JP3542096B2 - Regeneration method of nitrogen oxide gas adsorbent - Google Patents

Regeneration method of nitrogen oxide gas adsorbent Download PDF

Info

Publication number
JP3542096B2
JP3542096B2 JP19307996A JP19307996A JP3542096B2 JP 3542096 B2 JP3542096 B2 JP 3542096B2 JP 19307996 A JP19307996 A JP 19307996A JP 19307996 A JP19307996 A JP 19307996A JP 3542096 B2 JP3542096 B2 JP 3542096B2
Authority
JP
Japan
Prior art keywords
nitrogen oxide
adsorbent
gas adsorbent
water
oxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19307996A
Other languages
Japanese (ja)
Other versions
JPH1033977A (en
Inventor
智代 井上
健一 宍田
善介 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP19307996A priority Critical patent/JP3542096B2/en
Publication of JPH1033977A publication Critical patent/JPH1033977A/en
Application granted granted Critical
Publication of JP3542096B2 publication Critical patent/JP3542096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は窒素酸化物ガス吸着剤の再生方法に関する。さらに詳述すれば、例えば、アーク溶接・ガス溶接・レーザー溶接・ガス切断・レーザー切断・プラズマ切断・電子ビーム加工・放電加工レーザー加工等を行う各種加工作業場、自動車排ガスの充満し易い屋内駐車場、トンネル、交差点近傍、燃焼機器を利用する各種店舗、スーパーマーケット、百貨店等で、加工作業排ガス、燃焼排ガスを吸着して上述の各所での排ガスによる汚染を防止すべく、浄化対象空気中の窒素酸化物・硫黄酸化物・アンモニア・臭気成分等のうち主に窒素酸化物を吸着除去する技術に関する。
【0002】
【従来の技術】
上述のように各種の箇所で使用される窒素酸化物ガス吸着剤として従来では、活性炭などの担体にアルカリ金属の炭酸塩、重炭酸塩等から選ばれる少なくとも一種を含む添加剤を担持してあるものが知られており(例えば特開平6−126161参照)、このような窒素酸化物ガス吸着剤は、上述のような担体に上述の添加剤の水溶液を含浸させたのち、乾燥させることにより担持させて製造していた。しかし、このような窒素酸化物ガス吸着剤を再生することについては全く触れられていない。
【0003】
【発明が解決しようとする課題】
つまり、使用に伴い上述の窒素酸化物ガス吸着剤の窒素酸化物吸着性能が低下した場合に、未使用の窒素酸化物吸着性能の高いものと交換するなどして、窒素酸化物吸着性能を回復せざるをえず、前記窒素酸化物ガス吸着剤は、いわゆる「使い捨て」の形態で使用せざるを得なかった。
このように、使い捨てにすると、担体、添加剤が大量に必要になるとともに大量の廃棄物を生じ、コスト高にならざるを得なかった。一方、通常活性炭系吸着剤を再生する方法として、吸着剤を高温に加熱して、吸着物を揮発させるなどして、担体から脱離させ吸着剤の再生を行う方法が知られている。
しかし、上述の窒素酸化物ガス吸着剤を再生するのに、前述の吸着剤の再生方法を適用した場合には、前記窒素酸化物ガス吸着剤を加熱装置に供するとともに、多大なエネルギーを供与せねば再生することができないため、加熱するための労力及びエネルギー面からやはり、高価にならざるを得ないという問題点があり、さらに、再生するための労力を削減するために、前記窒素酸化物ガス吸着剤を加熱するために、予めその窒素酸化物ガス吸着剤を収容する容器あるいは装着する装置に加熱手段を設けるには、前記容器あるいは装置自体を耐熱構造に形成しなければならず、前記窒素酸化物ガス吸着剤を適用する対象物が高価で大がかりなものに制約されるという問題点があった。
【0004】
従って、本発明の目的は、上記欠点に鑑み、窒素酸化物ガス吸着剤を簡便に再生する技術を提供することにあり、それによって、窒素酸化物ガスの吸着除去を簡単且つ安価に行えるようにすることにある。
【0005】
【課題を解決するための手段】
本発明者らは、鋭意検討を重ねた結果、上述の窒素酸化物ガス吸着剤を水洗することにより、前記添加剤によって吸着除去された窒素酸化物を前記担体から脱離させることができるということを見いだした。また、このように添加剤を除去した担体に再び添加剤を担持させて再生すると、未使用の担体に添加剤を担持させた窒素酸化物ガス吸着剤と同様の窒素酸化物除去性能を有する窒素酸化物ガス吸着剤を得ることができるという新知見を得た。さらに、上記の操作は常温条件下で可能であることを見出した。本発明は前記新知見に基づき成されたものである。

〔構成〕
この目的を達成するための本発明の特徴構成は、活性炭に、保水性を有するアルカリ金属の硫酸塩を主成分とする第一成分、及び、アルカリ金属の炭酸塩、重炭酸塩、低級脂肪酸塩から選ばれる少なくとも一種を含む第二成分とを共に担持させてある窒素酸化物ガス吸着剤の再生方法であって、窒素酸化物ガス吸着剤を水洗した後、保水性を有するアルカリ金属の硫酸塩を主成分とする第一成分の水溶液、及び、アルカリ金属の炭酸塩、重炭酸塩、低級脂肪酸塩から選ばれる少なくとも一種を含む第二成分の水溶液を含浸させた後、含浸した水分を揮発させることによって再生を行うことにあり、また、常温で空気を流通させて、含浸した水分を揮発させれば熱エネルギーを必要としないのでさらに望ましい。また、第二成分を構成するアルカリ金属はナトリウム、カリウム、リチウムが挙げられるが、中でもナトリウムが安価であるので最も好ましい。
【0006】
〔作用効果〕
上述の窒素酸化物ガス吸着剤は、吸着剤表面に吸着固定化された窒素酸化物を水溶することが出来るので、前記窒素酸化物ガス吸着剤を水洗すると、添加剤の活性が低下していたとしても、吸着固定化された窒素酸化物を取り除くことができ、NO2ガスが活性炭の多孔質構造中に残ってしまうような不都合が起きにくい。水洗時に脱離した添加剤を吸着剤に補充してやれば吸着剤は再び活性を取り戻すことになる。
そのため、水洗した前記吸着剤に再び前記第一、第二成分あるいは第二成分のみを担持させれば、再び窒素酸化物吸着能を発揮可能な窒素酸化物ガス吸着剤として再生することが出来る。
したがって、前記窒素酸化物ガス吸着剤の担体は使い捨てにすることなく繰り返し利用できるので、安価にガス吸着剤を提供することが出来るようになる。
常温で空気を流通させて、含浸した水分を揮発させれば、加熱乾燥を行う場合に比べて、担体の多孔質構造中に水分の残存する状態で再生が行われ易いので、担体表面が疎水性になってしまう様な不都合が起きにくく、再生後の窒素酸化物ガス吸着剤の二酸化窒素吸着活性を高く維持しやすい。また、この場合加熱乾燥に比べてエネルギーコストを低く抑えることができる。
【0007】
従って本発明によれば、対象空気が窒素酸化物を多く含む場合の空気浄化に好適使用できるガス吸着剤を安価に再生できるようになった。
【0008】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
空気清浄装置として吸着塔を2塔用いる例を示す。
図1に示す空気清浄装置は、窒素酸化物ガス吸着剤を備えた吸着フィルターFA1,FA2を備え、各弁の開弁、閉弁操作によりタンク10からポンプ11によって各フィルターFA1,FA2に水を送り、各フィルターFA1,FA2を洗浄可能に構成するとともに、同様に薬液タンク12から前記第一第二成分の水溶液を流通させて再生可能に構成してある。また、各フィルターFA1,FA2にエア搬送するブロワBを設け、再生した各フィルターFA1,FA2を乾燥出来るように構成してある。
【0009】
このような構成に基づけば、一方のフィルターで脱硝を行い、他方で再生をする運転で前記各フィルターFA1,FA2を交互に利用できる。
たがって、前記空気清浄装置を連続運転すれば、吸着剤を再生して幾度も使用できるばかりでなく、装置を停止させることなく継続して空気浄化を行うことができる。
【0010】
〈ガス吸着剤の調製〉
窒素酸化物ガス吸着剤は、硫酸ナトリウム(第一成分)1.5g及び炭酸ナトリウム(第二成分)5gを100mlの水に溶解した水溶液を、椰子殻系の活性炭(直径3mm高さ3mmの円柱形)(担体)100gとともにマイヤーフラスコ内で常温常圧で1時間攪拌混合して前記活性炭に前記水溶液を含浸させた後、減圧加熱して水を蒸発させた後、乾燥器内(130℃)で5時間乾燥することで得た。
【0011】
〔実施例1〕
前記で調整した窒素酸化物ガス吸着剤を6g、直径20mm、長さ150mmのガラス製円筒カラムに充填し、固定床に形成し、このカラムにNOを10ppm含む空気(相対湿度50%)を流通させた。このとき温度は25℃、空間速度(SV)は13000/hrであった。カラム出口でのNOx濃度を測定し、脱硝率として求めた。
尚、脱硝率は数1で表される。各ガス濃度は、化学発光法によって求めた。
【0012】
【数1】

Figure 0003542096
【0013】
〔実施例2〕
実施例1で脱硝に用いた窒素酸化物吸着剤を再生し、再生した吸着剤の性能安定性を調べたところ図2のようになった。
窒素酸化物吸着剤の再生は、実施例1で用いた性能の低下した窒素酸化物吸着剤を、硝子製円筒カラムに充填したままの状態で、水100mlに浸漬して30分放置し、一旦排水した。その後、水100mlに炭酸ナトリウム(第二成分)5g、硫酸ナトリウム(第一成分)1.5gを溶解した水溶液に1時間含浸した後再び排水し、室温のままで空気を2時間送風しサンプルを乾燥させることによって窒素酸化物吸着剤を再生した。
また脱硝効率は先の実施例1と同様にして求めた。
図2より、再生した窒素酸化物吸着剤は新規に製造した窒素酸化物吸着剤と同様の性能を示し、繰り返し利用にも十分耐えることがわかる。
【0014】
〔実施例3〕
実施例2で用いたガス吸着剤を、実施例2と同様の方法で合計20回再生、脱硝実験を繰り返し性能安定性を調べた。この時窒素酸化物吸着剤の再生において、活性炭水洗後含浸する水溶液は、実施例2で排水した水溶液に、同じ成分濃度の水溶液を補充しながら用いた。その結果、再生した窒素酸化物吸着剤の寿命は再生利用に伴って表1のように変化し、実用条件においても十分再生利用に耐えることが分かった。
【0015】
【表1】
Figure 0003542096

【図面の簡単な説明】
【図1】ガス洗浄機の概略図
【図2】ガス吸着剤の再生による性能安定性を示す図
【符号の説明】
FA 吸着フィルター[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for regenerating a nitrogen oxide gas adsorbent. More specifically, for example, various processing workplaces that perform arc welding, gas welding, laser welding, gas cutting, laser cutting, plasma cutting, electron beam machining, electric discharge machining, laser machining, etc., and indoor parking lots where automobile exhaust gas is easily filled. Nitrogen oxidation in air to be purified in order to adsorb processing exhaust gas and combustion exhaust gas to prevent pollution by exhaust gas in the above-mentioned places in various stores, supermarkets, department stores, etc. that use combustion equipment, near tunnels, intersections, and combustion equipment The present invention relates to a technique for mainly adsorbing and removing nitrogen oxides among substances, sulfur oxides, ammonia, and odor components.
[0002]
[Prior art]
Conventionally, as a nitrogen oxide gas adsorbent used in various places as described above, an additive containing at least one selected from alkali metal carbonates, bicarbonates, and the like is supported on a carrier such as activated carbon. Such a nitrogen oxide gas adsorbent is known by impregnating an aqueous solution of the above-mentioned additive into the above-mentioned carrier and then drying it. Had been manufactured. However, there is no mention of regenerating such a nitrogen oxide gas adsorbent.
[0003]
[Problems to be solved by the invention]
In other words, when the nitrogen oxide adsorption performance of the above-mentioned nitrogen oxide gas adsorbent decreases with use, the nitrogen oxide adsorption performance is restored by replacing it with unused nitrogen oxide adsorption performance. Needless to say, the nitrogen oxide gas adsorbent had to be used in a so-called "disposable" form.
As described above, when disposable, a large amount of carriers and additives are required, and a large amount of waste is generated, resulting in an increase in cost. On the other hand, as a method of regenerating an activated carbon-based adsorbent, a method of regenerating an adsorbent by heating the adsorbent to a high temperature to volatilize an adsorbate and desorbing the adsorbent from a carrier is known.
However, when the above-described method for regenerating an adsorbent is applied to regenerate the above-described nitrogen oxide gas adsorbent, the nitrogen oxide gas adsorbent is supplied to a heating device and a large amount of energy is supplied. Since it is not possible to regenerate it, there is still a problem that it has to be expensive in terms of labor and energy for heating, and further, in order to reduce the labor for regeneration, the nitrogen oxide gas In order to provide a heating means to a container or a device for mounting the nitrogen oxide gas adsorbent in advance to heat the adsorbent, the container or the device itself must be formed in a heat-resistant structure. There is a problem that the target to which the oxide gas adsorbent is applied is limited to expensive and large objects.
[0004]
Accordingly, an object of the present invention is to provide a technique for easily regenerating a nitrogen oxide gas adsorbent in view of the above-mentioned drawbacks, so that adsorption and removal of a nitrogen oxide gas can be performed easily and at low cost. Is to do.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and found that, by washing the above-mentioned nitrogen oxide gas adsorbent with water, the nitrogen oxides adsorbed and removed by the additive can be desorbed from the carrier. Was found. In addition, when the additive is carried again on the carrier from which the additive has been removed and the regeneration is performed, nitrogen having the same nitrogen oxide removing performance as the nitrogen oxide gas adsorbent having the additive carried on an unused carrier is obtained. New knowledge that an oxide gas adsorbent can be obtained was obtained. Furthermore, they found that the above operation was possible under normal temperature conditions. The present invention has been made based on the above new findings.

〔Constitution〕
Characterizing feature of the present invention for achieving this object, the activated carbon, the first component composed mainly of an alkali metal sulfate having water retention, and alkali metal carbonates, bicarbonates, lower and at least the second component and together supported so reproducing method of the nitrogen oxide adsorbent are including one selected from fatty acid salt, was washed with water and nitrogen oxides gas adsorbent, an alkali metal having a water retention aqueous solution of the first component composed mainly of sulfates, and alkali metal carbonates, bicarbonates, after impregnated with an aqueous solution of a second component comprising at least one selected from a lower fatty acid salt, the impregnated water located be reproduced by Rukoto evaporate, also at normal temperature by circulating air, further preferably does not require thermal energy if caused to volatilize the impregnated water. In addition, examples of the alkali metal constituting the second component include sodium, potassium, and lithium. Among them, sodium is most preferable because it is inexpensive.
[0006]
(Function and effect)
Since the nitrogen oxide gas adsorbent described above can dissolve the nitrogen oxide adsorbed and fixed on the surface of the adsorbent, washing the nitrogen oxide gas adsorbent with water reduces the activity of the additive. Even so, the nitrogen oxides adsorbed and immobilized can be removed, and the inconvenience of NO 2 gas remaining in the porous structure of the activated carbon hardly occurs. If the adsorbent is replenished with the additive desorbed during the water washing, the adsorbent will regain its activity.
Therefore, the adsorbent again the first was water washed, is possible to reproduce only the second component or the second component if brought into bearing, the again nitrogen oxide adsorbing ability as a nitrogen oxide adsorbent capable of exhibiting I can do it.
Therefore, the carrier of the nitrogen oxide gas adsorbent can be repeatedly used without disposable, so that the gas adsorbent can be provided at low cost.
If air is circulated at normal temperature to volatilize the impregnated water, the carrier surface can be easily regenerated in a state where water remains in the porous structure of the carrier, as compared to the case of heating and drying. Inconveniences such as inconvenience are less likely to occur, and the nitrogen oxide gas adsorbent after regeneration can easily maintain high nitrogen dioxide adsorption activity. In this case, the energy cost can be reduced as compared with the heating and drying.
[0007]
Therefore, according to the present invention, it has become possible to inexpensively regenerate a gas adsorbent that can be suitably used for air purification when the target air contains a large amount of nitrogen oxides.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
An example in which two adsorption towers are used as an air cleaning device will be described.
The air purifying apparatus shown in FIG. 1 includes adsorption filters FA1 and FA2 provided with a nitrogen oxide gas adsorbent, and water is supplied from a tank 10 to each filter FA1 and FA2 by a pump 11 by opening and closing each valve. Each of the filters FA1 and FA2 is configured to be washable, and is configured to be reproducible by flowing an aqueous solution of the first and second components from the chemical solution tank 12 in the same manner. Further, a blower B for conveying air is provided to each of the filters FA1 and FA2, and the regenerated filters FA1 and FA2 can be dried.
[0009]
Based on such a configuration, the filters FA1 and FA2 can be used alternately in an operation in which denitration is performed by one filter and regeneration is performed by the other filter.
It was although I, if continuous operation the air cleaning device, again and again to regenerate the adsorbent may not only be used, it is possible to perform continuously for air purification without stopping the apparatus.
[0010]
<Preparation of gas adsorbent>
As the nitrogen oxide gas adsorbent, an aqueous solution obtained by dissolving 1.5 g of sodium sulfate (first component) and 5 g of sodium carbonate (second component) in 100 ml of water is converted into a coconut shell activated carbon (column having a diameter of 3 mm and a height of 3 mm). Form) (Carrier) and 100 g of (carrier) were stirred and mixed at room temperature and normal pressure for 1 hour in a Meyer flask to impregnate the activated carbon with the aqueous solution, heated under reduced pressure to evaporate water, and then dried (130 ° C.) For 5 hours.
[0011]
[Example 1]
6 g of the nitrogen oxide gas adsorbent prepared above was packed in a glass cylindrical column having a diameter of 20 mm and a length of 150 mm to form a fixed bed, and the column was filled with air containing 10 ppm of NO 2 (50% relative humidity). It was distributed. At this time, the temperature was 25 ° C., and the space velocity (SV) was 13,000 / hr. The NOx concentration at the column outlet was measured and determined as a denitration rate.
Note that the denitration rate is represented by Equation 1. Each gas concentration was determined by a chemiluminescence method.
[0012]
(Equation 1)
Figure 0003542096
[0013]
[Example 2]
The nitrogen oxide adsorbent used for denitration in Example 1 was regenerated, and the performance stability of the regenerated adsorbent was examined. The result was as shown in FIG.
Regeneration of the nitrogen oxide adsorbent was carried out by immersing the nitrogen oxide adsorbent with reduced performance used in Example 1 in 100 ml of water while being filled in a cylindrical column made of glass, and leaving it for 30 minutes. Drained. Thereafter, the sample was impregnated with an aqueous solution in which 5 g of sodium carbonate (second component) and 1.5 g of sodium sulfate (first component) were dissolved in 100 ml of water for 1 hour, drained again, and air was blown at room temperature for 2 hours to sample. The nitrogen oxide adsorbent was regenerated by drying.
The denitration efficiency was determined in the same manner as in Example 1 above.
FIG. 2 shows that the regenerated nitrogen oxide adsorbent has the same performance as the newly produced nitrogen oxide adsorbent, and is sufficiently resistant to repeated use.
[0014]
[Example 3]
The gas adsorbent used in Example 2 was regenerated 20 times in total in the same manner as in Example 2, and a denitration experiment was repeated to examine the performance stability. At this time, in the regeneration of the nitrogen oxide adsorbent, an aqueous solution to be impregnated after washing with activated carbon water was used while replenishing the aqueous solution drained in Example 2 with an aqueous solution having the same component concentration. As a result, the life of the regenerated nitrogen oxide adsorbent changed as shown in Table 1 with the recycling, and it was found that the recyclable nitrogen oxide adsorbent could sufficiently withstand the recycling under practical conditions.
[0015]
[Table 1]
Figure 0003542096

[Brief description of the drawings]
FIG. 1 is a schematic view of a gas cleaning machine. FIG. 2 is a view showing performance stability by regeneration of a gas adsorbent.
FA adsorption filter

Claims (2)

活性炭に、保水性を有するアルカリ金属の硫酸塩を主成分とする第一成分、及び、アルカリ金属の炭酸塩、重炭酸塩、低級脂肪酸塩から選ばれる少なくとも一種を含む第二成分を共に担持させてある窒素酸化物ガス吸着剤の再生方法であって、窒素酸化物ガス吸着剤を水洗した後、保水性を有するアルカリ金属の硫酸塩を主成分とする第一成分の水溶液、及び、アルカリ金属の炭酸塩、重炭酸塩、低級脂肪酸塩から選ばれる少なくとも一種を含む第二成分の水溶液を含浸させ、含浸した水分を揮発させることによって再生を行うことを特徴とする窒素酸化物ガス吸着剤の再生方法。Activated carbon, the first component mainly containing an alkali metal sulfate having water retention, and a second component containing at least one selected from alkali metal carbonates, bicarbonates, and lower fatty acid salts. a reproducing method of the nitrogen oxide adsorbent are, washed with water and nitrogen oxides gas adsorbent, an aqueous solution of the first component mainly composed of alkali metal sulfate having water retention, and alkali metal Carbonate, bicarbonate, impregnated with an aqueous solution of a second component containing at least one selected from lower fatty acid salts, the regeneration of the nitrogen oxide gas adsorbent characterized by performing regeneration by volatilizing the impregnated water Playback method. 常温で空気を流通させて、前記活性炭に含浸した水分を揮発させる請求項に記載の窒素酸化物ガス吸着剤の再生方法。At normal temperature by circulating air, regeneration process of nitrogen oxide gas adsorbent according to claim 1 to volatilize the water impregnated into the active carbon.
JP19307996A 1996-07-23 1996-07-23 Regeneration method of nitrogen oxide gas adsorbent Expired - Fee Related JP3542096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19307996A JP3542096B2 (en) 1996-07-23 1996-07-23 Regeneration method of nitrogen oxide gas adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19307996A JP3542096B2 (en) 1996-07-23 1996-07-23 Regeneration method of nitrogen oxide gas adsorbent

Publications (2)

Publication Number Publication Date
JPH1033977A JPH1033977A (en) 1998-02-10
JP3542096B2 true JP3542096B2 (en) 2004-07-14

Family

ID=16301875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19307996A Expired - Fee Related JP3542096B2 (en) 1996-07-23 1996-07-23 Regeneration method of nitrogen oxide gas adsorbent

Country Status (1)

Country Link
JP (1) JP3542096B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275584A (en) * 2002-03-20 2003-09-30 Hitachi Zosen Corp Method for regenerating nitrogen dioxide absorbent
JP2021084069A (en) * 2019-11-27 2021-06-03 日本精線株式会社 Method for producing adsorbent for gas purifier, and gas purifier

Also Published As

Publication number Publication date
JPH1033977A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
KR100354281B1 (en) Garbage Disposal Equipment
JPH10500054A (en) Substances that remove contaminants from gas streams
JP2008188492A (en) Water treatment system
JP3542096B2 (en) Regeneration method of nitrogen oxide gas adsorbent
JP2702870B2 (en) NOx removing agent, method for regenerating the same, and NOx removing device
JPH05154339A (en) Removal of nitrogen oxide
JP4033552B2 (en) Air purifying filter and air purifier using the same
JP4725974B2 (en) Nitrogen oxide removing method and nitrogen oxide removing apparatus
JPH0624626B2 (en) Acid gas adsorbent
JPS60820A (en) Deodorizing treatment of odorous gas
JP2002066332A (en) Method for working photocatalyst
JPH10202046A (en) Dust collecting and deodorizing filter for air conditioner and regenerating method thereof
JP3779459B2 (en) Nitrogen dioxide adsorption / reduction remover and nitrogen dioxide removal method
JP3277630B2 (en) Air cleaner
JP4565857B2 (en) Nitrogen oxide removing method and nitrogen oxide removing apparatus
JP3652015B2 (en) Gas adsorbent manufacturing method and air purification method
JPH07256054A (en) Apparatus and method for adsorbing and removing nox
JPH0938460A (en) Air cleaning method for automobile and device therefor
JPH119957A (en) Method for removing nitrogen oxide in atmospheric air
JPH10137548A (en) Method for cleaning air and device therefor
JP3612868B2 (en) Nitrogen oxide removal method
JP2004121902A (en) Method and apparatus for removing nitrogen oxide
JPH11128673A (en) Apparatus for purifying gas
JPH07275695A (en) So2 adsorbent
JPH08257351A (en) System and process for treating low concentration nox-containing gas

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees