JP2001232394A - Water treatment equipment for fuel cell - Google Patents

Water treatment equipment for fuel cell

Info

Publication number
JP2001232394A
JP2001232394A JP2000049792A JP2000049792A JP2001232394A JP 2001232394 A JP2001232394 A JP 2001232394A JP 2000049792 A JP2000049792 A JP 2000049792A JP 2000049792 A JP2000049792 A JP 2000049792A JP 2001232394 A JP2001232394 A JP 2001232394A
Authority
JP
Japan
Prior art keywords
water
fuel cell
condensed water
reverse osmosis
osmosis membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000049792A
Other languages
Japanese (ja)
Other versions
JP4461553B2 (en
Inventor
Masayuki Miwa
昌之 三輪
Tomoaki Deguchi
智章 出口
Hiroshi Horinouchi
洋 堀ノ内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Tokyo Gas Co Ltd
Original Assignee
Kurita Water Industries Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Tokyo Gas Co Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000049792A priority Critical patent/JP4461553B2/en
Publication of JP2001232394A publication Critical patent/JP2001232394A/en
Application granted granted Critical
Publication of JP4461553B2 publication Critical patent/JP4461553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce high purity water without using an ion exchange resin which requires frequent exchange by treating condensed water of a solid polymer-type fuel cell or city water being supplying water by using an electrical deionization device capable of continuously treating for a long period of time without maintenance. SOLUTION: A water treatment equipment for a fuel cell has a decarbonation means 2 for decarbonation treatment of condensed water recovered from the fuel cell, a reverse osmosis membrane device 6 for treating supplied water from the outside, an electrical deionization device 7 for treating treated water of the decarbonation means 2 and/or permeated water of the reverse osmosis membrane device 6, and switching means V2 and V3 for switching a flow passage for discharging at least a portion of the condensed water of the electrical deionization device 7 to the outside of the system and a flow passage for supplying at least a portion of the condensed water of the electrical deionization device 7 to the decarbonation means 2. Further, a water treatment equipment for a fuel cell has a reverse osmosis membrane device for treating the condensed water recovered from the fuel cell and/or supplied water from the outside, an electrical deionization device for treating permeated water of the reverse osmosis membrane device and a switching means for switching a flow passage for discharging at least a portion of condensed water of the electrical deionization device to the outside of the system and a flow passage for supplying at least a portion of the condensed water to the reverse osmosis membrane device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池の水処理
装置に係り、特に固体高分子型燃料電池における改質器
や一酸化炭素変成器及び一酸化炭素除去器で構成される
燃料処理系、燃料ガスや空気の水分加湿、燃料電池本体
の循環冷却水系に供給される水を処理するための装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment apparatus for a fuel cell, and more particularly to a fuel treatment system comprising a reformer, a carbon monoxide converter and a carbon monoxide remover in a polymer electrolyte fuel cell. The present invention also relates to an apparatus for treating the humidification of fuel gas or air and the water supplied to a circulating cooling water system of a fuel cell body.

【0002】[0002]

【従来の技術】図3は都市ガスなどから水素を製造する
燃料処理系を有する固体高分子型燃料電池の一般的な構
成を示す系統図であって、電解質(図示せず)を介して
燃料極31及び空気極32が設けられた燃料電池本体3
3には、冷却のために、冷却水タンク34からポンプP
により冷却水が流通されている。
2. Description of the Related Art FIG. 3 is a system diagram showing a general configuration of a polymer electrolyte fuel cell having a fuel processing system for producing hydrogen from city gas or the like, in which fuel is supplied via an electrolyte (not shown). Fuel cell body 3 provided with electrode 31 and air electrode 32
3 includes a pump P from the cooling water tank 34 for cooling.
1 , cooling water is circulated.

【0003】都市ガス等の燃料は、燃料処理系35に導
入され、改質器35Aで水素を主体とするガスに改質さ
れ、一酸化炭素変成器35Bで一酸化炭素成分が変成さ
れ、更に一酸化炭素除去器35Cで一酸化炭素が極めて
低濃度に除去された後、燃料電池本体の加湿のために水
分を含んだ状態で燃料極31に送給される。
[0003] Fuel such as city gas is introduced into a fuel processing system 35, reformed into a gas mainly composed of hydrogen in a reformer 35A, and a carbon monoxide component is converted in a carbon monoxide converter 35B. After the carbon monoxide is removed to an extremely low concentration by the carbon monoxide remover 35C, the carbon monoxide is supplied to the fuel electrode 31 in a state containing moisture for humidifying the fuel cell body.

【0004】燃料極31の排ガスは、ポンプP、熱交
換器37,38,37’及び貯湯槽39よりなる熱回収
系で熱回収された後、更に放熱器40で冷却され、気液
分離器42に導入される。この気液分離器42の分離水
(凝縮水)は、水処理装置36に送給され、水素成分を
含んだ分離ガスは改質器の原料として利用され、燃焼後
水蒸気として系外へ排出される。この燃料処理系35に
は、水処理装置36から燃料処理や燃料ガスの加湿のた
めの水蒸気発生用の純水が導入される。
The exhaust gas from the fuel electrode 31 is recovered by a heat recovery system including a pump P 2 , heat exchangers 37, 38, 37 ′ and a hot water storage tank 39, and is further cooled by a radiator 40 to separate gas and liquid. Is introduced into the vessel 42. The separated water (condensed water) of the gas-liquid separator 42 is supplied to a water treatment device 36, and the separated gas containing a hydrogen component is used as a raw material of a reformer, and is discharged out of the system as steam after combustion. You. Pure water for generating steam for fuel treatment and humidification of fuel gas is introduced from the water treatment device 36 into the fuel treatment system 35.

【0005】一方、空気極32には空気が導入され、こ
の空気中の酸素により燃料極31に導入された改質ガス
が電気化学的反応により酸化され、発電が行われる。こ
の空気極32に導入される空気も加湿するために水処理
装置36から純水が導入されることがある。空気極32
の排ガスは、ポンプP、熱交換器37,38、37’
及び貯湯槽39よりなる熱回収系で熱回収された後、更
に放熱器40で冷却され、気液分離器41に導入され
る。この気液分離器41の分離水(凝縮水)は、水処理
装置36に送給され、分離ガスは排ガスとして系外に排
出される。
On the other hand, air is introduced into the air electrode 32, and the reformed gas introduced into the fuel electrode 31 is oxidized by an oxygen reaction in the air by an electrochemical reaction to generate electric power. Pure water may be introduced from the water treatment device 36 in order to humidify the air introduced into the air electrode 32. Air electrode 32
Exhaust gas is pump P 2 , heat exchangers 37, 38, 37 ′
After the heat is recovered by the heat recovery system including the hot water storage tank 39, it is further cooled by the radiator 40 and introduced into the gas-liquid separator 41. The separated water (condensed water) of the gas-liquid separator 41 is sent to the water treatment device 36, and the separated gas is discharged out of the system as exhaust gas.

【0006】水処理装置36で処理されて得られた純水
は、一部が燃料処理系35に送給され、残部は冷却水タ
ンク34に送給される。この冷却水タンク34の冷却水
は、ポンプPにより、燃料電池本体33の冷却部か
ら、熱回収系、放熱器40を経て循環される。なお、水
処理装置36には、補給水として水道水が導入され、循
環冷却水と共に処理される。
[0006] Part of the pure water obtained by the treatment in the water treatment device 36 is sent to a fuel treatment system 35, and the rest is sent to a cooling water tank 34. Cooling water of the cooling water tank 34 by the pump P 1, the cooling unit of the fuel cell body 33, the heat recovery system is circulated through the radiator 40. In addition, tap water is introduced into the water treatment device 36 as makeup water, and is treated with circulating cooling water.

【0007】即ち、このような固体高分子型燃料電池で
は、電気化学的反応を固体のイオン交換膜を介して行う
ため、燃料となる水素の移動には、高純度な水が必要不
可欠である。また、燃料ガスから水素を発生させる改質
器にも高純度の水が必要である。更には、燃料電池本体
の冷却水系にも高純度の水が必要とされる。
That is, in such a polymer electrolyte fuel cell, since the electrochemical reaction is carried out through a solid ion exchange membrane, high-purity water is indispensable for the transfer of hydrogen as a fuel. . In addition, a reformer that generates hydrogen from fuel gas also requires high-purity water. Furthermore, high-purity water is also required for the cooling water system of the fuel cell body.

【0008】燃料電池では、電気化学的反応によって電
力を取り出した際に、熱と水蒸気が発生するため、使用
水量の低減のために、この燃料電池内部で発生した水蒸
気を凝縮させて回収し、これを再利用しているが、この
凝縮水には炭酸ガス、Fe、Al、Cu等が溶存してい
るため、水処理によって取り除く必要がある。また、凝
縮水の水量は、外気温によって変化するため、装置内部
で必要とする高純度水の量に対して不足が生じることか
ら、水道水等で連続的に水量を補給する必要がある。そ
して、この水道水についても溶存イオンや炭酸ガス等を
除去する必要がある。
In a fuel cell, when electric power is taken out by an electrochemical reaction, heat and water vapor are generated. In order to reduce the amount of water used, water vapor generated inside the fuel cell is condensed and collected. Although this is reused, carbon dioxide gas, Fe, Al, Cu, and the like are dissolved in the condensed water, so it is necessary to remove it by water treatment. In addition, since the amount of condensed water varies depending on the outside air temperature, the amount of high-purity water required inside the apparatus becomes insufficient. Therefore, it is necessary to continuously supply water with tap water or the like. It is also necessary to remove dissolved ions, carbon dioxide, and the like from this tap water.

【0009】このため、水処理装置36で凝縮水を処理
して循環再利用すると共に、この水処理装置36で水道
水を処理して不足水量分を補給している。
For this reason, the condensed water is treated by the water treatment device 36 to be circulated and reused, and at the same time, the tap water is treated by the water treatment device 36 to replenish the water shortage.

【0010】しかして、従来においては、この水処理装
置として、イオン交換樹脂によるイオン交換法により純
水を製造する装置が用いられている。
[0010] Conventionally, as this water treatment apparatus, an apparatus for producing pure water by an ion exchange method using an ion exchange resin is used.

【0011】[0011]

【発明が解決しようとする課題】イオン交換法は、安価
で小型な装置で容易に高純度の水を製造することができ
るが、イオン交換法に用いられるイオン交換樹脂は、水
に溶解しているイオン物質を吸着し、代わりにHイオ
ンやOHイオンを放出することで純水化する仕組みで
あるため、樹脂のイオン交換容量には限りがある。この
ため、一定量のイオンを吸着すると純水製造能力が無く
なり、イオン交換樹脂を交換又は薬品により再生する必
要が生じる。
According to the ion exchange method, high-purity water can be easily produced with an inexpensive and small-sized apparatus, but the ion exchange resin used in the ion exchange method is dissolved in water. The ion exchange capacity of the resin is limited because it is a mechanism for purifying water by adsorbing ionic substances and releasing H + ions and OH ions instead. For this reason, if a certain amount of ions are adsorbed, the ability to produce pure water is lost, and it becomes necessary to exchange the ion exchange resin or regenerate the resin by chemicals.

【0012】一方、燃料電池は、電力の供給源として稼
働するものである。このため、燃料電池は高稼働率運転
が望まれるが、イオン交換法による純水の製造技術を採
用した場合において、1年間イオン交換樹脂を交換する
ことなく運転するためには、大量のイオン交換樹脂を必
要とし、現実的ではなかった。
On the other hand, a fuel cell operates as a power supply source. For this reason, it is desired that the fuel cell be operated at a high operation rate. However, in the case where the pure water production technology by the ion exchange method is adopted, a large amount of ion exchange is required to operate without replacing the ion exchange resin for one year. Requires resin and was not realistic.

【0013】また、前述の如く、燃料電池からの排ガス
には、電気化学的に発生した水蒸気と炭酸ガスが含まれ
ており、従って、この排ガスを冷却し、気液分離して得
られる凝縮水にも炭酸成分が含まれている。従来法で
は、補給水(水道水)量の低減のために、この凝縮水を
そのまま回収して水処理装置に供給しているが、このよ
うに多量の炭酸ガスを含む凝縮水を処理すると、この炭
酸ガスもイオン交換樹脂の負荷となり、イオン交換樹脂
の交換頻度を増大する原因となっている。
Further, as described above, the exhaust gas from the fuel cell contains water vapor and carbon dioxide gas generated electrochemically. Therefore, condensed water obtained by cooling the exhaust gas and separating it by gas-liquid separation Also contains carbonic acid components. In the conventional method, this condensed water is recovered as it is and supplied to the water treatment apparatus in order to reduce the amount of makeup water (tap water). However, when such condensed water containing a large amount of carbon dioxide is treated, This carbon dioxide gas also acts as a load on the ion exchange resin, causing an increase in the frequency of ion exchange resin exchange.

【0014】本発明は上記従来の問題点を解決し、頻繁
に交換を行うことが必要なイオン交換樹脂を用いること
なく、メンテナンス不要で長期連続処理が可能な電気脱
イオン装置により固体高分子型燃料電池の凝縮水や補給
水としての水道水を処理して高純度水を製造する燃料電
池の水処理装置を提供することを目的とする。
[0014] The present invention solves the above-mentioned conventional problems, and uses a solid polymer type ion deionization apparatus capable of performing maintenance-free and long-term continuous processing without using an ion exchange resin that requires frequent replacement. An object of the present invention is to provide a water treatment device for a fuel cell, which manufactures high-purity water by treating tap water as condensed water and make-up water for the fuel cell.

【0015】[0015]

【課題を解決するための手段】本発明の燃料電池の水処
理装置は、燃料電池から回収された凝縮水を脱炭酸処理
する脱炭酸手段と、外部補給水を処理する逆浸透膜装置
と、前記脱炭酸手段の処理水及び/又は該逆浸透膜装置
の透過水を脱塩処理する電気脱イオン装置と、該電気脱
イオン装置の濃縮水の少なくとも一部を、系外に排出す
る流路と前記脱炭酸手段に供給する流路とを切り替える
切替手段とを備えてなることを特徴とする。
A water treatment apparatus for a fuel cell according to the present invention comprises: a decarbonation means for decarboxylation of condensed water recovered from the fuel cell; a reverse osmosis membrane apparatus for treating external make-up water; An electrodeionization device for desalinating the treated water of the decarbonation means and / or the permeated water of the reverse osmosis membrane device, and a flow path for discharging at least a part of the concentrated water of the electrodeionization device out of the system And a switching means for switching between a flow path to be supplied to the decarbonation means.

【0016】より具体的には、この燃料電池の水処理装
置は、燃料電池から回収される凝縮水を脱炭酸処理する
脱炭酸手段と、外部補給水を受け入れる第1の貯水槽
と、該第1の貯水槽の流出水を処理する逆浸透膜装置
と、前記脱炭酸手段で脱炭酸処理された凝縮水及び/又
は該逆浸透膜装置の透過水を受け入れる第2の貯水槽
と、該第2の貯水槽の流出水を脱塩処理する電気脱イオ
ン装置と、該電気脱イオン装置の濃縮水の少なくとも一
部を、系外に排出する流路と前記脱炭酸手段に供給する
流路とを切り替える切替手段とを備えてなる。
More specifically, the water treatment apparatus for a fuel cell comprises a decarbonation means for decarbonating condensed water recovered from the fuel cell, a first water storage tank for receiving external make-up water, A reverse osmosis membrane device for treating effluent from the first water storage tank, a second water storage tank for receiving condensed water decarbonated by the decarbonation means and / or permeate of the reverse osmosis membrane device, An electrodeionization device for desalinating the effluent from the water storage tank of No. 2, a channel for discharging at least a part of the concentrated water of the electrodeionization device out of the system, and a channel for supplying to the decarbonation means And switching means for switching between the two.

【0017】この燃料電池の水処理装置においては、外
部補給水を逆浸透膜装置で処理するに先立ち、脱塩素処
理することが好ましく、この場合には、第1の貯水槽の
前段又は後段に脱塩素手段を設けることが好ましい。
In this water treatment device for a fuel cell, it is preferable to perform a dechlorination treatment before treating the external make-up water with the reverse osmosis membrane device. In this case, the dewatering treatment is performed before or after the first water storage tank. It is preferable to provide a dechlorination means.

【0018】この燃料電池の水処理装置であれば、イオ
ン負荷が低く炭酸濃度が高い凝縮水を脱炭酸処理した後
電気脱イオン装置で脱塩処理することにより、また、逆
にイオン負荷が高く炭酸濃度が低い外部補給水を逆浸透
膜装置及び電気脱イオン装置で脱塩処理することによ
り、高純度水を製造することができる。しかして、凝縮
水量の多少に基いて、凝縮水量が少ない場合には、電気
脱イオン装置の濃縮水を処理して再利用することで外部
補給水量を低減することができる。しかも、この場合に
おいて、脱炭酸手段で処理する凝縮水量が少ないため、
この濃縮水を脱炭酸処理することによる脱炭酸手段の負
荷の増大の問題はない。
In this water treatment apparatus for a fuel cell, condensed water having a low ionic load and a high carbonic acid concentration is decarbonated and then subjected to a desalination treatment by an electric deionization apparatus. High-purity water can be produced by subjecting external make-up water having a low carbon dioxide concentration to desalting treatment with a reverse osmosis membrane device and an electrodeionization device. When the amount of condensed water is small based on the amount of condensed water, the amount of external replenishment water can be reduced by treating and reusing the concentrated water of the electrodeionization apparatus. Moreover, in this case, since the amount of condensed water to be treated by the decarbonation means is small,
There is no problem of increasing the load of the decarbonation means by decarbonating this concentrated water.

【0019】請求項3の燃料電池の水処理装置は、燃料
電池から回収された凝縮水及び/又は外部補給水を処理
する逆浸透膜装置と、該逆浸透膜装置の透過水を脱塩処
理する電気脱イオン装置と、前記凝縮水の少なくとも一
部を、系外に排出する流路と前記逆浸透膜装置に供給す
る流路とを切り替える切替手段とを備えてなることを特
徴とする。
A water treatment apparatus for a fuel cell according to a third aspect of the present invention is a reverse osmosis membrane apparatus for treating condensed water and / or external make-up water recovered from the fuel cell, and desalinating the permeated water of the reverse osmosis membrane apparatus. And a switching means for switching between a channel for discharging at least a part of the condensed water out of the system and a channel for supplying the reverse osmosis membrane device.

【0020】より具体的には、この燃料電池の水処理装
置は、燃料電池から回収される凝縮水及び/又は外部補
給水を受け入れる貯水槽と、該貯水槽の流出水を処理す
る逆浸透膜装置と、該逆浸透膜装置の透過水を脱塩処理
する電気脱イオン装置と、前記凝縮水の少なくとも一部
を、系外に排出する流路選択と前記貯水槽に供給する流
路選択とを切り替える切替手段とを備えてなる。
More specifically, the water treatment apparatus for a fuel cell includes a water storage tank for receiving condensed water and / or external makeup water recovered from the fuel cell, and a reverse osmosis membrane for processing effluent from the water storage tank. Device, an electrodeionization device for desalinating the permeated water of the reverse osmosis membrane device, at least a part of the condensed water, a flow path selection for discharging outside the system, and a flow path selection for supplying the water storage tank. And switching means for switching between the two.

【0021】この燃料電池の水処理装置においても、外
部補給水を逆浸透膜装置で処理するに先立ち脱塩素処理
することが好ましく、この場合には、貯水槽の前段又は
後段に脱塩素手段を設けることが好ましい。
Also in this water treatment device for a fuel cell, it is preferable to perform a dechlorination treatment prior to treating the external make-up water with the reverse osmosis membrane device. In this case, a dechlorination means is provided before or after the water storage tank. Preferably, it is provided.

【0022】この燃料電池の水処理装置であれば、脱炭
酸手段を用いることなく、補給水量及び装置負荷を低減
して効率的に高純度水を製造することができる。
With this water treatment device for a fuel cell, high-purity water can be produced efficiently by reducing the amount of makeup water and the load on the device without using decarbonation means.

【0023】即ち、この装置では、逆浸透膜装置は脱炭
酸不可能であるが、電気脱イオン装置は水中の炭酸をイ
オン化した上で電気透析脱塩して除去できる点に着目
し、電気脱イオン装置の負荷限度までは凝縮水を脱塩、
脱炭酸処理して再利用し、凝縮水の炭酸濃度が電気脱イ
オン装置の負荷限度を超える場合は系外へ排出する。
That is, in this apparatus, the reverse osmosis membrane apparatus cannot decarboxylate, but the electrodeionization apparatus pays attention to the fact that carbonic acid in water can be ionized and then removed by electrodialysis and desalination. Desalting condensed water up to the load limit of the ion device,
If the carbon dioxide concentration of the condensed water exceeds the load limit of the electrodeionization device, it is discharged out of the system.

【0024】[0024]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0025】図1は本発明の第1の発明に係る燃料電池
の水処理装置の実施の形態を示す系統図であり、図2は
本発明の第2の発明に係る燃料電池の水処理装置の実施
の形態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a water treatment device for a fuel cell according to the first invention of the present invention, and FIG. 2 is a water treatment device for a fuel cell according to the second invention of the present invention. FIG. 2 is a system diagram showing an embodiment of the present invention.

【0026】図1の水処理装置は、イオン負荷が比較的
低く、炭酸濃度の高い、燃料電池の凝縮水を脱炭酸した
後電気脱イオン装置で脱塩処理する処理系統と、凝縮水
に比べて炭酸濃度は低いがイオン負荷が高い外部補給水
(通常は、水道水)を逆浸透(RO)膜装置及び電気脱
イオン装置で脱塩処理する処理系統との2系統で処理す
ることにより、凝縮水の再利用による補給水の低減を図
った上で装置負荷を低減して高純度水を効率的に製造す
るものである。
The water treatment apparatus shown in FIG. 1 has a relatively low ion load, a high carbon dioxide concentration, a treatment system for decarbonating fuel cell condensed water, and then desalting with an electric deionizer. By treating external make-up water (usually tap water) having a low carbonic acid concentration but a high ion load in two systems, a reverse osmosis (RO) membrane device and a treatment system for desalination with an electrodeionization device, The purpose of the present invention is to produce high-purity water efficiently by reducing the load on the apparatus after reducing the make-up water by reusing the condensed water.

【0027】図1において、1は脱塩素手段、2は脱炭
酸手段、3,4,5はそれぞれ第1水槽、第2水槽、第
3水槽、6はRO膜装置、7は電気脱イオン装置、8は
流量計、10は制御部、V〜Vはバルブ、P,P
はポンプである。
In FIG. 1, 1 is a dechlorination means, 2 is a decarbonation means, 3, 4, and 5 are a first water tank, a second water tank, and a third water tank, respectively, 6 is an RO membrane device, and 7 is an electric deionization device. , 8 are flow meters, 10 is a control unit, V 1 to V 3 are valves, P 1 , P
2 is a pump.

【0028】固体高分子型燃料電池では、凝縮水量が増
減し、例えば外気温が上昇すると凝縮水量が低減し、外
部補給水量を増加させる必要がある。図1のこの水処理
装置では、流量計8で計測された凝縮水量を制御部10
で設定値と比較し、設定値よりも凝縮水量が少ない場合
と多い場合とで、次のような処理を行う。
In the polymer electrolyte fuel cell, when the amount of condensed water increases and decreases, for example, when the outside air temperature rises, the amount of condensed water decreases, and it is necessary to increase the amount of external makeup water. In the water treatment apparatus of FIG. 1, the amount of condensed water measured by the flow meter 8 is controlled by the control unit 10.
The following processing is performed when the condensed water amount is smaller than the set value and when the condensed water amount is larger than the set value.

【0029】〔凝縮水量が少ない場合〕制御部10にて
凝縮水量が少ないと判断した場合には、水道水の導入バ
ルブV の開度を大きくした上で、電気脱イオン装置7
の濃縮水を循環再利用して外部補給水量を低減するため
にバルブVを閉じてバルブVを開き、イオン負荷が
低く炭酸濃度の高い凝縮水は脱炭酸手段2で脱炭酸処理
した後、第2水槽4に送給し、一方、イオン負荷が高く
炭酸濃度の低い外部補給水は第1水槽3を経てRO膜装
置6で脱塩処理し、更に第2水槽4を経て凝縮水の脱炭
酸処理水と共に電気脱イオン装置7で脱塩処理する。こ
れにより、RO膜装置6で補給水中の溶解イオン成分の
約90%は除去されるが、このRO膜装置6の透過水及
び凝縮水中の微量なイオン成分が電気脱イオン装置7で
高度に除去される。この電気脱イオン装置7に送給され
る補給水は予めRO膜装置6で脱塩処理され、また、凝
縮水は、予め脱炭酸手段2で脱炭酸処理されているた
め、電気脱イオン装置7の負荷が軽減される。この電気
脱イオン装置7の処理水(脱イオン水)は第3水槽5を
経て燃料電池へ送給される。
[When the amount of condensed water is small]
If it is determined that the amount of condensed water is low,
Luv V 1After increasing the opening degree of the electrodeionization device 7
To reduce external replenishment water by circulating and recycling concentrated water
Valve V2Close the valve V3Open the ion load
Condensed water with low and high carbon dioxide concentration is decarbonated by decarbonation means 2
After that, the water is fed to the second water tank 4, while the ion load is high.
External makeup water having a low carbon dioxide concentration passes through the first water tank 3 and is provided with an RO membrane.
Desalination treatment at the storage 6 and decarburization of the condensed water via the second water tank
Desalting is performed by an electrodeionization device 7 together with the acid-treated water. This
As a result, the dissolved ion component in the makeup water is
About 90% of the water is removed.
Trace ion components in the condensed water
Highly eliminated. This is supplied to the electrodeionization device 7
The replenishment water is desalted in advance by the RO membrane device 6, and
The condensed water is previously subjected to a decarboxylation treatment by the decarbonation means 2.
Therefore, the load on the electrodeionization device 7 is reduced. This electricity
The treated water (deionized water) of the deionizer 7 is supplied to the third water tank 5.
After that, it is sent to the fuel cell.

【0030】また、RO膜装置6の濃縮水は系外へ排出
し、電気脱イオン装置7の濃縮水は脱炭酸手段2の入口
側へ循環し、凝縮水と共に脱炭酸処理した後、電気脱イ
オン装置7で脱イオン処理する。即ち、電気脱イオン装
置7の濃縮水は、イオン負荷の低い凝縮水と、イオン負
荷が高いがRO膜装置6で大部分のイオンが除去されイ
オン負荷が低減されたRO膜装置6の透過水を原水とす
る電気脱イオン装置7の濃縮水であり、イオン負荷は比
較的低く、また、脱炭酸手段で除去し得なかった炭酸が
電気脱イオン装置7で濃縮されることにより炭酸濃度が
高められた水であるため、これを脱炭酸手段2で脱炭酸
処理した後、電気脱イオン装置7で脱イオン処理するこ
とにより、高純度水とすることができる。
The concentrated water of the RO membrane device 6 is discharged to the outside of the system, and the concentrated water of the electrodeionization device 7 is circulated to the inlet side of the decarbonation means 2 and is decarbonated together with the condensed water. The deionization process is performed by the ion device 7. That is, the concentrated water of the electrodeionization apparatus 7 is condensed water having a low ion load and permeated water of the RO membrane apparatus 6 which has a high ion load but most of the ions are removed by the RO membrane apparatus 6 and the ion load is reduced. Is the concentrated water of the electrodeionization apparatus 7 using as raw water, the ion load is relatively low, and the carbonic acid that cannot be removed by the decarbonation means is concentrated by the electrodeionization apparatus 7 to increase the carbonic acid concentration. Since the water is obtained, the water is decarbonated by the decarbonation means 2 and then deionized by the electrodeionization device 7 to obtain high-purity water.

【0031】このように凝縮水量の少ない場合におい
て、電気脱イオン装置7の濃縮水を循環処理して再利用
することにより外部補給水量を低減することができる。
しかも、この場合において、凝縮水量が少ないため、脱
炭酸手段2には十分な処理能力が残されているため、電
気脱イオン装置7の濃縮水を処理することによる不都合
を生じることはない。
When the amount of condensed water is small as described above, the amount of external replenishment water can be reduced by circulating and reusing the concentrated water of the electrodeionization device 7.
In addition, in this case, since the amount of condensed water is small, the decarbonation means 2 has a sufficient treatment capacity, so that there is no inconvenience caused by treating the concentrated water of the electrodeionization apparatus 7.

【0032】なお、脱炭酸手段としては、特に制限はな
く、空気接触式、気体透過膜式のいずれの方式のもので
も良いが、小型で炭酸ガス除去率の高い気体透過膜式の
ものが好適である。
The decarboxylation means is not particularly limited, and may be any of an air contact type and a gas permeable membrane type, but a gas permeable membrane type with a small size and a high carbon dioxide gas removal rate is preferable. It is.

【0033】この場合において、電気脱イオン装置7の
濃縮水の全部を循環再利用すると、電気脱イオン装置7
で濃縮水側に濃縮されたイオンを系外に排出し得なくな
るため、電気脱イオン装置7の濃縮水の一部は系外へ排
出するのが好ましい。電気脱イオン装置7の濃縮水の一
部を系外に排出する手段としては間欠的にバルブV
閉じると共にバルブVを開く、或いはバルブVを開
いた状態でバルブVを少し開いた状態とする、又は後
述する通り、脱炭酸手段2で脱炭酸された電気脱イオン
装置7の濃縮水を第1水槽3に供給して外部補給水と混
合してRO膜装置6で処理してRO膜装置6の濃縮水と
して排出することなどが挙げられる。
In this case, if all of the concentrated water in the electrodeionization device 7 is circulated and reused,
Therefore, it is preferable to discharge a part of the concentrated water of the electrodeionization device 7 to the outside of the system because the ions concentrated to the concentrated water side cannot be discharged to the outside of the system. As a means for discharging a portion of the electrodeionization apparatus 7 concentrated water out of the system to open the valve V 2 together intermittently closing the valve V 3, or slightly opens the valve V 2 in a state of opening the valve V 3 Or the concentrated water of the electrodeionization device 7 decarbonated by the decarbonation means 2 is supplied to the first water tank 3 and mixed with external replenishment water and treated by the RO membrane device 6 as described later. To discharge as concentrated water of the RO membrane device 6.

【0034】〔凝縮水が多い場合〕制御部10にて凝縮
水量が多いと判断した場合には、水道水の導入バルブV
の開度を小さくして補給水量を低減し、電気脱イオン
装置7の濃縮水は系外へ排出するべく、バルブV
開、バルブVを閉とする。この場合においても、イオ
ン負荷が低く炭酸濃度の高い凝縮水は、脱炭酸手段2で
脱炭酸処理した後、第2水槽4に供給し、一方、イオン
負荷が高く炭酸濃度の低い外部補給水は第1水槽3を経
てRO膜装置6で脱塩処理し、更に第2水槽4を経て凝
縮水の脱炭酸処理水と共に電気脱イオン装置7で脱塩処
理する。この電気脱イオン装置7の処理水は第3水槽5
を経て燃料電池へ送給される。また、電気脱イオン装置
7の濃縮水はRO膜装置6の濃縮水と共に系外へ排出さ
れる。
[When the amount of condensed water is large] If the control unit 10 determines that the amount of condensed water is large, the tap water introduction valve V
The first opening is made smaller by reducing the replenishing amount of water, electrodeionization apparatus 7 retentate of so discharged outside the system, the valve V 2 opens, the valve V 3 is closed. Also in this case, the condensed water having a low ionic load and a high carbonic acid concentration is supplied to the second water tank 4 after being decarbonated by the decarbonating means 2, whereas the external makeup water having a high ionic load and a low carbonic acid concentration is The water is desalinated by the RO membrane device 6 through the first water tank 3, and further desalted by the electrodeionization device 7 together with the decarbonated water of the condensed water through the second water tank 4. The treated water of the electrodeionization device 7 is supplied to a third water tank 5
Through the fuel cell. The concentrated water of the electrodeionization device 7 is discharged out of the system together with the concentrated water of the RO membrane device 6.

【0035】このように、凝縮水量が多い場合において
は、電気脱イオン装置7の濃縮水を系外へ排出する。即
ち、この電気脱イオン装置7の濃縮水中には、脱炭酸手
段2で除去し得なかった炭酸が濃縮されているため、こ
の濃縮水は系外へ排出する。このように電気脱イオン装
置7の濃縮水を排出することにより、負荷の増大を防止
することができる。
As described above, when the amount of condensed water is large, the concentrated water of the electrodeionization device 7 is discharged out of the system. That is, since the carbon dioxide that could not be removed by the decarbonation means 2 is concentrated in the concentrated water of the electrodeionization device 7, the concentrated water is discharged out of the system. By discharging the concentrated water of the electrodeionization device 7 in this manner, an increase in load can be prevented.

【0036】なお、外部補給水としては通常水道水が用
いられ、水道水中の塩素はRO膜を劣化させるため、図
1の装置では、第1水槽3の前段に脱塩素手段1が設け
られ、水道水中の塩素が除去される。この脱塩素手段1
は、RO膜装置6の上流側であれば良く、第1水槽3と
RO膜装置6との間に設けられていても良い。
It should be noted that tap water is usually used as the external replenishing water, and chlorine in the tap water degrades the RO film. Therefore, in the apparatus shown in FIG. Chlorine in tap water is removed. This dechlorination means 1
May be provided on the upstream side of the RO membrane device 6, and may be provided between the first water tank 3 and the RO membrane device 6.

【0037】この脱塩素手段としては、活性炭及び/又
は触媒担持体(触媒としてはコバルト等を用いることが
でき、担体としては樹脂や活性炭を用いることができ
る。)を充填した脱塩素塔や還元剤の注入装置等を用い
ることができるが、イオン負荷の増加を引き起こすこと
のない活性炭充填塔や活性炭及び触媒充填塔が好適であ
る。
As the dechlorination means, a dechlorination tower filled with activated carbon and / or a catalyst carrier (cobalt or the like can be used as a catalyst and a resin or activated carbon can be used as a carrier) can be used. An agent injection device or the like can be used, but an activated carbon packed tower or an activated carbon and catalyst packed tower which does not cause an increase in ion load is preferable.

【0038】図1の装置において、第3水槽5は必ずし
も必要とされず、電気脱イオン装置7の処理水は直接燃
料電池に送給しても良いが、燃料電池の純水の供給先は
冷却水系と改質器の改質反応部及び変成部の3ヶ所があ
り、各々純水供給条件が異なるため、第3水槽5を設け
るのが安定供給の面で好ましい。
In the apparatus shown in FIG. 1, the third water tank 5 is not always required, and the treated water of the electrodeionization apparatus 7 may be directly supplied to the fuel cell. Since there are three locations, a cooling water system, a reforming reaction section and a shift section of the reformer, and the conditions for supplying pure water are different from each other, it is preferable to provide the third water tank 5 in terms of stable supply.

【0039】また、脱炭酸手段2から第1水槽3へ送水
する流路を設けると共に、この流路と第2水槽4へ送水
する流路とを切り替える手段を設け、凝縮水量が少な
く、電気脱イオン装置7の濃縮水を再利用する場合に
は、脱炭酸手段2の処理水を、第2水槽4ではなく、第
1水槽3に送給し、脱炭酸処理後、更にRO膜装置6及
び電気脱イオン装置7で2段階の脱塩処理を行うように
しても良い。
In addition, a flow path for supplying water from the decarbonation means 2 to the first water tank 3 is provided, and a means for switching between this flow path and a flow path for supplying water to the second water tank 4 is provided. When the concentrated water of the ion device 7 is reused, the treated water of the decarbonation means 2 is supplied to the first water tank 3 instead of the second water tank 4, and after the decarbonation treatment, the RO membrane device 6 and A two-stage desalination process may be performed by the electrodeionization device 7.

【0040】即ち、図1の装置において、バルブV
閉、バルブVを開として電気脱イオン装置7の濃縮水
の全量を脱炭酸手段に送給すると、電気脱イオン装置7
で濃縮水中に濃縮されたイオンを系外へ排出することが
できなくなるため、この場合には、脱炭酸手段2の処理
水は第1水槽3に送給し、RO膜装置6の濃縮水として
この濃縮イオンを系外へ排出するようにすることが好ま
しい。
[0040] That is, in the apparatus of FIG. 1, when the valve V 2 closed, to deliver the total amount of concentrated water of the electrodeionization apparatus 7 a valve V 3 is opened to the decarboxylation means, electrodeionization apparatus 7
In this case, it is impossible to discharge the ions concentrated in the concentrated water to the outside of the system. In this case, the treated water of the decarbonation means 2 is supplied to the first water tank 3 and is used as the concentrated water of the RO membrane device 6. It is preferable to discharge the concentrated ions out of the system.

【0041】また、この装置において、凝縮水量の多少
は、図1に示す如く、凝縮水の流入配管に設けた流量計
8の計測結果に基いて判断する他、温度や凝縮水が流入
する第2水槽4に水位計などの水位検出手段を設けた
り、或いは、RO膜装置6の稼動状況等に基いて判断す
ることができ、前記電気脱イオン装置7の濃縮水の流路
切替はこのような判断結果に基いて自働又は手動で行う
ことができる。
In this apparatus, the amount of condensed water is determined based on the measurement result of the flow meter 8 provided in the condensed water inflow pipe as shown in FIG. The water tank 4 may be provided with a water level detecting means such as a water level meter, or the determination may be made based on the operation status of the RO membrane device 6, and the flow path switching of the concentrated water of the electrodeionization device 7 is performed as described above. It can be done automatically or manually based on a good judgment result.

【0042】一般に、固体高分子型燃料電池では、燃料
電池から回収される水は凝縮水が殆どで、冷却水のブロ
ーダウン水は僅かであるため、本発明ではこの凝縮水の
処理を主目的とするが、冷却水のブローダウン水がある
場合には、これを第1水槽3又は第2水槽4に供給して
凝縮水及び/又は補給水と混合して処理するのが好まし
い。
In general, in polymer electrolyte fuel cells, most of the water recovered from the fuel cell is condensed water, and the amount of blow-down water of cooling water is very small. However, if there is blow-down water for cooling water, it is preferable to supply the blow-down water to the first water tank 3 or the second water tank 4 to mix with condensed water and / or make-up water for treatment.

【0043】なお、凝縮水量が相当に多い場合でも、凝
縮水中の溶存物質が濃縮された電気脱イオン装置の濃縮
水の一部が排出されるなどにより、系内の水量は減少す
るので、外部補給水の導入は必要とされる。
Even when the amount of condensed water is considerably large, the amount of water in the system is reduced due to the discharge of a part of the concentrated water of the electrodeionization apparatus in which the dissolved substances in the condensed water are concentrated. The introduction of make-up water is required.

【0044】図2の水処理装置は、脱炭酸手段を用いる
ことなく凝縮水と外部補給水を処理する装置であり、複
雑な設備を省いて安価で小型な装置により、補給水量及
び装置負荷を低減して高純度水を効率的に製造するもの
である。
The water treatment apparatus shown in FIG. 2 is an apparatus for treating condensed water and external makeup water without using decarbonation means. It is intended to efficiently produce high-purity water by reducing the amount.

【0045】図2において、11は第1水槽、12は第
2水槽、13は脱塩素手段、14はRO膜装置、15は
電気脱イオン装置、20は制御部、V,Vはバル
ブ、P はポンプである。
In FIG. 2, reference numeral 11 denotes a first water tank, and 12 denotes a first water tank.
2 water tank, 13 is dechlorination means, 14 is RO membrane device, 15 is
Electrodeionizer, 20 is a control unit, V4, V5Is bal
B, P 3Is a pump.

【0046】この水処理装置では、凝縮水の炭酸濃度に
応じて次のような処理を行う。
In this water treatment apparatus, the following treatment is performed according to the carbon dioxide concentration of the condensed water.

【0047】〔凝縮水の炭酸濃度が低い場合〕制御部2
0にて電気脱イオン装置15への供給水の炭酸濃度が低
く、電気脱イオン装置で除去できる程度であると判断し
た場合には、バルブVの開度を絞り、またバルブV
は第1水槽11へ流路選択し、凝縮水と外部補給水の混
合水を、第1水槽11を経て脱塩素手段13で脱塩素処
理した後、RO膜装置14で脱塩処理し、更に電気脱イ
オン装置15で脱塩及び脱炭酸処理する。これにより、
イオン負荷が低く炭酸濃度の高い凝縮水中の炭酸成分は
電気脱イオン装置15で除去され、また、イオン負荷が
高く炭酸濃度の低い補給水中のイオン成分はRO膜装置
14及び電気脱イオン装置15で高度に除去される。こ
の電気脱イオン装置15の処理水(脱イオン水)は第2
水槽12を経て燃料電池へ送給される。RO膜装置14
及び電気脱イオン装置15の濃縮水は系外へ排出され
る。
[When Condensed Water Carbon Dioxide Concentration is Low] Control Unit 2
0 At low carbonate concentration of the feed water to the electrodeionization apparatus 15, when it is determined that the extent can be removed in an electrodeionization apparatus, stop the opening of the valve V 4, also the valve V 5
Selects a flow path to the first water tank 11, performs a dechlorination treatment on the mixed water of the condensed water and the external makeup water by the dechlorination means 13 through the first water tank 11, and then performs a desalination treatment by the RO membrane device 14. Desalting and decarboxylation are performed by the electrodeionization device 15. This allows
The carbonic acid component in the condensed water having a low ionic load and a high carbonic acid concentration is removed by the electrodeionization device 15, and the ionic component in the makeup water having a high ionic load and the low carbonic acid concentration is removed by the RO membrane device 14 and the electric deionization device 15. Highly eliminated. The treated water (deionized water) of the electrodeionization device 15 is the second
The water is sent to the fuel cell via the water tank 12. RO membrane device 14
And the concentrated water of the electrodeionization device 15 is discharged out of the system.

【0048】このように、凝縮水を回収して再利用する
ことで、補給水量を低減することができる。また、この
場合において、凝縮水の炭酸濃度が比較的低いため、装
置負荷を過度に増大させることはない。
As described above, by collecting and reusing the condensed water, the amount of makeup water can be reduced. In this case, since the carbon dioxide concentration of the condensed water is relatively low, the load on the apparatus is not excessively increased.

【0049】〔凝縮水の炭酸濃度が高い場合〕制御部2
0にて凝縮水の炭酸濃度が高く、電気脱イオン装置15
で除去し得ないと判断した場合には、バルブVの開度
を大きくして補給水量を増やすと共に、バルブVは凝
縮水の全量又は一部を系外へ排出するように流路選択
し、補給水のみ或いは補給水と少量の凝縮水の混合水
を、第1水槽11を経て脱塩素手段13で脱塩素処理し
た後、RO膜装置14で脱塩処理し、更に電気脱イオン
装置15で脱塩及び脱炭酸処理する。RO膜装置14及
び電気脱イオン装置15の濃縮水は系外へ排出する。こ
のように凝縮水の炭酸濃度が比較的高い場合には、これ
を再利用することなく、少なくとも一部を系外へ排出す
るようにすることで、装置負荷の増大、処理水水質の低
下を防止して、高純度水を製造することができる。
[When the Condensed Water Concentration is High] Control Unit 2
At 0, the carbon dioxide concentration of the condensed water is high,
When in is determined that not be removed, as well as increasing the supply amount of water by increasing the opening of the valve V 4, the channel selection so that the valve V 5 discharges the entire amount or a portion of the condensed water out of the system Then, only make-up water or a mixture of make-up water and a small amount of condensed water is dechlorinated by the dechlorination means 13 through the first water tank 11, and then subjected to desalination treatment by the RO membrane device 14, and further to an electrodeionization device. Desalting and decarboxylation treatment is carried out at 15. The concentrated water in the RO membrane device 14 and the electrodeionization device 15 is discharged out of the system. When the carbon dioxide concentration of the condensed water is relatively high as described above, at least a part of the condensed water is discharged to the outside of the system without being reused, thereby increasing the load on the apparatus and reducing the quality of the treated water. Prevention can produce high-purity water.

【0050】この装置においても、RO膜装置14のR
O膜の劣化を防止するために、外部補給水としての水道
水を脱塩素処理する脱塩素手段13が設けられている
が、この脱塩素手段13はRO膜装置14の上流側で補
給水を処理することができれば良く、第1水槽11の導
入側に設けても良い。この脱塩素手段としては、前述の
第1図におけるものと同様のものを用いることができ
る。
Also in this apparatus, the R of the RO film apparatus 14
In order to prevent the deterioration of the O film, a dechlorination means 13 for dechlorinating tap water as external replenishment water is provided. The dechlorination means 13 supplies replenishment water upstream of the RO membrane device 14. Any treatment can be performed, and it may be provided on the introduction side of the first water tank 11. As the dechlorination means, the same means as those in FIG. 1 can be used.

【0051】また、この図2の装置においても、第2水
槽12は必ずしも必要とされないが、燃料電池への純水
の供給水量の安定化の面からは第2水槽12を設けるの
が好ましい。
Also in the apparatus shown in FIG. 2, the second water tank 12 is not necessarily required, but it is preferable to provide the second water tank 12 from the viewpoint of stabilizing the amount of pure water supplied to the fuel cell.

【0052】また、この装置で燃料電池の冷却水のブロ
ーダウン水をも処理する場合には、ブローダウン水を第
1水槽11に供給して凝縮水及び/又は補給水と混合し
て処理するのが好ましい。
When the blowdown water of the fuel cell cooling water is also treated by this apparatus, the blowdown water is supplied to the first water tank 11 and mixed with the condensed water and / or make-up water for treatment. Is preferred.

【0053】図2の装置において、凝縮水を再利用する
か系外へ排出するかの判断は、凝縮水の炭酸濃度に基い
て行われるが、この凝縮水の炭酸濃度は、電気脱イオン
装置の電圧、電流又は処理水質を計測し、これらの結果
に基いて求めることができる。
In the apparatus shown in FIG. 2, the decision whether to reuse or discharge the condensed water is made based on the carbonic acid concentration of the condensed water. The voltage, current or treated water quality can be measured and determined based on these results.

【0054】即ち、電気脱イオン装置では、供給水に溶
解しているイオン成分の濃度と炭酸ガスの濃度が高くな
ると処理水の比抵抗が低下する、運転電圧に対して運転
電流が増加する等の変化が現れる。電気脱イオン装置に
供給される水をRO膜装置の透過水に限定すると、イオ
ン成分はRO膜装置によって殆ど除去されているが、炭
酸ガスは除去されることなく透過水に含まれるため、定
常状態にある電気脱イオン装置の処理水比抵抗及び運転
電圧、電流に影響を与えるものは、炭酸ガス濃度が支配
的になる。そこで、電気脱イオン装置の処理水比抵抗、
運転電圧及び電流を測定し、炭酸ガス濃度を推測するこ
とができる。
That is, in the electrodeionization apparatus, when the concentration of the ionic component dissolved in the supply water and the concentration of the carbon dioxide gas increase, the specific resistance of the treated water decreases, and the operation current increases with respect to the operation voltage. Changes appear. If the water supplied to the electrodeionization device is limited to the permeated water of the RO membrane device, most of the ionic components are removed by the RO membrane device, but the carbon dioxide gas is contained in the permeated water without being removed. Those that affect the treated water specific resistance, operating voltage, and current of the electrodeionization device in the state are dominated by the carbon dioxide gas concentration. Therefore, the treated water specific resistance of the electrodeionization device,
The operating voltage and current are measured, and the carbon dioxide concentration can be estimated.

【0055】また、このように電気脱イオン装置の運転
条件から凝縮水の炭酸濃度を間接的に求める他、炭酸ガ
ス濃度は、第1水槽11内部から、RO膜装置の透過水
までの間で変化がないと考えられるので、いずれかの箇
所で直接的に炭酸ガス濃度を測定しても良い。
In addition to the indirect determination of the carbon dioxide concentration of the condensed water from the operating conditions of the electrodeionization apparatus, the carbon dioxide gas concentration varies from the inside of the first water tank 11 to the permeated water of the RO membrane apparatus. Since it is considered that there is no change, the carbon dioxide concentration may be measured directly at any point.

【0056】凝縮水の炭酸濃度に基いて流路を切り替え
る方法としては、下記とを採用する方法と、下記
〜を採用する方法、更には、下記の方法において、
系外排出量を凝縮水の炭酸濃度に基いて調整する方法が
考えられるが、いずれの場合においても、前述の如く、
系内の水量は減少するので補給水は必須である。 凝縮水の炭酸濃度が低い場合、凝縮水の全量を第1
水槽11に送給して循環再利用する。 凝縮水の炭酸濃度が比較的高い場合、凝縮水の一部
を第1水槽11に送給して循環再利用し、残部は系外へ
排出する。 凝縮水の炭酸濃度が高い場合、凝縮水の全量を系外
へ排出する。
As a method of switching the flow path based on the carbon dioxide concentration of the condensed water, the following methods are adopted, the following methods are adopted, and further, the following methods are used.
A method of adjusting the amount of out-of-system discharge based on the concentration of carbon dioxide in the condensed water can be considered, but in any case, as described above,
Makeup water is essential because the amount of water in the system decreases. When the concentration of carbonic acid in the condensed water is low,
The water is supplied to the water tank 11 for circulating reuse. When the carbon dioxide concentration of the condensed water is relatively high, a part of the condensed water is sent to the first water tank 11 for circulating and reuse, and the remainder is discharged out of the system. When the carbon dioxide concentration of the condensed water is high, the entire amount of the condensed water is discharged out of the system.

【0057】上記流路切り替えは手動で行っても自働で
行っても良い。
The switching of the flow path may be performed manually or automatically.

【0058】この図2の装置によれば、水処理装置が過
負荷にならないように凝縮水の回収を最大限に行い、水
道水の使用量を減少させると共に、複雑な設備を使用す
ることなく電気脱イオン装置を安定して運転でき、結果
として、高純度の水を連続して製造することができる。
According to the apparatus shown in FIG. 2, the maximum amount of condensed water can be recovered so that the water treatment apparatus is not overloaded, the amount of tap water used can be reduced, and complicated equipment can be used. The electrodeionization apparatus can be operated stably, and as a result, high-purity water can be continuously produced.

【0059】[0059]

【発明の効果】以上詳述した通り、本発明の燃料電池の
水処理装置によれば、連続採水が可能な電気脱イオン装
置を用いて、外部補給水量の低減、装置負荷の軽減を図
った上で高純度水を効率的に製造することができる。
As described in detail above, according to the water treatment apparatus for a fuel cell of the present invention, the amount of external replenishment water and the load on the apparatus are reduced by using an electrodeionization apparatus capable of continuously collecting water. In addition, high-purity water can be efficiently produced.

【0060】特に、請求項1の燃料電池の水処理装置で
あれば、回収凝縮水量に応じて装置負荷の増大を抑えた
上で外部補給水量を極力低減することができる。
In particular, in the fuel cell water treatment apparatus according to the first aspect, the external replenishment water amount can be reduced as much as possible while suppressing an increase in the apparatus load according to the recovered condensed water amount.

【0061】また、請求項3の燃料電池の水処理装置で
あれば、複雑な設備を使用することなく、安価で小型な
装置による高純度水の製造が可能となる。
In the fuel cell water treatment apparatus according to the third aspect, high-purity water can be produced by an inexpensive and small-sized apparatus without using complicated facilities.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の燃料電池の水処理装置の実施の形態を
示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a water treatment device for a fuel cell according to the present invention.

【図2】本発明の燃料電池の水処理装置の他の実施の形
態を示す系統図である。
FIG. 2 is a system diagram showing another embodiment of the water treatment device for a fuel cell of the present invention.

【図3】都市ガス等から水素を製造する燃料処理系を有
する固体高分子型燃料電池の一般的な構成を示す系統図
である。
FIG. 3 is a system diagram showing a general configuration of a polymer electrolyte fuel cell having a fuel processing system for producing hydrogen from city gas or the like.

【符号の説明】[Explanation of symbols]

1,13 脱塩素手段 2 脱炭酸手段 3,11 第1水槽 4,12 第2水槽 5 第3水槽 6,14 RO膜装置 7,15 電気脱イオン装置 10,20 制御部 31 燃料極 32 空気極 33 燃料電池本体 34 冷却水タンク 35 燃料処理系 36 水処理装置 40 放熱器 41 気液分離器 42 気液分離器 1,13 Dechlorination means 2 Decarbonation means 3,11 First water tank 4,12 Second water tank 5 Third water tank 6,14 RO membrane device 7,15 Electrodeionization device 10,20 Control unit 31 Fuel electrode 32 Air electrode 33 fuel cell main body 34 cooling water tank 35 fuel processing system 36 water treatment device 40 radiator 41 gas-liquid separator 42 gas-liquid separator

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年3月7日(2000.3.7)[Submission date] March 7, 2000 (200.3.7)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】燃料極31の排ガスは、ポンプP、熱交
換器37,38,37’及び貯湯槽39よりなる熱回収
系で熱回収された後、更に放熱器40で冷却され、気液
分離器42に導入される。この気液分離器42の分離水
(凝縮水)は、水処理装置36に送給され、水素成分を
含んだ分離ガスは改質器の料として利用され、燃焼後
水蒸気として系外へ排出される。この燃料処理系35に
は、水処理装置36から燃料処理や燃料ガスの加湿のた
めの水蒸気発生用の純水が導入される。
The exhaust gas from the fuel electrode 31 is recovered by a heat recovery system including a pump P 2 , heat exchangers 37, 38, 37 ′ and a hot water storage tank 39, and is further cooled by a radiator 40 to separate gas and liquid. Is introduced into the vessel 42. Separated water of the gas-liquid separator 42 (condensed water) is supplied to the water treatment device 36, the separation gas containing hydrogen component is utilized as fuel in the reformer, discharged from the system as post-combustion steam Is done. Pure water for generating steam for fuel treatment and humidification of fuel gas is introduced from the water treatment device 36 into the fuel treatment system 35.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 61/02 B01D 61/02 5H027 C02F 1/20 C02F 1/20 A 1/28 1/28 F 1/44 1/44 E 1/46 ZAB 1/46 ZABZ H01M 8/06 H01M 8/06 W 8/10 8/10 (72)発明者 出口 智章 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 (72)発明者 堀ノ内 洋 東京都港区芝浦1−16−25 東京瓦斯株式 会社研究開発部基礎技術研究所内 Fターム(参考) 4D006 GA03 KA01 KB01 KB12 KB17 PB07 PC80 4D024 AA09 AB11 BA02 BB01 BC01 CA01 DB01 DB05 DB09 4D037 AA08 AB11 BA23 BB01 BB02 BB05 CA01 CA03 CA04 4D061 DA05 DB18 EA02 EB01 FA03 FA06 FA09 5H026 AA06 5H027 AA06 BA01 BA17 DD00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01D 61/02 B01D 61/02 5H027 C02F 1/20 C02F 1/20 A 1/28 1/28 F 1 / 44 1/44 E 1/46 ZAB 1/46 ZABZ H01M 8/06 H01M 8/06 W 8/10 8/10 (72) Inventor Tomoaki 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo Kurita Industrial Co., Ltd. In-house (72) Inventor Hiroshi Horinouchi 1-16-25 Shibaura, Minato-ku, Tokyo Tokyo Gas Co., Ltd.F-term in the Research and Development Department Basic Technology Research Laboratories 4D006 GA03 KA01 KB01 KB12 KB17 PB07 PC80 4D024 AA09 AB11 BA02 BB01 BC01 CA01 DB01 DB05 DB09 4D037 AA08 AB11 BA23 BB01 BB02 BB05 CA01 CA03 CA04 4D061 DA05 DB18 EA02 EB01 FA03 FA06 FA09 5H026 AA06 5H027 AA06 BA01 BA17 DD00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池から回収された凝縮水を脱炭酸
処理する脱炭酸手段と、 外部補給水を処理する逆浸透膜装置と、 前記脱炭酸手段の処理水及び/又は該逆浸透膜装置の透
過水を脱塩処理する電気脱イオン装置と、 該電気脱イオン装置の濃縮水の少なくとも一部を、系外
に排出する流路と前記脱炭酸手段に供給する流路とを切
り替える切替手段とを備えてなる燃料電池の水処理装
置。
1. A decarboxylation unit for decarboxylating condensed water recovered from a fuel cell, a reverse osmosis membrane device for processing external make-up water, a treated water of the decarbonation unit and / or the reverse osmosis membrane device An electrodeionization apparatus for desalinating the permeated water of the above, and a switching means for switching a flow path for discharging at least a part of the concentrated water of the electrodeionization apparatus out of the system and a flow path for supplying to the decarbonation means A water treatment device for a fuel cell, comprising:
【請求項2】 請求項1において、前記外部補給水を脱
塩素処理する脱塩素手段が前記逆浸透膜装置の前段に設
けられている燃料電池の水処理装置。
2. The water treatment apparatus for a fuel cell according to claim 1, wherein a dechlorination means for dechlorinating the external make-up water is provided in a stage preceding the reverse osmosis membrane device.
【請求項3】 燃料電池から回収された凝縮水及び/又
は外部補給水を処理する逆浸透膜装置と、 該逆浸透膜装置の透過水を脱塩処理する電気脱イオン装
置と、 前記凝縮水の少なくとも一部を、系外に排出する流路と
前記逆浸透膜装置に供給する流路とを切り替える切替手
段とを備えてなる燃料電池の水処理装置。
3. A reverse osmosis membrane device for treating condensed water and / or external make-up water recovered from a fuel cell; an electrodeionization device for desalinating permeated water of the reverse osmosis membrane device; A water treatment apparatus for a fuel cell, comprising: a switching unit that switches between a flow path for discharging at least a part of the flow out of the system and a flow path for supplying the reverse osmosis membrane device.
【請求項4】 請求項3において、外部補給水を脱塩素
処理する脱塩素手段が前記逆浸透膜装置の前段に設けら
れている燃料電池の水処理装置。
4. The water treatment device for a fuel cell according to claim 3, wherein a dechlorination means for dechlorinating the external make-up water is provided in a stage preceding the reverse osmosis membrane device.
JP2000049792A 2000-02-25 2000-02-25 Water treatment device for fuel cell Expired - Fee Related JP4461553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000049792A JP4461553B2 (en) 2000-02-25 2000-02-25 Water treatment device for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000049792A JP4461553B2 (en) 2000-02-25 2000-02-25 Water treatment device for fuel cell

Publications (2)

Publication Number Publication Date
JP2001232394A true JP2001232394A (en) 2001-08-28
JP4461553B2 JP4461553B2 (en) 2010-05-12

Family

ID=18571675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000049792A Expired - Fee Related JP4461553B2 (en) 2000-02-25 2000-02-25 Water treatment device for fuel cell

Country Status (1)

Country Link
JP (1) JP4461553B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281075A (en) * 2003-03-12 2004-10-07 Seibu Gas Co Ltd Water treatment device for solid polymer type fuel cell
JP2005149947A (en) * 2003-11-17 2005-06-09 Kurita Water Ind Ltd Water treatment device for fuel cell
JP2005183109A (en) * 2003-12-18 2005-07-07 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and operation method therefor
JP2005347231A (en) * 2003-10-01 2005-12-15 Kurita Water Ind Ltd Water processing device for fuel cell
JP2009076216A (en) * 2007-09-19 2009-04-09 Toshiba Corp Fuel cell power generation system, and water circulating system thereof
JP2009224287A (en) * 2008-03-19 2009-10-01 Fuji Electric Holdings Co Ltd Fuel cell power generation system
JP2009245702A (en) * 2008-03-31 2009-10-22 Fuji Electric Holdings Co Ltd Water processing unit for fuel cell power generation system
JP2010137200A (en) * 2008-12-15 2010-06-24 Japan Organo Co Ltd Water treatment apparatus and water treatment method
CN102040260A (en) * 2009-10-16 2011-05-04 奥加诺株式会社 Water treatment device of fuel cell and water treatment method of fuel cell
JP2011156483A (en) * 2010-02-01 2011-08-18 Asahi Kasei Chemicals Corp Water recovery system
JP2013122897A (en) * 2011-12-12 2013-06-20 Tokyo Gas Co Ltd Hydrodesulfurization method by use of byproduct hydrogen of electric deionization type water-processing device, and hydrodesulfurization system
CN103224307A (en) * 2013-04-28 2013-07-31 浙江晶泉水处理设备有限公司 Continuous electro-adsorption process-based sea water desalination apparatus
CN114046187A (en) * 2021-10-11 2022-02-15 北京市煤气热力工程设计院有限公司 Efficient recovery device and method for pressure energy and chemical energy of pipeline natural gas

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281075A (en) * 2003-03-12 2004-10-07 Seibu Gas Co Ltd Water treatment device for solid polymer type fuel cell
JP4655451B2 (en) * 2003-03-12 2011-03-23 西部瓦斯株式会社 Polymer electrolyte fuel cell system
JP2005347231A (en) * 2003-10-01 2005-12-15 Kurita Water Ind Ltd Water processing device for fuel cell
JP4595315B2 (en) * 2003-11-17 2010-12-08 栗田工業株式会社 Water treatment device for fuel cell
JP2005149947A (en) * 2003-11-17 2005-06-09 Kurita Water Ind Ltd Water treatment device for fuel cell
JP2005183109A (en) * 2003-12-18 2005-07-07 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and operation method therefor
JP4713079B2 (en) * 2003-12-18 2011-06-29 東芝燃料電池システム株式会社 Fuel cell power generation system and operation method thereof
JP2009076216A (en) * 2007-09-19 2009-04-09 Toshiba Corp Fuel cell power generation system, and water circulating system thereof
JP2009224287A (en) * 2008-03-19 2009-10-01 Fuji Electric Holdings Co Ltd Fuel cell power generation system
JP2009245702A (en) * 2008-03-31 2009-10-22 Fuji Electric Holdings Co Ltd Water processing unit for fuel cell power generation system
JP2010137200A (en) * 2008-12-15 2010-06-24 Japan Organo Co Ltd Water treatment apparatus and water treatment method
CN102040260A (en) * 2009-10-16 2011-05-04 奥加诺株式会社 Water treatment device of fuel cell and water treatment method of fuel cell
CN102040260B (en) * 2009-10-16 2014-02-19 奥加诺株式会社 Water treatment device of fuel cell and water treatment method of fuel cell
JP2011156483A (en) * 2010-02-01 2011-08-18 Asahi Kasei Chemicals Corp Water recovery system
JP2013122897A (en) * 2011-12-12 2013-06-20 Tokyo Gas Co Ltd Hydrodesulfurization method by use of byproduct hydrogen of electric deionization type water-processing device, and hydrodesulfurization system
CN103224307A (en) * 2013-04-28 2013-07-31 浙江晶泉水处理设备有限公司 Continuous electro-adsorption process-based sea water desalination apparatus
CN114046187A (en) * 2021-10-11 2022-02-15 北京市煤气热力工程设计院有限公司 Efficient recovery device and method for pressure energy and chemical energy of pipeline natural gas

Also Published As

Publication number Publication date
JP4461553B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
AU2002359797B2 (en) Fractional deionization process
JP3518112B2 (en) Fuel cell water treatment equipment
US6398928B1 (en) Electrolytic ozone generating method, system and ozone water producing system
US20110315561A1 (en) Treatment of solutions or wastewater
JP2001232394A (en) Water treatment equipment for fuel cell
CA2562842C (en) System for recovering gas produced during electrodialysis
US20130008858A1 (en) Systems and Methods for Process Stream Treatment
US20220144673A1 (en) Electrodialyzer and electrodialysis system for co2 capture from ocean water
WO2008079362A1 (en) Systems and methods for process stream treatment
JP5353034B2 (en) Fuel cell power generator
JP2001338668A (en) Fuel cell power generator
JP4662277B2 (en) Electrodeionization equipment
JP2001236981A (en) Water treatment system for fuel cell generator
JP2007258026A (en) Water treatment system of fuel cell device
JP2004346390A (en) Method and device for generating gas by electrolysis
JP5292865B2 (en) Water recovery method for fuel cell power generator and fuel cell power generator
JP2009245702A (en) Water processing unit for fuel cell power generation system
JP5286851B2 (en) Fuel cell power generator
JP2008161761A (en) Pure water making method and pure water making apparatus
KR102609121B1 (en) Fuel cell system with electrodeionization device
JP5380868B2 (en) Condensed water decay prevention method and fuel cell power generator
JP2009140726A (en) Fuel cell power generation device
JP2004174371A (en) Method for treating gas and system therefor
JP2004176622A (en) Gas turbine power generation system
JP4453337B2 (en) Biogas fuel cell power generation device and biogas hydrogen production device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees