JP2604047B2 - Porous high zirconia cast refractory and method for producing the same - Google Patents

Porous high zirconia cast refractory and method for producing the same

Info

Publication number
JP2604047B2
JP2604047B2 JP2002548A JP254890A JP2604047B2 JP 2604047 B2 JP2604047 B2 JP 2604047B2 JP 2002548 A JP2002548 A JP 2002548A JP 254890 A JP254890 A JP 254890A JP 2604047 B2 JP2604047 B2 JP 2604047B2
Authority
JP
Japan
Prior art keywords
refractory
high zirconia
pores
cast refractory
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002548A
Other languages
Japanese (ja)
Other versions
JPH03208869A (en
Inventor
茂男 遠藤
公男 平田
伸二 土屋
Original Assignee
東芝モノフラックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝モノフラックス株式会社 filed Critical 東芝モノフラックス株式会社
Priority to JP2002548A priority Critical patent/JP2604047B2/en
Publication of JPH03208869A publication Critical patent/JPH03208869A/en
Application granted granted Critical
Publication of JP2604047B2 publication Critical patent/JP2604047B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多孔質高ジルコニア系鋳造耐火物及びその
製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a porous high zirconia cast refractory and a method for producing the same.

(従来の技術) ガラス溶融炉の煉瓦には、従来より溶融ガラスに対し
て優れた耐蝕性を有するジルコニアを多量に含むジルコ
ニア系耐火物が多用されている。かかるジルコニア系耐
火物としては、例えばZrO2の含有量が30〜50重量%のAl
2O3−ZrO2−SiO2系鋳造耐火物(AZS耐火物)が知られて
いる。また、最近ではZrO2の含有量が80重量%以上で、
組織的にも緻密で非常に優れた耐蝕性の高ジルコニア系
鋳造耐火物の使用も増加しつつある。
(Related Art) Zirconia-based refractories containing a large amount of zirconia having excellent corrosion resistance to molten glass have been frequently used for bricks of a glass melting furnace. Such zirconia-based refractories include, for example, Al having a ZrO 2 content of 30 to 50% by weight.
2 O 3 —ZrO 2 —SiO 2 -based cast refractories (AZS refractories) are known. Also, recently, when the content of ZrO 2 is 80% by weight or more,
The use of highly zirconia-based cast refractories, which are structurally dense and have excellent corrosion resistance, is also increasing.

上述した従来のジルコニア系耐火物は、溶融ガラスと
直接接触するような場所での使用において、その優れた
耐蝕性により十分に満足する耐火物である。しかしなが
ら、溶融ガラスと直接接触しない場所、例えばガラス溶
融炉の上部構造には適さないか、或いはその優れた特徴
を生かしきれなかった。
The conventional zirconia-based refractory described above is a refractory which is sufficiently satisfied by its excellent corrosion resistance when used in a place where it comes into direct contact with molten glass. However, it is not suitable for a place not in direct contact with the molten glass, for example, a superstructure of a glass melting furnace, or cannot take advantage of its excellent features.

具体的には、前記AZS耐火物では使用中に煉瓦の表面
からガラス状の構成物が流れ落ちる、いわゆる発汗現象
を生じ、この汗が溶融ガラスに混入することによりコー
ドを発生させるという問題があった。
Specifically, in the AZS refractory, there is a problem that a so-called sweating phenomenon occurs in which a glass-like component flows down from the surface of a brick during use, and this sweat mixes with molten glass to generate a cord. .

また、前記高ジルコニア系鋳造耐火物ではその緻密な
組織ゆえにガラス溶融炉の上部構造で必要とされる熱衝
撃に対する抵抗性(スポーリング抵抗)において劣って
いた。しかも、前記組成の耐火物はもともとZrO2の密度
が大きいこと、更に溶融状態から固化して常温まで冷却
される間の収縮率が小さいことから、同一容積の他の耐
火物に比べると極めて重いという性質を有していた。こ
のように耐火物の嵩密度が大きいことは耐蝕性という観
点からは有利であるが、必ずしも高い耐蝕性を必要とし
ない用途では高価なジルコニアを多用する点から価格の
上で不利であった。
In addition, the high zirconia cast refractory has poor resistance to thermal shock (spalling resistance) required in the upper structure of the glass melting furnace due to its dense structure. Moreover, since the refractory having the above composition originally has a high density of ZrO 2 and further has a small shrinkage rate during cooling from a molten state to room temperature, it is extremely heavy compared to other refractories having the same volume. Had the property of Such a high bulk density of the refractory is advantageous from the viewpoint of corrosion resistance, but is disadvantageous in terms of cost in applications that do not necessarily require high corrosion resistance because expensive zirconia is frequently used.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされた
もので、アルカリ蒸気に対する耐蝕性を十分に有し、か
つ軽量でスポーリング抵抗に優れ、更に発汗現象を示さ
ない多孔質高ジルコニア系鋳造耐火物並びにかかる耐火
物を簡単な工程で製造し得る方法を提供しようとするも
のである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and has a sufficient corrosion resistance to alkali vapor, is lightweight, has excellent spalling resistance, and furthermore has a sweating phenomenon. It is an object of the present invention to provide a porous high zirconia cast refractory which does not show the above problem and a method for producing such a refractory in a simple process.

[発明の構成] (課題を解決するための手段) 本発明の多孔質高ジルコニア系鋳造耐火物は、80〜98
重量%のZrO2を含有し、かつ内部に均一に分散した気孔
が15〜40%形成されている共に、これら気孔のうち直径
0.2〜2mmの範囲にあるものの比率が全気孔に対して70%
以上占めることを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The porous high zirconia cast refractory of the present invention has a structure of 80 to 98.
15% to 40% of pores containing ZrO 2 by weight and uniformly dispersed therein, and having a diameter of
70% of all pores in the range of 0.2-2mm
It is characterized by occupying the above.

上記気孔率を限定した理由は、15%未満にすると軽量
かつスポーリング抵抗の優れた多孔質高ジルコニア系鋳
造耐火物を得ることができず、一方40%を越えるとアル
カリ蒸気や浮遊原料に対する耐蝕性が低下したり、十分
な強度を有する耐火物を得ることができないからであ
る。より好ましい気孔率は、15〜25%の範囲である。
The reason for limiting the porosity is that if it is less than 15%, it is not possible to obtain a lightweight, high zirconia cast refractory having excellent spalling resistance, while if it exceeds 40%, corrosion resistance to alkali vapor and suspended raw materials will not be obtained. This is because the refractory is deteriorated and a refractory having sufficient strength cannot be obtained. More preferred porosity is in the range of 15-25%.

上記直径0.2〜2mmの範囲の気孔の比率を前記範囲に限
定した理由は、その気孔の比率を70%未満にすると軽量
かつスポーリング抵抗の優れた多孔質高ジルコニア系鋳
造耐火物を得ることができないからである。
The reason that the ratio of the pores having a diameter in the range of 0.2 to 2 mm is limited to the above range is that if the ratio of the pores is set to less than 70%, it is possible to obtain a lightweight, porous, high zirconia cast refractory having excellent spalling resistance. Because you can't.

本発明に係わる多孔質高ジルコニア系鋳造耐火物の組
成は、耐蝕性を改善し、発汗現象を防止する観点から、
重量割合にてZrO2が80〜98%、SiO2が2〜15%、Al2O3
が0.5〜11%、B2O3が0.1〜1.0%、アルカリ金属酸化物
が0.1〜1.0%の範囲とすることが望ましい。
The composition of the porous high zirconia cast refractory according to the present invention improves the corrosion resistance and, from the viewpoint of preventing the sweating phenomenon,
80-98% of ZrO 2 , 2-15% of SiO 2 , Al 2 O 3
But from 0.5 to 11% B 2 O 3 is 0.1% to 1.0%, it is preferable that alkali metal oxides is in the range of 0.1% to 1.0%.

また、本発明の多孔質高ジルコニア系鋳造耐火物の製
造方法は高ジルコニア系原料に、発泡剤としてZr、Si及
びAlから選ばれる少なくとも1種以上を金属、炭化物又
は窒化物の状態で1〜5重量%含ませ、溶融した後、鋳
造、徐冷することを特徴とするものである。
In addition, the method for producing a porous high zirconia cast refractory of the present invention comprises, in a high zirconia raw material, at least one or more selected from Zr, Si and Al as a foaming agent in a metal, carbide or nitride state. It is characterized by containing 5% by weight, melting and then casting and gradually cooling.

上記高ジルコニア系原料は、上記発泡剤の配合、溶
融、鋳造後に該発泡剤の全量が酸化物に変換されると仮
定して、前記耐火物の組成範囲となるような組成のもの
を用いることが望ましい。
The high zirconia-based raw material should have a composition that falls within the composition range of the refractory, assuming that the entire amount of the blowing agent is converted into an oxide after blending, melting, and casting the blowing agent. Is desirable.

上記発泡剤としてZr、Si及びAlの炭化物又は窒化物と
しては、例えばZrC、SiC、AlC、Zr3N4、Si3N4、AlN等を
挙げることができる。Zr、Si及びAlの金属又はこれらの
化合物は、いずれも微粉状のものを前記原料に混合する
ことが望ましい。
Zr, SiC, AlC, Zr 3 N 4 , Si 3 N 4 , AlN and the like can be given as examples of the above-mentioned foaming agents as carbides or nitrides of Zr, Si and Al. It is desirable that the metal of Zr, Si, and Al or a compound of any of these be mixed in the form of fine powder in the raw material.

上記発泡剤の配合量の限定した理由は、その配合量が
1重量%未満にすると前記気孔率の耐火物を製造するこ
とができない。一方、その配合量が5重量%を越えると
溶融時のガス発生が多くなり過ぎて溶融物の温度が上昇
せず、その結果溶融物の鋳型への流し込みに際しての流
動性が悪化して成形性が低下するばかりか、均一な径の
気孔を均一に分散させることができなくなる。
The reason for limiting the amount of the foaming agent is that if the amount is less than 1% by weight, a refractory having the above porosity cannot be produced. On the other hand, if the compounding amount exceeds 5% by weight, the amount of gas generated during melting becomes too large and the temperature of the melt does not rise. As a result, the flowability at the time of pouring the melt into the mold deteriorates and the moldability increases. Not only is reduced, but also pores having a uniform diameter cannot be uniformly dispersed.

上記発泡剤は、前記耐火物原料に最初から混ぜて使用
してもよいし、一部の原料に高濃度に混ぜて溶融の最終
段階で使用したり、或いは鋳型の中に予め設置しておい
て鋳込時に発泡剤を含有させるようにしてもよい。但
し、一般的には原料に発泡剤を全量混合して使用する方
が微細で一定した気孔を耐火物に形成できるために好ま
しい。
The foaming agent may be used by mixing it with the refractory raw material from the beginning, or may be mixed with some raw materials at a high concentration and used in the final stage of melting, or may be previously set in a mold. Then, a foaming agent may be contained at the time of casting. However, in general, it is preferable to use the raw material in which the foaming agent is mixed in its entirety because fine and uniform pores can be formed in the refractory.

上記溶融は、例えばアーク式弧光炉でカーボン電極を
用いる方法を採用し得る。この溶融温度は、2400〜2600
℃の範囲とすることが望ましい。
For the melting, for example, a method using a carbon electrode in an arc-type arc light furnace can be adopted. This melting temperature is 2400-2600
It is desirable to be in the range of ° C.

(作用) 本発明によれば、80〜98重量%のZrO2を含有し、かつ
内部に均一に分散した気孔が所定の割合で形成されてい
る共に、これら気孔のうち直径0.5〜2mmの範囲の微細な
気孔の比率が全気孔に対して70%以上占める構成とする
ことによって、アルカリ蒸気に対する耐蝕性を十分に有
し、かつ軽量で耐スポーリング抵抗に優れ、更に発汗現
象を示さない多孔質高ジルコニア系鋳造耐火物を得るこ
とができる。
(Action) According to the present invention, pores containing 80 to 98% by weight of ZrO 2 and uniformly dispersed therein are formed at a predetermined ratio, and the pores have a diameter of 0.5 to 2 mm. By having a structure in which the ratio of fine pores accounts for 70% or more of the total pores, it has sufficient corrosion resistance to alkali vapor, is lightweight, has excellent spalling resistance, and has no perspiration. High quality zirconia cast refractories can be obtained.

また、本発明方法によれば高ジルコニア系原料に、発
泡剤としてZr、Si及びAlから選ばれる少なくとも1種以
上を金属、炭化物又は窒化物の状態で1〜5重量%含ま
せ、溶融した後、鋳造、徐冷すること既述した微細な気
孔を有し、優れた特性を持つ多孔質高ジルコニア系鋳造
耐火物を簡単な工程で製造できる。
Further, according to the method of the present invention, the high zirconia-based raw material contains at least one or more selected from Zr, Si and Al as a foaming agent in a metal, carbide or nitride state in an amount of 1 to 5% by weight, and after melting. Casting and slow cooling A porous high zirconia cast refractory having fine pores and excellent characteristics as described above can be manufactured by a simple process.

即ち、従来より溶融物中に気泡を形成させる方法とし
ては各種の炭酸塩、硝酸塩、硫酸塩などを原料に添加
し、これらを加熱分解して溶融物中に炭酸ガスや窒素ガ
ス、亜硫酸ガスの泡を発生させる方法が知られている。
例えば、前記各種の塩はガラス工業における溶融ガラス
の清澄剤として広く用いられている。しかしながら、こ
れらの添加物によって発生した泡は高温状態で溶融ガラ
スから全て抜け切ってしまう。清澄作用は、かかる性質
を利用したものであり、溶融物中に多量の泡を残存させ
ることは困難である。
That is, conventionally, as a method for forming bubbles in the melt, various carbonates, nitrates, sulfates, and the like are added to the raw material, and these are heated and decomposed to form carbon dioxide, nitrogen gas, and sulfurous gas in the melt. Methods for generating bubbles are known.
For example, the various salts are widely used as fining agents for molten glass in the glass industry. However, all the bubbles generated by these additives escape from the molten glass at a high temperature. The fining action utilizes such a property, and it is difficult to leave a large amount of bubbles in the melt.

また、過酸化物や水酸化物なども気泡を生成させるこ
とが知られているが、生成した気泡は比較的大きくなり
易く耐火物中には気孔率にして5%以上残存させること
が困難である。
It is also known that peroxides and hydroxides also generate air bubbles, but the air bubbles generated are relatively large and it is difficult to leave 5% or more of the porosity in the refractory. is there.

このようなことから、本発明では高ジルコニア系原料
に発泡剤としてZr、Si及びAlから選ばれる少なくとも1
種以上を金属、炭化物又は窒化物の状態で所定量含ま
せ、溶融することによって、高ジルコニア溶融物中に大
量の泡を発生できると共に、高温の溶融においても泡が
抜け難くできる。前記泡は、直径が小さく(0.2〜2mm)
から揃っており、組織中に均一に分散し、更に発泡の再
現性にも優れているため、既述した微細かつ多量の気孔
を有する多孔質高ジルコニア系鋳造耐火物をできる。
For this reason, in the present invention, at least one selected from Zr, Si and Al as a foaming agent is added to the high zirconia-based raw material.
By incorporating a predetermined amount or more in the form of a metal, carbide or nitride in a state of metal and carbide and melting, a large amount of bubbles can be generated in the high zirconia melt, and bubbles can be hardly removed even at high temperature. The foam has a small diameter (0.2-2mm)
, Are uniformly dispersed in the structure, and are also excellent in reproducibility of foaming, so that the above-mentioned porous high zirconia-based cast refractory having fine and numerous pores can be obtained.

具体的には、前記発泡剤を含む原料が溶融し始めるに
伴って泡が発生する。この泡は、溶融工程中で少しずつ
溶融物から抜けていく傾向にあるが、大部分は残留す
る。これは、発生する泡が極めて微細であること、泡を
生成するためのガス成分に由来するものと考えられる。
こうした発泡剤の発泡機構は不明な点が多い。しかし、
本発明者らの研究によれば溶融物の中に多量に発生する
泡成分が酸素である可能性が強いこと、前記発泡現象が
ジルコニア含有量の多い組成について観察されること、
溶融物の色は僅かに還元状態を示す淡灰色であること等
が観察された。このような事実から推定すると、添加さ
れた発泡剤は高温で分解され、ZrO2に作用してZrO2を還
元しながら酸素を発生させて前述した大量かつ微細な泡
を生成し、発泡剤そのものも最終的に酸化された状態で
耐火物の構成物に加わるものと考えられる。
Specifically, foam is generated as the raw material containing the foaming agent starts to melt. This foam tends to escape from the melt little by little during the melting process, but largely remains. This is considered to be due to the fact that the generated bubbles are extremely fine and a gas component for generating the bubbles.
The foaming mechanism of such a foaming agent has many unclear points. But,
According to the study of the present inventors, it is highly possible that the foam component generated in the melt in a large amount is oxygen, and that the foaming phenomenon is observed for a composition having a high zirconia content,
It was observed that the color of the melt was light gray indicating a slightly reduced state. Extrapolating such facts, the added blowing agent is decomposed at high temperature, to generate oxygen while reducing the ZrO 2 act on ZrO 2 generates a large amount and fine bubbles described above, the blowing agent itself It is believed that the oxidized state also finally joins the components of the refractory in an oxidized state.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Hereinafter, an example of the present invention will be described in detail.

実施例1〜10及び比較例1〜6 ZrO2原料として高純度ジルコニアを、SiO2原料として
フラッタリーサンドを、Al2O3原料としてバイヤー法ア
ルミナを、その他の発泡剤等の原料は試薬を用い、下記
第1表に示す組成となるように夫々100kgになるように
配合し、これらをミキサーで十分混合して16種の原料組
成物を調製した。
Examples 1 to 10 and Comparative Examples 1 to 6 High-purity zirconia as a ZrO 2 raw material, flattery sand as a SiO 2 raw material, Bayer method alumina as an Al 2 O 3 raw material, and other raw materials such as a foaming agent as reagents Each of them was blended so as to have a composition shown in Table 1 below so as to have a weight of 100 kg, and these were sufficiently mixed with a mixer to prepare 16 kinds of raw material compositions.

次いで、前記各原料を300kVAのアーク炉内にてカーボ
ン電極を用いて2500℃に溶融した後、溶融物をカーボン
製鋳型に鋳造し、徐冷することにより16種のジルコニア
系鋳造耐火物を製造した。
Next, after melting each raw material at 2500 ° C. using a carbon electrode in a 300 kVA arc furnace, the molten material was cast into a carbon mold, and gradually cooled to produce 16 types of zirconia cast refractories. did.

得られた実施例1〜10及び比較例1〜6の各鋳造耐火
物について、気孔率、気孔の分布、スポーリング抵抗、
発汗性及び耐蝕性を調べた。その結果を下記第1表に併
記した。第1表中の比較例5は、公知のAZS系鋳造耐火
物、比較例6は公知の高ジルコニア系鋳造耐火物。な
お、各種の物性は以下に示す方法により測定した。ま
た、比較例の鋳造耐火物の一部には引巣を伴う組成もあ
るが、物性試験を行う部分は引巣以外の部分について行
った。
For each of the cast refractories of Examples 1 to 10 and Comparative Examples 1 to 6, porosity, pore distribution, spalling resistance,
The perspiration and corrosion resistance were examined. The results are shown in Table 1 below. Comparative Example 5 in Table 1 is a known AZS-based cast refractory, and Comparative Example 6 is a known high zirconia-based cast refractory. In addition, various physical properties were measured by the following methods. In addition, some of the cast refractories of the comparative examples have a composition with a burrow, but the physical properties test was performed on a portion other than the burrow.

.気孔率 各鋳造耐火物を代表する10箇所以上の部分から、それ
ぞれ30×30×60mmの大きさの試験片を1個ずつ切り出
し、JIS R 2205に従って見掛け気孔率を求め、その平均
値から算出した。
. Porosity From 10 or more parts representing each cast refractory, one test piece of 30 × 30 × 60 mm was cut out, and apparent porosity was calculated according to JIS R 2205, and calculated from the average value. .

.気孔の分布 各鋳造耐火物を代表する10箇所以上の部分から、それ
ぞれ10×10×10mmの大きさのサイコロ状試験片を1個ず
つ切り出し、その任意の一面をダイヤモンドで研磨し、
鏡面とし、これをスケール付き顕微鏡にて0.1mm毎の気
孔分布を10視野についてカウントする。10個の試験片の
平均値から気孔分布の割合を算出した。
. Pore distribution From 10 or more parts representing each cast refractory, cut out a dice-shaped test piece of 10 × 10 × 10 mm in size, and polished any one surface with diamond,
Using a mirror with a scale, the pore distribution at every 0.1 mm is counted for 10 visual fields. The ratio of the pore distribution was calculated from the average value of ten test pieces.

.スポーリング抵抗 各鋳造耐火物からそれぞれ30×30×60mmの大きさの試
験片を切り出し、該試験片を1200℃の炉内に入れ、15分
間保持した後、炉外に取出し水中で30分間急冷させる操
作を繰り返し、剥離を生じるまでのサイクルを回数とし
てスポーリング抵抗を評価した。
. Spalling resistance A test piece of 30 × 30 × 60 mm was cut out from each cast refractory, and the test piece was put in a furnace at 1200 ° C., kept for 15 minutes, taken out of the furnace, and rapidly cooled in water for 30 minutes. The spalling resistance was evaluated with the number of cycles until peeling occurred as the number of cycles.

.発汗性 各鋳造耐火物からそれぞれ直径20mm、長さ80mmの大き
さのコアをダイヤモンドドリルで抜き出し、このコアを
1600℃の炉内で4時間加熱した後取出し、コア表面を目
視検査してガラス相の滲出の有無から発汗性を評価し
た。
. Sweating property A core with a diameter of 20 mm and a length of 80 mm is extracted from each cast refractory with a diamond drill, and this core is removed.
After heating in a furnace at 1600 ° C. for 4 hours, the core was taken out, and the surface of the core was visually inspected to evaluate the sweating ability based on whether or not the glass phase had leached.

.耐蝕性 各鋳造耐火物からそれぞれ10×80×80mmの大きさの試
験片を切り出し、この試験片を内径50mm、深さ50mmの東
芝モノフラックス製のルツボにソーダライムガラス:ソ
ーダを1:1に混合したアルカリ源と共に収納し、蓋を被
せた後、1500℃の炉内で72時間保持する。なお、前記ア
ルカリ源は原則として12時間置きに補給する。前記炉内
での加熱後、試験片を半切りにして浸蝕量(深さ)をノ
ギスで測定して耐蝕性を評価した。
. Corrosion resistance A test piece with a size of 10 x 80 x 80 mm is cut out from each cast refractory, and this test piece is placed in a Toshiba Monoflux crucible with an inner diameter of 50 mm and a depth of 50 mm in a soda lime glass: soda ratio of 1: 1. After storing together with the mixed alkali source and covering with a lid, it is kept in a furnace at 1500 ° C. for 72 hours. In addition, the said alkali source is replenished in principle every 12 hours. After heating in the furnace, the test piece was cut in half and the amount of erosion (depth) was measured with a caliper to evaluate the corrosion resistance.

上記第1表から明らかなように本実施例1〜10の鋳造
耐火物は、いずれもZrO2含有量が80重量%以上の組成を
有し、かつ気孔率が5〜40%の範囲で気孔の分布状態も
均一であり、更に直径0.2〜2mmの大きさの気孔が全体の
70%以上であり、スポーリング抵抗については10回以上
耐え、アルカリ蒸気に対する耐蝕性も0.5mm程度で良好
な特性を有し、しかも発汗性はいずれも認められないこ
とがわかる。
As is clear from Table 1 above, all of the cast refractories of Examples 1 to 10 have a composition having a ZrO 2 content of 80% by weight or more and a porosity of 5 to 40%. Distribution is uniform, and pores with a diameter of 0.2 to 2 mm
70% or more, withstands spalling resistance of 10 times or more, has a good corrosion resistance to alkali vapor of about 0.5 mm, and has no perspiration.

これに対し、比較例1、3の鋳造耐火物はZrO2含有量
が80重量%以上と高く、使用した発泡剤も本実施例と同
じであるが、その量が5重量%を越えるため、気孔状態
やスポーリング抵抗についは満足するものの、耐蝕性が
1mm以上と大きく満足する値を有するものではない。
On the other hand, the cast refractories of Comparative Examples 1 and 3 had a high ZrO 2 content of 80% by weight or more, and the blowing agent used was the same as that of the present example, but the amount exceeded 5% by weight. Satisfies pore condition and spalling resistance, but corrosion resistance
It does not have a value of 1 mm or more, which is a satisfactory value.

比較例2の鋳造耐火物は、発泡剤の種類が本実施例の
ものと異なるため、気孔率が5.2%と極めて低く、スポ
ーリング抵抗が低くなっている。
The cast refractory of Comparative Example 2 had a very low porosity of 5.2% and a low spalling resistance because the type of the foaming agent was different from that of this example.

比較例4、6の鋳造耐火物は、ZrO2含有量が80重量%
以上と高いが、原料中に発泡剤を全く配合していない
か、1%未満しか配合されていないため、スポーリング
抵抗において不満足であった。
The cast refractories of Comparative Examples 4 and 6 had a ZrO 2 content of 80% by weight.
Although the above was high, the foaming agent was not blended in the raw material at all, or less than 1% was blended, so that the spalling resistance was unsatisfactory.

比較例5の鋳造耐火物は、ZrO2含有量が34重量%と低
いため、スポーリング抵抗が低く、発汗性の点でも問題
があった。
Since the cast refractory of Comparative Example 5 had a low ZrO 2 content of 34% by weight, it had low spalling resistance and also had problems in sweating.

[発明の効果] 以上詳述した如く、本発明によれば内部に微細で多量
の気孔を均一に分布して有することから、発汗性、アル
カリ蒸気に対する耐蝕性を損なうことなく、軽量性、ス
ポーリング抵抗が著しく高められ、ガラス溶融炉の上部
構造、その他超高温炉の内側ライニング材等に好適な多
孔質高ジルコニア系鋳造耐火物、並びにかかる耐火物を
簡単な工程で安価に製造し得る方法を提供できる。
[Effects of the Invention] As described in detail above, according to the present invention, since a large amount of fine pores are uniformly distributed inside, lightness and smoothness are maintained without impairing sweating properties and corrosion resistance to alkali vapor. Poring resistance is remarkably increased, and a porous high zirconia cast refractory suitable for the upper structure of a glass melting furnace, an inner lining material of an ultra-high temperature furnace, and the like, and a method for manufacturing such a refractory in a simple process at a low cost. Can be provided.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−52215(JP,A) 特開 昭49−69705(JP,A) 特開 昭49−74209(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-53-52215 (JP, A) JP-A-49-69705 (JP, A) JP-A-49-74209 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】80〜98重量%のZrO2を含有し、かつ内部に
均一に分散した気孔が15〜40%形成されている共に、こ
れら気孔のうち直径0.2〜2mmの範囲にあるものの比率が
全気孔に対して70%以上占めることを特徴とする多孔質
高ジルコニア系鋳造耐火物。
1. A ratio of pores containing 80 to 98% by weight of ZrO 2 and having uniformly distributed therein 15 to 40% of pores and having a diameter of 0.2 to 2 mm among these pores. Is a porous high zirconia cast refractory characterized by having at least 70% of all pores.
【請求項2】高ジルコニア系原料に、発泡剤としてZr、
Si及びAlから選ばれる少なくとも1種以上を金属、炭化
物又は窒化物の状態で1〜5重量%含ませ、溶融した
後、鋳造、徐冷することを特徴とする多孔質高ジルコニ
ア系鋳造耐火物の製造方法。
2. A high zirconia-based raw material, Zr as a foaming agent,
A porous high zirconia cast refractory characterized in that at least one selected from Si and Al is contained in a metal, carbide or nitride state in an amount of 1 to 5% by weight, melted, cast and gradually cooled. Manufacturing method.
JP2002548A 1990-01-11 1990-01-11 Porous high zirconia cast refractory and method for producing the same Expired - Lifetime JP2604047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002548A JP2604047B2 (en) 1990-01-11 1990-01-11 Porous high zirconia cast refractory and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002548A JP2604047B2 (en) 1990-01-11 1990-01-11 Porous high zirconia cast refractory and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03208869A JPH03208869A (en) 1991-09-12
JP2604047B2 true JP2604047B2 (en) 1997-04-23

Family

ID=11532434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002548A Expired - Lifetime JP2604047B2 (en) 1990-01-11 1990-01-11 Porous high zirconia cast refractory and method for producing the same

Country Status (1)

Country Link
JP (1) JP2604047B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170139656A (en) 2015-04-24 2017-12-19 코닝 인코포레이티드 Combined zirconia refractories and methods for making same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969705A (en) * 1972-10-26 1974-07-05
JPS4974209A (en) * 1972-11-17 1974-07-17
JPS5352215A (en) * 1976-10-25 1978-05-12 Toshiba Tungaloy Co Ltd Machine parts consisting of hard porous sintered product and process for production thereof

Also Published As

Publication number Publication date
JPH03208869A (en) 1991-09-12

Similar Documents

Publication Publication Date Title
JP4917235B2 (en) Porous high alumina fusion cast refractory and method for producing the same
JP3009705B2 (en) Chromium oxide refractories with improved thermal shock resistance
JP2604047B2 (en) Porous high zirconia cast refractory and method for producing the same
JPH09202667A (en) Castable refractory for slide gate
US3181958A (en) Refractory composition
JP2942061B2 (en) Alumina-zirconia electroformed refractories
JPS6119584B2 (en)
US2196075A (en) Refractory and method of making it
JP3095919B2 (en) High zirconia cast refractories
JPS6342529B2 (en)
JP3536886B2 (en) Method for producing porous refractory for gas-blown porous plug
JP3383185B2 (en) Nozzle for casting
JPH10130053A (en) Refractory for casting, nozzle for continuous casting and production thereof
JP3026640B2 (en) Zirconia material added basic pouring material
JP2005144462A (en) Immersion nozzle for continuous casting, and its manufacturing method
JP4312628B2 (en) Stopper for continuous casting of steel
JP2005152928A (en) Immersion nozzle for continuous casting and its producing method
JP4231164B2 (en) Porous plug
JP4275384B2 (en) Low carbon high zirconia electroformed refractory and method for producing the same
JP2971824B2 (en) High corrosion resistance refractory
JPH10158072A (en) Magnesia-carbon castable refractory and its applied body
JP2004323265A (en) Refractory for continuous casting, which inhibits sticking of alumina
JPH09132455A (en) Zirconia-base refractory and its production
KR20010073799A (en) digestion nozzle for continous casting
GB2131791A (en) Carbon-containing refractory

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 13

EXPY Cancellation because of completion of term