JP3536886B2 - Method for producing porous refractory for gas-blown porous plug - Google Patents

Method for producing porous refractory for gas-blown porous plug

Info

Publication number
JP3536886B2
JP3536886B2 JP27983596A JP27983596A JP3536886B2 JP 3536886 B2 JP3536886 B2 JP 3536886B2 JP 27983596 A JP27983596 A JP 27983596A JP 27983596 A JP27983596 A JP 27983596A JP 3536886 B2 JP3536886 B2 JP 3536886B2
Authority
JP
Japan
Prior art keywords
porous
zirconia
weight
refractory
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27983596A
Other languages
Japanese (ja)
Other versions
JPH1095682A (en
Inventor
道博 五藤
学 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP27983596A priority Critical patent/JP3536886B2/en
Publication of JPH1095682A publication Critical patent/JPH1095682A/en
Application granted granted Critical
Publication of JP3536886B2 publication Critical patent/JP3536886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐用性と高ガス透過性
とを兼ね備えたガス吹き込みポーラスプラグ用多孔質耐
火物を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous refractory for a gas-blown porous plug having both durability and high gas permeability.

【0002】[0002]

【従来の技術】溶鋼に対する温度調整、成分の均一化、
非金属介在物の除去などを目的として、溶鋼容器の底か
ら溶鋼中にアルゴンなどの不活性ガスを吹き込むことが
行われている。このガス吹き込みポーラスプラグに要求
される特性は、ガス透過性、耐食性および耐溶鋼スラグ
浸透性(以下、単に耐浸透性と称する)である。
2. Description of the Related Art Temperature control, uniform composition of molten steel,
In order to remove non-metallic inclusions, an inert gas such as argon is blown into molten steel from the bottom of a molten steel container. The properties required for the gas-injected porous plug are gas permeability, corrosion resistance, and molten steel slag permeability (hereinafter simply referred to as penetration resistance).

【0003】これらの特性を備えたガス吹き込みポーラ
スプラグ用の多孔質耐火物として、本願出願人は特開昭
59−203756号公報でアルミナ−ジルコン質を提
案した。この材質によると、使用中の高温によってジル
コン(ZrO・SiO)が解離し、それによって生
じたSiOが溶融状態下での表面張力で骨材(アルミ
ナ)の接触点に集積し、SiOと骨材のアルミナとが
反応してムライト(3Al・2SiO)を生成
する。そして、このムライトが骨材粒子間を強固に結合
し、高ガス透過性であっても耐食性に優れた材質とな
る。また、特開昭63−166752号公報には、ジル
コニア・ムライト−アルミナ質のポーラスプラグ用耐火
物が提案されている。この材質は、ジルコニア・ムライ
トが持つ低膨張性によって耐スポーリング性に優れると
共に、ジルコニア・ムライトが溶鋼スラグと反応して粘
性を向上させることにより、耐浸透性を向上させる効果
がある。
As a porous refractory for a gas-blown porous plug having these characteristics, the applicant of the present application has proposed an alumina-zircon material in JP-A-59-203756. According to this material, zircon (ZrO 2 · SiO 2) is dissociated by high temperature in use, SiO 2 is produced by it is integrated into the contact point of the aggregate (alumina) with surface tension at a molten state, SiO 2 reacts with the alumina of the aggregate to form mullite (3Al 2 O 3 .2SiO 2 ). Then, the mullite firmly bonds between the aggregate particles, and becomes a material having excellent corrosion resistance even with high gas permeability. In addition, Japanese Patent Application Laid-Open No. 63-166752 proposes a zirconia-mullite-alumina refractory for a porous plug. This material has excellent spalling resistance due to the low expansion property of zirconia / mullite, and has the effect of improving the permeation resistance by reacting the zirconia / mullite with molten steel slag to increase the viscosity.

【0004】[0004]

【発明が解決しようとする課題】ところで、近年は、従
来に比べて溶鋼内に多種の合金が投入されるようになっ
ており、これに伴って、成分均一化のためにより一層多
量の不活性ガスを吹き込む操業が行われるようになっ
た。そして、これに合わせてポーラスプラグ用耐火物も
多孔質化が進んでいる。しかし、この多孔質化は同時に
溶鋼スラグの浸透による目詰りを促進することになる。
目詰りするとガス透過機能を低下させるので、溶融金属
容器の操業休止中に、ポーラスプラグの上端部に浸透し
た溶鋼スラグを酸素吹きで洗浄除去しているが、その際
の高温による溶損や熱スポーリングによってポーラスプ
ラグは大きく損傷される。また、酸素洗浄に手間がかか
ると共に耐用性が低いため、溶鋼容器の稼動率も低下す
る。
In recent years, however, various kinds of alloys have been introduced into molten steel as compared with the prior art, and with this, a larger amount of inert gas has been added to make the components uniform. Gas-blown operations have begun. In accordance with this, the refractories for porous plugs are also becoming porous. However, this porosity simultaneously promotes clogging due to penetration of molten steel slag.
The clogging reduces the gas permeation function, so the molten steel slag that has infiltrated the upper end of the porous plug is washed and removed by oxygen blowing during the suspension of operation of the molten metal container. Porous plugs are severely damaged by poling. In addition, since the oxygen cleaning is troublesome and the durability is low, the operating rate of the molten steel vessel is reduced.

【0005】ポーラスプラグ用耐火物として使用されて
いる上記の従来材質のうち、アルミナ−ジルコン質は耐
食性に優れるが、ガス透過性と耐浸透性に十分なもので
はない。一方、ジルコニア・ムライト−アルミナ質は耐
浸透性に優れるが、ガス透過性に劣る。したがって、こ
れらの従来材質では、十分なガス透過性と耐用性とを同
時に備えることはできず、近年のポーラスプラグ用多孔
質耐火物の要請に十分に応えることができないという問
題があった。本発明は、十分なガス透過性と耐用性とを
兼備したポーラスプラグ用多孔質耐火物を得ることを目
的とする。
[0005] Among the above-mentioned conventional materials used as refractories for porous plugs, alumina-zircon is excellent in corrosion resistance, but is not sufficient in gas permeability and permeation resistance. On the other hand, zirconia-mullite-alumina is excellent in permeation resistance but inferior in gas permeability. Therefore, these conventional materials cannot provide sufficient gas permeability and durability at the same time, and have a problem that they cannot sufficiently meet the recent demand for porous refractories for porous plugs. An object of the present invention is to obtain a porous refractory for a porous plug having both sufficient gas permeability and durability.

【0006】[0006]

【課題を解決するための手段】本発明は、溶融シリカが
1〜10重量%、ジルコニアが0.5〜8重量%、残部
がアルミナ主体の耐火性骨材を含む配合物を混練、成形
後、焼成することを特徴としたガス吹き込みポーラスプ
ラグ用多孔質耐火物の製造方法である。本発明において
は、焼成時に溶融シリカとアルミナとの反応でムライト
ボンドが生成し、これによって耐火物組織が強固なもの
となって耐食性を向上させる。さらに、溶融金属容器に
使用中には、溶融シリカからくるシリカ皮膜が耐火性骨
材粒子間に形成されることにより、耐浸透性を向上させ
る。
According to the present invention, a composition containing 1 to 10% by weight of fused silica, 0.5 to 8% by weight of zirconia, and a balance containing a refractory aggregate mainly composed of alumina is formed after kneading. And a method for producing a porous refractory for a gas-blown porous plug characterized by firing. In the present invention, a mullite bond is generated by a reaction between fused silica and alumina during firing, whereby the refractory structure becomes strong and the corrosion resistance is improved. Further, during use in the molten metal container, a permeation resistance is improved by forming a silica film coming from the fused silica between the refractory aggregate particles.

【0007】ジルコニアは1000〜1200℃の温度
域で転移する。そして、焼成時の転移に伴う体積膨張に
より、耐火物組織内にガス通気孔となる微細な無数の亀
裂を生じさせる効果をもつ。耐火性骨材粒子間の空隙に
比べ、ジルコニアの転移による亀裂で生じる空隙は微細
であるが、個数がきわめて多いことから、ガス透過性が
格段に向上する。しかも、この空隙が微細であること
で、溶鋼スラグに対する耐浸透性の向上にもきわめて効
果的である。また、シリカ皮膜は高温下において粘稠で
あり、焼成時にはジルコニアの転移で生じた微亀裂に追
随して変形した後、アルミナとの反応によるムライト
(3Al・2SiO)結合を生じる。このため
と思われるが、本発明によるポーラスプラグ用多孔質耐
火物は微細亀裂を多量に内在するにもかかわらず、耐食
性に優れている。
[0007] Zirconia transforms in the temperature range of 1000 to 1200 ° C. And, by the volume expansion accompanying the transition at the time of sintering, it has an effect of generating countless fine cracks serving as gas vents in the refractory structure. As compared with the voids between the refractory aggregate particles, the voids generated by the cracks due to the zirconia transition are fine, but the gas permeability is remarkably improved due to the extremely large number of voids. In addition, the fineness of the voids is extremely effective in improving the penetration resistance to molten steel slag. Further, the silica film is viscous at a high temperature, deforms following firing at the time of zirconia transformation during firing, and then forms a mullite (3Al 2 O 3 .2SiO 2 ) bond by reaction with alumina. Presumably for this reason, the porous refractory for a porous plug according to the present invention is excellent in corrosion resistance despite the fact that a large number of fine cracks are present therein.

【0008】[0008]

【発明の実施の形態】本発明で使用する溶融シリカ、ジ
ルコニアおよびアルミナの粒度は特に限定するものでは
ないが、粒子間に空隙を形成してガス透過性の多孔質材
質を得るために、従来材質と同様、中間粒の割合を少な
くして粗粒が主体の粒度構成にするのが好ましい。この
うち溶融シリカおよびジルコニアは割合が少ないので粒
径1mm以下、さらに好ましくは0.5mm以下とす
る。アルミナは粒子間に空隙を形成するために、例えば
粒径0.15〜2mmのものが70重量%以上となるよ
うな粒度分布に調整する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The particle size of fused silica, zirconia and alumina used in the present invention is not particularly limited. However, in order to obtain a gas-permeable porous material by forming voids between the particles, As with the material, it is preferable to reduce the ratio of the intermediate particles to make the particle size composition mainly composed of coarse particles. Among them, the ratio of fused silica and zirconia is small, so that the particle size is 1 mm or less, more preferably 0.5 mm or less. Alumina is adjusted to a particle size distribution such that, for example, particles having a particle size of 0.15 to 2 mm become 70% by weight or more in order to form voids between particles.

【0009】溶融シリカは、珪石、珪砂、石英、水晶な
どを溶融して得られるものであり、石英ガラス、溶融石
英などと称されることもある。前記の通り、ジルコニア
との組み合わせによって耐浸透性および耐食性を向上さ
せる効果をもつ。溶融シリカの割合は1〜10重量%と
する。1重量%未満では耐浸透性の効果がなく、10重
量%を超えると耐食性に劣る。前記の通り、ジルコニア
は転移に伴う体積膨張で高ガス透過性を得る効果をも
つ。ジルコニアは、一般にはジルコンを電気炉中で溶融
脱珪して製造されており、CaO、MgO等を添加した
安定化ジルコニア、半安定化ジルコニアが知られてい
る。本発明に使用する素材としては、転移に伴う体積膨
張が大きい未安定化ジルコニアが好ましい。ジルコニア
の配合割合は、0.5〜8重量%とする。0.5重量%
未満ではガス透過性に劣り、8重量%を超えると体積膨
張が過多になるためか耐食性に劣る。
Fused silica is obtained by fusing silica stone, silica sand, quartz, quartz, and the like, and is sometimes referred to as quartz glass, fused quartz, or the like. As described above, the combination with zirconia has the effect of improving penetration resistance and corrosion resistance. The ratio of the fused silica is 1 to 10% by weight. If it is less than 1% by weight, there is no effect of permeation resistance, and if it exceeds 10% by weight, the corrosion resistance is poor. As described above, zirconia has the effect of obtaining high gas permeability due to volume expansion accompanying the transition. Zirconia is generally produced by fusing and desiliconizing zircon in an electric furnace, and stabilized zirconia and semi-stabilized zirconia to which CaO, MgO, etc. are added are known. As a material used in the present invention, unstabilized zirconia having a large volume expansion accompanying the transition is preferable. The mixing ratio of zirconia is 0.5 to 8% by weight. 0.5% by weight
If it is less than 8% by weight, the gas permeability is inferior.

【0010】骨材の主体となるアルミナは、耐食性およ
び耐スポーリング性の面から電融アルミナ、焼結アルミ
ナなどの高純度品が好ましい。粒子の形態は、球状品、
非球状品(破砕品)のいずれでもよい。耐火骨材中に占
める好ましい割合は、82〜98.5重量%である。ま
た、本発明では上記のシリカ、ジルコニア、アルミナか
ら成る耐火性骨材配合物に、更に酸化クロムを添加して
もよい。シリカおよびジルコニア成分は溶鋼成分と反応
して耐食性低下の原因となる低溶融物を生成しやすい
が、酸化クロムを添加すると、低溶融物生成の原因とな
る溶鋼成分と酸化クロムとが反応して高耐火度の固溶体
を生成することで、耐食性をより一層向上させる効果が
ある。
Alumina, which is the main component of the aggregate, is preferably a high purity product such as fused alumina and sintered alumina from the viewpoint of corrosion resistance and spalling resistance. The shape of the particles is spherical,
Any non-spherical product (crushed product) may be used. A preferable ratio in the refractory aggregate is 82 to 98.5% by weight. In the present invention, chromium oxide may be further added to the refractory aggregate composition comprising silica, zirconia, and alumina. Silica and zirconia components easily react with the molten steel component to form a low melt that causes a reduction in corrosion resistance, but when chromium oxide is added, the molten steel component that causes the low melt product reacts with chromium oxide. Producing a solid solution having a high fire resistance has the effect of further improving corrosion resistance.

【0011】酸化クロムの割合は、前記の配合に係る耐
火性骨材100重量部に対し5重量部以下、好ましくは
0.5〜3重量部とする。0.5重量部より少ないと耐
食性向上の効果がなく、5重量部%を超えると過焼結を
招来して耐スポーリング性に劣る。酸化クロムは、反応
性及び分散性の面から、平均粒径1〜2μmの微粉を使
用するのが好ましい。
The proportion of chromium oxide is 5 parts by weight or less, preferably 0.5 to 3 parts by weight, based on 100 parts by weight of the refractory aggregate according to the above-mentioned composition. If the amount is less than 0.5 part by weight, the effect of improving the corrosion resistance is not obtained, and if it exceeds 5 parts by weight, oversintering is caused and the spalling resistance is poor. As chromium oxide, it is preferable to use fine powder having an average particle diameter of 1 to 2 μm from the viewpoint of reactivity and dispersibility.

【0012】本発明では、以上の配合から成る耐火性骨
材を主材料として、これらに粘土、ベントナイト、デキ
ストリン、CMCなどの粘結剤を、前記の耐火性骨材1
00重量部に対して1〜8重量部程度添加すると共に適
量の水分を添加し、これを混練してから成形し、次いで
焼成する。混練には適当な結合剤を添加し、ミキサーな
どを使用して行う。成形は、例えばフリクションプレス
や油圧・水圧プレスのような加圧成形で行う。焼成温度
は、ジルコニアか転移するよう、例えば1000〜18
00℃とする。こうして得られた多孔質耐火物は、例え
ば実開昭58−121327号、特開平1−33285
6号などに見られるように、ガス供給管に接続すると共
に、外周を緻密質耐火物で包囲することにより、ポーラ
スプラグとして使用する。
In the present invention, the refractory aggregate having the above composition is used as a main material, and a binder such as clay, bentonite, dextrin and CMC is added to the refractory aggregate.
About 1 to 8 parts by weight is added to 00 parts by weight and an appropriate amount of water is added. The mixture is kneaded, molded and then fired. The kneading is performed by adding a suitable binder and using a mixer or the like. The molding is performed by pressure molding such as a friction press or a hydraulic / hydraulic press. The firing temperature is set to, for example, 1000 to 18 so that zirconia is transformed.
Set to 00 ° C. The porous refractory thus obtained is described in, for example, Japanese Utility Model Application Laid-Open No. 58-121327 and JP-A-1-33285.
As seen in No. 6, etc., it is used as a porous plug by connecting to a gas supply pipe and surrounding the outer periphery with a dense refractory.

【0013】[0013]

【実施例】以下、本発明の実施例とその比較例を示す。
表1は、各例で使用した主たる配合原料の化学分析値を
示す。表2は、本発明実施例に係る配合物の組成割合
と、その配合組成より得られた多孔質耐火物の試験結果
を示す。表3は比較例である。本発明実施例及び比較例
とも、配合物に結合剤としてパルプ廃液を外掛けで2重
量%添加してミキサーにて混練してから、フリクション
プレスで所定の形状に加圧成形し、次いで、乾燥させて
から1700℃×5時間にて焼成することで多孔質耐火
物を製造した。酸化クロムの粒径は、セイシン・エンタ
ープライズ社製の「SKレーザーマイクロンサイザー7
000S」で測定した。
EXAMPLES Examples of the present invention and comparative examples are shown below.
Table 1 shows the chemical analysis values of the main compounding raw materials used in each example. Table 2 shows the composition ratio of the composition according to the examples of the present invention and the test results of the porous refractory obtained from the composition. Table 3 is a comparative example. In each of the examples and comparative examples of the present invention, 2% by weight of a pulp waste liquid was added as a binder to the mixture, and the mixture was kneaded with a mixer, pressed into a predetermined shape by a friction press, and then dried. After that, the resultant was fired at 1700 ° C. × 5 hours to produce a porous refractory. The particle size of chromium oxide is "SK Laser Micron Sizer 7" manufactured by Seishin Enterprise.
000S ".

【0014】表2および表3における試験方法は、以下
のとおりである。 耐食性;鋼と取鍋スラグとを重量比で1:1に組み合わ
せたものを侵食剤として、1650℃×3時間の回転侵
食試験を行い、侵食寸法を測定した。比較例1の溶損寸
法を100とした指数で示した。数値が小さいほど耐食
性に優れる。 ガス透過性;JIS:R2205−74に準じて気孔率
を測定し、ガス透過性の指標とした。気孔率とガス透過
性とは比例する。気孔率が大きいほどガス透過性に優れ
る。
The test methods in Tables 2 and 3 are as follows. Corrosion resistance; Rotational erosion test at 1650 ° C. × 3 hours was performed using a combination of steel and ladle slag at a weight ratio of 1: 1 as an erosion agent to measure erosion dimensions. It was shown by an index with the erosion dimension of Comparative Example 1 being 100. The smaller the value, the better the corrosion resistance. Gas permeability: The porosity was measured according to JIS: R2205-74, and used as an index of gas permeability. Porosity and gas permeability are proportional. The higher the porosity, the better the gas permeability.

【0015】耐溶鋼スラグ浸透性;鋼を溶剤とする高周
波誘導炉の底に試験片を埋込み、1650℃の温度にて
稼働させた後、浸透寸法を測定した。 耐スポーリング性;1500℃の電気炉中で30分間加
熱してから取り出して空冷する、と言う操作を繰り返
し、剥落開始までの耐用回数を測定した。
[0015] Slag penetration resistance to molten steel: A test piece was embedded in the bottom of a high-frequency induction furnace using steel as a solvent, and after operating at a temperature of 1650 ° C, the penetration size was measured. Sparing resistance: The operation of heating in an electric furnace at 1500 ° C. for 30 minutes, then taking out and air-cooling was repeated, and the number of service times until the start of peeling was measured.

【0016】実施例3、実施例7、比較例2および比較
例9については実機で試験した。この実機テストに使用
したポーラスプラグの多孔質耐火物は、下部直径110
mm、上部直径80mm、高さ130mmの戴頭円錐形
であり、この多孔質耐火物の外周にアルミナ質キャスタ
ブル耐火物からなる厚さ25mmの緻密質耐火物で周設
し、さらに鉄皮とガス導入管を取り付ける構造とした。
このポーラスプラグを300t溶鋼取鍋に取り付けて使
用し、多孔質耐火物に浸透した溶鋼スラグを酸素洗浄で
除去するための所要時間を調べた。所要時間が短いほど
耐浸透性に優れる。耐用性としては、10チャージ使用
後の損耗速度を測定した。
Examples 3 and 7, Comparative Examples 2 and 9 were tested on actual machines. The porous refractory of the porous plug used in the actual machine test has a lower diameter of 110
mm, an upper diameter of 80 mm, a height of 130 mm, and a truncated cone. Around this porous refractory, a 25 mm-thick dense refractory made of an alumina castable refractory is provided. A structure to attach an introduction pipe was adopted.
Using this porous plug attached to a 300-t molten steel ladle, the time required to remove molten steel slag that had permeated the porous refractory by oxygen washing was examined. The shorter the required time, the better the penetration resistance. As the durability, the wear rate after using 10 charges was measured.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】本発明の実施例により得られた多孔質耐火
物は、いずれも耐食性、ガス透過性、耐溶鋼スラグ浸透
性および耐スポーリング性ともに優れている。中でも酸
化クロムを添加した実施例6〜9は、特に耐食性および
耐浸透性に優れている。また、実機試験において、実施
例によるものは酸素洗浄時間が短く、しかも耐用性に優
れた結果が得られることが確認された。特に、酸化クロ
ムを添加した実施例7は優れている。なお、酸素洗浄時
間は主としてガス透過性と耐溶鋼スラグ浸透性に依存す
るもので、本発明実施例では、これらガス透過性と耐溶
鋼スラグ浸透性に優れているから、実機試験を行ってい
ない他の実施例でも、酸素洗浄時間が短いことは容易に
推測できる。また、損耗速度は、主として耐食性並びに
酸素洗浄時間に依存するものであるが、本発明実施例で
は、これら耐食性に優れると共に酸素洗浄時間が短いか
ら、実機試験を行っていない他の実施例でも損耗速度が
小さいことは容易に推測できる。
The porous refractories obtained according to the examples of the present invention are all excellent in corrosion resistance, gas permeability, molten steel slag penetration and spalling resistance. Among them, Examples 6 to 9 to which chromium oxide was added are particularly excellent in corrosion resistance and penetration resistance. Further, in the actual machine test, it was confirmed that the oxygen cleaning time was short in the example and the excellent durability was obtained. In particular, Example 7 to which chromium oxide was added was excellent. The oxygen cleaning time mainly depends on the gas permeability and the resistance to molten steel slag penetration, and in the embodiment of the present invention, since the gas permeability and the resistance to molten steel slag penetration are excellent, no actual machine test was performed. In other examples, it can be easily presumed that the oxygen cleaning time is short. Further, the wear rate mainly depends on the corrosion resistance and the oxygen cleaning time. In the embodiment of the present invention, the corrosion resistance is excellent and the oxygen cleaning time is short. It is easy to guess that the speed is low.

【0021】他方、比較例1はアルミナ−シリカ−ジル
コン質であり、特に耐浸透性に劣る。また、比較例9
は、アルミナ−シリカ−ジルコン質に酸化クロムを添加
したものであるが、耐浸透性及び耐スポール性に劣る。
比較例2はアルミナ−ジルコニア・ムライト質であり、
ガス透過性に劣る。比較例3はアルミナ−溶融シリカ質
であり、ジルコニアの配合がなされていないために特に
ガス透過性に劣る。
On the other hand, Comparative Example 1 is made of alumina-silica-zircon, and is particularly poor in permeation resistance. Comparative Example 9
Is obtained by adding chromium oxide to alumina-silica-zircon, but is inferior in permeation resistance and spall resistance.
Comparative Example 2 is alumina-zirconia mullite,
Poor gas permeability. Comparative Example 3 is an alumina-fused siliceous material, and is particularly inferior in gas permeability because zirconia is not blended.

【0022】比較例4は、アルミナ−珪石−ジルコニア
質であり、珪石の異常膨張のためか組織がぜい弱化し、
耐食性に劣る。比較例5及び比較例6は共にアルミナ−
溶融シリカ−ジルコニア質であるが、比較例5は溶融シ
リカの割合が多過ぎるため、また比較例6はジルコニア
の割合が多すぎるため、いずれも耐食性に劣る。比較例
7はアルミナ−溶融シリカ−ジルコニア・ムライト質で
あり、ジルコニア・ムライトと溶融シリカとの過焼結の
ためか、ガス透過性及び耐スポーリング性に劣る。比較
例8は、アルミナ−シリカ−ジルコニア質に酸化クロム
を添加したもので、耐食性には優れているものの、酸化
クロムの割合が多過ぎるため耐スポーリング性に劣って
いる。
Comparative Example 4 was made of alumina-silica-zirconia, and its structure was weakened due to abnormal expansion of the silica.
Poor corrosion resistance. Comparative Examples 5 and 6 were both alumina-
Although it is a fused silica-zirconia material, Comparative Example 5 is inferior in corrosion resistance because the proportion of fused silica is too large, and Comparative Example 6 is too large in proportion of zirconia. Comparative Example 7 is alumina-fused silica-zirconia mullite, and is inferior in gas permeability and spalling resistance, possibly due to oversintering of zirconia mullite and fused silica. Comparative Example 8 was obtained by adding chromium oxide to alumina-silica-zirconia, and was excellent in corrosion resistance, but was inferior in spalling resistance due to too much chromium oxide.

【0023】[0023]

【発明の効果】本発明により得られるガス吹き込みポー
ラスプラグ用耐火物は、以上のようにガス透過性と耐浸
透性と耐食性とを兼ね備えており、近年の多量のガス吹
き込み操業にも対応することができる。また、スラグに
対する耐浸透性が向上することにより、酸素吹きによる
洗浄時間を大幅に低減できると共に耐用性を向上できる
ため、溶鋼容器の稼動率向上に大きく貢献できる。さら
に、その製造において、ガス透過性はジルコニアの配合
量によって、耐浸透性は溶融シリカの配合量によってそ
れぞれ調整できるから、鋼種等の使用条件に応じてポー
ラスプラグ用耐火物のガス透過性と耐浸透性とを調整す
ることが容易に行える効果もある。
As described above, the refractory for a gas-injected porous plug obtained by the present invention has both gas permeability, penetration resistance and corrosion resistance as described above, and can cope with recent large-volume gas-injection operations. Can be. In addition, the improvement in the penetration resistance to the slag can significantly reduce the cleaning time by oxygen blowing and improve the durability, thereby greatly contributing to the improvement in the operation rate of the molten steel container. Furthermore, in its production, the gas permeability can be adjusted by the amount of zirconia and the penetration resistance can be adjusted by the amount of fused silica. Therefore, the gas permeability and the gas resistance of the refractory for a porous plug can be adjusted according to the use conditions such as steel type. There is also an effect that the permeability can be easily adjusted.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−166752(JP,A) 特開 昭61−97161(JP,A) 特開 昭59−169978(JP,A) 特開 昭59−169977(JP,A) 特開 平9−52168(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 38/00 - 38/10,35/10 C21C 7/072 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-63-166752 (JP, A) JP-A-61-97161 (JP, A) JP-A-59-169978 (JP, A) JP-A-59-16978 169977 (JP, A) JP-A-9-52168 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 38/00-38/10, 35/10 C21C 7/072

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】溶融シリカが1〜10重量%、ジルコニア
が0.5〜8重量%、残部がアルミナ主体の耐火性骨材
を含む配合物を混練、成形後、焼成することを特徴とし
た、ガス吹き込みポーラスプラグ用多孔質耐火物の製造
方法。
The present invention is characterized in that a composition containing 1 to 10% by weight of fused silica, 0.5 to 8% by weight of zirconia, and a balance containing a refractory aggregate mainly composed of alumina is kneaded, molded and then fired. For producing porous refractories for gas-injected porous plugs.
【請求項2】溶融シリカが1〜10重量%、ジルコニア
が0.5〜8重量%、残部がアルミナ主体の耐火性骨材
100重量部と酸化クロム5重量部以下を含む配合物を
混練、成形後、焼成することを特徴とした、ガス吹き込
みポーラスプラグ用多孔質耐火物の製造方法。
2. A kneaded mixture comprising 1 to 10% by weight of fused silica, 0.5 to 8% by weight of zirconia, and 100% by weight of a refractory aggregate mainly composed of alumina and 5% by weight or less of chromium oxide. A method for producing a porous refractory for a gas-blown porous plug, characterized by firing after molding.
JP27983596A 1996-09-13 1996-09-13 Method for producing porous refractory for gas-blown porous plug Expired - Fee Related JP3536886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27983596A JP3536886B2 (en) 1996-09-13 1996-09-13 Method for producing porous refractory for gas-blown porous plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27983596A JP3536886B2 (en) 1996-09-13 1996-09-13 Method for producing porous refractory for gas-blown porous plug

Publications (2)

Publication Number Publication Date
JPH1095682A JPH1095682A (en) 1998-04-14
JP3536886B2 true JP3536886B2 (en) 2004-06-14

Family

ID=17616593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27983596A Expired - Fee Related JP3536886B2 (en) 1996-09-13 1996-09-13 Method for producing porous refractory for gas-blown porous plug

Country Status (1)

Country Link
JP (1) JP3536886B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0992467B1 (en) * 1998-10-01 2003-02-12 Corning Incorporated Production of porous mullite bodies

Also Published As

Publication number Publication date
JPH1095682A (en) 1998-04-14

Similar Documents

Publication Publication Date Title
JP3009705B2 (en) Chromium oxide refractories with improved thermal shock resistance
JP4527905B2 (en) Castable refractories for blast furnace firewood
JP3430360B2 (en) Porous plug for gas injection
US5888586A (en) Use of a water-containing fire-resistant ceramic casting material
JP3536886B2 (en) Method for producing porous refractory for gas-blown porous plug
JP2874831B2 (en) Refractory for pouring
JP4744066B2 (en) Indefinite refractory
JP3128515B2 (en) Nozzle for continuous casting of steel
JP2003171184A (en) SiC FOR MONOLITHIC REFRACTORY HAVING EXCELLENT CORROSION RESISTANCE, SPALLING RESISTANCE AND DRYNESS, PRODUCTION METHOD THEREFOR, AND RAW MATERIAL FOR THE MONOLITHIC REFRACTORY
JPH0352423B2 (en)
JP3015305B2 (en) Nozzle for continuous casting of steel
JPH0952169A (en) Refractory for tuyere of molten steel container
JP4373081B2 (en) Refractory
JP3330778B2 (en) Method for producing porous refractory for gas-blown porous plug and gas-blown porous plug using this porous refractory
JP3383185B2 (en) Nozzle for casting
JP3027721B2 (en) Porous plug refractory and manufacturing method thereof
JP2007099562A (en) Air permeable refractory and method of producing the same
JP3604301B2 (en) Refractory raw materials, kneaded raw materials and refractories
JP4231164B2 (en) Porous plug
JP2604047B2 (en) Porous high zirconia cast refractory and method for producing the same
JP2005238241A (en) Immersion nozzle and using method therefor
JPH08208313A (en) Platelike refractory for sliding nozzle
JPH0952168A (en) Porous plug
JP4070033B2 (en) Unshaped refractory for casting construction and molten steel container lined with this
JPH10280029A (en) Refractory for blowing gas and manufacture thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees