JP4655451B2 - Polymer electrolyte fuel cell system - Google Patents

Polymer electrolyte fuel cell system Download PDF

Info

Publication number
JP4655451B2
JP4655451B2 JP2003066897A JP2003066897A JP4655451B2 JP 4655451 B2 JP4655451 B2 JP 4655451B2 JP 2003066897 A JP2003066897 A JP 2003066897A JP 2003066897 A JP2003066897 A JP 2003066897A JP 4655451 B2 JP4655451 B2 JP 4655451B2
Authority
JP
Japan
Prior art keywords
water
fuel cell
exhaust gas
polymer electrolyte
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003066897A
Other languages
Japanese (ja)
Other versions
JP2004281075A (en
Inventor
秀利 新飼
好輝 三角
宏之 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saibu Gas Co Ltd
Kurita Water Industries Ltd
Original Assignee
Saibu Gas Co Ltd
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saibu Gas Co Ltd, Kurita Water Industries Ltd filed Critical Saibu Gas Co Ltd
Priority to JP2003066897A priority Critical patent/JP4655451B2/en
Publication of JP2004281075A publication Critical patent/JP2004281075A/en
Application granted granted Critical
Publication of JP4655451B2 publication Critical patent/JP4655451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子形燃料電池における排ガスを排ガス凝縮器に供給し、生成した凝縮水を純水装置に通水し、得られた純水を再度燃料電池の用水として使用する固体高分子形燃料電池システムに関する。
【0002】
【従来の技術】
従来、燃料電池には各種のものが提供されているが、このうち、りん酸形燃料電池は装置本体そのものが大きく、家庭用としては不向きである。これに対して、近年、装置本体を小型化できる固体高分子形燃料電池が家庭用として注目されてきている。
【0003】
図4は、固体高分子形燃料電池装置の一般的な構成を示す系統図であって、電解質21を介して燃料極22及び空気極23が設けられたセル24と、このセル24を冷却する冷却部25が燃料電池本体20内に配置されている。
【0004】
天然ガス等の燃料は、改質器30に導入され、後述の純水装置40からの循環水で水素を主体とするガスに改質される。この改質器30には、燃焼用空気が導入されると共に、燃料極22の未反応燃料(水素を主体とする燃料極排ガス)が導入され、改質反応の熱源となる。改質ガスは、更に図示しない変成器で一酸化炭素成分が変成された後、燃料極22に導入される。改質器30の燃焼排ガスは、排ガス凝縮器50に送給される。
【0005】
一方、空気極23にはブロワ23Bから空気が導入され、この空気により燃料極22に導入された改質ガスが電気化学的反応により酸化され、発電が行われる。空気極23の排ガスは排ガス凝縮器50に送給される。なお、燃料極排ガスもこの凝縮器50に送給される場合もある。
【0006】
排ガス凝縮器50で分離された凝縮水(以下「回収水」)は、回収水タンク60を経てポンプ60Pにより純水装置40に送給され、純水になった水は電池冷却水タンク61に送給される。また排ガスは系外へ排出される。
【0007】
電池冷却水タンク61内の水の一部は冷却水として燃料電池本体20の冷却部25に導入される。タンク61内冷却水は、冷却部25と電池冷却水タンク61との間に形成される冷却水循環系を循環する他、一部は加湿水として燃料電池本体20の空気極23に送給され、残部は改質用水として改質器30に送給される。
【0008】
なお、回収水タンク60又は純水装置40には、必要に応じて補給水として市水が導入される。
【0009】
固体高分子形燃料電池では、このように電気化学的反応によって電力を取り出した際に、水が発生する。また、改質器での燃料極排ガスの燃焼によっても水が生成し、燃焼排ガス中に水蒸気として含まれている。改質に使用する水を確保するために、これらの水蒸気を凝縮させて回収し、これを再利用している。
【0010】
この回収水には炭酸ガス、Fe、Al、Cu等が溶存しているため、再利用に当っては、これらを純水装置によって除去している。また、回収水の水量は、外気温によって変化するため、回収水が不足する場合、市水等で水を補給しているが、補給水の市水についても溶存イオンや炭酸ガス等を除去することが必要となる。
【0011】
このため、純水装置40で凝縮水と補給水としての市水とを処理している。この純水装置40としては、イオン交換樹脂によるイオン交換法により純水を製造する装置が用いられている。
【0012】
従来、純水装置への負荷を削減して、イオン交換樹脂の使用量、再生頻度を低減する目的で、純水装置の上流側に脱炭酸塔を設置し、回収水中の炭酸成分を除去している(特開平9−161833号公報)。
【0013】
【特許文献1】
特開平9−161833号公報
【0014】
【発明が解決しようとする課題】
燃料電池、特に、一般家庭に設置される固体高分子形燃料電池装置にあっては、装置全体が小型かつ簡素で、運転操作も簡便であることが望まれる。しかし、一般に使用されている脱炭酸塔では、十分な脱炭酸効率を得ることができず、後段の純水装置に対して、大きな陰イオン負荷を与えている。また、脱炭酸塔は小型化すると、脱炭酸性能が低下することから、燃料電池装置の小型化を阻害する要因となっている。
【0015】
本発明は上記従来の問題点を解決し、固体高分子形燃料電池における排ガスを排ガス凝縮器に供給し、生成した凝縮水を純水装置に通水し、得られた純水を再度燃料電池の用水として使用するための固体高分子形燃料電池システムであって、家庭用としても好適な小型化、省スペース化、コスト低減が可能な固体高分子形燃料電池システムを提供することを目的とする。
【0016】
【課題を解決するための手段】
請求項1の固体高分子形燃料電池システムは、固体高分子形燃料電池における排ガスを排ガス凝縮器に供給し、生成した凝縮水(以下、回収水)を純水装置に通水し、得られた純水を再度燃料電池の用水として使用する固体高分子形燃料電池システムにおいて、透過膜の一方の側に通水部を有し、他方の側に通気部を有する膜脱気部本体と、該通水部に回収水を供給する流入管と、該通水部から脱気処理水を排出する流出管と、該通気部に気体を供給する給気管と、該通気部から気体を排出する排気管とを有するスイープ式膜脱気装置を、前記排ガス凝縮器から純水装置までの間に設置した固体高分子形燃料電池システムであって、前記スイープ式膜脱気装置の通気部に、燃料電池装置内に設けられた空気極又は改質器へ送気ブロワにより送気される空気の一部を分流して給気する手段を設けたことを特徴とする。
【0017】
請求項2の固体高分子形燃料電池システムは、請求項1において、前記スイープ式膜脱気装置を、通水部に回収水が水頭差により通水されるように、排ガス凝縮器よりも低位に配置したことを特徴とする。
【0018】
請求項3の固体高分子形燃料電池システムは、請求項1又は2において、排ガス凝縮器から純水装置までの間に設置するスイープ式膜脱気装置を、排ガス凝縮器からの回収水を受けるために設置された回収水タンクの前流に設置したことを特徴とする。
【0019】
請求項4の固体高分子形燃料電池システムは、請求項1又は2において、排ガス凝縮器から純水装置までの間に設置するスイープ式膜脱気装置を、排ガス凝縮器からの回収水を受けるために設置された回収水タンクの後流に設置すると共に、脱気処理水の一部を回収水タンクに返送させる配管を設けたことを特徴とする。
【0020】
本発明の固体高分子形燃料電池システムでは、燃料電池の回収水をスイープ式膜脱気装置で脱炭酸処理することにより純水装置の負荷を軽減することができる。この膜脱気装置であれば、脱炭酸塔のような大型な装置を必要とすることなく、小型の装置で効率的な脱炭酸処理を行える。
【0021】
また、スイープ式膜脱気装置を採用したので、通常の膜脱気装置で必要な減圧装置が不要となり、小型化、騒音低減に好都合である。
【0022】
本発明の固体高分子形燃料電池システムでは、膜脱気装置のスイープ空気用のブロワを省略することができる。即ち、燃料電池では空気極へ酸素源として空気を送給する必要があり、また、改質器にも燃料用空気を送るため、各々送気用ブロワが設けられている。このブロワの排気側に枝管を分岐し、膜脱気装置の通気部への給気管と連絡させることにより、膜脱気装置にスイープ空気としての空気を送ることができる。スイープ空気の送給量は、この枝管に設けた弁の開度で調整することができる。
【0023】
請求項2の固体高分子形燃料電池システムでは、スイープ式膜脱気装置に水頭差を利用して回収水を給水するため、この給水のためのポンプを省略することができる。この給水のための水頭差は、凝縮器内の下部に溜まった凝縮水の水位、あるいは、凝縮器から排出された凝縮水を一旦受ける受槽がある場合にはこの受槽の水位より、膜脱気装置の処理水流出管の最高部が低位置になるように膜脱気装置を配置することにより、容易に得ることができる。
【0024】
請求項3、請求項4の固体高分子形燃料電池システムでは、排ガス凝縮器からの回収水が回収水タンクに一旦受けられるが、回収水は回収水タンクの前流(上流)側に設置した膜脱気装置を経て脱気水として回収水タンクに供給されるので、あるいは、回収水タンクの後流(下流)側に設置した膜脱気装置の脱気水の一部が回収水タンクに供給されるので、回収水タンクの回収水は炭酸が除去された水となり、pHが上昇している。回収水タンクの水は、例えば余剰となった場合など必要により排水するが、pHが上昇しているので、中和剤を添加することなく系外に排出することができる。
【0025】
【発明の実施の形態】
以下に図面を参照して本発明の固体高分子形燃料電池システムの実施の形態を詳細に説明する。
【0026】
図1,2,3は本発明の固体高分子形燃料電池システムの実施形態を示す系統図である。図1,2,3において、図4に示す部材と同一機能を有する部材には、同一符号を付してある。
【0027】
図1は、タンク前流設置方式であり、固体高分子形燃料電池装置の排ガス凝縮器50からの回収水を、配管51を通して膜脱気装置10に導入している。
【0028】
本発明において膜脱気装置10は、膜脱気部本体内部が透過膜により通水部と通気部とに仕切られ、通水部に回収水を通水すると共に、通気部に気体を通気して、通水部の回収水中の気体を透過膜を透過させて通気部に拡散させることにより脱気するスイープ式膜脱気装置である。
【0029】
膜脱気装置10では、燃料電池装置内に設けられた空気極23又は改質器30へ送気ブロワ23により送気される空気を、配管13を通して導入し、脱炭酸処理を行った回収水を、配管52を通して回収水タンク60に回収している。通気部に導入された空気は配管14より排気される。このように脱炭酸処理されて回収された水は、pHが向上し、回収水タンク60内の回収水が過剰となった際に、オーバーフロー配管15を通して排水する。
【0030】
図2はタンク後流設置方式であり、固体高分子形燃料電池装置の排ガス凝縮器50からの回収水を、配管51を通して回収水タンク60に回収している。
【0031】
タンクからポンプ60Pによって、送水された回収水は、流入管11を通して、膜脱気装置10に導入される。膜脱気装置10では、給気管13を通して導入された空気により、脱炭酸処理され、流出管12を通して純水装置40に供給される。
【0032】
図3は、図2で脱炭酸処理する際に、回収水が過剰となり、排水される場合、回収水タンク60内の回収水のpHが低く、排水基準への適合が必要となる際、配管16を通して、膜脱気水の一部を回収水タンク60にリターンさせ、タンク内のpHを向上させる方法を示している。
【0033】
また、図1において、水頭差を利用して凝縮水を膜脱気装置10に通水するためには、凝縮器50内の下部に溜った凝縮水の水位よりも、膜脱気装置10の脱気処理水流出配管52の最高位置が低位であれば良い。このため、膜脱気装置10は、凝縮器50の直下或いはその近傍の低位置に設置されることが好ましい。
【0034】
なお、膜脱気装置10への凝縮水の通水のための水頭差ΔHは、用いる膜脱気装置10の仕様によっても異なるが、一般的には、5〜40cm程度、例えば10cm程度の水頭差があれば十分である。
【0035】
このように、凝縮水を膜脱気装置10で脱気処理することにより、純水装置40の負荷を軽減することができる。従って、この膜脱気装置10への凝縮水の通水を、水頭差を利用して行うことにより、膜脱気装置10の給水ポンプが不要となる。
【0036】
また、スイープ空気用空気を空気極23への送気用ブロワ23Bから分流して給気することにより、給気ブロワも不要となる。このため、膜脱気装置10の付帯設備が大幅に削減され、装置全体の小型化、省スペース化、低コスト化を図ることができる。
【0037】
この膜脱気装置10の脱気処理水は、回収水タンク60を経て純水装置40で処理された後、電池冷却水タンク61に一旦貯留され、従来と同様、燃料電池本体20の冷却部25の冷却水として、また、空気極23の加湿水として、更には改質器30の改質用水として利用される。
【0038】
この純水装置40の構成としては特に制限はなく、一般的には、イオン交換装置や電気脱塩装置等を備えるものが用いられるが、いずれの場合においても、膜脱気装置10での脱気処理により純水装置40の負荷が軽減され、長期に亘り良好な処理水を安定に得ることができる。
【0039】
なお、図1,2,3に示す固体高分子形燃料電池用水処理装置は、本発明の固体高分子形燃料電池装置の実施形態の一例を示すものであって、本発明はその要旨を超えない限り、何ら図示のものに限定されるものではない。
【0040】
図1では燃料電池本体20の空気極23への送気用ブロワ23Bの排気側から空気を分流して膜脱気装置10の通気部に給気しているが、前述の如く、燃料電池装置には、改質器30に燃焼用空気を導入するための送気用ブロワ(図示せず)が設けられているため、この改質器30への送気用ブロワの排気側から空気を分流して膜脱気装置の通気部に給気しても良い。
【0041】
また、図1では、凝縮器50からの回収水を直接膜脱気装置10に通水して脱気処理しているが、凝縮器からの回収水を一旦受槽で受けた後、膜脱気装置に通水して脱気処理することもできる。この場合には、この受槽の水位よりも、膜脱気装置の脱気処理水排出配管の最高部が低位置となるように配置すればよい。
【0042】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0043】
実施例1
炭酸ガス濃度150mg/Lの、固体高分子形燃料電池の排ガス凝縮水を原水として、1.2L/hの流量で、径0.75インチ×長さ5インチ(122.5mm)の脱気膜を備えるスイープ式膜脱気装置に通水し、スイープ空気の流入空気量を7.2L/hにして脱気処理を行ったところ、得られた脱気処理水の炭酸ガス濃度は6mg/Lであった。
【0044】
この膜脱気装置の脱気処理水流出配管の最高位置が燃料電池の凝縮器の水位に対して15cm下方に位置するように、ΔH=10cmの水頭差を設けて設置したところ、ポンプでの加圧を必要とすることなく凝縮器からの凝縮水の通水を行うことができた。また、燃料電池本体の空気極への送気ブロワの許容送気量は4000L/hであり、一方で空気極で必要とされる空気量は3280L/hであるため、脱気のための膜脱気装置への7.2L/hの給気は、何ら支障なく行うことができた。
【0045】
このように水頭差を利用して凝縮器の凝縮水を膜脱気装置に給水すると共に、空気極への送気用ブロワから空気を分流して給気を行って膜脱気処理を行ったところ、炭酸ガス濃度150mg/Lの凝縮水を安定に膜脱気処理して、炭酸ガス濃度1〜6mg/Lの脱気処理水を得ることができた。
【0046】
比較例1
炭酸ガス濃度150mg/Lの、固体高分子形燃料電池の排ガス凝縮水を原水として、直胴部長さ190mmの脱炭酸塔で、流入空気量1050L/h、原水流量1.2L/hで処理したところ、処理水炭酸ガス濃度は25mg/Lであった。また、その流入空気量を800L/hに落とした場合、処理水炭酸ガス濃度は50mg/Lであった。また、燃料電池本体の空気極送気用ブロワで許容される空気量4000L/hで、1.2L/hの原水量で処理したところ炭酸ガス濃度が10mg/Lとなった。直胴部の長さは800mmの脱炭酸塔により必要であり、燃料電池装置が大型化することが確認された。
【0047】
【発明の効果】
以上詳述した通り、本発明の固体高分子形燃料電池システムによれば、燃料電池の排ガス凝縮器からの回収水に含まれる炭酸ガス濃度を、95%程度低減することが可能であり、後段に設けられた純水装置の負荷を大幅に軽減することが可能である。
【0048】
また、脱炭酸処理に必要な空気を、燃料電池装置内に設けられた空気極又は改質器への送気ブロワから供給することにより、専用の給気ブロワを省略することができ、装置の小型化、省スペース化、低コスト化を図ることができる。
【図面の簡単な説明】
【図1】 本発明において、スイープ式膜脱気装置を、回収水タンクの前流に設置するタンク前流設置方式を採用した固体高分子形燃料電池システムの実施形態を示す系統図である。
【図2】 本発明において、スイープ式膜脱気装置を、回収水タンクの後流に設置するタンク後流設置方式を採用した固体高分子形燃料電池システムの実施形態を示す系統図である。
【図3】 スイープ式膜脱気装置を、回収水タンクの後流に設置するタンク後流設置方式を採用した固体高分子形燃料電池用水処理装置において、タンク内回収水のpH向上を目的にリターンラインを付加した系統図である。
【図4】 固体高分子形燃料電池装置の一般的な構成を示す系統図である。
【符号の説明】
10 膜脱気装置
11 膜脱気装置流入管
12 膜脱気装置流出管
13 膜脱気装置入スイープ空気給気管
14 膜脱気装置出スイープ空気排気管
15 回収水タンクオーバーフロー配管
16 脱気処理水リターン配管
20 燃料電池本体
21 電解質
22 燃料極
23 空気極
23B 空気極ブロワ
24 セル
25 冷却部
30 改質器
40 純水装置
50 排ガス凝縮器
51 排ガス凝縮器出回収水配管
52 回収水タンク入回収水配管(脱気処理水洗出配管)
60 回収水タンク
60P 送水ポンプ
61 電池冷却水タンク
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a solid polymer that supplies exhaust gas in a solid polymer fuel cell to an exhaust gas condenser, passes the produced condensed water through a pure water device, and uses the obtained pure water as water for the fuel cell again. The present invention relates to a fuel cell system .
[0002]
[Prior art]
Conventionally, various types of fuel cells have been provided. Of these, phosphoric acid fuel cells have a large apparatus main body and are not suitable for household use. On the other hand, in recent years, a polymer electrolyte fuel cell capable of reducing the size of the apparatus body has been attracting attention for household use.
[0003]
FIG. 4 is a system diagram showing a general configuration of a polymer electrolyte fuel cell device, in which a cell 24 provided with a fuel electrode 22 and an air electrode 23 via an electrolyte 21 and the cell 24 are cooled. The cooling unit 25 is disposed in the fuel cell main body 20.
[0004]
A fuel such as natural gas is introduced into the reformer 30 and reformed into a gas mainly composed of hydrogen by circulating water from a pure water device 40 described later. Combustion air is introduced into the reformer 30 and unreacted fuel (fuel electrode exhaust gas mainly composed of hydrogen) of the fuel electrode 22 is introduced to serve as a heat source for the reforming reaction. The reformed gas is further introduced into the fuel electrode 22 after the carbon monoxide component is transformed by a transformer (not shown). The combustion exhaust gas from the reformer 30 is supplied to the exhaust gas condenser 50.
[0005]
On the other hand, air is introduced into the air electrode 23 from the blower 23B, and the reformed gas introduced into the fuel electrode 22 is oxidized by this air by an electrochemical reaction to generate power. The exhaust gas from the air electrode 23 is supplied to the exhaust gas condenser 50. The fuel electrode exhaust gas may also be supplied to the condenser 50.
[0006]
Condensed water separated by the exhaust gas condenser 50 (hereinafter referred to as “recovered water”) is supplied to the pure water device 40 by the pump 60P through the recovered water tank 60, and the water that has become pure water is supplied to the battery cooling water tank 61. Be sent. The exhaust gas is discharged outside the system.
[0007]
Part of the water in the battery cooling water tank 61 is introduced into the cooling unit 25 of the fuel cell main body 20 as cooling water. The cooling water in the tank 61 circulates in a cooling water circulation system formed between the cooling unit 25 and the battery cooling water tank 61, and a part of the cooling water is supplied as humidified water to the air electrode 23 of the fuel cell body 20, The remainder is fed to the reformer 30 as reforming water.
[0008]
Note that city water is introduced into the recovered water tank 60 or the pure water device 40 as make-up water as necessary.
[0009]
In the polymer electrolyte fuel cell, water is generated when electric power is taken out by an electrochemical reaction. Water is also generated by combustion of the fuel electrode exhaust gas in the reformer, and is contained as water vapor in the combustion exhaust gas. In order to secure the water used for the reforming, these water vapors are condensed and recovered and reused.
[0010]
Since carbon dioxide, Fe, Al, Cu, etc. are dissolved in the recovered water, these are removed by a pure water device when reused. In addition, since the amount of recovered water varies depending on the outside temperature, if the recovered water is insufficient, water is replenished with city water, etc., but dissolved ions, carbon dioxide, etc. are also removed from the city water. It will be necessary.
[0011]
For this reason, the deionized water device 40 treats condensed water and city water as makeup water. As the pure water device 40, a device for producing pure water by an ion exchange method using an ion exchange resin is used.
[0012]
Conventionally, in order to reduce the load on the deionized water device and reduce the amount of ion exchange resin used and the frequency of regeneration, a decarboxylation tower has been installed upstream of the deionized water device to remove the carbonic acid component in the recovered water. (Japanese Patent Laid-Open No. 9-161833).
[0013]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-161833 [0014]
[Problems to be solved by the invention]
In a fuel cell, in particular, a polymer electrolyte fuel cell device installed in a general household, it is desired that the entire device is small and simple, and that operation is simple. However, a generally used decarboxylation tower cannot obtain a sufficient decarboxylation efficiency, and gives a large anion load to the pure water apparatus at the subsequent stage. Further, when the decarbonation tower is downsized, the decarbonation performance is lowered, which is a factor that hinders downsizing of the fuel cell device.
[0015]
The present invention solves the above-described conventional problems, supplies exhaust gas in a polymer electrolyte fuel cell to an exhaust gas condenser, passes the generated condensed water through a pure water device, and again returns the obtained pure water to the fuel cell. a polymer electrolyte fuel cell system for use as the water, and also suitable compact for home use, space saving, providing a cost reduction can be solid polymer fuel cell system object To do.
[0016]
[Means for Solving the Problems]
The polymer electrolyte fuel cell system according to claim 1 is obtained by supplying exhaust gas from the polymer electrolyte fuel cell to an exhaust gas condenser and passing the produced condensed water (hereinafter, recovered water) through a pure water device. In the polymer electrolyte fuel cell system using pure water again as water for the fuel cell, a membrane deaeration unit main body having a water passage part on one side of the permeable membrane and a vent part on the other side; An inflow pipe for supplying recovered water to the water flow section, an outflow pipe for discharging degassed treated water from the water flow section, an air supply pipe for supplying gas to the vent section, and exhausting gas from the vent section A polymer electrolyte fuel cell system in which a sweep-type membrane deaerator having an exhaust pipe is installed between the exhaust gas condenser and the pure water device, and in a vent portion of the sweep-type membrane deaerator, It is sent to the cathode or reformer provided in the fuel cell device by an air blower. Characterized in that a means for feeding air to divert part of the air.
[0017]
The solid polymer fuel cell system according to claim 2 is the polymer electrolyte fuel cell system according to claim 1, wherein the sweep-type membrane deaeration device is lower than the exhaust gas condenser so that the recovered water is passed through the water passage portion by a head difference. It is characterized by having been arranged in.
[0018]
The polymer electrolyte fuel cell system according to claim 3 is the polymer electrolyte fuel cell system according to claim 1 or 2, wherein the sweep type membrane deaerator installed between the exhaust gas condenser and the pure water device receives the recovered water from the exhaust gas condenser. It is installed in the upstream of the recovery water tank installed for this purpose.
[0019]
According to a fourth aspect of the present invention, there is provided the polymer electrolyte fuel cell system according to the first or second aspect, wherein the sweep type membrane deaeration device installed between the exhaust gas condenser and the pure water device receives the recovered water from the exhaust gas condenser. For this purpose, it is installed in the downstream of the recovered water tank installed for this purpose, and a pipe for returning a part of the degassed treated water to the recovered water tank is provided.
[0020]
In the polymer electrolyte fuel cell system of the present invention, the load on the pure water device can be reduced by decarboxylating the recovered water of the fuel cell with a sweep type membrane deaerator. With this membrane deaerator, an efficient decarbonation treatment can be performed with a small apparatus without requiring a large apparatus such as a decarbonation tower.
[0021]
In addition, since the sweep type membrane deaerator is adopted, a pressure reducing device required for a normal membrane deaerator is not required, which is convenient for downsizing and noise reduction.
[0022]
In the polymer electrolyte fuel cell system of the present invention, the blower for sweep air of the membrane deaerator can be omitted. That is, in the fuel cell, it is necessary to supply air as an oxygen source to the air electrode, and in order to send fuel air to the reformer, each of the air blowers is provided. By branching a branch pipe to the exhaust side of the blower and communicating with the air supply pipe to the ventilation portion of the membrane deaerator, air as sweep air can be sent to the membrane deaerator. The supply amount of the sweep air can be adjusted by the opening degree of a valve provided in the branch pipe.
[0023]
In the polymer electrolyte fuel cell system according to the second aspect, since the recovered water is supplied to the sweep type membrane deaerator using the water head difference, a pump for supplying the water can be omitted. The water head difference for this water supply depends on the water level of the condensed water accumulated in the lower part of the condenser or, if there is a receiving tank that temporarily receives the condensed water discharged from the condenser, from the water level of this receiving tank. It can be easily obtained by arranging the membrane deaeration device so that the highest part of the treated water outflow pipe of the device is at a low position.
[0024]
In the polymer electrolyte fuel cell system according to claims 3 and 4, the recovered water from the exhaust gas condenser is once received by the recovered water tank, but the recovered water is installed on the upstream (upstream) side of the recovered water tank. Since it is supplied to the recovered water tank as deaerated water through the membrane deaerator, a part of the deaerated water of the membrane deaerator installed on the downstream (downstream) side of the recovered water tank is supplied to the recovered water tank. Since the water is supplied, the recovered water in the recovered water tank is water from which carbonic acid has been removed, and the pH has increased. The water in the recovered water tank is drained as necessary, for example, when it becomes surplus, but since the pH has risen, it can be discharged out of the system without adding a neutralizing agent.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a polymer electrolyte fuel cell system of the present invention will be described below in detail with reference to the drawings.
[0026]
1, 2 and 3 are system diagrams showing embodiments of the polymer electrolyte fuel cell system of the present invention. 1, 2 and 3, members having the same functions as those shown in FIG. 4 are given the same reference numerals.
[0027]
FIG. 1 shows a tank upstream installation method, in which recovered water from an exhaust gas condenser 50 of a polymer electrolyte fuel cell device is introduced into a membrane deaerator 10 through a pipe 51.
[0028]
In the present invention, the membrane deaeration device 10 is divided into a water passage part and a ventilation part by a permeable membrane inside the membrane deaeration part main body, and allows the recovered water to flow through the water passage part and also allows gas to pass through the ventilation part. The sweep-type membrane deaeration device deaerates the gas in the recovered water in the water flow unit through the permeation membrane and diffuses the gas in the ventilation unit.
[0029]
In the membrane deaerator 10, the air fed from the air blower 23 to the air electrode 23 or the reformer 30 provided in the fuel cell device is introduced through the pipe 13, and the recovered water subjected to the decarboxylation treatment. Is recovered in the recovered water tank 60 through the pipe 52. The air introduced into the ventilation part is exhausted from the pipe 14. The water recovered by decarboxylation in this way is drained through the overflow pipe 15 when the pH is improved and the recovered water in the recovered water tank 60 becomes excessive.
[0030]
FIG. 2 shows a tank wake installation system, in which recovered water from the exhaust gas condenser 50 of the polymer electrolyte fuel cell device is recovered in a recovered water tank 60 through a pipe 51.
[0031]
The recovered water sent from the tank by the pump 60 </ b> P is introduced into the membrane deaerator 10 through the inflow pipe 11. In the membrane deaerator 10, the carbon dioxide is decarboxylated by the air introduced through the air supply pipe 13 and supplied to the pure water apparatus 40 through the outflow pipe 12.
[0032]
FIG. 3 shows a case where the recovered water in the decarbonation process in FIG. 2 is excessive and drained, and the pH of the recovered water in the recovered water tank 60 is low, so that it is necessary to meet the drainage standards. 16 shows a method of returning a part of the membrane degassed water to the recovered water tank 60 and improving the pH in the tank.
[0033]
Further, in FIG. 1, in order to pass the condensed water through the membrane deaerator 10 using the water head difference, the membrane deaerator 10 has a higher level than the water level of the condensed water accumulated in the lower part of the condenser 50. The highest position of the deaeration treated water outflow pipe 52 may be low. For this reason, it is preferable that the membrane deaerator 10 is installed at a low position directly under the condenser 50 or in the vicinity thereof.
[0034]
The head difference ΔH for passing condensed water to the membrane deaerator 10 varies depending on the specifications of the membrane deaerator 10 to be used, but is generally about 5 to 40 cm, for example, about 10 cm. Any difference is sufficient.
[0035]
In this way, by degassing the condensed water with the membrane degassing device 10, the load on the pure water device 40 can be reduced. Therefore, the water supply pump of the membrane deaerator 10 becomes unnecessary by passing the condensed water to the membrane deaerator 10 by utilizing the water head difference.
[0036]
Further, by supplying the swept air to the air electrode 23 by diverting it from the air supply blower 23B, no air supply blower is required. For this reason, the incidental facilities of the membrane deaeration device 10 are greatly reduced, and the overall size of the device can be reduced, space saving, and cost reduction can be achieved.
[0037]
The degassed water of the membrane deaerator 10 is processed by the pure water device 40 through the recovered water tank 60 and then temporarily stored in the battery cooling water tank 61. As in the prior art, the cooling unit of the fuel cell main body 20 is stored. 25 as cooling water, as humidified water for the air electrode 23, and further as reforming water for the reformer 30.
[0038]
The configuration of the deionized water device 40 is not particularly limited, and generally, a device equipped with an ion exchange device, an electric demineralizer, or the like is used. In any case, the dewatering device 10 uses a deaerator. Due to the air treatment, the load of the pure water device 40 is reduced, and good treated water can be stably obtained over a long period of time.
[0039]
The water treatment device for a polymer electrolyte fuel cell shown in FIGS. 1, 2 and 3 shows an example of an embodiment of the polymer electrolyte fuel cell device of the present invention, and the present invention exceeds the gist thereof. As long as it is not, it is not limited to what is illustrated.
[0040]
In FIG. 1, air is divided from the exhaust side of the air supply blower 23B to the air electrode 23 of the fuel cell body 20 and supplied to the ventilation portion of the membrane degassing device 10, but as described above, the fuel cell device. Since an air supply blower (not shown) for introducing combustion air into the reformer 30 is provided, air is separated from the exhaust side of the air supply blower to the reformer 30. The air may be supplied to the ventilation part of the membrane deaeration device.
[0041]
Further, in FIG. 1, the recovered water from the condenser 50 is directly passed through the membrane deaerator 10 for deaeration treatment, but after the recovered water from the condenser is once received in the receiving tank, the membrane deaeration is performed. It can also be deaerated by passing water through the apparatus. In this case, what is necessary is just to arrange | position so that the highest part of the deaeration process water discharge piping of a membrane deaeration apparatus may become a low position rather than the water level of this receiving tank.
[0042]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0043]
Example 1
Degassing membrane with a diameter of 0.75 inches and length of 5 inches (122.5 mm) at a flow rate of 1.2 L / h using carbon dioxide gas concentration 150 mg / L of the exhaust gas condensed water of a polymer electrolyte fuel cell as raw water Was passed through a sweep-type membrane deaerator having a flow rate of 7.2 L / h, and the carbon dioxide concentration of the resulting degassed water was 6 mg / L. Met.
[0044]
When installed with a head difference of ΔH = 10 cm so that the highest position of the deaeration treated water outflow pipe of this membrane deaerator is located 15 cm below the water level of the fuel cell condenser, The condensed water could be passed from the condenser without the need for pressurization. In addition, since the allowable air supply amount of the air supply blower to the air electrode of the fuel cell body is 4000 L / h, while the air amount required at the air electrode is 3280 L / h, a membrane for degassing The supply of 7.2 L / h to the deaerator was able to be performed without any trouble.
[0045]
As described above, the condensed water of the condenser was supplied to the membrane deaerator using the water head difference, and the membrane was deaerated by supplying air by dividing the air from the blower for supplying air to the air electrode. However, it was possible to stably deaerate the condensed water having a carbon dioxide concentration of 150 mg / L to obtain degassed water having a carbon dioxide concentration of 1 to 6 mg / L.
[0046]
Comparative Example 1
Using carbon dioxide gas concentration 150 mg / L, the exhaust gas condensate of the polymer electrolyte fuel cell as raw water, it was treated with a decarbonation tower with a straight body length of 190 mm at an inflow air amount of 1050 L / h and a raw water flow rate of 1.2 L / h. However, the treated water carbon dioxide concentration was 25 mg / L. Moreover, when the inflow air amount was dropped to 800 L / h, the treated water carbon dioxide concentration was 50 mg / L. Further, when the amount of air allowed by the air electrode blower of the fuel cell main body was 4000 L / h and the raw water amount was 1.2 L / h, the carbon dioxide concentration was 10 mg / L. The length of the straight body portion is necessary for a 800 mm decarboxylation tower, and it has been confirmed that the fuel cell device is enlarged.
[0047]
【The invention's effect】
As described above in detail, according to the polymer electrolyte fuel cell system of the present invention, the concentration of carbon dioxide contained in the recovered water from the exhaust gas condenser of the fuel cell can be reduced by about 95%. It is possible to greatly reduce the load of the pure water apparatus provided in
[0048]
In addition, by supplying air necessary for the decarbonation treatment from an air electrode provided in the fuel cell device or an air supply blower to the reformer, a dedicated air supply blower can be omitted. Miniaturization, space saving, and cost reduction can be achieved.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a polymer electrolyte fuel cell system adopting a tank upstream flow installation method in which a sweep type membrane deaeration device is installed upstream of a recovery water tank in the present invention.
FIG. 2 is a system diagram showing an embodiment of a polymer electrolyte fuel cell system adopting a tank wake installation method in which a sweep type membrane deaeration device is installed in the wake of a recovered water tank in the present invention.
[Fig. 3] A water treatment device for a polymer electrolyte fuel cell adopting a tank wake installation method in which a sweep type membrane deaeration device is installed in the wake of a recovered water tank, for the purpose of improving the pH of recovered water in the tank. It is a systematic diagram to which a return line is added.
FIG. 4 is a system diagram showing a general configuration of a polymer electrolyte fuel cell device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Membrane deaerator 11 Membrane deaerator inflow pipe 12 Membrane deaerator outflow pipe 13 Membrane deaerator inlet sweep air supply pipe 14 Membrane deaerator outlet sweep air exhaust pipe 15 Recovered water tank overflow pipe 16 Deaerated treated water Return piping 20 Fuel cell body 21 Electrolyte 22 Fuel electrode 23 Air electrode 23B Air electrode blower 24 Cell 25 Cooling unit 30 Reformer 40 Pure water device 50 Exhaust gas condenser 51 Exhaust gas condenser outlet / recovery water piping 52 Recovered water in recovered water tank Piping (piping for degassing water washing)
60 recovered water tank 60P water pump 61 battery cooling water tank

Claims (4)

固体高分子形燃料電池における排ガスを排ガス凝縮器に供給し、生成した凝縮水(以下、回収水)を純水装置に通水し、得られた純水を再度燃料電池の用水として使用する固体高分子形燃料電池システムにおいて、
透過膜の一方の側に通水部を有し、他方の側に通気部を有する膜脱気部本体と、該通水部に回収水を供給する流入管と、該通水部から脱気処理水を排出する流出管と、該通気部に気体を供給する給気管と、該通気部から気体を排出する排気管とを有するスイープ式膜脱気装置を、前記排ガス凝縮器から純水装置までの間に設置した固体高分子形燃料電池システムであって、
前記スイープ式膜脱気装置の通気部に、燃料電池装置内に設けられた空気極又は改質器へ送気ブロワにより送気される空気の一部を分流して給気する手段を設けたことを特徴とする固体高分子形燃料電池システム
Solids that supply exhaust gas from a polymer electrolyte fuel cell to an exhaust gas condenser, pass the generated condensed water (hereinafter referred to as recovered water) through a pure water device, and use the obtained pure water again as water for the fuel cell In the polymer fuel cell system ,
A membrane deaeration unit body having a water flow part on one side of the permeable membrane and a ventilation part on the other side, an inflow pipe for supplying recovered water to the water flow part, and deaeration from the water flow part A sweep type membrane deaerator having an outflow pipe for discharging treated water, an air supply pipe for supplying gas to the ventilation section, and an exhaust pipe for discharging gas from the ventilation section, from the exhaust gas condenser to a pure water apparatus A polymer electrolyte fuel cell system installed between
Means for diverting a part of the air supplied by the air supply blower to the air electrode or the reformer provided in the fuel cell device is provided in the ventilation part of the sweep type membrane deaeration device. A polymer electrolyte fuel cell system .
請求項1において、前記スイープ式膜脱気装置を、前記通水部に回収水が水頭差により通水されるように、前記排ガス凝縮器よりも低位に配置したことを特徴とする固体高分子形燃料電池システム2. The solid polymer according to claim 1, wherein the sweep-type membrane deaerator is disposed at a lower position than the exhaust gas condenser so that the recovered water is passed through the water passage portion by a head difference. Fuel cell system . 請求項1又は2において、前記排ガス凝縮器から純水装置までの間に設置するスイープ式膜脱気装置を、該排ガス凝縮器からの回収水を受けるために設置された回収水タンクの前流に設置したことを特徴とする固体高分子形燃料電池システムThe sweep flow membrane deaeration device installed between the exhaust gas condenser and the deionized water device according to claim 1 or 2, wherein the sweep type membrane deaeration device is installed upstream of the recovered water tank installed to receive the recovered water from the exhaust gas condenser. A polymer electrolyte fuel cell system installed in 請求項1又は2において、前記排ガス凝縮器から純水装置までの間に設置するスイープ式膜脱気装置を、該排ガス凝縮器からの回収水を受けるために設置された回収水タンクの後流に設置すると共に、脱気処理水の一部を該回収水タンクに返送させる配管を設けたことを特徴とする固体高分子形燃料電池システムThe wake of the recovery water tank installed in order to receive the recovered water from the exhaust gas condenser in the sweep type membrane deaeration device installed between the exhaust gas condenser and the pure water device according to claim 1 or 2. The polymer electrolyte fuel cell system is provided with a pipe for returning a part of the degassed treated water to the recovered water tank.
JP2003066897A 2003-03-12 2003-03-12 Polymer electrolyte fuel cell system Expired - Fee Related JP4655451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003066897A JP4655451B2 (en) 2003-03-12 2003-03-12 Polymer electrolyte fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003066897A JP4655451B2 (en) 2003-03-12 2003-03-12 Polymer electrolyte fuel cell system

Publications (2)

Publication Number Publication Date
JP2004281075A JP2004281075A (en) 2004-10-07
JP4655451B2 true JP4655451B2 (en) 2011-03-23

Family

ID=33284665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003066897A Expired - Fee Related JP4655451B2 (en) 2003-03-12 2003-03-12 Polymer electrolyte fuel cell system

Country Status (1)

Country Link
JP (1) JP4655451B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7762278B2 (en) * 2003-07-29 2010-07-27 Societe Bic Valves for fuel cartridges
JP4949619B2 (en) * 2004-11-18 2012-06-13 パナソニック株式会社 Fuel cell system and operation method thereof
JP2007250447A (en) * 2006-03-17 2007-09-27 Osaka Gas Co Ltd Water treatment device in fuel cell system
JP5173302B2 (en) * 2007-07-27 2013-04-03 京セラ株式会社 Fuel cell device
JP2009076216A (en) * 2007-09-19 2009-04-09 Toshiba Corp Fuel cell power generation system, and water circulating system thereof
JP2010287519A (en) * 2009-06-15 2010-12-24 Panasonic Corp Fuel cell system
KR101358129B1 (en) 2012-02-01 2014-02-07 삼성중공업 주식회사 Fuel cell exhausting gas condensing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831443A (en) * 1994-07-19 1996-02-02 Fuji Electric Co Ltd Water recording device for fuel cell power generation device
JPH119902A (en) * 1997-06-26 1999-01-19 Dainippon Ink & Chem Inc Module for liquid deaeration
JP2000185203A (en) * 1998-12-22 2000-07-04 Kurita Water Ind Ltd Operating method for membrane deaeration device
JP2001232394A (en) * 2000-02-25 2001-08-28 Tokyo Gas Co Ltd Water treatment equipment for fuel cell
JP2002208420A (en) * 2001-01-05 2002-07-26 Fuji Electric Co Ltd Operation method of fuel cell power generation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831443A (en) * 1994-07-19 1996-02-02 Fuji Electric Co Ltd Water recording device for fuel cell power generation device
JPH119902A (en) * 1997-06-26 1999-01-19 Dainippon Ink & Chem Inc Module for liquid deaeration
JP2000185203A (en) * 1998-12-22 2000-07-04 Kurita Water Ind Ltd Operating method for membrane deaeration device
JP2001232394A (en) * 2000-02-25 2001-08-28 Tokyo Gas Co Ltd Water treatment equipment for fuel cell
JP2002208420A (en) * 2001-01-05 2002-07-26 Fuji Electric Co Ltd Operation method of fuel cell power generation system

Also Published As

Publication number Publication date
JP2004281075A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
JP5040200B2 (en) Fuel cell power generator
JP4655451B2 (en) Polymer electrolyte fuel cell system
JP5142604B2 (en) Fuel cell device
JP2007242491A (en) Fuel cell system and its operation control method
JP4562103B2 (en) Water recovery device for fuel cell
US6787255B2 (en) Fuel cell power generating system and operation method
JP5132205B2 (en) Fuel cell device
JP5173302B2 (en) Fuel cell device
JP2008300059A (en) Fuel cell device
JP2008135271A (en) Fuel cell device
JP6765085B2 (en) Hydrogen generator and fuel cell system
JP5353034B2 (en) Fuel cell power generator
JP3604620B2 (en) Water electrolysis product gas purification system and purification method
JP3993177B2 (en) Fuel cell system
JP2009016151A (en) Drain recovery apparatus of fuel cell power generating device
JPH11333267A (en) Liquid filtration device and fuel cell generator using the device
JP5286851B2 (en) Fuel cell power generator
JP2009123445A (en) Circulation water treatment device of fuel cell power generating device
JP5292865B2 (en) Water recovery method for fuel cell power generator and fuel cell power generator
JP5908806B2 (en) Fuel cell device
JP2009009762A (en) Fuel cell system
JP5228575B2 (en) Fuel cell power generator
JP2007048654A (en) Power generator
JP2002298894A (en) Water treatment system for solid polymer fuel cell generator set
JP5989617B2 (en) Water treatment system and water treatment method in fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees