JP2007099562A - Air permeable refractory and method of producing the same - Google Patents

Air permeable refractory and method of producing the same Download PDF

Info

Publication number
JP2007099562A
JP2007099562A JP2005291534A JP2005291534A JP2007099562A JP 2007099562 A JP2007099562 A JP 2007099562A JP 2005291534 A JP2005291534 A JP 2005291534A JP 2005291534 A JP2005291534 A JP 2005291534A JP 2007099562 A JP2007099562 A JP 2007099562A
Authority
JP
Japan
Prior art keywords
mullite
refractory
nio
mass
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005291534A
Other languages
Japanese (ja)
Inventor
Tatsuya Ouchi
龍哉 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2005291534A priority Critical patent/JP2007099562A/en
Publication of JP2007099562A publication Critical patent/JP2007099562A/en
Pending legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide air permeable refractory containing no Cr<SB>2</SB>O<SB>3</SB>having excellent corrosion resistance, thermal shock resistance and capable of replacing air permeable refractory containing Cr<SB>2</SB>O<SB>3</SB>. <P>SOLUTION: The air permeable refractory having pores 3 for passing a gas comprises: a spinel type mineral 6 comprising Al<SB>2</SB>O<SB>3</SB>and NiO; and zirconia-mullite formed by dispersing ZrO<SB>2</SB>7 in mullite 4 in a crosslinking part 1 between coarse grains 2, 2 of main aggregate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主として溶鋼等の溶融金属にガスを吹き込むために使用される通気性耐火物とその製造方法に関する。   The present invention relates to a breathable refractory used mainly for blowing gas into a molten metal such as molten steel and a method for producing the same.

溶鋼等の溶融金属の精錬工程や連続鋳造工程等においては、溶融金属の精錬、撹拌、スラグ等の排除等、さまざまな目的で、溶融金属中にガスを吹き込むことが多く行われている。   In the refining process or continuous casting process of molten metal such as molten steel, gas is often blown into the molten metal for various purposes, such as refining of molten metal, stirring, elimination of slag, and the like.

このような使用に供する通気性耐火物は、ガス吹き込みのための通気性のほか、FeO等との反応に対する化学的抵抗性、即ち耐食性、急激な熱衝撃若しくは大きい温度勾配に耐える耐熱衝撃性等を備えることが必要である。   Breathable refractories used for such use include, in addition to breathability for gas blowing, chemical resistance to reaction with FeO, etc., that is, corrosion resistance, thermal shock resistance to withstand rapid thermal shocks or large temperature gradients, etc. It is necessary to have

従来、特に高い耐食性と耐熱衝撃性を要求される使用条件では、耐火物中にCrを含有させたものが多く使用されている。これは、Al系にCrが加わると、固溶体の生成等により、融点の上昇、耐食性の向上、耐熱衝撃性の向上等の効果が得られるからである。 Conventionally, in use conditions that require particularly high corrosion resistance and thermal shock resistance, many refractories containing Cr 2 O 3 have been used. This is because when Cr 2 O 3 is added to the Al 2 O 3 system, effects such as an increase in melting point, improvement in corrosion resistance, and improvement in thermal shock resistance are obtained due to the formation of a solid solution.

しかし、Cr含有耐火物は、一定の条件下では有害な六価クロムを生成することがあることから、近年環境問題が大きくクローズアップされ、Cr を含有しない耐火物への転換が必要となってきた。 However, Cr 2 O 3 containing refractories, since the under certain conditions may produce harmful hexavalent chromium, in recent years environmental issues have been greatly closeup, to refractories without Cr 2 O 3 content Conversion has become necessary.

Cr含有耐火物の代替品として、例えば、特許文献1には、主としてゴミ焼却炉等の内張用不定形耐火物として、酸化ニッケル等のニッケル含有物とAlからなるスピネル形の鉱物組成を含む耐火物が耐食性等の向上に有効であることが開示されている。しかしながら、これは緻密な組織を前提にして主として耐食性の向上を目的とするものであり、一定の通気性を前提としつつ、耐食性と共に高度な耐熱衝撃性を必要とするガス吹き込み用の通気性耐火物には、特に耐熱衝撃性が低いために実用的ではない。 As an alternative to a Cr 2 O 3 -containing refractory, for example, Patent Document 1 discloses a spinel made of nickel-containing material such as nickel oxide and Al 2 O 3 as an amorphous refractory for lining such as a garbage incinerator. It is disclosed that a refractory containing a mineral composition in the form is effective in improving corrosion resistance and the like. However, this is mainly for the purpose of improving corrosion resistance on the premise of a dense structure, and breathing resistance for gas blowing that requires high thermal shock resistance as well as corrosion resistance while assuming constant breathability. The product is not practical because of its low thermal shock resistance.

特許文献2には、耐スポーリング性(耐熱衝撃性)を向上させる手段として、酸化ニッケル等のニッケル含有物に部分安定化ジルコニアを加えた不定形耐火物が開示されている。   Patent Document 2 discloses an amorphous refractory material obtained by adding partially stabilized zirconia to a nickel-containing material such as nickel oxide as a means for improving the spalling resistance (thermal shock resistance).

しかしながら、これも緻密な組織を前提にして耐スポーリング性の向上を目的とするものであり、微粒域に独立して存在する部分安定化ジルコニアが衝撃に対して変態する性質を利用して応力を吸収させることで耐スポーリング性を向上させようとするものである。 そのため、一定の通気性を前提としつつ、耐食性と共に高度な耐熱衝撃性を必要とするガス吹き込み用の通気性耐火物に適用しようとすると、骨材間を連結する架橋部分の構造としては結合力が弱く、また耐熱衝撃性が十分ではないために、実用的ではない。   However, this is also intended to improve the spalling resistance on the premise of a dense structure, and stress is obtained by utilizing the property that partially stabilized zirconia that exists independently in the fine grain region transforms against impact. It is intended to improve the spalling resistance by absorbing. Therefore, when it is applied to a breathable refractory for gas blowing that requires high thermal shock resistance as well as corrosion resistance, assuming a certain breathability, the structure of the bridging part that connects the aggregates is a binding force Is not practical because of weakness and insufficient thermal shock resistance.

このように、通気性耐火物、特にガス吹き用のポーラスタイプの通気性耐火物においては未だCr系の代替となる耐火物は実用化されていない。
特開2002−241173号公報 特開2003−183082号公報
Thus, in the breathable refractories, particularly the porous breathable refractories for gas blowing, a refractory substitute for Cr 2 O 3 has not been put into practical use.
JP 2002-241173 A JP 2003-183082 A

本発明が解決しようとする課題は、耐食性および耐熱衝撃性に優れ、Crを含有する通気性耐火物に代替可能な、Crを含有しない通気性耐火物を提供することにある。 An object of the present invention is to provide excellent corrosion resistance and thermal shock resistance, which can be substituted in the gas-permeable fireproof material which Cr 2 O 3 content, to provide a gas-permeable fireproof material that does not Cr 2 O 3 content is there.

本発明の通気性耐火物は、ガスを通過させるための気孔を有する通気性耐火物において、主骨材たる粗粒の耐火性原料間の架橋部分に、AlとNiOからなるスピネル形鉱物と、ムライト中にZrOを分散させたジルコニア−ムライトとを含有することを特徴とする。 The breathable refractory of the present invention is a breathable refractory having pores for allowing a gas to pass through, and a spinel type composed of Al 2 O 3 and NiO at a bridging portion between coarse refractory raw materials as a main aggregate. It contains a mineral and zirconia-mullite in which ZrO 2 is dispersed in mullite.

また、本発明の通気性耐火物の製造方法は、ガスを通過させるための気孔を有する通気性耐火物の製造方法において、主骨材たる粗粒の耐火性原料の周囲に、Al源の微粒およびNiO源の微粒、またはAlとNiOからなるスピネル形の微粒と、ムライト中にZrOを分散させたジルコニア−ムライトの微粒とを配置し、その後焼成することより、主骨材たる粗粒の耐火性原料間の架橋部分に、AlとNiOからなるスピネル形鉱物とジルコニア−ムライトとを含有させることを特徴とする。 Further, the method for producing a breathable refractory according to the present invention is a method for producing a breathable refractory having pores for allowing gas to pass therethrough, and Al 2 O 3 around a coarse refractory raw material as a main aggregate. Main particles and NiO source particles, or spinel-type particles composed of Al 2 O 3 and NiO, and zirconia-mullite particles in which ZrO 2 is dispersed in mullite, and then firing, A cross-linked portion between coarse refractory raw materials as an aggregate is characterized by containing a spinel mineral composed of Al 2 O 3 and NiO and zirconia-mullite.

図1に本発明の通気性耐火物の架橋部分を中心とする組織図を示す。同図に示すように、主骨材たる粗粒2、2間の架橋部分1は、ムライト等のAl−SiO系鉱物等を中心とする母体部分4に、Al粒5、AlとNiOからなるスピネル形鉱物6およびZrO7が分散された組織を呈する。なお、主骨材たる粗粒2、2間には気孔3も存在する FIG. 1 shows a structure diagram centering on a cross-linked portion of the breathable refractory of the present invention. As shown in the figure, the bridging portion 1 between the coarse particles 2 and 2 as the main aggregate is formed on the base portion 4 centered on Al 2 O 3 —SiO-based minerals such as mullite and the like, and Al 2 O 3 grains 5 It exhibits a structure in which spinel-type mineral 6 composed of Al 2 O 3 and NiO and ZrO 2 7 are dispersed. There are also pores 3 between the coarse particles 2 and 2 as the main aggregate.

AlとNiOからなるスピネル形鉱物を含有する耐火物は、FeOやスラグ等に対する耐食性に優れる。この耐食性を利用しつつ、通気性耐火物としての強度、耐熱衝撃性を向上させるために、本発明では主骨材即ち耐火物の骨格となる粗粒の耐火性原料間の架橋部分に、AlとNiOからなるスピネル形鉱物を含有させる。この架橋部分は、主骨材間を支持して構造体としての強度の基本となる。また、この架橋部分は、通気性確保の要請から、FeOやスラグ等に第一次的に接触する部分でもある。したがって、この部分に耐食性に優れたAlとNiOからなるスピネル形鉱物を高割合で存在させることが効果的である。 A refractory containing a spinel mineral made of Al 2 O 3 and NiO is excellent in corrosion resistance against FeO, slag, and the like. In order to improve the strength and thermal shock resistance as a breathable refractory while utilizing this corrosion resistance, in the present invention, in the bridging portion between coarse refractory raw materials that become the skeleton of the main aggregate, that is, the refractory, Al A spinel mineral composed of 2 O 3 and NiO is included. This bridging portion supports the main aggregate and serves as the basis of strength as a structure. Moreover, this bridge | crosslinking part is also a part which contacts FeO, slag, etc. primarily from the request | requirement of air permeability ensuring. Therefore, it is effective to have a high proportion of spinel mineral made of Al 2 O 3 and NiO having excellent corrosion resistance in this portion.

このAlとNiOからなるスピネル形鉱物を主骨材間の架橋部分に含有させるには、Al源としてコランダム微粒、NiO源として酸化ニッケル微粒を原料とし、耐火物製造中の焼成工程においてスピネル形鉱物を生成させる、既にスピネル形鉱物の形態の原料を使用する等の方法を採り得る。この2成分系においては、AlとNiOとのモル比が約1:1からAlが多い領域において高温下でも安定なスピネル形鉱物を生成することから、Al源およびNiO源となる微粒中のAlとNiOとのモル比(Al/NiO)を約1以上、即ち質量比を約1.4以上にすることが好ましい。 In order to contain the spinel mineral composed of Al 2 O 3 and NiO in the cross-linked portion between the main aggregates, corundum fine particles as the Al 2 O 3 source and nickel oxide fine particles as the NiO source are used as raw materials. A method of generating a spinel-type mineral in the firing step, using a raw material already in the form of a spinel-type mineral, or the like can be employed. In this two-component system, Al 2 O 3 molar ratio of NiO is from about 1: to produce a stable spinel-type minerals even at high temperatures in the area Al 2 O 3 is often from 1, Al 2 O 3 source In addition, it is preferable that the molar ratio (Al 2 O 3 / NiO) of Al 2 O 3 and NiO in the fine particles as the NiO source is about 1 or more, that is, the mass ratio is about 1.4 or more.

この場合、Al系でCrを含有するものと同等以上の特性を得るには、NiOの含有量が、Al系でCrを使用する場合のCr含有量の2分の1に相当する量を下まわらないようにすることが好ましい。即ち、Crの含有量が2質量%の場合に相当する特性を得るためには、主骨材を含めた耐火性原料中のNiOの含有量が1質量%を下まわらないようにすることが好ましい。 In this case, to obtain equivalent or characteristics to those Cr 2 O 3 content in Al 2 O 3 system, the content of NiO is, Cr 2 when using Cr 2 O 3 in Al 2 O 3 system It is preferable not to fall below an amount corresponding to one half of the O 3 content. That is, in order to obtain characteristics corresponding to the case where the content of Cr 2 O 3 is 2% by mass, the content of NiO in the refractory raw material including the main aggregate should not be less than 1% by mass. It is preferable to do.

しかし、主骨材間の架橋部分にAlとNiOからなるスピネル形鉱物を含有させるだけでは、架橋部分の応力緩和機能が不十分であり、十分な耐熱衝撃性を確保することが困難である。そこで、本発明は、この架橋部分に、ジルコニア−ムライトをさらに含有させる。 However, if only the spinel-type mineral composed of Al 2 O 3 and NiO is contained in the bridge portion between the main aggregates, the stress relaxation function of the bridge portion is insufficient and it is difficult to ensure sufficient thermal shock resistance. It is. Therefore, in the present invention, zirconia-mullite is further contained in the cross-linked portion.

ジルコニア−ムライトは、ムライト(3Al・2SiO)中にZrOを分散させたものであり、本発明において、主骨材間の架橋部分にジルコニア−ムライトを含有させるために使用するジルコニア−ムライトの微粒は、例えば、ジルコン(ZrO・SiO)とそこに含有されるSiO分をムライト(3Al・2SiO)転換させる量の仮焼アルミナを混合し、アーク式電気炉で溶融した後、粒状・紛状に粉砕することにより得ることができる(この方法で得られたジルコニア−ムライトを「電融ジルコニア−ムライト」という。)。 Zirconia-mullite is obtained by dispersing ZrO 2 in mullite (3Al 2 O 3 .2SiO 2 ). In the present invention, zirconia is used to contain zirconia-mullite in a cross-linked portion between main aggregates. - fine mullite, for example, a SiO 2 minutes contained therein and zircon (ZrO 2 · SiO 2) were mixed calcined alumina in the amount to be converted mullite (3Al 2 O 3 · 2SiO 2 ), the arc electric After melting in a furnace, it can be obtained by pulverizing into a granular or powdery form (zirconia-mullite obtained by this method is referred to as “electrofused zirconia-mullite”).

ジルコニア−ムライトは、ZrOの耐食性とムライトの耐熱衝撃性を兼ね備える耐火性原料である。その化学組成は、ZrOが約37質量%、Alが約45質量%、SiOが約18質量%であり、ムライトの中に単斜晶のZrOが存在する状態になって、且つ、粒界の殆ど無い一体的な構造を有する。そして、高温下ではムライトを構成するAlとSiO、ZrOが溶融して粘調な状態となり、またZrOが配筋的な強化機能も発揮する。微粒域においてジルコニア−ムライト微粒とAl微粒、NiO微粒が併存していても、Al−NiOのスピネル形鉱物は選択的に生成する。このジルコニア−ムライト部分は、ムライトが熱解離したSiO融液、他の構成原料である粘土や不純物等を取り込んだSiO−Al系溶融物やそれに不純物が関与した低融物等に加え、Al微粒やAl−NiOスピネル形鉱物等を取り込んでそれらが分散した粘調な状態となり、通気性耐火物としての主骨材間の支持・接着部分を形成する。 Zirconia-mullite is a refractory raw material that combines the corrosion resistance of ZrO 2 and the thermal shock resistance of mullite. The chemical composition is about 37% by mass of ZrO 2 , about 45% by mass of Al 2 O 3 and about 18% by mass of SiO 2 , and monoclinic ZrO 2 is present in mullite. And it has an integral structure with few grain boundaries. Under high temperature, Al 2 O 3 , SiO 2 , and ZrO 2 constituting mullite melt and become viscous, and ZrO 2 also exerts a reinforcing function. Even if zirconia-mullite fine particles, Al 2 O 3 fine particles, and NiO fine particles coexist in the fine particle region, the spinel mineral of Al 2 O 3 —NiO is selectively generated. This zirconia-mullite part is a SiO 2 melt in which mullite is thermally dissociated, a SiO 2 —Al 2 O 3 melt that incorporates other constituent materials such as clay and impurities, and a low melt that involves impurities. In addition, Al 2 O 3 fine particles and Al 2 O 3 —NiO spinel minerals are taken into a viscous state in which they are dispersed, forming a support / bonding part between the main aggregates as a breathable refractory .

このように粘調な状態の架橋部分は、強度と靱性に富み、変形する能力を有するので、この架橋部分を破壊することなく応力を緩和することが可能となる。通気性耐火物は、溶鋼に接する面付近は高温に曝される一方で溶鋼に接する面よりも背面側は通過ガスの冷却効果等により低温になり、その温度勾配は大きい。この粘調な状態の架橋部分は、通気性耐火物のこのような熱勾配による発生応力、受鋼時、使用後の急冷時等に受ける熱衝撃による応力を緩和することに特に有効である。   Since the crosslinked portion in such a viscous state is rich in strength and toughness and has the ability to deform, stress can be relaxed without destroying the crosslinked portion. The breathable refractory is exposed to a high temperature in the vicinity of the surface in contact with the molten steel, while the back side is lower in temperature than the surface in contact with the molten steel due to the cooling effect of the passing gas, and the temperature gradient is large. This viscous cross-linked portion is particularly effective in relieving the stress caused by such a thermal gradient of the breathable refractory, the stress caused by thermal shock received during steel receiving, during rapid cooling after use, and the like.

さらに、この粘調な状態の架橋部分は、耐食性の向上にも寄与する。この部分にFeOやスラグ等が接触すると、低融物生成等の反応を伴いながらそれらの成分を取り込み、または溶損する。本発明ではこの部分に、上述のとおり特に耐食性に優れるAl−NiO系のスピネル形鉱物を含有することで、粘性が低下することを抑制しつつ溶損を抑制することができる。 Furthermore, this cross-linked portion in a viscous state contributes to an improvement in corrosion resistance. When FeO, slag, or the like comes into contact with this portion, those components are taken in or melted down with a reaction such as low melt formation. In the present invention, as described above, the Al 2 O 3 —NiO-based spinel-type mineral having particularly excellent corrosion resistance is contained in this portion, so that the melting loss can be suppressed while suppressing the decrease in viscosity.

またこの粘調な状態の架橋部分は、溶鋼接触面付近ではこの部分自体が溶鋼のヘッドによる圧力や発生応力により変形しながら、また一部主骨材も移動し、被膜に近い状態を形成して通気性耐火物の溶鋼接触面付近の気孔を閉塞または縮小する。その結果、ガス吹き込み処理終了時等に、溶鋼ヘッド圧や毛管現象等により溶鋼やスラグ等が耐火物内部の背面側に深く浸透して通気用に開けている気孔を閉塞して通気特性を阻害することや奥深い組織を溶損すること等を抑制する。   In addition, this brittle part in the viscous state is deformed by the pressure and generated stress by the molten steel head near the molten steel contact surface, and part of the main aggregate also moves, forming a state close to the coating. The pores near the molten steel contact surface of the breathable refractory are closed or reduced. As a result, at the end of the gas blowing process, molten steel or slag penetrates deeply into the back side of the refractory due to molten steel head pressure, capillary action, etc., blocking the pores that are open for ventilation, impairing the ventilation characteristics To suppress the melting or erosion of deep tissue.

このような作用により、本発明の通気用耐火物は、高耐食性 、高耐熱衝撃性、高耐浸潤性、高通気安定性等を得ることができる。   By such an action, the refractory for ventilation of the present invention can obtain high corrosion resistance, high thermal shock resistance, high infiltration resistance, high ventilation stability, and the like.

このように、本発明のジルコニア−ムライトを使用する技術は、特許文献2に示されているようなZrOを部分安定化ジルコニアとして、それ自体の応力緩和機能を単独の構造物として利用する従来技術とは、その技術思想および作用が全く異なる。 As described above, the technique using the zirconia-mullite of the present invention uses ZrO 2 as partially stabilized zirconia as shown in Patent Document 2 and uses its own stress relaxation function as a single structure. It is completely different from technology in its technical idea and operation.

本発明により、ガス吹き込み用等の通気性耐火物において、その耐食性、耐熱衝撃性、耐浸潤性等を向上させることができ、Crを含有する通気性耐火物に代替可能な、Crを含有しない通気性耐火物を得ることができる。 According to the present invention, in a breathable refractory for gas blowing or the like, its corrosion resistance, thermal shock resistance, infiltration resistance and the like can be improved, and it can be replaced with a breathable refractory containing Cr 2 O 3. A breathable refractory containing no 2 O 3 can be obtained.

本発明において主骨材間の架橋部分にAlとNiOからなるスピネル形鉱物およびジルコニア−ムライトを含有する構造とするために使用する、Al源微粒とNiO源微粒、またはAlとNiOからなるスピネル形微粒、およびジルコニア−ムライト微粒の各粒度は、約1600℃〜約1800℃程度で焼成する工程を有する耐火物の製造中に上記のような組成と構造を得るためには、0.2mm以下が好ましく、0.1mm以下がさらに好ましい。0.2mmを超える場合は、十分な結合状態を得ることができずに、耐火物構造体としての強度に劣り、十分な耐熱衝撃性および耐食性を得ることができない。0.1mm以下の場合は、より焼結速度や溶融速度を高めることができ、より一層均一で一体化した状態にすることができる。 In the present invention, Al 2 O 3 source particles and NiO source particles, or Al used to form a structure containing a spinel mineral composed of Al 2 O 3 and NiO and zirconia-mullite in the cross-linked portion between the main aggregates in the present invention Each of the spinel-type fine particles composed of 2 O 3 and NiO and the zirconia-mullite fine particles have the composition and structure as described above during the production of a refractory having a step of firing at about 1600 ° C. to about 1800 ° C. Therefore, 0.2 mm or less is preferable and 0.1 mm or less is more preferable. When it exceeds 0.2 mm, a sufficient bonded state cannot be obtained, the strength as a refractory structure is inferior, and sufficient thermal shock resistance and corrosion resistance cannot be obtained. In the case of 0.1 mm or less, the sintering rate and the melting rate can be further increased, and a more uniform and integrated state can be achieved.

これらの微粒の配合量は、主骨材も含めた耐火性原料の総量を100質量%とした場合に、Al源微粒が7質量%以上12質量%以下且つNiO源微粒が1質量%以上6質量%以下、またはこれらに代わるAlとNiOからなるスピネル形微粒の場合は2質量%以上12質量%以下が好ましく、ジルコニア−ムライト微粒は1質量%以上10質量%以下が好ましい。 The blending amount of these fine particles is 7% by mass to 12% by mass of Al 2 O 3 source fine particles and 1% by mass of NiO source fine particles when the total amount of the refractory raw materials including the main aggregate is 100% by mass. % To 6% by mass, or in the case of spinel-type fine particles composed of Al 2 O 3 and NiO instead of 2% to 12% by mass, and zirconia-mullite fine particles are preferably 1% by mass to 10% by mass. preferable.

AlとNiOからなるスピネル形微粒が、2質量%未満であると、耐食性や耐熱衝撃性が十分でなく、12質量%を超えると耐食性や耐熱衝撃性が低下する傾向になる。 If the spinel-type fine particles composed of Al 2 O 3 and NiO are less than 2% by mass, the corrosion resistance and thermal shock resistance are not sufficient, and if it exceeds 12% by mass, the corrosion resistance and thermal shock resistance tend to decrease.

Al源微粒とNiO源微粒とは、この観点からそれらの配合量を決定する必要がある。即ち、Al源微粒が12質量%を超え、且つ、NiO源微粒が1質量%を下まわると、耐食性、耐熱衝撃性等に寄与するAl−NiOからなるスピネル形鉱物が十分に生成せず、Al源微粒が7質量%未満、且つ、NiO源微粒が6質量%を超えると、NiOが飽和状態になって一部単独で存在すること等により、耐食性、耐熱衝撃性等が低下傾向となる。 The Al 2 O 3 source fine particles and the NiO source fine particles need to determine their blending amounts from this viewpoint. That is, when the Al 2 O 3 source fine particle exceeds 12% by mass and the NiO source fine particle is less than 1% by mass, a spinel mineral composed of Al 2 O 3 —NiO contributing to corrosion resistance, thermal shock resistance and the like is obtained. When the Al 2 O 3 source fine particles are less than 7% by mass and the NiO source fine particles are more than 6% by mass, NiO is saturated and partially present alone, etc. Thermal shock resistance and the like tend to decrease.

ジルコニア−ムライト微粒は、1質量%未満であると応力緩和機能が小さく、十分な耐熱衝撃性を得ることができない。10質量%を超えると、相対的にSiO成分が多くなり、耐食性が低下する傾向となる。 When the zirconia-mullite fine particle is less than 1% by mass, the stress relaxation function is small and sufficient thermal shock resistance cannot be obtained. When it exceeds 10% by mass, the SiO 2 component is relatively increased, and the corrosion resistance tends to be lowered.

また、これらの微粒の中のこれら3原料の各配合割合は、これら3原料のみの微粒の総量を100質量%とした場合に、Al成分原料が約35〜約60質量%、NiO成分原料が約5〜約35質量%(Al−NiOからなるスピネル形鉱物原料の場合は約10〜約60質量%)、ジルコニア−ムライト原料が約5〜約50質量%であることが、架橋部分における耐食性、耐熱衝撃性、耐浸潤性等の好適なバランスを有する架橋部分の構造を得るためには好ましい。但し、これらの配合割合は、鋼種、溶鋼の温度、処理時間、ガス通気量、スラグ等の侵食性の成分や量等の操業条件の変動に応じて変更させることが好ましい。即ち耐食性を強化する場合にはAl、NiO系の成分割合を増加させる、耐熱衝撃性や耐浸潤性を強化する場合にはジルコニア−ムライト原料を増加させる等である。 Moreover, each mixing ratio of these three raw materials in these fine particles is about 35 to about 60% by mass of the Al 2 O 3 component raw material when the total amount of the fine particles of only these three raw materials is 100% by mass, NiO The component raw material is about 5 to about 35% by mass (about 10 to about 60% by mass in the case of a spinel mineral raw material made of Al 2 O 3 —NiO), and the zirconia-mullite raw material is about 5 to about 50% by mass. However, it is preferable for obtaining a structure of the crosslinked portion having a suitable balance of corrosion resistance, thermal shock resistance, infiltration resistance, and the like in the crosslinked portion. However, these blending ratios are preferably changed in accordance with fluctuations in operating conditions such as steel type, molten steel temperature, treatment time, gas flow rate, erosive components such as slag, and amounts. That is, when the corrosion resistance is enhanced, the proportions of Al 2 O 3 and NiO components are increased, and when the thermal shock resistance and infiltration resistance are enhanced, the zirconia-mullite raw material is increased.

主骨材たる粗粒の耐火性原料としては、Al、Al−MgO系化合物、MgO−SiO系化合物、ZrO、MgO−ZrO系化合物、ZrO−SiO系化合物、Al−SiO系化合物、Al−NiO系化合物の1種若しくは2種以上からなる、またはこれらにMgOを加えた混合物等、一般的に通気性耐火物に利用可能な耐火性原料が使用できる。 As the refractory raw material of coarse grains as the main aggregate, Al 2 O 3 , Al 2 O 3 —MgO based compound, MgO—SiO 2 based compound, ZrO 2 , MgO—ZrO 2 based compound, ZrO 2 —SiO 2 based Can be used for breathable refractories such as compounds, Al 2 O 3 —SiO 2 compounds, Al 2 O 3 —NiO compounds, or a mixture of these compounds with MgO added Refractory raw materials can be used.

これらのうち、微粒部分との接触部の少なくとも一部に焼結等の結合を得ることが、耐火物構造体としての強度および耐熱衝撃性確保若しくは向上のためには好ましく、そのためには、Alたる電融若しくは焼結アルミナ、Al−SiO系化合物たるムライト、シリマナイトその他の合成若しくは天然原料、Al−MgO系化合物たるスピネル、Al−NiO系化合物たるスピネル等が好ましい。 Among these, it is preferable to obtain a bond such as sintering in at least a part of the contact portion with the fine particle portion in order to ensure or improve the strength and thermal shock resistance as the refractory structure. 2 O 3 electrofused or sintered alumina, Al 2 O 3 —SiO 2 compound mullite, sillimanite and other synthetic or natural raw materials, Al 2 O 3 —MgO compound spinel, Al 2 O 3 —NiO compound Spinel or the like is preferable.

これらの粗粒の粒度は、0.2mm以上2mm以下程度が好ましく、使用対象の溶融金属の成分、温度、圧力、ガスの流量等の諸操業条件によっては、この範囲で最適値を選択することが好ましい。一般的な溶鋼の取鍋におけるガス吹き込みの場合には、通気のための空隙の大きさとのバランスを最適にするためには、0.2mm以上1mm以下程度がさらに好ましい。2mmを超えると、粗粒と微粒との結合部分が少なくなり、また、粗粒の熱膨張量が微粒部に影響を与え始め、微粒部を破壊することもあり、強度や耐熱衝撃性の低下を生じやすくなる。   The grain size of these coarse grains is preferably about 0.2 mm or more and 2 mm or less, and the optimum value should be selected within this range depending on various operating conditions such as the composition of the molten metal to be used, temperature, pressure, gas flow rate, etc. Is preferred. In the case of gas blowing in a general molten steel ladle, about 0.2 mm or more and 1 mm or less is more preferable in order to optimize the balance with the size of the gap for ventilation. If it exceeds 2 mm, the bonding portion between the coarse particles and the fine particles decreases, and the thermal expansion amount of the coarse particles starts to affect the fine particle portions, which may destroy the fine particle portions, resulting in a decrease in strength and thermal shock resistance. Is likely to occur.

主骨材たる粗粒と架橋部分を構成する微粒との割合は、粗粒60質量%以上90質量%以下、微粒10質量%以上40質量%以下が好ましく、且つ粗粒と微粒の相対的な質量比は、粗粒7:微粒3〜粗粒8:微粒2程度がさらに好ましい。   The ratio between the coarse particles as the main aggregate and the fine particles constituting the crosslinked portion is preferably 60% by mass or more and 90% by mass or less of the coarse particles, and 10% by mass or more and 40% by mass or less of the fine particles. The mass ratio is more preferably about coarse particles 7: fine particles 3 to coarse particles 8: fine particles 2.

粗粒が60質量%未満であって、微粒が40質量%を超えると、耐火物組織が緻密になり、通気特性が低下すると共に、耐食性や耐摩耗性が低下する傾向となる。一方、粗粒が90質量%を超え、微粒が10質量%未満であると、耐火物組織が粗になり過ぎて、結合機能を担う微粒部による架橋構造が少なすぎることになり、強度や耐熱衝撃性の低下を惹き起こす。また、耐食性や耐熱衝撃性に優れるAl−NiO系のスピネル形鉱物の量が少なくなり、Cr含有の耐火物相当の耐食性や耐摩耗性を得られない。 When the coarse particles are less than 60% by mass and the fine particles are more than 40% by mass, the refractory structure becomes dense, the air permeability is lowered, and the corrosion resistance and the wear resistance tend to be lowered. On the other hand, when the coarse particles exceed 90% by mass and the fine particles are less than 10% by mass, the refractory structure becomes too coarse, and the cross-linked structure by the fine particle part that bears the bonding function is too little, and the strength and heat resistance Causes a drop in impact. In addition, the amount of Al 2 O 3 —NiO-based spinel minerals excellent in corrosion resistance and thermal shock resistance decreases, and corrosion resistance and wear resistance equivalent to Cr 2 O 3 -containing refractories cannot be obtained.

本発明の通気性耐火物の製造方法においては、まず主骨材たる粗粒の耐火性原料に液状の結合材または結合材を含む液体を添加して混練し、次に微粒の耐火性原料を添加してさらに混練することが好ましい。即ち、粗粒の耐火性原料の表面に微粒の耐火性原料が均一に存在するような形態を得るような混練方法が好ましい。   In the method for producing a breathable refractory according to the present invention, first, a liquid binder or a liquid containing a binder is added to a coarse refractory raw material as a main aggregate and kneaded, and then a fine refractory raw material is added. It is preferable to add and knead further. That is, a kneading method that obtains a form in which the fine refractory raw material is uniformly present on the surface of the coarse refractory raw material is preferable.

この液状の結合材または結合材を含む液体としては、有機物系では、天然や合成の糊剤等(でんぷん、デキストリン、アラビアゴム、糖蜜、メチルセルロース、ポリビニルアルコール、リグニンスルフォン酸塩、酢酸ビニルエマルジョン、ポリアクリル酸塩等)、合成樹脂(フェノール樹脂、エポキシ樹脂、アクリル樹脂、ピッチ等)、無機物系では、珪酸塩、リン酸塩等が使用できる。これらは水溶性のものは水溶液としてでも使用できる。これらの可塑性や接着性を増すために、粘土やシリカフラワー等を5質量%程度以内で添加することも可能である。   As this liquid binder or a liquid containing a binder, organic or natural pastes such as starch, dextrin, gum arabic, molasses, methylcellulose, polyvinyl alcohol, lignin sulfonate, vinyl acetate emulsion, Acrylates, etc.), synthetic resins (phenolic resins, epoxy resins, acrylic resins, pitches, etc.), inorganic materials, silicates, phosphates, etc. can be used. These water-soluble ones can be used as an aqueous solution. In order to increase these plasticity and adhesiveness, it is also possible to add clay, silica flour or the like within about 5% by mass.

このようにして得られた混練物を、プレス、流動、加振等の方法で所定の形状に成形し、乾燥後好ましくは1600℃以上で焼成することで目的とする通気性耐火物を得ることができる。この通気性耐火物は、他の耐火物の一部として組み込む、接合する等して利用できるほか、使用条件や形状に応じてガスの漏れ防止や補強等のためのメタルケースによる被覆、ガス導入用パイプの設置等を施して使用することもできる。   The kneaded product thus obtained is molded into a predetermined shape by a method such as pressing, flow, or vibration, and after drying, preferably fired at 1600 ° C. or higher to obtain the desired breathable refractory. Can do. This breathable refractory can be used as a part of other refractories, bonded, etc., covered with a metal case to prevent gas leakage or reinforce depending on the usage conditions and shape, gas introduction It can also be used with installation of pipes for use.

表1は、各例の通気性耐火物における耐火性原料の配合割合と試験結果を示す。
Table 1 shows the blending ratio of the refractory raw materials in the breathable refractories of each example and the test results.

まず主骨材たる粗粒の耐火性原料に液状の結合材としてフェノール樹脂と粘土を添加してミキサーで混練し、その後、微粒の耐火性原料を添加し、さらに混練した。その後プレス機械により大型のポーラスプラグ形状に成形し、乾燥工程を経て、1600℃以上で焼成した。そのポーラスプラグを各試験に応じた試験片に切り出した。   First, phenol resin and clay were added as a liquid binder to the coarse refractory raw material as the main aggregate and kneaded with a mixer, and then the fine refractory raw material was added and further kneaded. Thereafter, it was formed into a large porous plug shape by a press machine, and baked at 1600 ° C. or higher after a drying process. The porous plug was cut into a test piece corresponding to each test.

各試験方法は次の通りである。   Each test method is as follows.

・耐食性:回転侵食試験炉内の炉壁を構成するように各試験片を設置し、1750℃で30分保持した後、酸素ランスで酸素を吹き付け、試験後の損傷寸法を測定し、侵食寸法の百分率で表した。 ・ Corrosion resistance: Each test piece was installed so as to constitute the furnace wall in the rotary erosion test furnace, held at 1750 ° C for 30 minutes, then oxygen was blown with an oxygen lance, the damage dimension after the test was measured, and the erosion dimension Expressed as a percentage.

・耐浸潤性:1辺30mmの立方体の試験片を高周波炉の炉底に設置し、1700℃で2時間溶鋼中に浸漬した後、その試料を切断して内部の溶鋼の浸潤深さ(mm)で表した。 Infiltration resistance: A cubic test piece with a side of 30 mm was placed on the bottom of a high frequency furnace, immersed in molten steel at 1700 ° C. for 2 hours, and then the sample was cut to infiltrate the inner molten steel (mm )

・耐熱衝撃性:40×40×160mmの試験片を1600℃の溶鋼中に3分間浸漬し、空冷する操作を繰り返し、試験片が破壊して剥落等が開始する回数で表した。 Thermal shock resistance: The test piece of 40 × 40 × 160 mm was immersed in molten steel at 1600 ° C. for 3 minutes and air-cooled repeatedly, and expressed as the number of times the test piece was broken and peeled off.

・通気率:JISR2115による。 -Air permeability: According to JISR2115.

・見掛け気孔率:JISR2105による。 -Apparent porosity: According to JISR2105.

・圧縮強度:JISR2106による。 -Compressive strength: According to JISR2106.

表1において、実施例1〜12は本発明の範囲内のCrを含有しない通気性耐火物、比較例1〜3は本発明の範囲外のCrを含有しない通気性耐火物、参考例1はCrを含有する通気性耐火物である。 In Table 1, Examples 1-12 are breathable refractories that do not contain Cr 2 O 3 within the scope of the present invention, and Comparative Examples 1-3 are breathable refractories that do not contain Cr 2 O 3 outside the scope of the present invention. Material 1 and Reference Example 1 are breathable refractories containing Cr 2 O 3 .

表1に示すように、本発明のCrを含有しない実施例1〜12は、同じくCrを含有しない比較例1〜3に比べ、耐食性、耐湿潤性および耐熱衝撃性が向上している。とくに、Al微粉の配合量が7〜12質量%、NiO微粉の配合量が1〜6質量%、ジルコニア−ムライト微粉の配合量が1〜10質量%の範囲にある実施例2〜5および実施例7は、Crを2質量%含有する参考例1と同等以上の特性を有しており、Crを含有する通気性耐火物に十分に代替可能である。 As shown in Table 1, Examples 1 to 12 which do not contain Cr 2 O 3 of the present invention have corrosion resistance, wet resistance and thermal shock resistance as compared with Comparative Examples 1 to 3 which also do not contain Cr 2 O 3. It has improved. Particularly, Example 2 in which the blending amount of Al 2 O 3 fine powder is 7 to 12% by mass, the blending amount of NiO fine powder is 1 to 6% by mass, and the blending amount of zirconia-mullite fine powder is 1 to 10% by mass. 5 and example 7 has the same or more properties and reference example 1 containing Cr 2 O 3 2 wt%, it is quite possible alternative to the gas-permeable fireproof material containing Cr 2 O 3.

本発明は、溶鋼の精錬や均一化等の様々な溶鋼や溶銑の処理に使用するガス吹き込み機能を備える通気性耐火物として、例えば、ポーラスプラグ、連続鋳造用各種ノズルやストッパー先端のガス吹き部分等に広く利用できる。   The present invention is a breathable refractory having a gas blowing function used for various molten steel and hot metal processing such as refining and homogenizing molten steel, for example, a porous plug, various nozzles for continuous casting, and a gas blowing portion at the tip of a stopper Widely available for etc.

本発明の通気性耐火物の架橋部分を中心とする組織図である。It is a structure chart centering on the bridge | crosslinking part of the breathable refractory of this invention.

符号の説明Explanation of symbols

1 架橋部分(微粒からなる部分)
2 主骨材たる粗粒
3 気孔(空間)
4 ムライト等のAl−SiO系鉱物等を中心とする架橋部分の母体部分
5 Al粒(コランダム、図1中「C」の表示)
6 AlとNiOからなるスピネル形鉱物(図1中「S」の表示)
7 ZrO(図1中「Z」の表示)
1 Cross-linked part (part consisting of fine particles)
2 Coarse grain as main aggregate 3 Pore (space)
4 Base part of cross-linked part centered on Al 2 O 3 —SiO-based minerals such as mullite 5 Al 2 O 3 grains (corundum, indicated by “C” in FIG. 1)
6 Spinel-type mineral consisting of Al 2 O 3 and NiO (indicated as “S” in FIG. 1)
7 ZrO 2 (indication of “Z” in FIG. 1)

Claims (2)

ガスを通過させるための気孔を有する通気性耐火物において、主骨材たる粗粒の耐火性原料間の架橋部分に、AlとNiOからなるスピネル形鉱物と、ムライト中にZrOを分散させたジルコニア−ムライトとを含有する通気性耐火物。 In a breathable refractory having pores for allowing gas to pass therethrough, a spinel mineral composed of Al 2 O 3 and NiO and ZrO 2 in mullite at a bridging portion between coarse refractory raw materials as a main aggregate. Breathable refractory containing dispersed zirconia-mullite. ガスを通過させるための気孔を有する通気性耐火物の製造方法において、主骨材たる粗粒の耐火性原料の周囲に、Al源の微粒およびNiO源の微粒、またはAlとNiOからなるスピネル形の微粒と、ムライト中にZrOを分散させたジルコニア−ムライトの微粒とを配置し、その後焼成することより、主骨材たる粗粒の耐火性原料間の架橋部分に、AlとNiOからなるスピネル形鉱物とジルコニア−ムライトとを含有させる通気性耐火物の製造方法。 In a method for producing a breathable refractory having pores for allowing gas to pass therethrough, Al 2 O 3 source fine particles and NiO source fine particles, or Al 2 O 3 around a coarse refractory raw material as a main aggregate And a zirconia-mullite fine particle in which ZrO 2 is dispersed in mullite, followed by firing, thereby forming a bridging portion between the coarse refractory raw material as the main aggregate. spinel-type minerals and zirconia of Al 2 O 3 and NiO - method for producing breathable refractory to contain and mullite.
JP2005291534A 2005-10-04 2005-10-04 Air permeable refractory and method of producing the same Pending JP2007099562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005291534A JP2007099562A (en) 2005-10-04 2005-10-04 Air permeable refractory and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005291534A JP2007099562A (en) 2005-10-04 2005-10-04 Air permeable refractory and method of producing the same

Publications (1)

Publication Number Publication Date
JP2007099562A true JP2007099562A (en) 2007-04-19

Family

ID=38026855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005291534A Pending JP2007099562A (en) 2005-10-04 2005-10-04 Air permeable refractory and method of producing the same

Country Status (1)

Country Link
JP (1) JP2007099562A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206414A (en) * 2016-05-19 2017-11-24 品川リフラクトリーズ株式会社 Method for producing alumina-chromia fired brick
JP2018524252A (en) * 2015-06-01 2018-08-30 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Refractory article and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952168A (en) * 1995-08-11 1997-02-25 Toshiba Ceramics Co Ltd Porous plug
JP2001059113A (en) * 1999-08-18 2001-03-06 Kurosaki Harima Corp Gas permeable refractory
JP2002241173A (en) * 2001-02-08 2002-08-28 Nichias Corp Shaped refractory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952168A (en) * 1995-08-11 1997-02-25 Toshiba Ceramics Co Ltd Porous plug
JP2001059113A (en) * 1999-08-18 2001-03-06 Kurosaki Harima Corp Gas permeable refractory
JP2002241173A (en) * 2001-02-08 2002-08-28 Nichias Corp Shaped refractory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018524252A (en) * 2015-06-01 2018-08-30 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Refractory article and method of manufacturing the same
JP2017206414A (en) * 2016-05-19 2017-11-24 品川リフラクトリーズ株式会社 Method for producing alumina-chromia fired brick

Similar Documents

Publication Publication Date Title
US7939458B2 (en) Refractory brick
WO2008056655A1 (en) Durable sleeve bricks
JP6597812B2 (en) Zirconia-containing alumina-carbon slide plate refractory
JP2012031026A (en) Alumina-magnesia-based refractory brick and method for producing the same
JP2007099562A (en) Air permeable refractory and method of producing the same
JP3430360B2 (en) Porous plug for gas injection
JP2012062232A (en) Air-permeability refractory and its manufacturing method
JP4431111B2 (en) Continuous casting nozzle
JP2008207238A (en) Casting mold
JPH082975A (en) Refractory for casting application
JP2009221081A (en) Gas-permeable refractory
JP2005008496A (en) Monolithic refractory
JP2017206414A (en) Method for producing alumina-chromia fired brick
JP4373081B2 (en) Refractory
JP2604310B2 (en) Pouring refractories
CN111777409A (en) Brick for molten iron ladle with high slag corrosion resistance and preparation method thereof
JPH06345550A (en) Castable refractory
JPH0952169A (en) Refractory for tuyere of molten steel container
JP3741595B2 (en) Unshaped refractory raw material and unshaped refractory
JP3604301B2 (en) Refractory raw materials, kneaded raw materials and refractories
JP2007217260A (en) Porous refractory material
JP4629461B2 (en) Continuous casting nozzle
JP3536886B2 (en) Method for producing porous refractory for gas-blown porous plug
JP2004059390A (en) Castable refractory for blast furnace trough
JP2001030047A (en) Immersion nozzle having sliding surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111021