JP3539322B2 - 静磁波素子 - Google Patents

静磁波素子 Download PDF

Info

Publication number
JP3539322B2
JP3539322B2 JP35030599A JP35030599A JP3539322B2 JP 3539322 B2 JP3539322 B2 JP 3539322B2 JP 35030599 A JP35030599 A JP 35030599A JP 35030599 A JP35030599 A JP 35030599A JP 3539322 B2 JP3539322 B2 JP 3539322B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal film
magnetostatic wave
magnetic garnet
garnet single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35030599A
Other languages
English (en)
Other versions
JP2001168603A (ja
Inventor
隆 高木
優 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP35030599A priority Critical patent/JP3539322B2/ja
Priority to US09/724,448 priority patent/US6518862B1/en
Priority to KR10-2000-0071914A priority patent/KR100444101B1/ko
Priority to CNB00136071XA priority patent/CN1154199C/zh
Priority to FR0015969A priority patent/FR2802342B1/fr
Publication of JP2001168603A publication Critical patent/JP2001168603A/ja
Application granted granted Critical
Publication of JP3539322B2 publication Critical patent/JP3539322B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2/00Networks using elements or techniques not provided for in groups H03H3/00 - H03H21/00
    • H03H2/001Networks using elements or techniques not provided for in groups H03H3/00 - H03H21/00 comprising magnetostatic wave network elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head

Landscapes

  • Thin Magnetic Films (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は静磁波素子に関し、特にたとえば、マイクロ波を変換して磁性ガーネット単結晶膜に静磁波を伝播させ、その静磁波をさらにマイクロ波に変換して出力させる静磁波素子に関する。
【0002】
【従来の技術】
図1は、この発明の背景となる静磁波素子の一例を示す図解図である。静磁波素子10は、非磁性基板12を含む。非磁性基板12としては、たとえばガドリニウム・ガリウム・ガーネット(GGG)基板などが用いられる。非磁性基板12上には、磁性ガーネット単結晶膜14が形成される。磁性ガーネット単結晶膜14としては、たとえばイットリウム・鉄・ガーネット(YIG)膜などが用いられる。さらに、磁性ガーネット単結晶膜14上には、互いに間隔を隔てて2つのマイクロストリップライン16,18が形成される。一方のマイクロストリップライン16は信号入力用として用いられ、他方のマイクロストリップライン18は信号出力用として用いられる。
【0003】
このような静磁波素子10を使用する場合、たとえばマイクロストリップライン16,18に平行な向きに磁界Hが印加される。そして、一方のマイクロストリップライン16にマイクロ波信号が入力されると、静磁波に変換され、磁性ガーネット単結晶膜14上を静磁波が伝播する。そして、他方のマイクロストリップライン18でマイクロ波に変換され、マイクロ波出力信号として取り出される。
【0004】
このような静磁波素子では、図2(A)(B)に示すように、ある周波数f0 において、ある値Psh以上の電力Pinの入力信号を入力したとき、周波数f0 の部分のみ、Pin−Pshだけ入力信号より小さい電力の信号が出力される。このことを利用して、S/Nエンハンサやリミッタなどが作製される。
【0005】
【発明が解決しようとする課題】
このように、この静磁波素子においては、周波数f0 において入力信号より小さい電力の出力信号が出力されるが、その前後においても、Pshより小さい電力の入力信号に対して、出力信号が抑圧されるという現象がみられる。実用上では、Psh以下の電力の入力信号に対しては、出力信号が抑圧されないことが望ましいが、実際にはこのような現象があり、静磁波素子の特性を悪化させている。
【0006】
良好な特性を有する静磁波素子として、Psh以下の電力の入力信号に対して、出力信号の抑圧される帯域幅の狭いものが望まれている。つまり、図2(B)に示すように、周波数f0 を中心として出力信号が3dB以上抑圧された範囲の帯域幅をBaとしたとき、帯域幅Baの狭い静磁波素子が好ましい。
【0007】
それゆえに、この発明の主たる目的は、ある電力Psh以下の入力信号に対して、周波数f0 を中心として出力信号が3dB以上抑圧された範囲の帯域幅Baの狭い静磁波素子を提供することである。
【0008】
【課題を解決するための手段】
この発明は、磁性ガーネット単結晶膜を含む静磁波素子であって、磁性ガーネット単結晶膜は、MoO 3 を含む原料融液を用いた液相エピタキシャル法により非磁性基板上に形成されたものであり、磁性ガーネット単結晶膜に含まれるPbの量が5重量ppm以下である、静磁波素子である
このような静磁波素子において、磁性ガーネット単結晶膜は、イットリウム・鉄・ガーネット系の単結晶膜とすることができる。
【0009】
静磁波素子に用いられる磁性ガーネット単結晶膜としては、主として液相エピタキシャル法によって非磁性基板上に形成されたものが用いられている。非磁性基板上に磁性ガーネット単結晶膜を形成するには、溶質としての単結晶膜成分を溶媒成分に溶融した溶液を過飽和状態にし、これに非磁性基板を回転させながら接触させ、非磁性基板上に単結晶を成長させている。このとき、Pb化合物を溶媒の成分の一つとする方法が現在最も多く用いられており、このため、作製された磁性ガーネット単結晶膜には、磁性ガーネットの構成元素ではないPbが混入していた。
ところが、磁性ガーネツト単結晶膜に含まれるPbの量と、周波数f0 を中心として出力信号が3dB以上抑圧された範囲の帯域幅Baとの関係を調べたところ、図3に示すように、Pbの含有量が少ないときに、Baが小さくなることがわかった。そこで、磁性ガーネット単結晶膜にPbが含まれていないときに、良好な特性を有する静磁波素子を得ることができると考え、本発明に至った。なお、Pbの含有量を5重量ppm以下としたのは、磁性ガーネット単結晶膜に含まれるPbの量を測定するための誘導結合プラズマ発光分光法の検出限界が5重量ppmであるからである。
このような磁性ガーネット単結晶膜を形成するには、液相エピタキシャル法が用いられるが、Pbの含有量を5重量ppm以下とするために、たとえばMoO3 を含む原料融液が用いられる。
また、磁性ガーネット単結晶膜としては、たとえばイットリウム・鉄・ガーネット系の単結晶膜が用いられる。
【0010】
この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の発明の実施の形態の詳細な説明から一層明らかとなろう。
【0011】
【発明の実施の形態】
この発明の静磁波素子としては、図1に示すような構造の静磁波素子10が用いられる。図1に示す構造の静磁波素子10において、非磁性基板12として、たとえばガドリニウム・ガリウム・ガーネット(GGG)基板が用いられ、磁性ガーネット単結晶膜14として、たとえばイットリウム・鉄・ガーネット(YIG)膜が用いられる。ここで、磁性ガーネット単結晶膜14として、Pbの含有量が5重量ppm以下のものが用いられる。
【0012】
このような磁性ガーネット単結晶膜14を形成するために、Pb化合物を含まない溶媒成分に単結晶膜成分を溶融した溶液が準備される。この溶液を過飽和状態にし、この溶液に非磁性基板12を回転させながら接触させることにより、非磁性基板12上に磁性ガーネット単結晶膜14が形成される。Pb化合物を含まない溶媒としては、たとえばMoO3 を主成分とした溶媒などを使用することができる。
【0013】
このようにして得られた静磁波素子10では、誘導プラズマ発光分光法によって磁性ガーネット単結晶膜14中にPbが検出されず、周波数f0 を中心として出力信号の電力が3dB以上抑圧された帯域幅Baを小さくすることができた。それにより、周波数特性の良好な静磁波素子10を得ることができる。
【0014】
【実施例】
(実施例1)
まず、溶媒成分であるMoO3 ,Li2 Oと、非磁性ガーネット単結晶膜を形成するためのYIG成分であるFe2 3 ,Y2 3 とを、モル比でMoO3 :Li2 O:Y2 3 :Fe2 3 =39.1:37.5:16.9:6.5となるように調合し、混合したものを原料溶液としてPtるつぼに充填した。この原料溶液を1200℃で12時間溶融したのち、1100℃まで冷却し、原料溶液に直径52mmのGGG基板を2時間接触させて、膜厚が約5μmのYIG単結晶膜を形成した。このYIG単結晶膜の組成を誘導結合プラズマ発光分光法により分析した結果、表1に示すように、単結晶成分であるFe2 3 ,Y2 3 以外の成分としてMo,Li,Ptが検出されたが、これらはいずれも40重量ppm以下と極めて微量であった。また、当然のことながら、この単結晶膜からは、Pbは検出されなかった。
【0015】
【表1】
Figure 0003539322
【0016】
このようにして形成したYIG単結晶膜を用いて図1に示すような静磁波素子を作製し、Baを測定したところ、1.4MHzであった。ここで、入力信号の周波数f0 を1.5GHz、入力電力Pinを−17dBm、印加磁界Hを8000A/mとした。この静磁波素子で得られたBa=1.4MHzという値は、図3との比較からわかるように、Pbを含有するYIG単結晶膜を用いた場合の1/5〜1/2と極めて良好なものであった。
【0017】
(実施例2)
次に、溶媒成分であるMoO3 ,K2 Oと、YIG成分であるFe2 3 ,Y2 3 とを、モル比でMoO3 :K2 O:Y2 3 :Fe2 3 =39.1:37.5:16.9:6.5となるように調合し、混合したものを原料溶液としてPtるつぼに充填した。この原料溶液を1200℃で12時間溶融したのち、1100℃まで冷却し、原料溶液に直径52mmのGGG基板を2時間接触させて、膜厚が約5μmのYIG単結晶膜を形成した。このYIG単結晶膜の組成を誘導結合プラズマ発光分光法により分析した結果、表2に示すように、単結晶成分であるFe2 3 ,Y2 3 以外の成分としてMo,K,Ptが検出されたが、これらはいずれも40重量ppm以下と極めて微量であった。また、当然のことながら、この単結晶膜からは、Pbは検出されなかった。
【0018】
【表2】
Figure 0003539322
【0019】
このようにして形成したYIG単結晶膜を用いて図1に示すような静磁波素子を作製し、Baを測定したところ、1.6MHzであった。ここで、入力信号の周波数f0 を1.5GHz、入力電力Pinを−17dBm、印加磁界Hを8000A/mとした。この静磁波素子で得られたBa=1.6MHzという値は、図3との比較からわかるように、Pbを含有するYIG単結晶膜を用いた場合の1/5〜1/2と極めて良好なものであった。
【0020】
このように、誘導結合プラズマ発光分光法によって磁性ガーネット単結晶膜中にPb成分が検出されないとき、すなわちPb量が誘導結合プラズマ発光分光法による検出限界である5重量ppm以下のときに、周波数特性の良好な静磁波素子が得られることが確認できた。
【0021】
【発明の効果】
この発明によれば、非磁性基板上に形成された磁性ガーネット単結晶膜に含まれるPbの量を5重量ppm以下とすることにより、周波数f0 を中心として出力信号の電力が3dB以上抑圧された範囲の帯域幅Baを小さくすることができ、周波数特性の良好な静磁波素子を得ることができる。
【図面の簡単な説明】
【図1】この発明の背景となる静磁波素子の構造を示す図解図である。
【図2】(A)および(B)は、図1に示す静磁波素子を用いた場合における入力信号と出力信号との関係を示す図である。
【図3】図1に示す静磁波素子において、磁性ガーネット単結晶膜に含まれるPb不純物量と帯域幅Baとの関係を示す図である。
【符号の説明】
10 静磁波素子
12 非磁性基板
14 磁性ガーネット単結晶膜
16,18 マイクロストリップライン

Claims (2)

  1. 磁性ガーネット単結晶膜を含む静磁波素子であって、
    前記磁性ガーネット単結晶膜は、MoO 3 を含む原料融液を用いた液相エピタキシャル法により非磁性基板上に形成されたものであり、前記磁性ガーネット単結晶膜に含まれるPbの量が5重量ppm以下である、静磁波素子。
  2. 前記磁性ガーネット単結晶膜は、イットリウム・鉄・ガーネット系の単結晶膜である、請求項1に記載の静磁波素子。
JP35030599A 1999-12-09 1999-12-09 静磁波素子 Expired - Fee Related JP3539322B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP35030599A JP3539322B2 (ja) 1999-12-09 1999-12-09 静磁波素子
US09/724,448 US6518862B1 (en) 1999-12-09 2000-11-28 Magnetostatic wave element and manufacturing method therefor
KR10-2000-0071914A KR100444101B1 (ko) 1999-12-09 2000-11-30 정자파 소자 및 그 제조방법
CNB00136071XA CN1154199C (zh) 1999-12-09 2000-12-08 静磁波元件及其制造方法
FR0015969A FR2802342B1 (fr) 1999-12-09 2000-12-08 Element a ondes magnetostatiques et son procede de fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35030599A JP3539322B2 (ja) 1999-12-09 1999-12-09 静磁波素子

Publications (2)

Publication Number Publication Date
JP2001168603A JP2001168603A (ja) 2001-06-22
JP3539322B2 true JP3539322B2 (ja) 2004-07-07

Family

ID=18409595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35030599A Expired - Fee Related JP3539322B2 (ja) 1999-12-09 1999-12-09 静磁波素子

Country Status (5)

Country Link
US (1) US6518862B1 (ja)
JP (1) JP3539322B2 (ja)
KR (1) KR100444101B1 (ja)
CN (1) CN1154199C (ja)
FR (1) FR2802342B1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998929B1 (en) * 2003-04-29 2006-02-14 Northrop Grumman Corporation Low threshold power frequency selective limiter for GPS
AU2003304599A1 (en) * 2003-12-11 2005-06-29 Lee, Hun-Su Method for manufacturing garnet single crystal and garnet single crystal manufactured thereby
RU173566U1 (ru) * 2017-03-07 2017-08-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" Управляемый спин-волновой концентратор свч мощности

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4138651A (en) 1977-09-06 1979-02-06 Rockwell International Corporation Multiple magnetic layer composite for magnetostatic surface wave propagation
JPS62101012A (ja) * 1985-10-26 1987-05-11 Hitachi Metals Ltd 静磁波マイクロ波素子
DE69429291T2 (de) 1993-01-11 2002-08-08 Murata Manufacturing Co Material für Geräte mit magnetostatischen Wellen
JP3417000B2 (ja) * 1993-08-03 2003-06-16 株式会社村田製作所 静磁波素子
JPH07183114A (ja) * 1993-12-24 1995-07-21 Shin Etsu Chem Co Ltd マイクロ波素子材料およびその製造方法
US5709811A (en) 1995-04-11 1998-01-20 Matsushita Electric Industrial Co., Ltd. Magnetic material for microwave and high-frequency circuit component using the same
KR100208882B1 (ko) * 1996-01-11 1999-07-15 . 정자파 장치
EP0785618B1 (en) * 1996-01-22 2000-08-16 Murata Manufacturing Co., Ltd. Magnetostatic wave device
WO1999005751A1 (fr) * 1997-07-24 1999-02-04 Tdk Corporation Dispositif d'ondes magnetostatiques
WO1999050736A1 (en) * 1998-04-01 1999-10-07 Xerox Corporation Paper indexing of recordings
JPH11340038A (ja) * 1998-05-22 1999-12-10 Murata Mfg Co Ltd 磁性ガーネット単結晶膜、磁性ガーネット単結晶膜の製造方法および静磁波デバイス

Also Published As

Publication number Publication date
CN1305241A (zh) 2001-07-25
KR100444101B1 (ko) 2004-08-09
JP2001168603A (ja) 2001-06-22
FR2802342A1 (fr) 2001-06-15
CN1154199C (zh) 2004-06-16
US6518862B1 (en) 2003-02-11
FR2802342B1 (fr) 2003-03-07
KR20010062012A (ko) 2001-07-07

Similar Documents

Publication Publication Date Title
Rao et al. Liquid phase epitaxy magnetic garnet films and their applications
JP3539322B2 (ja) 静磁波素子
EP0784380B1 (en) Magnetostatic wave device
JP2779057B2 (ja) 静磁波素子用チップおよび静磁波素子
US5449942A (en) Rare earth oxide-based garnet single crystal for magnetostatic device and method for the preparation thereof
Wang et al. Inverse spin Hall effects in Nd doped SrTiO3
US6426156B2 (en) Magnetostatic wave device
JP2779058B2 (ja) 静磁波フィルタ
KR100385121B1 (ko) 정자파 디바이스
JPH08306531A (ja) 静磁波デバイス
JP3389814B2 (ja) 静磁波装置
US6368401B1 (en) Method of producing magnetic garnet single crystal film and magnetic garnet single crystal film having a nonuniform thickness
JPH02168606A (ja) マイクロ波素子
JP3089741B2 (ja) 静磁波デバイス用材料
Adam et al. Microwave losses in GGG
Adam et al. Studies of FMR linewidth in thick YIG films grown by liquid phase epitaxy
JP3059332B2 (ja) マイクロ波素子材料
JPH1197242A (ja) 静磁波デバイス
Obokata et al. Bubble domains in Y 3-2x Ca 2x Fe 5-x V x O 12
JPH09190920A (ja) 静磁波デバイス
EP0606867B1 (en) Material for magnetostatic-wave elements
JP2742537B2 (ja) 磁気光学薄膜およびその製造方法
Okamura et al. Characteristics of magnetostatic surface waves propagating in thin metal film coated ferrimagnetic layered structure
GLASS Epitaxial hexagonal ferrites for millimeter wave tunable filters[Final Report, 15 Nov. 1980- 14 Nov. 1982]
Dixon Jr Nonlinear properties of aluminum‐substituted lithium ferrite

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees