JP3542416B2 - 厚味モード圧電振動子 - Google Patents

厚味モード圧電振動子 Download PDF

Info

Publication number
JP3542416B2
JP3542416B2 JP19901795A JP19901795A JP3542416B2 JP 3542416 B2 JP3542416 B2 JP 3542416B2 JP 19901795 A JP19901795 A JP 19901795A JP 19901795 A JP19901795 A JP 19901795A JP 3542416 B2 JP3542416 B2 JP 3542416B2
Authority
JP
Japan
Prior art keywords
frequency
groove
electrode
excitation electrode
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19901795A
Other languages
English (en)
Other versions
JPH0927729A (ja
Inventor
宏一 平間
Original Assignee
東洋通信機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋通信機株式会社 filed Critical 東洋通信機株式会社
Priority to JP19901795A priority Critical patent/JP3542416B2/ja
Publication of JPH0927729A publication Critical patent/JPH0927729A/ja
Application granted granted Critical
Publication of JP3542416B2 publication Critical patent/JP3542416B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は厚味モード圧電振動子に関し、例えばATカット水晶振動子の様なエネルギ閉じ込め型厚味モード圧電振動子に於いて、インハーモニック・スプリアスの発生周波数を主振動周波数から引き離し得るようにした圧電振動子に関する。
【0002】
【従来技術】
従来からATカット水晶振動子等の厚味モード圧電振動子は、その周波数温度特性が優れていることから、発振器に多用されている。
水晶振動子の様な圧電振動子においては、1963年のショックレー等によるエネルギー閉じ込め振動理論の定式化により、インハーモニック・スプリアス(以下、スプリアスと言う)の少ない設計をシステマティックに実現できるようになった。
しかし、このエネルギ閉じ込め型振動子においては、スプリアスの発生位置が電極の大きさの決定に伴って一義的に決まってしまうため、スプリアスの発生位置を制御することが困難であり、その結果、重要な周波数位置にスプリアスが発生して特性を乱すという不具合があった。
【0003】
【発明が解決しようとする課題】
本発明の課題は、電極の大きさに関係なく、任意に、このスプリアスの発生周波数の位置を制御し得る圧電振動子を提供することにある。
【0004】
【課題を解決する為の手段】
本発明は上記課題を解決するために、請求項1では、圧電基板上の励振用電極部の外径方向に、前記励振電極部の遮断周波数よりも高い遮断周波数を持った溝部を環状に設けるとともに、該溝部より外側の領域の遮断周波数を前記励振用電極部の遮断周波数よりも高くしたことを特徴とする。
請求項2では、励振用電極部の下部に位置する圧電基板部分の厚みをその周辺部の圧電基板部分に比して厚くすると共に、前記励振電極部の周縁から外径方向に所要距離離れた圧電基板上に周辺部電極を形成することによって、前励振用電極部の周縁部に励振電極部よりも高い遮断周波数を持った溝部を形成し、該溝部より外側の前記周辺部電極を形成した領域の遮断周波数を、前記励振用電極部の遮断周波数よりも高くしたことを特徴とする。
【0005】
請求項3では、励振用電極部の下部に位置する圧電基板部分の厚みをその周辺部の圧電基板部分に比して厚くすると共に、前記励振電極部の外径方向の圧電基板部分に、前記励振電極部の遮断周波数よりも高い遮断周波数を持った溝部を設け、該溝部より外側の領域の遮断周波数を前記励振用電極部の遮断周波数よりも高くしたことを特徴とする。請求項4では、圧電基板上の励振用電極部の電極厚みを、その外径方向に配置した周辺部電極の厚みより大きくすると共に、前記励振用電極と前記周辺部電極との境界部分の電極を除去することによって、前記励振用電極部周辺部に、前記励振用電極部の遮断周波数よりも高い周波数を持った溝部を設け、該溝部より外側の前記周辺部電極を形成した領域の遮断周波数を前記励振用電極部の遮断周波数よりも高くしたことを特徴とする。
【0006】
【発明の実施の形態】
以下、図示した実施例に基づいて本発明を詳細に説明するが、その前に本発明の原理を図2を用いて説明する。
例えば、実際のATカット水晶振動子は、二次元形状であって、異方性であり、且つ、圧電性を持っているが、以下に説明する解析に際しては、振動子を等方性とみなし、純弾性の一次元の解析を行う。しかし、その特徴を把握する上では振動子を等方性とみなしても、格別問題は生じない。即ち、
1.異方性は、基板厚みと、各領域の寸法との比に異方性の程度に合わせた適当な補正係数を掛けることにより、等方性として解析が可能である。
2.二次元形状は、異方性定数に合わせて楕円形状とすることにより、一次元解析を二次元形状の場合に応用可能である。
3.圧電性については、純弾性の場合の解析に於て、圧電性に応じて周波数低下量を増やすことで、良く近似できる。
【0007】
従って、これらの前例を応用し、本発明においても、解析モデルとしては、図2に示す様に、純弾性・等方性である板厚(2H)の基板の Z方向の伝搬方向に長さ(2a)の電極を配したSH波(厚みねじれ振動波)を考える。なお、図2では水晶振動子の断面図の右半分のみを表示してある。
【0008】
図2において、振動子が振動する場合の各領域の変位を任意常数A,B,C,D,E を用いて以下のようにおく。
XI= Acos kz・ejwt ・・・(1)
XII =(Bchk z+Cshk z)・ejwt ・・・(2)
XIII=(Dchk z+Eshk z)・ejwt ・・・(3)
ここで、k1,k2,k3は各領域において振動が伝搬する速度関係を表す定数であって、その周波数で位相回転量が2πとなる距離(長さ)を表し、夫々下記の式で表される。
=(nπ/H)√{(f/f −1} ・・・(4)
=(nπ/H)√{1−(f/f } ・・・(5)
=(nπ/H)√{1−(f/f } ・・・(6)
ω=2πf ・・・(7)
又、fは振動子全体の共振周波数、f1, f2, f3は、それぞれ領域I,II,IIIの遮断周波数、tは時間、nはオーバートーン次数である。
【0009】
図2の a点と q点の境界点では、変位と力が等しく、かつ b点において力が働いていないと言う条件から、任意定数A,B,C,D,E の比を求め、振動子全体の共振周波数を表す次の周波数方程式を得ることができる。
【0010】
【数1】
Figure 0003542416
次に、求めた数式(8) の周波数方程式に寸法データを代入して数値計算を行う。この数値計算に際し、次のパラメーターを導入する。
△=(f −f )/f ・・・(9)
この量は、“基準化遮断周波数差”を表す。即ち、領域 Iの遮断周波数で領域I と領域III の遮断周波数の差を割ったもので、振動子の振動の物理的意味を把握するために、基準化したものである。また式(10)で表される量は、
ψ=(f−f )/(f −f ) ・・・(10)
“基準化共振周波数”である。ここにfは、共振周波数、f1, f2、 f3は、それぞれ領域I 、II、III の遮断周波数である。
【0011】
更に、次の“溝深さ( ν) ”なる量を新たに導入する。これは溝の深さを夫々の遮断周波数の差の比で表したものである。
ν=(f −f )/(f −f ) ・・・(11)
又、下記の量を“閉じ込め係数”と定義する。
(na/H)√△ ・・・(12)
これは、電極寸法を基板厚みで基準化したものに、周波数低下量の平方根を掛けたものであり、各部寸法とオーバートーン次数で決まる量である。
【0012】
以下に求めるものは、“周波数スペクトラム”と呼ばれ、横軸が“閉じ込め係数”、縦軸が“基準化共振周波数”の関係を数式(8) から、図2の解析モデルのパラメータに基づいて求める。
この周波数スペクトラムを求めるに先立ち、図3に示すような従来の溝がない有限板の周波数スペクトラムを求めると図4となる。これは、前記数式(8) で、
q=a ・・・(13)
とした場合に相当する。
【0013】
図4に示す周波数スペクトラムは、図3に示す電極寸法a と基板寸法b の比を4としたものである。縦軸が“基準化共振周波数ψ”(数式(10)参照)、横軸が“閉じ込め係数”(数式(12)参照)であり、図中の実線が、有限板の場合であって、それぞれ,S0,a0S 1,a1,S2,a2・・・・ モードに対応している。また、S iが対象モードa iが非対象モードであり、参考のために振動子が無限板の場合のS 0モ ードを点線で併記する。
【0014】
なお、無限板のS0モード以外の高次のモードについては図示を省略したが、有限板と無限板との差はそれ程顕著ではなく、図4の上では重なってみえる程度の差しかない。一方S0モードに於いては、横軸が零の所でも、縦軸ψが,ψ=1 ・・・(14)
の所から始まらず、1より小さくなり、0.75程度の中間値になることは、注意に値する。即ち、図5に、この振る舞いを詳しく検証するする為に、電極寸法a と基板寸法b の比を幾つか変えた場合の様子を示す。この図5より、S0モードが横軸が零である所と接する縦軸の点は、ψ=1−(a/b) ・・・(15)
の点であり、ここからS0モードが始まることが判る。
【0015】
この図5や数式(15)の現象の意味するところは、以下通りである。即ち、1963年ショックレー等によるエネルギー閉じ込め振動理論におけるエネルギー閉じ込め量は、電極寸法a に対する基板寸法b の大きさで制限されるということを意味している。この理論に従えば、エネルギー閉じ込め量を大きくするためには、電極寸法a に対する基板寸法b を大きくする以外には手段がないことになる。
後述するように、本発明の溝つき振動子によれば、上述した制限なく、エネルギー閉じ込め量を大きくすることが可能となり、しかも、その手段を利用して、スプリアスを任意の点に設定可能となる。
【0016】
次に、最低次非対称モードについて検討する。非対称モードを解析する場合には、数式(1)において、関数形を対称形のcos から非対称形のsin に置き換えて、同様の解析を行えばよいが、その途中は省略し、結果のみを示す。図6には、最低次非対称モードa0について、ψ=1近傍を詳細に計算したものを示す。縦軸は基準化共振周波数ψであるが、目盛りを大きく拡大してある。寸法比(b/a)を大きく変えても、出発点としてはほとんど変わらない事が判る。
【0017】
即ち、図6から明らかなように、寸法比b/a を変えてもψ=1における横軸値はほとんど変化せず、ψ=1における横軸の値を大きくする上では、何等役に立たない。このような性質は従来の圧電振動子の全てに共通したもので、従来、上述したようなショックレー理論に縛られて、それ以上の検討がなされなかった。
本発明は、このψ=1からのモード出発点(横軸の値)を大きくすることによって、エネルギー閉じ込め量を大きくする手段を提供するものである。
【0018】
図7は、図2に示した本発明による溝つき振動子(有限板)に関して、解析モデル化し、その数値解析を行った結果の周波数スペクトラムである。縦軸が基準化共振周波数ψ、横軸が“閉じ込め係数”である。パラメータは、溝の長さ(q/a) と溝深さ( ν) であり、S 0モ ードとS 1モ ードの両方のモードを示しており、実線が溝付きの場合、点線が参考の為に記した溝無しの場合である。
図7から明らかなように、まずS 0モ ードについては、溝の程度が大きくなるに従い、縦軸との切辺がψの大きい方に変化する傾向がある。そして、溝の長さ(q/a) が1.5 で、溝深さ( ν) が2 の場合、溝無しで無限板の場合と同じ様なスペクトラムとなっている。
【0019】
S 1モ ードでは、溝の程度が大きくなるに従い、曲線が右側に移動して、このモードが発生する“閉じ込め係数”が大きくなっていることが判る。この現象は、実用的には極めて好都合であって、エネルギー閉じ込め型共振子を設計するとき、S 1モ ードが発生する点に横軸“閉じ込め係数”を設定するが、溝を設けると、S1モードが発生する点の値が大きくなるので、エネルギ閉じ込め量が大きくできる。
本来、この二つのモードS 0,S1の間に反対称モードa 0があるが、このモードは、圧電的に励振されないので、何等問題はなく、単にS 1モ ードに専ら着目すればよい。
以上説明したようにこの溝付き振動子では、より大きな閉じ込め係数を採用できるため、主振動S 0モ ードの閉じ込めの程度は、溝無しの場合に比べて大きくなる。
【0020】
図8は、S 1モ ード発生点近傍の閉じ込め係数と溝の深さとの関係を詳細に求めたものである。この結果からも明らかなように、このS 1モ ード発生点は、溝の長さ(q/a) と溝深さ( ν) にのみ影響され、素板寸法(b/a) には無関係である。同6図を参照してこの関係を定量的に把握すると、横軸が溝の深さ( ν) 、縦軸が“閉じ込め係数”、パラメーターが溝の長さ(q/a) であって、 横軸の溝深さ( ν) が 0 の場合には、全ての曲線は縦軸“閉じ込め係数”が以下の値から始まっている。
(na/H)√△=(√2)/2 ・・・(16)
これは、溝無しの場合と一致するもので、上記の解析が正しいことの裏付けともなる。
また、図8に於いて、溝の長さ(q/a) が1.05で、溝深さ( ν) が 2の場合、“閉じ込め係数”は、約0.795 であるのに対し、溝無しの従来の振動子は0.71であるから、本発明の溝付き振動子では従来に比べて約10% 以上も大きくなり、エネルギー閉じ込めの効果は大きい。
【0021】
次に、以上のように閉じ込め係数が大きくなると、主振動とスプリアスの周波数間隔が広がることを、図9の概念図を用いて説明する。
図9には、主振動モード(S0) と、一次のスプリアス・モード(S1) についての周波数スペクトラムを図示してある。実線が溝付き構造の場合、点線が従来の溝無し構造の場合である。この図からも明らかなように、主振動モード(S0) では、例えば横軸のA 点における縦軸目盛り値が、溝無し・溝付きでほとんど値が変わらないのに対して、一次のスプリアス・モード(S1) では、A 点における両者の値が大きく変わっている。
即ち、図9において、横軸は、“閉じ込め係数”として、上記の設計値A点を選んだとすると、この時の、主振動モード(S0) と、一次のスプリアス・モード(S1) の周波数間隔は、溝無しの場合は線分(q−q’)であり、本発明の溝付きの場合は線分(p−p’)である。図9より、明らかなように、線分(p−p’)の方がはるかに大きくなるので、本発明の溝付きの場合の方が周波数間隔が広くなることが理解出来よう。
【0022】
以上のように溝を設けることによって、高次モードの発生する周波数が主振動の周波数と大きく離れ、両者の周波数間隔を大きくすることができ、またその程度は溝の幅、深さによってコントロールできるので、本発明はこの現象を積極的に利用し、スプリアスの周波数位置を任意に制御するものである。
即ち、従来のエネルギ閉じ込め型圧電振動子と違い、本発明の溝構造を付けることにより、同じ電極寸法、同じ遮断周波数差でも、スプリアスの発生位置を遠くに離すことができる。
【0023】
以下に、上述した原理に基づいて構成した、エネルギー閉じ込め型ATカット厚みすべり水晶振動子の具体例を説明する。
図1(a),(b)は、本発明の実施例を示す水晶振動子の模式的な断面構造図と平面図である。この例に示す水晶振動子は、ATカットに切断された水晶基板1 の中央部を、溝の深さに相当する量だけエッチング加工し、エッチングされて薄くなった主表面上の両面に、二つの励振用の主電極2a,2b を形成すると共に、振動子周縁に伸びるリード線部3a,3b を設けたものである。
この場合、主電極の対向部分の遮断周波数は、エネルギー閉じ込めの為に、周辺部5a,5b より、若干その遮断周波数を下げることが有効であることは、一般のエネルギー閉じ込め型振動子と同じである。
【0024】
例えば、直径 4mmφのATカット水晶基板1 の両面にスパッタ法により膜厚800nm のCr−Au の薄膜を付け、溝深さに相当する厚さまで基板自体をエッチング加工する為に、フォトエッチング法により中央部を直径1.7mm φ の部分を除去する。
このCr−Au をマスクに使い、水晶基板を両面から50nmエッチングする。
次に、水晶基板1 の両面にスパッタ法により膜厚 100nmアルミニュームの薄膜を付け、フォトエッチング法により対向部分である直径 1.5mmφの主電極2a,2b 部分と、引出し部の幅寸法は 0.7mmであるリード線部3a,3b を形成する。
この電極を付けられた溝付き水晶基板を、従来の保持器に収容して完成品にすることは、一般の水晶振動子と同じである。
【0025】
図10は、本発明の振動子を実現する際に、各領域の遮断周波数に差を持たせる場合の具体的な実現方法の幾つかを一般化した形で図示したものである。本発明において振動子の各領域において必要とする遮断周波数差は、基板厚味差、電極厚味差、別の材質を付加することによる厚味差等による質量負荷効果等を用いても良いし、電極を配することによって引き起こされる圧電反作用を利用した周波数低下効果を用いても良い。
【0026】
図10(a) から(e) に実施例の概念的断面図を示す。なお、この例では主面の片面のみ示しているが、必要に応じて両面を同時に加工することは何等問題はないであろう。
先ず、図10(a) は、突状の厚い中心部1Aと薄い(低い)周辺部5a とからなる圧電基板1の全面に電極薄膜2a を付け、厚い中心部1Aの周縁部にエッチング加工等により環状の溝部4a を配し、更に周辺部5a上には周辺部電極5Aを形成したものである。なお、図では電極部分2aのみを除去して溝部4aを構成する場合を示したが、溝部分に相当する基板面を更に溝状に除去することによって溝を深くすることも可能であろう。
【0027】
図10(b) は、低い周波数の場合、中心部1Aの外周に溝部4aと、周辺部5a(段差)を圧電基板1自体に構成しておき、励振電極2aは電荷収集のみとしたものである。図10(c) は、全体的に平坦な圧電基板主面にリング状の溝部4aを形成すると共に、溝部の中心部の突部1A上にのみ電極を配したものである。図10(d) は、圧電基板1の主面自体は全体的に平面に構成する一方で、全ての厚味差を電極の厚味差により構成したもので、水晶基板を用いて,VHF帯の様な高い周波数を得る場合に、基板に溝等の加工を加えることなく、電極の質量付加効果によるのみでも、十分本発明を実現することが可能となる。中央部に形成した励振電極2aは、その外周の環状の溝部4aを介して、周辺部5a上に形成した周辺部電極5Aにより包囲されている。
【0028】
図10(e) は、中心部1Aの電極2aの上に更に、付加質量6を配し、この部分の遮断周波数を下げたものである。特に、図10(d),(e) は、高結合材料を用いた場合など、圧電反作用を利用できるので、実質的には深い溝加工をした場合と同じ効果が得られる。なお、付加質量6を構成する材料としては、アルミニウム、銅等々、電極材料として使用可能なものであれば、どのような材料であってもよく、蒸着、スパッタリング等の方法により積層形成する。
【0029】
更に、本発明を適用する圧電基板形状には、特別な制限がないことは、従来の一般的な圧電振動子と同じである。即ち、圧電基板形状としては、短冊形状でも良いし、円形、楕円形、いずれでも良い。また、厚味も、コンベックス状や、ベベル形状でも良い。又、溝部の深さ間隙は、全ての部分で一様である必要もないことは言うまでもない。
又、基板形状としては、図11の様な逆メサ形状の圧電基板の上に、本発明の励振用電極2a,2b 、溝部4a,4b 、周辺部電極5A、5Bが配された形状であっても同様の効果を得ることができる。
【0030】
即ち、本発明は、エネルギー閉じ込め現象を利用し、中央部励振電極部に振動エネルギーを集中させているので、圧電基板の周辺端部の形状の様子が特性にあまり影響しない。実際、本発明の解析でも、プリアススプリアス・モードについては、有限板でも、無限板でも、ほとんど変わりがないことは既に指摘した。又、主振動モードS 0についても、図4に示す様に、実際に使用される“閉じ込め係数”の範囲では、これもほとんど変わりがない。従って、周辺部の形状には、ほとんど無関係に、本発明を応用できる。
【0031】
上述の本発明の原理の説明では、一次元解析を、等方性、純弾性の基で行った。しかし、本発明は、使用される基板が、二次元形状であっても、又、異方性であっても、圧電性を持っていても、本発明の技術思想は適用可能である。以下にその理由を説明する。
文献『中村僖良 他:“モノリシック圧電フィルタにおける2次元エネルギー閉込め振動”電子通信学会論文誌Vol.62−A,No.6(1979−6) 』の中に、“単一方形電極を有するエネルギー閉込め形共振子の共振周波数スペクトラム”に関する解析が成されている。これによれば、この解析は二次元解析であるが、一次元解析の場合と相似であって、横軸“閉じ込め係数”の値を変えれば、ほとんど変わりがないことが分かる。従って、本発明は、実際の圧電振動子の様な二次元形状のものにも適用可能である。
【0032】
文献『中村 僖良 他:“だ円リング状電極を有するエネルギー閉込め形圧電振動子”電子情報通信学会論文誌 A Vol.J73−A No.9 pp.1461−1467(1990−9)』によれば、基板の主面の二次元方向の異方性については、その異方性定数により寸法値を補正した座標変換をすると等方性問題に帰着することが記載されている。そして、異方性に合わせて、電極を楕円形状にした振動子を提案している。更に、厚味方向と主面の二次元方向の異方性に関する座標変換にも、同時に言及している。従って、本発明は、いかなる異方性基板を利用した振動子にも適用可能である。
【0033】
文献『尾上守夫:“圧電板の厚味ーねじれ振動”電子通信学会論文誌Vol.52−A,No.10(1969−10) 』によれば、圧電基板の分散特性は、その遮断周波数の近傍では、純弾性の場合と相似である。即ち、圧電性による周波数低下効果と質量付加による周波数低下効果は、同じ振る舞いをしていることである。従って、本発明は、圧電基板にも応用可能である。
また、圧電性の無いものに圧電薄膜等を配した複合型圧電基板であっても、本発明を適用できる。
【0034】
本発明は、水晶、高結合結晶、圧電セラミック材の波動伝播媒体中に、厚味振動即ち、厚味すべり振動、厚味ねじれ振動、厚味たて振動等の振動を利用した結果、ある周波数(一般に遮断周波数と呼ばれる)の上下で、伝播方向の伝播定数が、実数と虚数とに分かれる波動が存在する場合には、これら全てに本発明を応用できる。更に、分散曲線が停留点を持ち、且つその停留点から出発する二つの分枝の曲率の符号が反対の場合にも、発明を利用できる。図12に、分散曲線の一例を示す。
【0035】
次に、本発明の効果の一例を、具体的応用例として、電圧・周波数可変型の圧電発振器(VCXO)を用いて説明する。モートレイ(W.S.Mortley:Proc.IRE,49(1956),p.239 )によれば、VCXOを、外部からFM変調をかける時に、主振動周波数とスプリアス周波数の周波数間隔に対して、VCXOの変調周波数が、一致してくると変調特性に乱れが生ずることが指摘されており、現在もこれは大きな問題点ある。
【0036】
即ち、変調周波数として、低い周波数の時には問題ないが、高い変調周波数まで動作をさせようとすると、異常現象がおこる。即ち、変調周波数の上限が、主振動周波数とスプリアス周波数の周波数間隔で制限されてしまうことになる。
【0037】
本発明を利用すれば、この周波数間隔を、電極寸法等とは独立に設計できるので、実用上、極めて便利である。
高い変調周波数の必要性は、VCXOを例えば、高速の同期引き込み動作を行う場合等に必要になり、大量データの伝送の為には重要技術の一つである。
【0038】
【発明の効果】
以上のように、本発明によれば、電極の大きさに関係なく、任意に、スプリアスの発生周波数の位置を制御することができる。
【図面の簡単な説明】
【図1】(a) 及び(b) は本発明に係る水晶振動子の一実施例を示す模式的断面図と平面図である。
【図2】本発明の原理を説明するための解析モデル図である。
【図3】従来の溝無し構造の場合の解析モデル図である。
【図4】従来の溝無し構造の場合の周波数スペクトラムの数値解析例図で、全体の様子を示している。
【図5】従来の溝無し構造の場合の周波数スペクトラムの数値解析例図で、主振動モードの場合を寸法パラメータを変えて示している。
【図6】従来の溝無し構造の場合の周波数スペクトラムの数値解析例図で、主振動に一番近い最初のスプリアス(最低次非対称モードa 0) について、モード発生点付近を拡大して示したものである。
【図7】本発明の溝付き構造の場合の周波数スペクトラムの数値解析例図で、主振動モードS 0と、実際に励振可能な一番近いスプリアス(一次対称モードS 1) を示している。
【図8】一次対称モードS 1の発生点の閉じ込め係数の増大の程度を示したものである。
【図9】主振動とスプリアス・モードの周波数間隔を説明する図である。
【図10】(a )はその他の溝構造の実施例の概念を示す断面図、 (b)はその他の溝構造の実施例の概念を示す断面図、(c) はその他の溝構造の実施例の概念を示す断面図、(d) はその他の溝構造の実施例の概念を示す断面図、(e) はその他の溝構造の実施例の概念を示す断面図である。
【図11】(a) 及び(c) は逆メサ形状をした圧電基板を利用した場合におけるその他の溝構造の実施例の概念を示す断面図である。
【図12】分散曲線上で、停留点から、別の分枝が出発する様子を示した図である。
【符号の説明】
1・・・・・・・・・圧電基板,2a,2b・・・・・ 励振用電極,3a,3b・・・・・ リード線部,4a,4b・・・・・ メサ加工部,5a,5b・・・・・ 周辺部,6・・・・・・・・・ 付加質量

Claims (4)

  1. 圧電基板上の励振用電極部の外径方向に、前記励振電極部の遮断周波数よりも高い遮断周波数を持った溝部を環状に設けるとともに、該溝部より外側の領域の遮断周波数を前記励振用電極部の遮断周波数よりも高くしたことを特徴とする厚味モード圧電振動子。
  2. 励振用電極部の下部に位置する圧電基板部分の厚みをその周辺部の圧電基板部分に比して厚くすると共に、前記励振電極部の周縁から外径方向に所要距離離れた圧電基板上に周辺部電極を形成することによって、前励振用電極部の周縁部に励振用電極部よりも高い遮断周波数を持った溝部を形成し、該溝部より外側の前記周辺部電極を形成した領域の遮断周波数を、前記励振電極部の遮断周波数よりも高くしたことを特徴とする厚味モード圧電振動子。
  3. 励振用電極部の下部に位置する圧電基板部分の厚みをその周辺部の圧電基板部分に比して厚くすると共に、前記励振電極部の外径方向の圧電基板部分に、前記励振電極部の遮断周波数よりも高い遮断周波数を持った溝部を設け、該溝部より外側の領域の遮断周波数を前記励振用電極部の遮断周波数よりも高くしたことを特徴とする厚味モード圧電振動子。
  4. 圧電基板上の励振用電極部の電極厚みを、その外径方向に配置した周辺部電極の厚みより大きくすると共に、前記励振用電極と前記周辺部電極との境界部分の電極を除去することによって、前記励振用電極部周辺部に、前記励振用電極部の遮断周波数よりも高い周波数を持った溝部を設け、該溝部より外側の前記周辺部電極を形成した領域の遮断周波数を前記励振用電極部の遮断周波数よりも高くしたことを特徴とする厚みモード圧電振動子。
JP19901795A 1995-07-12 1995-07-12 厚味モード圧電振動子 Expired - Lifetime JP3542416B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19901795A JP3542416B2 (ja) 1995-07-12 1995-07-12 厚味モード圧電振動子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19901795A JP3542416B2 (ja) 1995-07-12 1995-07-12 厚味モード圧電振動子

Publications (2)

Publication Number Publication Date
JPH0927729A JPH0927729A (ja) 1997-01-28
JP3542416B2 true JP3542416B2 (ja) 2004-07-14

Family

ID=16400740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19901795A Expired - Lifetime JP3542416B2 (ja) 1995-07-12 1995-07-12 厚味モード圧電振動子

Country Status (1)

Country Link
JP (1) JP3542416B2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8981876B2 (en) * 2004-11-15 2015-03-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Piezoelectric resonator structures and electrical filters having frame elements
JP2006238266A (ja) 2005-02-28 2006-09-07 Seiko Epson Corp 圧電振動片、及び圧電振動子
JP2006238263A (ja) 2005-02-28 2006-09-07 Seiko Epson Corp 圧電振動片、及び圧電振動子
CN101292422B (zh) 2005-11-04 2013-01-16 株式会社村田制作所 压电谐振器、滤波器、以及双模滤波器
US8242664B2 (en) * 2008-12-26 2012-08-14 Nihon Dempa Kogyo Co., Ltd. Elastic wave device and electronic component
JP2010226195A (ja) * 2009-03-19 2010-10-07 Seiko Epson Corp 圧電デバイス
US8902023B2 (en) 2009-06-24 2014-12-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator structure having an electrode with a cantilevered portion
US9243316B2 (en) 2010-01-22 2016-01-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Method of fabricating piezoelectric material with selected c-axis orientation
US8962443B2 (en) 2011-01-31 2015-02-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Semiconductor device having an airbridge and method of fabricating the same
US9425764B2 (en) 2012-10-25 2016-08-23 Avago Technologies General Ip (Singapore) Pte. Ltd. Accoustic resonator having composite electrodes with integrated lateral features
US9048812B2 (en) 2011-02-28 2015-06-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonator comprising bridge formed within piezoelectric layer
US9148117B2 (en) 2011-02-28 2015-09-29 Avago Technologies General Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge and frame elements
US9083302B2 (en) 2011-02-28 2015-07-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked bulk acoustic resonator comprising a bridge and an acoustic reflector along a perimeter of the resonator
US9154112B2 (en) 2011-02-28 2015-10-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge
US9136818B2 (en) 2011-02-28 2015-09-15 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked acoustic resonator comprising a bridge
US9203374B2 (en) 2011-02-28 2015-12-01 Avago Technologies General Ip (Singapore) Pte. Ltd. Film bulk acoustic resonator comprising a bridge
US9444426B2 (en) 2012-10-25 2016-09-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Accoustic resonator having integrated lateral feature and temperature compensation feature
KR102105391B1 (ko) * 2014-12-23 2020-04-28 삼성전기주식회사 수정진동자 패키지

Also Published As

Publication number Publication date
JPH0927729A (ja) 1997-01-28

Similar Documents

Publication Publication Date Title
JP3542416B2 (ja) 厚味モード圧電振動子
US11309861B2 (en) Guided surface acoustic wave device providing spurious mode rejection
TWI762832B (zh) 聲表面波器件
JP2001244778A (ja) 高周波圧電振動子
US4870313A (en) Piezoelectric resonators for overtone oscillations
US11936364B2 (en) Surface acoustic wave device on device on composite substrate
JP4841640B2 (ja) 弾性波デバイスおよびその製造方法
JP3622202B2 (ja) 弾性表面波装置の温度特性調整方法
WO2022000809A1 (zh) 谐振器及其制备方法
JPH09298446A (ja) 弾性表面波装置及びその設計方法
US6492759B1 (en) Piezoelectric resonator and a filter
CN114124023A (zh) 一种多层同质的压电结构及制备方法
CN112290904A (zh) 基于嵌入型电极的超高频谐振器
JP4196641B2 (ja) 超薄板圧電デバイスとその製造方法
JPH0211043B2 (ja)
JP2000040938A (ja) 超高周波圧電デバイス
CN113676152B (zh) 一种弹性波谐振器及其制备方法
JP5786393B2 (ja) 水晶デバイスの製造方法
JP4599231B2 (ja) 水晶振動子の製造方法、及びその水晶振動子
JPS60142607A (ja) 圧電薄膜複合振動子
US6016025A (en) Selected overtone resonator with channels
JPH0993076A (ja) 厚味モード圧電振動子
JP2001326554A (ja) 圧電振動子
US20210044273A1 (en) Transducer structure for source suppression in saw filter devices
WO2024027033A1 (en) Acoustic resonator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

EXPY Cancellation because of completion of term