JP3521778B2 - Operating method of membrane deaerator - Google Patents
Operating method of membrane deaeratorInfo
- Publication number
- JP3521778B2 JP3521778B2 JP36492598A JP36492598A JP3521778B2 JP 3521778 B2 JP3521778 B2 JP 3521778B2 JP 36492598 A JP36492598 A JP 36492598A JP 36492598 A JP36492598 A JP 36492598A JP 3521778 B2 JP3521778 B2 JP 3521778B2
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- water
- fiber membrane
- membrane
- deaerator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Degasification And Air Bubble Elimination (AREA)
- Physical Water Treatments (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は膜脱気装置の運転方
法に係り、特に、装置の運転停止中における中空糸膜内
の凝縮水の発生を防止し、通水脱気工程再開時の装置の
立ち上りを速め、効率的な脱気処理を行う方法に関す
る。
【0002】
【従来の技術】食品、医薬・製薬用水の脱酸素水の製
造、ボイラー給水用の脱酸素水の製造、ビル・マンショ
ン用上水の赤水防止、電子産業向け超純水の脱酸素処
理、電力向けコンデンセートの脱酸素及び脱炭酸処理、
一般水処理、純水の脱炭酸処理など、幅広い分野におい
て、水中の溶存酸素(DO)や炭酸ガスの除去が必要と
されており、このための脱気手段として、近年、装置の
小型化、処理コストの低減等の利点から、外圧型中空糸
膜脱気装置が用いられるようになってきている。
【0003】外圧型中空糸膜脱気装置は、一般に、中空
糸膜をケーシング内に装填し、脱気処理される原水を中
空糸膜の外側に流し、中空糸膜の内部を減圧して、原水
中から中空糸膜の微小ポアを通過して中空糸膜内に抽気
される酸素、炭酸ガス、水蒸気等の気体を除去し、処理
水(脱気した水)を取り出す構成とされている。
【0004】以下に、図1を参照して外圧型中空糸膜脱
気装置における脱気処理方法を説明する。
【0005】通水脱気工程においては、弁V1,V2を
開、給水ポンプP1を作動させて、原水を原水タンク1
から膜脱気装置2に給水し、脱気処理水を処理水タンク
3に受ける。この膜脱気装置2は、弁V4を開としてス
イープガスとしてN2ガスを中空糸膜内に流すと共に、
水封式の真空ポンプP2を起動させて中空糸膜内を真空
状態に保つことにより、中空糸膜の外側を流れる原水中
の溶存気体を抽気するものである。なお、図1中、V5
は逆止弁、4は封水タンクである。また、V3は、装置
の運転開始時において、十分に脱気が行われていない処
理水を採水せずに、排水として排出するための排水弁で
ある。
【0006】特開平8−206407号公報において
は、このような外圧型中空糸膜脱気装置において、通水
脱気工程中に原水側から中空糸膜の内側に水が漏出し、
中空糸膜内に水滴が付着して脱気効率を低下させるとい
う問題を解決するために、中空糸膜内の滞留水を除去す
るための給気装置を設けることが記載されている。この
特開平8−206407号公報に記載される膜脱気装置
では、間欠的に中空糸膜内に給気を行うことで脈動を与
え、中空糸膜内の滞留水に給気圧力の衝撃を反復して加
えることでこの滞留水を効率的に除去する。
【0007】
【発明が解決しようとする課題】このような外圧型中空
糸膜脱気装置は常時運転が継続されるものではなく、処
理水タンク3が満水状態の場合には、給水ポンプP1の
作動は停止し、脱気処理を停止する。また、夜間や週末
においても、運転は停止される。
【0008】しかし、このような運転停止後の運転再開
時において、脱気効率が悪く、十分な脱気処理水を得る
までの装置立ち上りに長時間を要するという問題があっ
た。
【0009】例えば、初期の運転では運転開始後数分で
DO=10μg/L以下の低DO濃度の処理水が得られ
る膜脱気装置であっても、長時間運転を停止して(例え
ば3時間以上停止)から起動させる運転方法を数回繰り
返すと、運転再開後、処理水中のDOの低下速度が非常
に遅い場合があり、通水再開時間40分経過しても処理
水のDOは20μg/L以上であり、DO=10μg/
L以下とするのに2時間も要する場合がある。
【0010】本発明は上記従来の問題点を解決し、外圧
型中空糸膜脱気装置の運転停止後、運転再開時の装置の
立ち上りを速め、効率的な脱気処理を行うことができる
膜脱気装置の運転方法を提供することを目的とする。
【0011】
【課題を解決するための手段】本発明の膜脱気装置の運
転方法は、中空糸膜内部が、該中空糸膜に接続された真
空ポンプにより減圧される外圧型中空糸膜脱気装置の運
転方法において、通水脱気工程を停止した後に該中空糸
膜内部に不活性ガスを供給する真空解消工程と、通水脱
気工程の再開前に該中空糸膜内に不活性ガスを供給して
前記真空ポンプで吸引する凝縮水除去工程とを設けたこ
とを特徴とする。
【0012】本発明者らは、外圧型中空糸膜脱気装置の
運転停止後、運転再開時の脱気効率の低下の問題につい
て鋭意検討した結果、この原因は、運転停止中に中空糸
膜内に凝縮水が発生し、この凝縮水が中空糸膜内に存在
することで、脱気に関与する膜面積が低減し、中空糸膜
が脱気に有効に利用されなくなることにあることを知見
した。
【0013】即ち、従来においては、運転停止に当って
は、単に給水ポンプP1及び真空ポンプP2を停止する
のみであるため、図2(b)に示す如く、中空糸膜10
の内側は真空状態であり、中空糸膜10の外側の水に押
圧され中空糸膜10が内側へ膨出した状態となる。そし
て、この膨出部10Aにおいては、液相Lから中空糸膜
10内側へ水が浸出して凝縮水が溜まり易く、この凝縮
水が運転再開時の脱気を阻害する。運転を継続し、中空
糸膜内を真空ポンプで真空にすると共に、或いは更にス
イープガスを供給することにより、この凝縮水が押し出
されると共に、吸引除去され、脱気効率が回復してくる
が、この凝縮水の押し出しによる脱気効率の回復には、
長期間を要することとなる。
【0014】本発明では、運転停止に当って、中空糸膜
内に不活性ガスを供給して真空を解除し、その後装置を
完全停止するため、図2(a)に示す如く、中空糸膜1
0は正常な形状を維持することができ、凝縮水が溜まり
難い。また、運転停止期間中に、中空糸膜10内の不活
性ガスが液相L側へ移動して飽和溶存し、運転再開時に
は、この液相L側に移動した不活性ガスが再び中空糸膜
を透過して真空ポンプで吸気されることで膜のガス移動
量が増える。このため、運転停止中に中空糸膜内に凝縮
水が発生した場合でも、運転再開時に多量のガスが移動
することで、凝縮水を容易に除去することができるよう
になる。
【0015】更に、このように、運転停止中に中空糸膜
内を不活性ガス雰囲気とすることで、好気性菌の発生を
抑制するという効果も得られる。
【0016】
【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
【0017】図1は本発明の実施の形態を示す外圧型中
空糸膜脱気装置の系統図である。なお、図1では、不活
性ガスとしてN2ガスを用いる場合を例示するが、N2
ガス以外の不活性ガス、例えば炭酸ガス、Heガス、N
eガス等を用いても良い。
【0018】この外圧型中空糸膜脱気装置において、通
水脱気工程においては、弁V1,V2開、弁V3閉とし
て、原水タンク1の原水を給水ポンプP1で膜脱気装置
2に供給し、真空ポンプP2による吸引で脱気処理し、
脱気処理水を処理水タンク3に受ける。なお、スィープ
ガスとしてN2ガスを流す場合には、弁V4を開とし
て、N2ガスを供給する。
【0019】一般に、この通水脱気工程における中空糸
膜内の真空度は30〜100Torrとされる。
【0020】通水脱気工程を終了し、装置の運転を停止
するに当っては、給水ポンプP1を停止し、弁V1,V
2を閉とすると共に、弁V4開でN2ガスを中空糸膜内
に供給して、中空糸膜内の真空を解消する。この際、中
空糸膜内の真空が解消されれば良く、真空ポンプP2は
作動していても停止していても良い。真空ポンプP2を
停止した場合には、N2ガスの供給は、最低、中空糸膜
内の気相側容積分でよく、N2ガス供給量が少なくて足
りるという利点がある。
【0021】所定時間N2ガスを供給して中空糸膜内の
真空を解除した後は、すべての弁を閉とし、ポンプ
P1,P2を停止して装置の運転を停止する。
【0022】これにより、前述の如く、中空糸膜の形状
が適正に維持され、運転停止期間中に中空糸膜内に凝縮
水が発生することが防止される。
【0023】運転停止後の運転再開に当っては、ポンプ
P1,P2を作動させて原水を膜脱気装置2に供給して
脱気を行うが、この運転再開初期に当っては、十分に脱
気が行われていない処理水が排出されるため、弁V
2閉,弁V3開として、このような水質の劣る処理水を
処理水タンク3に採水することなく、系外へ排出する。
そして、膜脱気装置2の脱気効率が十分に回復し、良好
な水質の処理水が得られるようになった後、弁V3閉,
弁V2開として処理水の採水を再開する。
【0024】本発明では、前述の如く、運転停止期間中
の中空糸膜内の凝縮水の発生が防止され、また、凝縮水
の発生があった場合でも、運転再開に当り、この凝縮水
が円滑に中空糸膜外へ排出されるため、装置の立ち上げ
時に、処理水を排水する期間を従来に比べて大幅に短縮
することができ、早期に処理水の採水を再開することが
できる。
【0025】なお、この運転の再開に当っては、原水の
通水を行う前に、ポンプP1停止、ポンプP2作動、弁
V1,V2,V3閉、弁V4開として、N2ガスを中空
糸膜内に供給して真空ポンプP2で吸引することによ
り、中空糸膜内の凝縮水を押し出して除去した後、原水
の通水を再開するため、より一層装置の立ち上りを速く
することができる。
【0026】
【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。なお、実施例及び比較例におい
て、DOの測定にはオービスフェア・ラボラトリーズ・
インコーポレイテッド社製DO計「MOCA3600」
を用いた。
【0027】実施例1〜4、比較例1図1に示す外圧型
中空糸膜脱気装置により、本発明の運転方法に従って、
脱気処理を行った。
【0028】なお、用いた膜脱気装置及び運転条件は次
の通りである。
使用膜 :セルガート(株)製 リキ・セル膜,直
径10インチ
使用本数 :3本直列
通水温度 :20℃
スィープガス:99.995%N2
到達真空度 :60Torr
通水量 :25m3/hr
【0029】即ち、通水脱気工程終了後、N2ガスを3
0NL/minで1分間供給し、中空糸膜内の真空状態
を解消した後14時間運転を停止した。その後、凝縮水
除去工程を表1に示す通り実施例1〜3及び比較例1で
変化させて、通水脱気処理を再開した。
【0030】その結果、処理水DOは、表2に示す通り
通水再開後、数分以内に10ppb以下で安定し、採水
を再開することができたが、特に凝縮水除去工程を行っ
た実施例1〜3ではDOが早期に低減した。
【0031】なお、表1において、○はバルブの開又は
ポンプの作動を示し、×はバルブの閉又はポンプの停止
を示す。
【0032】比較例2,3比較例1において、通水脱気
工程終了後、N2ガスの供給を行わず、中空糸膜内の真
空を保ったまま14時間運転を停止した。その後、凝縮
水除去工程を表1に示す通り、比較例2,3で変化させ
て、通水脱気処理を再開したところ、表2の通り、比較
例1では通水再開後40秒後に処理水のDOは最高18
0ppbに達し、20ppbを下回るまでに40分を要
した。さらに、処理水のDOが10ppbを下回るのに
100分を要し、長い立ち上げ運転を必要とした。同様
に、比較例2では処理水のDOが20ppbを下回るま
でに15分を要し、10ppbを下回るのに40分を要
した。
【0033】
【表1】【0034】
【表2】
【0035】
【発明の効果】以上詳述した通り、本発明の膜脱気装置
の運転方法によれば、外圧型中空糸膜脱気装置の運転停
止中の中空糸膜内の凝縮水の発生を防止することがで
き、また、中空糸膜内に凝縮水が発生した場合であって
も、運転再開時においては、これを効率的に除去するこ
とができるため、運転再開後の装置の立ち上りを速めて
効率的な脱気処理を行える。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a membrane deaerator, and more particularly to a method for preventing the generation of condensed water in a hollow fiber membrane while the apparatus is stopped. The present invention relates to a method for speeding up the start-up of the apparatus at the time of restarting the flow-through deaeration step and performing an efficient deaeration process. [0002] Production of deoxidized water for food, pharmaceutical and pharmaceutical water, production of deoxygenated water for boiler water supply, prevention of red water from clean water for buildings and condominiums, deoxygenation of ultrapure water for the electronics industry Treatment, deoxygenation and decarboxylation of condensate for electric power,
2. Description of the Related Art In a wide range of fields such as general water treatment and decarbonation treatment of pure water, it is necessary to remove dissolved oxygen (DO) and carbon dioxide gas in water. External pressure type hollow fiber membrane deaerators have come to be used due to advantages such as reduction in processing cost. In general, an external pressure type hollow fiber membrane deaerator is loaded with a hollow fiber membrane in a casing, raw water to be degassed is flown outside the hollow fiber membrane, and the inside of the hollow fiber membrane is depressurized. Gases such as oxygen, carbon dioxide, water vapor, etc. extracted from the raw water through the micropores of the hollow fiber membrane into the hollow fiber membrane are removed, and the treated water (degassed water) is taken out. Hereinafter, a degassing method in an external pressure type hollow fiber membrane deaerator will be described with reference to FIG. [0005] In the flow deaeration step, the valves V 1 and V 2 are opened, the feed water pump P 1 is operated, and the raw water is supplied to the raw water tank 1.
The water is supplied to the membrane deaerator 2 from the above, and the deaerated treated water is received in the treated water tank 3. This membrane deaerator 2 opens the valve V 4 and flows N 2 gas as a sweep gas into the hollow fiber membrane,
By keeping the hollow fiber membrane in a vacuum state by activating the vacuum pump P 2 of CAES is for bleeding the raw water dissolved gas flowing outside the hollow fiber membrane. In FIG. 1, V 5
Is a check valve, and 4 is a sealing tank. Also, V 3, at the time of start of operation of the apparatus, without water sampling the treated water sufficiently degassing is not performed, a drain valve for draining the waste water. [0006] In Japanese Patent Application Laid-Open No. 8-206407, in such an external pressure type hollow fiber membrane deaerator, water leaks from the raw water side to the inside of the hollow fiber membrane during the water deaeration step,
In order to solve the problem that water drops adhere to the inside of the hollow fiber membrane to lower the degassing efficiency, it is described that an air supply device for removing water remaining in the hollow fiber membrane is provided. In the membrane deaerator described in Japanese Patent Application Laid-Open No. 8-206407, pulsation is given by intermittently supplying air into the hollow fiber membrane, and the impact of the supply pressure on the water retained in the hollow fiber membrane is produced. This retentive water is efficiently removed by repeated addition. [0007] Such an external pressure type hollow fiber membrane deaerator does not always operate, and when the treated water tank 3 is full, the water supply pump P 1 is not used. Stops, and the deaeration process is stopped. The driving is also stopped at night or on weekends. However, when the operation is restarted after the operation is stopped, the efficiency of deaeration is poor, and there is a problem that it takes a long time to start up the apparatus until sufficient deaerated water is obtained. For example, in the initial operation, even if the membrane deaerator can obtain treated water having a low DO concentration of DO = 10 μg / L or less within a few minutes after the start of operation, the operation is stopped for a long time (for example, 3 minutes). If the operation method of starting from (stop for more than time) is repeated several times, after the operation is restarted, the rate of reduction of DO in the treated water may be extremely slow, and even after 40 minutes of resumption of water flow, the DO of treated water is 20 μg. / L or more, DO = 10 μg /
It may take as long as two hours to make L or less. The present invention solves the above-mentioned conventional problems, and makes it possible to accelerate the start-up of the external pressure type hollow fiber membrane deaerator after the operation is stopped and then restart the operation, thereby performing an efficient deaeration treatment. An object of the present invention is to provide a method for operating a deaerator. [0011] The method for operating a membrane deaerator according to the present invention is characterized in that the inside of the hollow fiber membrane is connected to the hollow fiber membrane.
Method of operating a external pressure-type hollow fiber membrane degassing unit is depressurized by the air pump, and as the vacuum solve engineering supplying hollow fiber membranes inside the inert gas after stopping the water flow degassing step, water passing de
Before restarting the gas process, supply an inert gas into the hollow fiber membrane.
A step of removing condensed water sucked by the vacuum pump . The present inventors have conducted intensive studies on the problem of a decrease in the deaeration efficiency when the operation of the external pressure type hollow fiber membrane deaerator is stopped after the operation thereof is stopped. Condensed water is generated inside the hollow fiber membrane, and the condensed water is present in the hollow fiber membrane, whereby the membrane area involved in degassing is reduced, and the hollow fiber membrane is not effectively used for degassing. I learned. [0013] That is, conventionally, are hit the shutdown, because simply only stops the water supply pump P 1 and the vacuum pump P 2, as shown in FIG. 2 (b), the hollow fiber membranes 10
Is in a vacuum state, and is pressed by the water outside the hollow fiber membrane 10 so that the hollow fiber membrane 10 swells inward. In the bulging portion 10A, water leaks out from the liquid phase L to the inside of the hollow fiber membrane 10 and condensed water easily accumulates, and this condensed water hinders deaeration at the time of restarting operation. By continuing the operation and evacuating the inside of the hollow fiber membrane with a vacuum pump or by further supplying a sweep gas, this condensed water is pushed out and removed by suction, and the deaeration efficiency is restored, To recover the deaeration efficiency by pushing out this condensed water,
It will take a long time. In the present invention, when the operation is stopped, an inert gas is supplied into the hollow fiber membrane to release the vacuum, and then the apparatus is completely stopped. Therefore, as shown in FIG. 1
In the case of 0, a normal shape can be maintained, and condensed water is hardly accumulated. In addition, during the operation stop period, the inert gas in the hollow fiber membrane 10 moves to the liquid phase L side and dissolves in saturation, and when the operation is restarted, the inert gas moved to the liquid phase L side becomes the hollow fiber membrane again. And the air is sucked in by the vacuum pump, thereby increasing the gas transfer amount of the membrane. For this reason, even when condensed water is generated in the hollow fiber membrane during the operation stop, a large amount of gas moves when the operation is restarted, so that the condensed water can be easily removed. Further, by setting the inside of the hollow fiber membrane to an inert gas atmosphere while the operation is stopped, an effect of suppressing the generation of aerobic bacteria can be obtained. Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a system diagram of an external pressure type hollow fiber membrane deaerator showing an embodiment of the present invention. In FIG. 1, but illustrates a case of using N 2 gas as the inert gas, N 2
Inert gas other than gas, for example, carbon dioxide gas, He gas, N
e gas or the like may be used. In this external pressure type hollow fiber membrane deaerator, in the water-flow deaeration step, the valves V 1 and V 2 are opened and the valve V 3 is closed, and the raw water in the raw water tank 1 is deaerated by the water supply pump P 1. is supplied to the apparatus 2, deaerated by suction by a vacuum pump P 2,
The deaerated treated water is received in the treated water tank 3. When flowing N 2 gas as a sweep gas, the valve V 4 is opened and N 2 gas is supplied. Generally, the degree of vacuum in the hollow fiber membrane in the water-passing deaeration step is set to 30 to 100 Torr. In ending the flow deaeration step and stopping the operation of the apparatus, the water supply pump P 1 is stopped, and the valves V 1 , V
2 is closed, and the valve V 4 is opened to supply N 2 gas into the hollow fiber membrane to release the vacuum in the hollow fiber membrane. In this case, it is sufficient to overcome the vacuum in the hollow fiber membrane, a vacuum pump P 2 may be stopped even working. If you stop the vacuum pump P 2 is the supply of N 2 gas is the lowest may be a vapor side volume fraction of the hollow fiber membrane has the advantage that sufficient with a small N 2 gas supply. After the N 2 gas is supplied for a predetermined time to release the vacuum in the hollow fiber membrane, all valves are closed, and the pumps P 1 and P 2 are stopped to stop the operation of the apparatus. Thus, as described above, the shape of the hollow fiber membrane is properly maintained, and the generation of condensed water in the hollow fiber membrane during the operation stop period is prevented. When the operation is restarted after the operation is stopped, the pumps P 1 and P 2 are operated to supply the raw water to the membrane deaerator 2 to perform deaeration. Since the treated water that has not been sufficiently degassed is discharged, the valve V
2 closed, as the valve V 3 opened without water sampling the treated water having inferior such water quality treated water tank 3 is discharged out of the system.
The membrane-degassing efficiency of the deaerator 2 is fully restored, after the treated water with good quality becomes thus obtained, the valve V 3 closed,
Resume water sampling of treated water as a valve V 2 opens. According to the present invention, as described above, the generation of condensed water in the hollow fiber membrane during the operation stop period is prevented, and even when condensed water is generated, when the operation is restarted, this condensed water is used. Since the water is smoothly discharged out of the hollow fiber membrane, the period during which the treated water is drained when the apparatus is started up can be significantly reduced as compared with the conventional method, and the collection of the treated water can be resumed early. . It should be noted, is hitting the resumption of this operation, before the water passage of the raw water, the pump P 1 is stopped, the pump P 2 operation, the valve V 1, V 2, V 3 closed, as the valve V 4 opened, by suction by a vacuum pump P 2 by supplying N 2 gas into the hollow fiber membrane, after removal extruding the condensed water in the hollow fiber membrane, for resumed water flow of the raw water, rise of more devices Can be faster. The present invention will be described more specifically below with reference to examples and comparative examples. In Examples and Comparative Examples, DO measurement was performed by Orbis Fair Laboratories.
Incorporated DO meter “MOCA3600”
Was used. Examples 1 to 4 and Comparative Example 1 The external pressure type hollow fiber membrane deaerator shown in FIG.
Degassing was performed. The membrane deaerator and operating conditions used are as follows. Membrane used: Liqui-cell membrane manufactured by Sergart Co., Ltd., diameter 10 inches Number of used: 3 in series Water passing temperature: 20 ° C. Sweep gas: 99.995% N 2 Ultimate vacuum degree: 60 Torr Water passing amount: 25 m 3 / hr That is, after the flow-through deaeration step, N 2 gas is added for 3 hours.
The supply was performed at 0 NL / min for 1 minute, and the operation was stopped for 14 hours after the vacuum state in the hollow fiber membrane was released. Thereafter, the condensed water removing step was changed in Examples 1 to 3 and Comparative Example 1 as shown in Table 1, and the flow-through deaeration process was restarted. [0030] As a result, treated water DO after as water flow resumes shown in Table 2, stabilized below 10ppb within a few minutes, but was able to resume water sampling, in particular subjected to condensate removal process
In Examples 1 to 3, DO was reduced early . In Table 1, ○ indicates opening of the valve or operation of the pump, and X indicates closing of the valve or stopping of the pump. Comparative Examples 2 and 3 In Comparative Example 1, after completion of the water-passing deaeration step, the operation was stopped for 14 hours without supplying N 2 gas and keeping the vacuum in the hollow fiber membrane. Then, as shown in Table 1, the condensed water removing step was changed in Comparative Examples 2 and 3 to restart the flow-through deaeration process. As shown in Table 2, in Comparative Example 1, the process was performed 40 seconds after restarting the flow of water. Water DO up to 18
It took 40 minutes to reach 0 ppb and drop below 20 ppb. Furthermore, it took 100 minutes for the DO of the treated water to fall below 10 ppb, which required a long start-up operation. Similarly, in Comparative Example 2, it took 15 minutes for the treated water DO to fall below 20 ppb, and 40 minutes to fall below 10 ppb. [Table 1] [Table 2] As described in detail above, according to the method for operating the membrane deaerator of the present invention, the generation of condensed water in the hollow fiber membrane while the operation of the external pressure type hollow fiber membrane deaerator is stopped. In addition, even when condensed water is generated in the hollow fiber membrane, the condensed water can be efficiently removed when the operation is restarted. And efficient degassing can be performed.
【図面の簡単な説明】
【図1】本発明の膜脱気装置の運転方法の実施の形態を
示す外圧型中空糸膜脱気装置の系統図である。
【図2】運転停止中の中空糸膜の状態を示す模式的な断
面図であり、図2(a)は本発明方法の場合を示し、図
2(b)は従来法の場合を示す。
【符号の説明】
1 原水タンク
2 膜脱気装置
3 処理水タンク
4 封水タンク
10 中空糸膜BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system diagram of an external pressure type hollow fiber membrane deaerator showing an embodiment of an operation method of a membrane deaerator of the present invention. FIG. 2 is a schematic cross-sectional view showing a state of a hollow fiber membrane during a stop of operation. FIG. 2 (a) shows a case of the method of the present invention, and FIG. 2 (b) shows a case of a conventional method. [Description of Signs] 1 Raw water tank 2 Membrane deaerator 3 Treated water tank 4 Sealing tank 10 Hollow fiber membrane
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 重明 東京都新宿区西新宿三丁目4番7号 栗 田工業株式会社 (56)参考文献 特開 平6−142464(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 19/00 - 19/04 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shigeaki Sato 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo Kurita Water Industries Ltd. (56) References JP-A-6-1442464 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B01D 19/00-19/04
Claims (1)
た真空ポンプにより減圧される外圧型中空糸膜脱気装置
の運転方法において、 通水脱気工程を停止した後に該中空糸膜内部に不活性ガ
スを供給する真空解消工程と、通水脱気工程の再開前に
該中空糸膜内に不活性ガスを供給して前記真空ポンプで
吸引する凝縮水除去工程とを設けたことを特徴とする膜
脱気装置の運転方法。(57) [Claim 1] The inside of a hollow fiber membrane is connected to the hollow fiber membrane.
And method of operating a external pressure-type hollow fiber membrane degassing unit is depressurized by a vacuum pump, and the more vacuum solve engineering supplying hollow fiber membranes inside the inert gas after stopping the water flow degassing step, water passing Before restarting the degassing process
Supply an inert gas into the hollow fiber membrane and use the vacuum pump
A method for operating a membrane deaerator, comprising a step of removing condensed water for suction .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36492598A JP3521778B2 (en) | 1998-12-22 | 1998-12-22 | Operating method of membrane deaerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36492598A JP3521778B2 (en) | 1998-12-22 | 1998-12-22 | Operating method of membrane deaerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000185203A JP2000185203A (en) | 2000-07-04 |
JP3521778B2 true JP3521778B2 (en) | 2004-04-19 |
Family
ID=18483000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36492598A Expired - Fee Related JP3521778B2 (en) | 1998-12-22 | 1998-12-22 | Operating method of membrane deaerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3521778B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004247688A (en) * | 2003-02-17 | 2004-09-02 | Canon Inc | Refrigerant supplying device |
JP4655451B2 (en) * | 2003-03-12 | 2011-03-23 | 西部瓦斯株式会社 | Polymer electrolyte fuel cell system |
JP4673804B2 (en) * | 2006-06-30 | 2011-04-20 | オルガノ株式会社 | Decarbonation apparatus and decarbonation method |
DE102010032736B4 (en) * | 2010-07-30 | 2012-07-26 | Sartorius Stedim Biotech Gmbh | Apparatus and method for degassing aqueous media |
CN104341020A (en) * | 2013-08-02 | 2015-02-11 | 上海振世能源科技有限公司 | Novel vacuum deoxygenization device |
JP6617071B2 (en) * | 2016-04-20 | 2019-12-04 | オルガノ株式会社 | Pure water production method and apparatus |
WO2020067512A1 (en) * | 2018-09-27 | 2020-04-02 | Dic株式会社 | Degasification system, liquid degasification method, degasification module, method for manufacturing degasification system, and method for producing natural resources |
JP7155373B1 (en) | 2021-10-05 | 2022-10-18 | 野村マイクロ・サイエンス株式会社 | Method for operating liquid ring pump, membrane degassing device, pure water production system, and pure water production method |
-
1998
- 1998-12-22 JP JP36492598A patent/JP3521778B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000185203A (en) | 2000-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3521778B2 (en) | Operating method of membrane deaerator | |
JP4867180B2 (en) | Immersion membrane separator and chemical cleaning method therefor | |
WO2017191829A1 (en) | Method for starting ultrapure water production apparatus | |
JPH11207332A (en) | Immersion type membrane filtering device of siphon suction system | |
JP2009247936A (en) | Method of inline-cleaning immersion type membrane-separation device | |
JP2009101349A (en) | Cleaning method of immersion type membrane module | |
JPH11179163A (en) | Method for back washing of inner pressure type membrane module for removing pollutant by fluctuation of flow rate and pressure | |
JP2014172014A (en) | Membrane separation device and membrane separation method | |
JP2003265935A (en) | Membrane filtration module cleaning method, membrane filtration apparatus, and chemical-used cleaning apparatus | |
JP5119989B2 (en) | Storage method of solid-liquid separation membrane | |
JP2015231591A (en) | Remote supervisory control system | |
JPH10118470A (en) | Method of cleaning separation membrane module | |
JP3943748B2 (en) | Cleaning method for membrane filtration equipment | |
JP3534155B2 (en) | Pure water production equipment | |
JP2004130205A (en) | Method and apparatus for backwashing filter membrane with ozone-containing water | |
EP3725393A1 (en) | Filtering membrane cleaning method | |
JP2005046801A (en) | Water treatment method and apparatus therefor | |
JP3775778B2 (en) | Membrane filtration device backwashing method | |
JPH09117646A (en) | Cleaning liquid for filter membrane and anaerobic digestion process for sludge containing organic material | |
JP2006043655A (en) | Water treating apparatus and operation method therefor | |
JPH10137755A (en) | Membrane treating device of waste water | |
JP2009254935A (en) | Gas dissolving membrane device and method of manufacturing gas-dissolved solution | |
JP6878050B2 (en) | Membrane filtration device, membrane filtration method and blow device of membrane filtration device | |
JP3395274B2 (en) | Membrane separation device | |
JP2514930B2 (en) | Membrane separation device with backwash ejector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20031218 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040202 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080220 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090220 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090220 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100220 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110220 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110220 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140220 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |