date Title
US5466273A (en) Method of treating organic material
Dewes Effect of pH, temperature, amount of litter and storage density on ammonia emissions from stable manure
KR101761911B1 (en) Method for composting of organic wastes
WO2002012139A2 (en) Method for treating ammonia-containing organic waste
KR102114840B1 (en) Manufacturing method for environment friendly fertilizer using livestock excretion
EP1091918A1 (en) Method for treating ammonia-containing organic waste
US8858671B2 (en) Method for treating domestic waste
EP0143392A1 (en) Biological sludge hygienisation process
CA2625253C (en) Method for manufacture of sanitised organic sludge
JP3546361B2 (en) Composting method for siliceous organic materials
JP3131545B2 (en) Device for decomposing vegetable chips and method for decomposing the same
KR20150085494A (en) Method for composting of organic wastes
JPH0236297A (en) Production of soil improving agent utilizing sludge
JPH09100187A (en) Microorganism-carrying body and grabage treatment using the body
JP3243575B2 (en) Cultivation and production method
JP4953513B2 (en) Garbage disposal agent and high temperature garbage disposal method
JP3252246B2 (en) Fermented products and their manufacturing method
JPH04144988A (en) Soil conditioner and production thereof
US20070128712A1 (en) Treatment of putrescrible cakes
JPH02267180A (en) Soil conditioning material
UA34658C2 (en) METHOD OF OBTAINING ARTIFICIAL SOIL-FORMING MATERIAL "GUMION-K", METHOD OF PROCESSING OF ORGANIC WASTES OF VEGETABLE ORIGIN
JP2006122731A (en) Promoting agent for deodorization or decomposition and fermentation of organic matter and its utilization
JP2004099395A (en) Method of manufacturing ripe compost-like material
JPH0692764A (en) Production of fertilizer
JP2004099427A (en) Method of manufacturing ripened compost-like material

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees