JP3652015B2 - Gas adsorbent manufacturing method and air purification method - Google Patents

Gas adsorbent manufacturing method and air purification method Download PDF

Info

Publication number
JP3652015B2
JP3652015B2 JP17216396A JP17216396A JP3652015B2 JP 3652015 B2 JP3652015 B2 JP 3652015B2 JP 17216396 A JP17216396 A JP 17216396A JP 17216396 A JP17216396 A JP 17216396A JP 3652015 B2 JP3652015 B2 JP 3652015B2
Authority
JP
Japan
Prior art keywords
gas adsorbent
component
air
gas
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17216396A
Other languages
Japanese (ja)
Other versions
JPH1015383A (en
Inventor
智代 井上
健一 宍田
善介 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP17216396A priority Critical patent/JP3652015B2/en
Publication of JPH1015383A publication Critical patent/JPH1015383A/en
Application granted granted Critical
Publication of JP3652015B2 publication Critical patent/JP3652015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガス吸着剤の製造方法、及び、ガス吸着剤を用いた空気浄化方法に関する。さらに詳述すれば、例えば、アーク溶接・ガス溶接・レーザー溶接・ガス切断・レーザー切断・プラズマ切断・電子ビーム加工・放電加工レーザー加工等を行う各種加工作業場、自動車排ガスの充満し易い屋内駐車場、トンネル、交差点近傍、燃焼機器を利用する各種店舗、スーパーマーケット、百貨店等で、加工作業排ガス、燃焼排ガスを吸着して上述の各所での排ガスによる汚染を防止すべく、浄化対象空気中の窒素酸化物・硫黄酸化物・アンモニア・臭気成分等を吸着除去する技術に関する。
【0002】
【従来の技術】
上述のように各種の箇所で使用されるガス吸着剤として従来では、活性炭・活性アルミナ・ゼオライトなどの担体にアルカリ金属の炭酸塩、重炭酸塩等から選ばれる少なくとも一種を含む添加剤を添加してあるものが知られており(例えば特開平6−126161参照)、このようなガス吸着剤は、上述のような担体に上述の添加剤の水溶液を含浸させたのち、水分を揮発させることにより担持させて製造していた。
【0003】
【発明が解決しようとする課題】
上述した従来の技術によれば、上述の硫黄酸化物・アンモニア・臭気成分等及び窒素酸化物(NOx)のうちNO2 については化学吸着によって除去することが可能ではあるが、NOについてはほとんど除去出来ず、先に述べた各種排ガスのうち、特に各種加工作業場から発生する排ガスについては主成分がNO(80〜95%)であることを考えると、浄化対象空気中によっては、十分な浄化が行いきれない状況が発生していた。つまり、上述のようなガス吸着剤は、各種添加剤とNO2 との反応性を利用しているものの、NOに対する反応性に乏しく、NOガスについてはほとんど除去出来なかったのである。
【0004】
従って、本発明の目的は、上記欠点に鑑み、NOについても十分に吸着除去する事の出来るガス吸着剤の製造方法と空気浄化方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、上述の従来のガス吸着剤が、単独ではNO吸着性能に乏しいものの、担体及び各種添加剤それぞれの相互作用によって、NOについても十分高いガス吸着能を発揮するという新知見を得た。本発明は前記新知見に基づき成されたものである
【0006】
〔構成〕
発明のガス吸着剤の製造方法の特徴手段は、保水性を有するアルカリ金属の硫酸塩を主成分とする第一成分の水溶液、及び、アルカリ金属の炭酸塩、重炭酸塩、低級脂肪酸塩から選ばれる少なくとも一種を含む第二成分の水溶液を調製しておき、多孔質材料からなる担体に含浸させた後、前記担体に含浸した水分を揮発させて、前記担体に、前記第一成分及び第二成分を担持させることにある。
【0007】
また、本発明の空気浄化方法の特徴手段は、前記ガス吸着剤を備えた空気清浄機内に浄化対象空気を前記ガス吸着剤に接触自在に流通させることにある。
【0008】
〔作用効果〕
活性炭やゼオライトなどの多孔質材料を担体として利用し、前記第一成分及び第二成分をその担体に担持させるから、前記担体にNO2 との反応剤となる第二成分が、NOxとの反応活性の高い状態で担持させられるとともに、前記多孔質材料の働きによって間接的にNOにも反応吸着性を発揮させられることになるのである。
【0009】
なぜなら、前記第一成分は、保水性に優れるため、多孔質材料に担持された状態で、前記多孔質材料表面を擬親水性に維持することができ、その擬親水性の表面へのNO2 吸着を促進するのでNO2 は即座に前記第二成分との反応を開始できるわけである。尚、前記第二成分と前記NO2 との反応は、NO2 に基づく亜硝酸根と炭酸根、重炭酸根、低級脂肪酸根との置換によるものであると考えられ、浄化対象空気中のNO2 、あるいは、前記多孔質材料の多孔構造に捕捉されたNO2 についても急速に反応して固定化させられる。
一方、前記多孔質材料は一般的に多孔構造に捕捉したNOをNO2 に酸化する性質を有するのであるが、その反応性は低く、かつ、捕捉したNO2 の濃度増加に伴って更に進行しにくくなるものである。そのため、先述の従来のガス吸着剤は、たとえNOを捕捉したとしても、捕捉したNOをNO2 として多孔構造内に維持してしまって、ほとんどNO吸着能を発揮しなかった。これに対して前記第一成分は高い保水性を有するために、前記多孔構造内部の活性点で発生したNO2 を素早く第一成分中に移動させる活性点より脱離させことができ、前記NO2 を前記第二成分と反応させるとともに前記多孔質材料のNO酸化能を高く維持できる。
そのため、見かけ上ガス吸着剤は、全体として、多孔質材料を酸化触媒として、前記NOをNO2 に酸化しつつ、前記第二成分がそのNO2 を化学吸着して浄化対象空気中のNOxを効果的に除去出来るのである。
【0010】
従って本発明によれば、対象空気が一酸化窒素を多く含む場合の空気浄化に好適使用できるガス吸着剤を(安価に)提供できるようになった。
【0011】
【発明の実施の形態】
本発明のガス吸着剤の製造方法の一例を示す。ただし以下の製造方法は本発明における製造方法の一例にすぎず、本発明はこれに限定されるものではない。
まず、ガス吸着剤を以下のようにして調整した。硫酸ナトリウム(第一成分)1.5g及び炭酸ナトリウム(第二成分)5gを80mlの水に溶解した水溶液を、椰子殻系の活性炭(直径3mm高さ3mmの円柱形)(担体)100gとともにマイヤーフラスコ内で常温常圧で1時間攪拌混合して前記活性炭に前記水溶液を含浸させた後、常圧で加熱して水を蒸発させ、さらに、乾燥器内(130℃)で5時間乾燥して吸着剤を得た。
【0012】
ここで、前記担体は、活性炭、ゼオライト等の多孔質材料で、他に酸化アルミニウム・酸化ケイ素・ケイ酸アルミニウム・酸化チタン・酸化マグネシウムなどを挙げることができ、これらは、前記活性炭と同様の形態で利用でき、比表面積が大きいことが好ましい。
また、前記第一成分としては、アルカリ金属の硫酸塩であれば保水性が高くかつ安価であるので望ましい。また、NO2を固定化する第二成分は、前記アルカリ金属の炭酸塩、重炭酸塩、低級脂肪酸塩から選ばれる少なくとも一種であればよく、アルカリ金属としては、ナトリウム、カリウム、リチウムが挙げられるが中でもナトリウムがコスト面から最も好ましい。これらの第一、第二成分は上述と同様の形態で利用することができる。
【0013】
〔実施例1〕
先の実施の形態において調製したガス吸着剤を直径20mm長さ150mmのガラス製円筒カラムに充填し、固定床に形成し、このカラムにNO2 を10ppm含む空気(相対湿度50%)を流通させた。このとき温度は25℃、空間速度(SV)は13000/hrであった。カラム出口でのNO2 濃度を測定し、脱硝率として求めた。
【0014】
尚、脱硝率は数1で表される。各ガス濃度は、化学発光法によって求めた。
【0015】
【数1】

Figure 0003652015
【0016】
〔比較例1、2、3〕
上述のガス吸着剤に替え、
〈1〉炭酸ナトリウム(第二成分)10gのみを80mlの水に溶解した水溶液を用い、活性炭100gに同様に担持させたもの
〈2〉硫酸ナトリウム(第一成分)3gのみを80mlの水に溶解した水溶液を用い、活性炭100gに同様に担持させたもの
〈3〉なにも担持させていない活性炭
を用い実施例1同様に脱硝率を求めたところ図1のようになった。
【0017】
図1より、前記第一成分の担持によっては、活性炭のみによる脱硝効率を向上させることが出来ないものの、前記第二成分の担持によってガス吸着剤の脱硝効率は向上していることがわかる。しかし、本発明による前記第一成分第二成分共に担持してあるガス吸着剤は、先の〈1〉、〈2〉の脱硝効率の総和よりもさらに、高い脱硝効率を示していることがわかる。
【0018】
実際にカラム出口ガス濃度/カラム入口ガス濃度は0.1以下に維持すべきであるものとすると、本発明のガス吸着剤は117時間の寿命であり、先の〈1〉のものが80時間の寿命しかないのに対し、より高性能なガス吸着剤を提供できたことがわかる。
【0019】
〔実施例2〕
本発明のガス吸着剤を移動式吸着式空気清浄機(特開平6−47246号公報参照)のガス吸着フィルターとして用いた例を示す。
前記移動式吸着式空気清浄機は、溶接、溶断等の作業に携わる作業員の手元など局部箇所を浄化対象域として空気浄化を行なうものであって、図2に示すように、移動自在な清浄機本体1と吸込管2とからなる。
前記清浄機本体1は、吸込管2からの吸い込み空気を対象空気とするものであって、上部に前記吸込管2との接続口1aと排気口1bとを備えるとともに、下部に移動用のキャスター車輪1cを備え、かつ、内部に前記接続口1aから排気口1bにわたる浄化対象空気の処理用風路Aを備えたケース状の台車1Aを設け、その台車1A内つまり処理用風路Aに接続口1aから取り入れた空気を浄化する浄化手段と、吸込管2から空気を吸い込んで処理用風路Aを通過させたのち排気口1bから排出するように空気を吸い込み排出するためのモーター駆動のファン1Bとを設けて構成されている。
前記浄化手段は、図3にも示すように、処理用風路Aに、流動する吸い込み空気に接触して処理する1次フィルターF1,2次フィルターF2,3次フィルターF3,4次フィルターF4を、上流側から下流側にかけてその記載順で並置する状態に設けて構成されている。
1次フィルターF1は、たわし状に絡ませた金属線をフィルター材として、吸い込み空気中の火の粉を消す、つまり、火花が内部に入ることを阻止するためのものである。
2次フィルターF2は、金網製のスクリーンをフィルター材として、100μm以上の粗ダストを除去するためのものである。
3次フィルターF3は、グラスウール製のバグフィルター利用した0.5〜100μmの細ダストを除去するためのものである。
尚、上述の移動式吸着式空気清浄機に用いたこれら1次〜3次フィルターは、例えば、室内全体を浄化対象にする固定式吸着式空気清浄機に適用する場合等には、別の形態のフィルターアッセンブリーに最適化するものである。本発明の吸着剤を備えていないこれらフィルターを予備フィルターFと総称する。
4次フィルターF4は、本発明のガス吸着剤を備えた吸着フィルターFAである。
【0020】
前記吸込管2は、長手方向の複数箇所に、屈曲自在な蛇腹管部2Aを有し、それら各蛇腹管部2Aでの屈曲と台車1Aに対する縦軸周りの回転により先端の吸込口2aの位置及び向きを変更自在なものである。
上記構成の吸着型空気清浄機では、局部箇所から空気を吸い込むように吸込口2aをセットすることにより、局部箇所の空気中のヒューム・ダスト・臭気・窒素酸化物をガス吸着剤により除去することができ、特に、窒素酸化物については、二酸化窒素はもちろん、一酸化窒素も吸着除去することができる。
【0021】
前記ガス吸着剤を前記移動式吸着式空気清浄機の吸着フィルターFAに用い、NOxガスとしては、NOが8ppm、NO2 が2ppm混合してある空気(相対湿度50%、25℃)を用いて先の実験例1と同様に脱硝効率を求めた。
その結果図4のようになり、120時間程度の寿命で利用可能でかつNOについても十分な吸着除去性能を発揮した。
【図面の簡単な説明】
【図1】ガス吸着剤による脱硝率を示す図
【図2】移動式吸着式空気清浄機の全体図
【図3】空気清浄機の浄化手段
【図4】空気清浄機に用いたガス吸着剤の再生による性能安定性を示す図
【符号の説明】
FA 吸着フィルター[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a gas adsorbent, and relates to an air purification method using the gas adsorbent. In more detail, for example, various processing workshops for arc welding, gas welding, laser welding, gas cutting, laser cutting, plasma cutting, electron beam machining, electric discharge machining laser processing, indoor parking lots that are easily filled with automobile exhaust gas , In the vicinity of intersections, tunnels, various stores that use combustion equipment, supermarkets, department stores, etc. The present invention relates to a technology for adsorbing and removing substances, sulfur oxides, ammonia, odor components, and the like.
[0002]
[Prior art]
As described above, as a gas adsorbent used in various places, conventionally, an additive containing at least one selected from alkali metal carbonates, bicarbonates, etc. is added to a support such as activated carbon, activated alumina, and zeolite. Such gas adsorbents are obtained by impregnating a carrier as described above with an aqueous solution of the above-mentioned additive and then volatilizing water. It was made to carry.
[0003]
[Problems to be solved by the invention]
According to the above-described conventional technology, NO 2 can be removed by chemical adsorption among the above-described sulfur oxide, ammonia, odor components, etc. and nitrogen oxide (NOx), but almost no NO is removed. In view of the fact that the main component is NO (80 to 95%) among the various exhaust gases mentioned above, especially the exhaust gas generated from various processing workplaces, depending on the air to be purified, sufficient purification can be achieved. There was a situation that couldn't be done. That is, although the gas adsorbents described above utilize the reactivity between various additives and NO 2 , the reactivity to NO is poor, and NO gas could hardly be removed.
[0004]
Accordingly, an object of the present invention is to provide a method for producing a gas adsorbent and an air purification method capable of sufficiently adsorbing and removing NO even in view of the above drawbacks.
[0005]
[Means for Solving the Problems]
The present inventors have found that the above-mentioned conventional gas adsorbent alone has poor NO adsorption performance, but exhibits a sufficiently high gas adsorption capacity for NO by the interaction between the carrier and various additives. Obtained. The present invention has been made based on the above-mentioned new findings .
[0006]
〔Constitution〕
Characteristic means of the method for producing a gas adsorbent of the present invention includes an aqueous solution of a first component mainly composed of an alkali metal sulfate having water retention, and an alkali metal carbonate, bicarbonate, and lower fatty acid salt. An aqueous solution of a second component containing at least one selected is prepared, impregnated in a carrier made of a porous material, and then the water impregnated in the carrier is volatilized to give the first component and the first component to the carrier. It is to carry two components.
[0007]
Moreover, the characteristic means of the air purification method of the present invention is that the air to be purified is circulated freely in contact with the gas adsorbent in an air purifier provided with the gas adsorbent.
[0008]
[Function and effect]
Since a porous material such as activated carbon or zeolite is used as a carrier and the first component and the second component are supported on the carrier, the second component serving as a reactant with NO 2 is reacted with NOx on the carrier. In addition to being supported in a highly active state, reaction adsorption is also exhibited indirectly by NO by the action of the porous material.
[0009]
Because the first component is excellent in water retention, the surface of the porous material can be maintained pseudo-hydrophilic while being supported on the porous material, and NO 2 on the surface of the pseudo-hydrophilic can be maintained. Since the adsorption is promoted, NO 2 can immediately start the reaction with the second component. The reaction between the second component and the NO 2 is considered to be due to substitution of nitrite and carbonate, bicarbonate, and lower fatty acid roots based on NO 2 , and NO in the air to be purified. 2 Alternatively, NO 2 trapped in the porous structure of the porous material is also reacted rapidly and immobilized.
On the other hand, the porous material generally has a property of oxidizing NO trapped in a porous structure to NO 2 , but its reactivity is low and further progresses as the concentration of trapped NO 2 increases. It becomes difficult. Therefore, even if the above-mentioned conventional gas adsorbent captures NO, the trapped NO is maintained in the porous structure as NO 2 and hardly exhibits NO adsorption ability. On the other hand, since the first component has high water retention, NO 2 generated at the active point inside the porous structure can be quickly desorbed from the active point that moves into the first component. 2 can be reacted with the second component and the NO oxidizing ability of the porous material can be maintained high.
Therefore, apparently the gas adsorbent as a whole uses the porous material as an oxidation catalyst and oxidizes the NO to NO 2 , while the second component chemisorbs the NO 2 to remove NOx in the air to be purified. It can be removed effectively.
[0010]
Therefore, according to the present invention, a gas adsorbent that can be suitably used for air purification when the target air contains a large amount of nitric oxide can be provided (at a low cost).
[0011]
DETAILED DESCRIPTION OF THE INVENTION
An example of the manufacturing method of the gas adsorbent of this invention is shown. However, the following manufacturing method is only an example of the manufacturing method in the present invention, and the present invention is not limited to this.
First, the gas adsorbent was adjusted as follows. An aqueous solution in which 1.5 g of sodium sulfate (first component) and 5 g of sodium carbonate (second component) are dissolved in 80 ml of water is added to Meyer together with 100 g of coconut shell activated carbon (3 mm in diameter and 3 mm in height) (carrier). After stirring and mixing in a flask at normal temperature and normal pressure for 1 hour, the activated carbon was impregnated with the aqueous solution, heated at normal pressure to evaporate water, and further dried in a drier (130 ° C.) for 5 hours. An adsorbent was obtained.
[0012]
Here, the carrier is a porous material such as activated carbon or zeolite, and other examples include aluminum oxide, silicon oxide, aluminum silicate, titanium oxide, magnesium oxide, and the like. The specific surface area is preferably large.
Further, as the first component, it is of a desirable inexpensive and high water retention if alkali metal sulfates. Further, the second component for immobilizing NO 2 may be at least one selected from the alkali metal carbonates, bicarbonates, and lower fatty acid salts. Examples of the alkali metals include sodium, potassium, and lithium. Of these, sodium is most preferable from the viewpoint of cost. These first and second components can be used in the same form as described above.
[0013]
[Example 1]
The gas adsorbent prepared in the previous embodiment is packed into a glass cylindrical column having a diameter of 20 mm and a length of 150 mm, formed on a fixed bed, and air containing 10 ppm of NO 2 (relative humidity 50%) is passed through this column. It was. At this time, the temperature was 25 ° C. and the space velocity (SV) was 13000 / hr. The NO 2 concentration at the column outlet was measured and determined as the denitration rate.
[0014]
Incidentally, the denitration rate is expressed by Equation 1. Each gas concentration was determined by a chemiluminescence method.
[0015]
[Expression 1]
Figure 0003652015
[0016]
[Comparative Examples 1, 2, 3]
Instead of the gas adsorbent mentioned above,
<1> A solution in which only 10 g of sodium carbonate (second component) is dissolved in 80 ml of water and supported on activated carbon 100 g in the same manner. <2> Only 3 g of sodium sulfate (first component) is dissolved in 80 ml of water. Using the prepared aqueous solution, it was supported on 100 g of activated carbon in the same manner. <3> The NOx removal rate was determined in the same manner as in Example 1 using activated carbon not supported on anything, and it was as shown in FIG.
[0017]
FIG. 1 shows that the denitration efficiency of the gas adsorbent is improved by loading the second component, although the denitration efficiency by only activated carbon cannot be improved by loading the first component. However, it can be seen that the gas adsorbent carried together with the first component and the second component according to the present invention shows a higher denitration efficiency than the sum of the denitration efficiencies of <1> and <2> above. .
[0018]
Assuming that the column outlet gas concentration / column inlet gas concentration should actually be maintained at 0.1 or less, the gas adsorbent of the present invention has a life of 117 hours, and the former <1> is 80 hours. It can be seen that a higher-performance gas adsorbent could be provided, whereas the life of the gas adsorbent was limited.
[0019]
[Example 2]
An example in which the gas adsorbent of the present invention is used as a gas adsorption filter of a mobile adsorption air cleaner (see JP-A-6-47246) will be described.
The mobile adsorption air cleaner performs air purification using a local area such as a hand of a worker engaged in welding, fusing, etc. as a purification target area. As shown in FIG. It consists of a machine main body 1 and a suction pipe 2.
The purifier main body 1 uses the suction air from the suction pipe 2 as the target air, and includes a connection port 1a and an exhaust port 1b for the suction pipe 2 in the upper part, and a caster for movement in the lower part. A case-like carriage 1A having wheels 1c and having a treatment air passage A for the purification target air extending from the connection port 1a to the exhaust port 1b inside is provided and connected to the inside of the carriage 1A, that is, to the treatment air passage A. Purifying means for purifying the air taken in from the port 1a, and a motor-driven fan for sucking and discharging air so that the air is sucked from the suction pipe 2 and passed through the processing air passage A and then discharged from the exhaust port 1b. 1B is provided.
As shown in FIG. 3, the purification means includes a primary filter F1, a secondary filter F2, a tertiary filter F3, and a quaternary filter F4 that are processed in contact with the flowing suction air. And arranged in a state of being arranged in the order of description from the upstream side to the downstream side.
The primary filter F1 uses a metal wire entangled in a squish shape as a filter material to extinguish sparks in the suction air, that is, to prevent a spark from entering the inside.
The secondary filter F2 is for removing coarse dust of 100 μm or more using a wire mesh screen as a filter material.
3-order filter F3 is for the removal of fine dust of 0.5~100μm using glass wool made of bag filter.
The primary to tertiary filters used in the above-described mobile adsorption air cleaner are different forms when applied to, for example, a fixed adsorption air cleaner that purifies the entire room. it is intended to optimize the filter assembly. These filters not equipped with the adsorbent of the present invention are collectively referred to as a preliminary filter F.
The quaternary filter F4 is an adsorption filter FA provided with the gas adsorbent of the present invention.
[0020]
The suction pipe 2 has bendable bellows pipe portions 2A at a plurality of locations in the longitudinal direction, and the position of the suction port 2a at the front end is bent by the bellows pipe portions 2A and rotated around the vertical axis with respect to the carriage 1A. And the direction can be freely changed.
In the adsorption type air purifier having the above-described configuration, fumes, dust, odors, and nitrogen oxides in the local portion air are removed by the gas adsorbent by setting the suction port 2a so as to suck air from the local portion. In particular, with respect to nitrogen oxides, nitrogen monoxide as well as nitrogen dioxide can be adsorbed and removed.
[0021]
The gas adsorbent is used for the adsorption filter FA of the mobile adsorption air cleaner, and the NOx gas is air (relative humidity 50%, 25 ° C.) in which 8 ppm NO and 2 ppm NO 2 are mixed. The denitration efficiency was determined in the same manner as in Experimental Example 1 above.
As a result, it became as shown in FIG. 4 and was usable with a lifetime of about 120 hours, and also exhibited sufficient adsorption removal performance for NO.
[Brief description of the drawings]
FIG. 1 is a diagram showing a denitration rate by a gas adsorbent. FIG. 2 is an overall view of a mobile adsorption air cleaner. FIG. 3 is a purification means of an air cleaner. FIG. 4 is a gas adsorbent used in an air cleaner. Of performance stability due to playback of video [Explanation of symbols]
FA adsorption filter

Claims (2)

保水性を有するアルカリ金属の硫酸塩を主成分とする第一成分の水溶液、及び、アルカリ金属の炭酸塩、重炭酸塩、低級脂肪酸塩から選ばれる少なくとも一種を含む第二成分の水溶液を調製しておき、多孔質材料からなる担体に含浸させた後、前記担体に含浸した水分を揮発させて、前記担体に、前記第一成分及び第二成分を担持させるガス吸着剤の製造方法。  Preparing an aqueous solution of a first component mainly composed of an alkali metal sulfate having water retention, and an aqueous solution of a second component containing at least one selected from alkali metal carbonates, bicarbonates and lower fatty acid salts. A method for producing a gas adsorbent in which a carrier made of a porous material is impregnated, and then the moisture impregnated in the carrier is volatilized to carry the first component and the second component on the carrier. 請求項1に記載のガス吸着剤を備えた吸着式空気清浄機内に浄化対象空気を前記ガス吸着剤に接触自在に流通させる空気浄化方法。The air purification method which distribute | circulates the purification | cleaning object air to the said gas adsorbent so that contact is possible in the adsorption type air cleaner provided with the gas adsorbent of Claim 1 .
JP17216396A 1996-07-02 1996-07-02 Gas adsorbent manufacturing method and air purification method Expired - Fee Related JP3652015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17216396A JP3652015B2 (en) 1996-07-02 1996-07-02 Gas adsorbent manufacturing method and air purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17216396A JP3652015B2 (en) 1996-07-02 1996-07-02 Gas adsorbent manufacturing method and air purification method

Publications (2)

Publication Number Publication Date
JPH1015383A JPH1015383A (en) 1998-01-20
JP3652015B2 true JP3652015B2 (en) 2005-05-25

Family

ID=15936751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17216396A Expired - Fee Related JP3652015B2 (en) 1996-07-02 1996-07-02 Gas adsorbent manufacturing method and air purification method

Country Status (1)

Country Link
JP (1) JP3652015B2 (en)

Also Published As

Publication number Publication date
JPH1015383A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
TWI412400B (en) Removal device of trace and harmful substances in exhaust gas and its operation method
JP3230427B2 (en) Catalyst for purifying fumigation exhaust gas and method for purifying fumigation exhaust gas
JP2004074069A (en) Formaldehyde oxidation removal method
JP3652015B2 (en) Gas adsorbent manufacturing method and air purification method
JP5163955B2 (en) Exhaust gas purification catalyst
JP2006035042A (en) Regeneration method of gas purifying apparatus, and gas purifying method using the same
JPH0647246A (en) Adsorption type air cleaning machine and adsorbent used therefor
JP3542096B2 (en) Regeneration method of nitrogen oxide gas adsorbent
JPH05154339A (en) Removal of nitrogen oxide
JPH08131828A (en) Catalyst for removal of nox and method for removing nox with the same
JPH07743A (en) Adsorbent and removing method for nitrogen oxide using adsorbent
JP2001029746A (en) Apparatus for occluding and removing nitrogen oxide
JP2000237538A (en) Photocatalytic air purifier
JPH10128069A (en) Treatment of waste gas
JP4664064B2 (en) filter
JP3733683B2 (en) filter
JP3790368B2 (en) Exhaust gas purification method
JP4822049B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3612868B2 (en) Nitrogen oxide removal method
JP2654545B2 (en) How to remove mercury from exhaust gas from refuse incinerator
JP3779459B2 (en) Nitrogen dioxide adsorption / reduction remover and nitrogen dioxide removal method
JPH07171341A (en) Removal of trace of acetaldehyde from air
JP2743043B2 (en) Adsorption remover for low concentration nitrogen oxides
JPH10305229A (en) Catalyst for removing nitrogen oxide and removing method of nitrogen oxide
WO1999025961A2 (en) NOx REMOVAL APPARATUS INCLUDING MANGANESE DIOXIDE AND COPPER OXIDE SUPPORT

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050222

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees