JP2005183109A - Fuel cell power generation system and operation method therefor - Google Patents

Fuel cell power generation system and operation method therefor Download PDF

Info

Publication number
JP2005183109A
JP2005183109A JP2003420627A JP2003420627A JP2005183109A JP 2005183109 A JP2005183109 A JP 2005183109A JP 2003420627 A JP2003420627 A JP 2003420627A JP 2003420627 A JP2003420627 A JP 2003420627A JP 2005183109 A JP2005183109 A JP 2005183109A
Authority
JP
Japan
Prior art keywords
water
fuel cell
anode
electrolyzed water
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003420627A
Other languages
Japanese (ja)
Other versions
JP4713079B2 (en
Inventor
Hiroshi Chisawa
洋 知沢
Kazuhisa Tanaka
和久 田中
Taiji Kogami
泰司 小上
Tsutomu Aoki
努 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Fuel Cell Power Systems Corp
Priority to JP2003420627A priority Critical patent/JP4713079B2/en
Publication of JP2005183109A publication Critical patent/JP2005183109A/en
Application granted granted Critical
Publication of JP4713079B2 publication Critical patent/JP4713079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell power generation system and its operation method that aims at performing a water quality management in which contaminant ions of water circulaton system can be kept under the permissible value for a long period of time. <P>SOLUTION: A fuel cell power generation system includes a fuel cell stack 1, a fuel cell water circulation system 2 for supplying water to the fuel cell stack 1, an electrolytic water device 12 that is provided with a DC voltage source to apply DC voltage to an anode 12a and a cathode 12b and across these poles and performs electrolytic processing of the water supplied from a water supply source, and an anode electrolytic water supply system for supplying the electrolytic water created at the anode 12a of the electrolytic water device 12 to the fuel cell water circulation system 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体高分子形燃料電池を用いて発電を行う燃料電池発電システム及びその運転方法に関する。   The present invention relates to a fuel cell power generation system that generates power using a solid polymer fuel cell and an operation method thereof.

燃料電池発電システムは、水素等の燃料と空気等の酸化剤を燃料電池本体に供給して、電気化学的に反応させることにより、燃料の持つ化学エネルギーを直接電気エネルギーに変換して外部へ取り出す発電装置である。   The fuel cell power generation system supplies a fuel such as hydrogen and an oxidant such as air to the fuel cell body and causes them to react electrochemically, thereby converting the chemical energy of the fuel directly into electrical energy and taking it out. It is a power generation device.

この燃料電池発電システムは、比較的小型であるにもかかわらず高効率で、環境性に優れているという特徴があり、また、発電に伴う発熱を温水や蒸気として回収することにより、コージェネレーションシステムとしての適用が可能である。   This fuel cell power generation system is characterized by being highly efficient and environmentally friendly despite its relatively small size, and by collecting the heat generated by power generation as hot water or steam, a cogeneration system Can be applied.

ところで、燃料電池本体は電解質の違い等により様々なタイプのものに分類されるが、電解質に固体高分子電解質膜を用いた固体高分子形燃料電池は、低温動作性や高出力密度等の特徴があることから、一般家庭用を視野に入れた小型コージェネレーションシステムや電気自動車用の動力源としての用途に適しており、今後、市場規模が急激に拡大することが予想されている。   By the way, the fuel cell main body is classified into various types depending on the difference in electrolytes, etc., but the polymer electrolyte fuel cell using the solid polymer electrolyte membrane as the electrolyte has features such as low temperature operability and high output density. Therefore, it is suitable for use as a power source for small-sized cogeneration systems and electric vehicles with a view to general households, and the market size is expected to expand rapidly in the future.

この固体高分子形燃料電池において、固体高分子電解質膜として、例えばフッ素系イオン交換膜が用いられている。これらの膜は分子中にプロトン交換基を持ち、含水することによりプロトン伝導性を示し、電解質として機能する。したがって、電池の含水量が少ないと固体高分子電解質膜のプロトン伝導度が低下し、電池性能が低下する。そのため、燃料電池に供給する反応ガスを予め加湿器を通し、加湿して燃料電池に供給する外部加湿方式や、燃料電池に反応ガスと共に直接、加湿水を供給する内部加湿方式等によって、燃料電池電極反応部に水蒸気または水を供給し、固体高分子電解質膜の含水量を適正な範囲に保持させる必要がある。   In this solid polymer fuel cell, for example, a fluorine ion exchange membrane is used as the solid polymer electrolyte membrane. These membranes have a proton exchange group in the molecule, exhibit proton conductivity by containing water, and function as an electrolyte. Therefore, if the water content of the battery is small, the proton conductivity of the solid polymer electrolyte membrane is lowered, and the battery performance is lowered. Therefore, the fuel cell is supplied by an external humidification method in which the reaction gas supplied to the fuel cell is humidified in advance and supplied to the fuel cell, or an internal humidification method in which humidified water is directly supplied to the fuel cell together with the reaction gas. It is necessary to supply water vapor or water to the electrode reaction part to keep the water content of the solid polymer electrolyte membrane within an appropriate range.

一方、燃料電池の発電に伴う反応は発熱反応であるため、燃料電池スタックに冷却板を挿入して冷却水の顕熱で冷却する方法や、内部加湿方式において反応ガスと共に供給された加湿水の蒸発潜熱で冷却する方法等によって、燃料電池を適正な温度領域に制御している。   On the other hand, since the reaction accompanying the power generation of the fuel cell is an exothermic reaction, a cooling plate is inserted into the fuel cell stack and cooled with sensible heat of the cooling water, or humidified water supplied with the reaction gas in the internal humidification system. The fuel cell is controlled to an appropriate temperature range by a method of cooling with latent heat of evaporation.

上述のように燃料電池スタックには冷却水や加湿水を供給する必要があるが、外部からの補給水を最小限にするために、燃料電池スタックから排出された水を燃料電池スタックに循環させて供給する水循環系を設けている。しかし、この水循環系には、金属材料の腐食等により金属イオン等の不純物が混入する環境にある。   As described above, it is necessary to supply cooling water or humidified water to the fuel cell stack. In order to minimize the makeup water from the outside, the water discharged from the fuel cell stack is circulated to the fuel cell stack. A water circulation system is provided. However, this water circulation system is in an environment where impurities such as metal ions are mixed due to corrosion of the metal material.

また、内部加湿方式では、水循環系に混入した金属イオンが加湿水に混入して電池本体に供給されると、電池を構成する電解質膜や電極触媒中に存在するプロトン交換基が金属イオンで置換され、電池電圧が低下する。   In the internal humidification method, when metal ions mixed in the water circulation system are mixed into the humidified water and supplied to the battery body, the proton exchange groups present in the electrolyte membrane and electrode catalyst constituting the battery are replaced with metal ions. Battery voltage decreases.

さらに、内部加湿方式、外部加湿方式に共通した課題として、燃料電池に起電力が発生している際に、金属イオン等の混入により燃料電池スタックを貫通する冷却水の電気伝導度が増加すると、燃料電池スタックの絶縁が破壊され、冷却水を介した地絡や、燃料電池スタック構成材料の腐食等が生じるという問題も生じる。   Furthermore, as an issue common to the internal humidification method and the external humidification method, when the electromotive force is generated in the fuel cell, if the electrical conductivity of the cooling water penetrating the fuel cell stack increases due to the mixing of metal ions or the like, The insulation of the fuel cell stack is broken, and there is a problem that a ground fault through cooling water, corrosion of the constituent material of the fuel cell stack, and the like occur.

したがって、燃料電池発電システムの水循環系の水質管理は、燃料電池の性能や安全性を維持する上で重要な課題となっている。   Therefore, water quality management of the water circulation system of the fuel cell power generation system is an important issue in maintaining the performance and safety of the fuel cell.

そこで、現状では燃料電池の水循環系にイオン交換樹脂を配置し、水質を管理する方法が広く用いられている。(例えば、公知文献1)
図9は、かかる従来の燃料電池発電システムの一例を示す構成図である。
Therefore, at present, a method of managing the water quality by arranging an ion exchange resin in the water circulation system of the fuel cell is widely used. (For example, publicly known document 1)
FIG. 9 is a block diagram showing an example of such a conventional fuel cell power generation system.

この燃料電池発電システムは、図9に示すように燃料電池スタック1と、燃料電池スタック1を貫通するように冷却水または加湿水が循環する燃料電池水循環系2とからなり、燃料電池水循環系2には、水タンク3、水ポンプ4、イオン交換樹脂5及び燃料電池の発熱を回収する熱交換器6が配置されている。また、水タンク3には水供給バルブ8を介して水供給源7が接続され、水供給バルブ8の開閉によって随時水を補給できる構成となっている。そして、過剰な水は水タンク3に設けられたオートドレン9から排出される。
特開2002−141095
As shown in FIG. 9, the fuel cell power generation system includes a fuel cell stack 1 and a fuel cell water circulation system 2 in which cooling water or humidified water circulates so as to penetrate the fuel cell stack 1. The water tank 3, the water pump 4, the ion exchange resin 5, and the heat exchanger 6 that recovers heat generated by the fuel cell are disposed. A water supply source 7 is connected to the water tank 3 via a water supply valve 8 so that water can be replenished at any time by opening and closing the water supply valve 8. Excess water is discharged from an auto drain 9 provided in the water tank 3.
JP2002-141095

このように従来のイオン交換樹脂を用いた水質管理方法は、簡素な構成で不純物イオンを許容値以下に低減できる利点がある反面、樹脂の寿命が短いことから、頻繁にイオン交換樹脂を交換する必要が生じ、運用管理上の大きな不都合が生じていた。また、イオン交換樹脂そのものや交換作業に費用が発生するため、特に一般家庭用を視野に入れた小型コージェネレーションシステム等では事実上金属イオンを常時許容値以下に維持することは困難である。   As described above, the conventional water quality management method using the ion exchange resin has an advantage that the impurity ions can be reduced to the allowable value or less with a simple configuration, but the ion exchange resin is frequently exchanged because the life of the resin is short. This necessitates a major inconvenience in operation management. In addition, since costs are required for the ion exchange resin itself and replacement work, it is practically difficult to maintain metal ions below a permissible value at all times, particularly in a small cogeneration system with a view to general household use.

本発明は上記課題を解決するためになされたものであり、長期に亘り水循環系の不純物イオンを許容値以下に保持可能な水質管理を行うことができる燃料電池発電システム及びその運転方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a fuel cell power generation system capable of performing water quality management capable of maintaining impurity ions in a water circulation system below an allowable value for a long period of time, and an operating method thereof. For the purpose.

請求項1に対応する発明は、燃料電池スタックと、この燃料電池スタックに水を供給する燃料電池水循環系と、陽極と陰極及びこれら両極間に直流電圧を印加する直流電圧源を備え水供給源から供給される水を電解処理する電解水装置と、この電解水装置の陽極で生成された電解水を前記燃料電池水循環系に供給する陽極電解水供給系とを備える。   The invention corresponding to claim 1 comprises a fuel cell stack, a fuel cell water circulation system for supplying water to the fuel cell stack, an anode and a cathode, and a DC voltage source for applying a DC voltage between the two electrodes. An electrolyzed water device that electrolyzes the water supplied from the electrolyzed water, and an anodic electrolyzed water supply system that supplies electrolyzed water generated at the anode of the electrolyzed water device to the fuel cell water circulation system.

請求項2に対応する発明は、燃料電池スタックと、この燃料電池スタックに水を供給する燃料電池水循環系と、この燃料電池水循環系に設けられたイオン交換器と、陽極と陰極及びこれら両極間に直流電圧を印加する直流電圧源を備え水供給源から供給される水を電解処理する電解水装置と、前記電解水装置の陽極で生成された電解水を前記イオン交換器に給水および排水を行う陽極電解水供給系および陽極電解水排出系とを備える。   The invention corresponding to claim 2 includes a fuel cell stack, a fuel cell water circulation system for supplying water to the fuel cell stack, an ion exchanger provided in the fuel cell water circulation system, an anode and a cathode, and a gap between the two electrodes. A DC voltage source for applying a DC voltage to the electrolyzed water device that electrolyzes water supplied from a water supply source, and electrolyzed water generated at the anode of the electrolyzed water device to supply and drain water to the ion exchanger An anodic electrolyzed water supply system and an anodic electrolyzed water discharge system are provided.

請求項3に対応する発明は、請求項1又は請求項2に対応する発明の燃料電池発電システムにおいて、前記水供給源から前記電解水装置に繋がる水供給系に逆浸透膜器を配置する。   According to a third aspect of the present invention, in the fuel cell power generation system of the first or second aspect of the present invention, a reverse osmosis membrane device is disposed in a water supply system connected from the water supply source to the electrolyzed water device.

請求項4に対応する発明は、燃料電池スタックと、この燃料電池スタックに水を供給する燃料電池水循環系と、上水供給系と、陽極と陰極及びこれら両極間に直流電圧を印加する直流電圧源を備え前記上水供給系より供給される上水を電解処理する電解水装置と、この電解水装置の陰極で生成された電解水を飲料水系統に供給する陰極電解水供給系と、前記電解水装置の陽極で生成された電解水を前記燃料電池水循環系に供給する陽極電解水供給系とを備える。   According to a fourth aspect of the present invention, there is provided a fuel cell stack, a fuel cell water circulation system for supplying water to the fuel cell stack, a water supply system, a direct current voltage for applying a direct current voltage between the anode and the cathode and both electrodes. An electrolyzed water device that electrolyzes clean water supplied from the clean water supply system with a source, a cathodic electrolyzed water supply system that supplies electrolyzed water generated at the cathode of the electrolyzed water device to a drinking water system, and An anode electrolyzed water supply system for supplying electrolyzed water generated at the anode of the electrolyzed water device to the fuel cell water circulation system.

請求項5に対応する発明は、請求項4に対応する発明の燃料電池発電システムにおいて、前記上水供給系から前記電解水装置に繋がる水供給系に逆浸透膜器を配置する。   According to a fifth aspect of the present invention, in the fuel cell power generation system according to the fourth aspect of the present invention, a reverse osmosis membrane device is disposed in a water supply system connected from the clean water supply system to the electrolyzed water device.

請求項6に対応する発明は、請求項1乃至請求項5のいずれかに対応する発明の燃料電池発電システムにおいて、前記電解水装置へ印加する直流電圧源として、燃料電池から出力された直流電力を用いる。   According to a sixth aspect of the present invention, there is provided a fuel cell power generation system according to any one of the first to fifth aspects, wherein the direct-current power output from the fuel cell is used as a direct-current voltage source applied to the electrolyzed water device. Is used.

請求項7に対応する発明は、請求項1乃至請求項6のいずれかに対応する発明の燃料電池発電システムの運転方法において、前記電解水装置の陽極で生成された電解水を予め定められた間隔で前記燃料電池水循環系に供給する。   The invention corresponding to claim 7 is a fuel cell power generation system operating method according to any one of claims 1 to 6, wherein the electrolyzed water generated at the anode of the electrolyzed water device is predetermined. The fuel cell water circulation system is supplied at intervals.

請求項8に対応する発明は、請求項3又は請求項5に対応する発明の燃料電池発電システムの運転方法において、前記飲料水系の上流に配置された飲料水利用バルブを有し、この飲料水利用バルブが開いたときに、前記電解水装置の陽極で生成された電解水を燃料電池水循環系に供給する。   The invention corresponding to claim 8 is the operation method of the fuel cell power generation system of the invention corresponding to claim 3 or claim 5, further comprising a drinking water use valve disposed upstream of the drinking water system. When the use valve is opened, the electrolyzed water generated at the anode of the electrolyzed water device is supplied to the fuel cell water circulation system.

請求項9に対応する発明は、請求項6に対応する発明の燃料電池発電システムの運転方法において、前記燃料電池発電システムから出力される電力が電力需要よりも過剰なときに、前記燃料電池から出力された直流電力を前記電解装置に印加する。   The invention corresponding to claim 9 is the operation method of the fuel cell power generation system of the invention corresponding to claim 6, when the power output from the fuel cell power generation system is excessive than the power demand, from the fuel cell. The output DC power is applied to the electrolyzer.

本発明は、長期に亘り水循環系の不純物イオンを許容値以下に保持可能な水質管理を行うことができる。   INDUSTRIAL APPLICABILITY The present invention can perform water quality management that can keep impurity ions in the water circulation system below an allowable value for a long period of time.

以下本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明による燃料電池発電システムの第1の実施形態を示す構成図で、図9と同一部品には同一符号を付して示す。   FIG. 1 is a block diagram showing a first embodiment of a fuel cell power generation system according to the present invention. The same parts as those in FIG.

図1に示すように、燃料電池スタック1と、燃料電池スタック1を貫通するように冷却水または加湿水が循環する燃料電池水循環系2とからなり、燃料電池水循環系2には、水タンク3、水ポンプ4、イオン交換器5及び燃料電池の発熱を回収する熱交換器6が配置されている。   As shown in FIG. 1, the fuel cell stack 1 includes a fuel cell water circulation system 2 in which cooling water or humidified water circulates so as to penetrate the fuel cell stack 1. A water pump 4, an ion exchanger 5 and a heat exchanger 6 for recovering heat generated by the fuel cell are arranged.

また、水タンク3には陽極電解水供給配管10を介して電解水装置12が接続されるとともに、陽極電解水供給配管10に陽極電解水供給バルブ11が設けられている。   In addition, an electrolyzed water device 12 is connected to the water tank 3 through an anode electrolyzed water supply pipe 10, and an anode electrolyzed water supply valve 11 is provided in the anode electrolyzed water supply pipe 10.

この電解水装置12は、陽極12aと陰極12b及びこれら両極間に設けられた直流電源13を備え、直流電圧の印加により水供給源7より供給される水を電解処理する機能を有している。   The electrolyzed water device 12 includes an anode 12a, a cathode 12b, and a DC power source 13 provided between the two electrodes, and has a function of electrolyzing water supplied from the water supply source 7 by applying a DC voltage. .

なお、水タンク3にはオートドレン9が設けられ、このオートドレン9より過剰な水が排出される。   The water tank 3 is provided with an auto drain 9, and excess water is discharged from the auto drain 9.

次に上記のように構成された燃料電池発電システムの作用を述べる。   Next, the operation of the fuel cell power generation system configured as described above will be described.

水供給源7から電解水装置12へ供給された水は、電解水装置の陽極12a及び陰極12b間に直流電源13によって直流電圧が印加されると、電解処理される。このとき、金属イオンに代表される陽イオンは陰極側に引き寄せられるため、陽極近傍には、水供給源から供給された水よりも金属イオン濃度が低減された陽極電解水が生成される。また、電解処理により、陽極では下式のような反応が生じるため、陽極電解水のプロトン濃度が上昇する。   The water supplied from the water supply source 7 to the electrolyzed water device 12 is electrolyzed when a DC voltage is applied between the anode 12a and the cathode 12b of the electrolyzed water device by the DC power source 13. At this time, cations typified by metal ions are attracted to the cathode side, so that anodic electrolyzed water having a metal ion concentration lower than that of water supplied from the water supply source is generated in the vicinity of the anode. Further, the electrolytic treatment causes a reaction of the following formula at the anode, so that the proton concentration of the anode electrolyzed water increases.

(陽極における反応式):2HO → O + 4H + 4e
上記性質をもつ陽極電解水が燃料電池水循環系2に供給されることにより、水供給源7からの水を直接燃料電池水循環系2に供給した場合よりも、燃料電池水循環系2の金属イオン濃度が低減される。
(Reaction formula at the anode): 2H 2 O → O 2 + 4H + + 4e
By supplying anodic electrolyzed water having the above properties to the fuel cell water circulation system 2, the metal ion concentration of the fuel cell water circulation system 2 is higher than when water from the water supply source 7 is directly supplied to the fuel cell water circulation system 2. Is reduced.

さらに、燃料電池が金属イオンで汚染された場合には、プロトン濃度が高い陽極電解水が供給されるので、燃料電池の電極を構成するイオン交換基に存在する金属イオンがプロトンで再置換され、金属イオンが除去される。   Furthermore, when the fuel cell is contaminated with metal ions, anodic electrolyzed water having a high proton concentration is supplied, so that the metal ions present in the ion exchange groups constituting the electrodes of the fuel cell are re-substituted with protons, Metal ions are removed.

このように本実施形態によれば、燃料電池水循環系統に配置したイオン交換器5に供給される水の金属イオン濃度が低減されるので、イオン交換樹脂の寿命が改善される。したがって、イオン交換樹脂の交換に伴うメンテナンス費用を低減することが可能となると共に、金属イオンによる汚染に起因する燃料電池の性能低下を防止することができる。   Thus, according to this embodiment, since the metal ion concentration of the water supplied to the ion exchanger 5 arranged in the fuel cell water circulation system is reduced, the life of the ion exchange resin is improved. Therefore, it is possible to reduce the maintenance cost associated with the replacement of the ion exchange resin, and it is possible to prevent the performance of the fuel cell from being deteriorated due to contamination by metal ions.

さらに、燃料電池が金属イオンで汚染された場合には、燃料電池にプロトン濃度が高い陽極電解水が供給されるので、触媒層や電解質膜に含有されるプロトン交換基上の金属イオンがプロトンで再置換がなされ、燃料電池を汚染していた金属イオンが取り除かれる。したがって、燃料電池の性能が回復し、燃料電池の性能の低下を抑制することができる。   Furthermore, when the fuel cell is contaminated with metal ions, anode electrolytic water having a high proton concentration is supplied to the fuel cell, so that the metal ions on the proton exchange groups contained in the catalyst layer and the electrolyte membrane are protons. Re-replacement is performed to remove metal ions that have contaminated the fuel cell. Therefore, the performance of the fuel cell is recovered, and a decrease in the performance of the fuel cell can be suppressed.

上記第1の実施形態では、水供給源7より電解水装置12に水を供給し、電解処理された陽極電解水を燃料電池水循環系2に供給するようにしたが、図2に示すように水タンク3の出口側に電解処理された陽極電解水が燃料電池水循環系2に供給されるように電解水装置12を配置する構成としても、上記実施形態と同様の作用効果が得られる。   In the first embodiment, water is supplied from the water supply source 7 to the electrolyzed water device 12, and the electrolyzed anode electrolyzed water is supplied to the fuel cell water circulation system 2. However, as shown in FIG. Even if the electrolyzed water device 12 is arranged so that the anodic electrolyzed water electrolyzed on the outlet side of the water tank 3 is supplied to the fuel cell water circulation system 2, the same effect as the above embodiment can be obtained.

また、水補給のタイミングが短い場合には、図3に示すように燃料電池水循環系2からイオン交換器5を省略した構成としても、上記実施形態と同様の作用効果が得られる。   Further, when the timing of water replenishment is short, even if the ion exchanger 5 is omitted from the fuel cell water circulation system 2 as shown in FIG.

図4は、本発明による燃料電池発電システムの第2の実施形態を示す構成図で、図1と同一部品には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。   FIG. 4 is a block diagram showing a second embodiment of the fuel cell power generation system according to the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals and the description thereof is omitted, and different parts will be described here.

第2の実施形態では、燃料電池水循環系2に配置されたイオン交換器5の下流に切換バルブ14a及びイオン交換器排水口14bを設ける構成としたもので、他の構成は図1と同様である。   In 2nd Embodiment, it was set as the structure which provides the switching valve 14a and the ion exchanger drainage port 14b downstream of the ion exchanger 5 arrange | positioned at the fuel cell water circulation system 2, Other structures are the same as that of FIG. is there.

次に上記のように構成された燃料電池発電システムの作用を述べる。   Next, the operation of the fuel cell power generation system configured as described above will be described.

水供給源7から水が電解水装置12に供給されると、この水は電解処理されて金属イオン濃度が低く、且つプロトン濃度が高い陽極電解水が生成される。この陽極電解水は、陽極電解水供給配管10aを経由して水タンク3に一旦貯えられた後、イオン交換器5に供給される。したがって、プロトン濃度が高い陽極電解水がイオン交換器5に給水されることにより、イオン交換樹脂に含まれる金属イオンがプロトンで再生されると共に、再生に伴って生じた金属イオンを含む水は、切換バルブ14aをイオン交換器排出口14b側に切換えることで排出される。   When water is supplied from the water supply source 7 to the electrolyzed water device 12, the water is electrolyzed to generate anodic electrolyzed water having a low metal ion concentration and a high proton concentration. This anodic electrolyzed water is once stored in the water tank 3 via the anodic electrolyzed water supply pipe 10 a and then supplied to the ion exchanger 5. Therefore, when the anode electrolyzed water having a high proton concentration is supplied to the ion exchanger 5, the metal ions contained in the ion exchange resin are regenerated with protons, and the water containing the metal ions generated along with the regeneration is The switching valve 14a is discharged by switching to the ion exchanger outlet 14b side.

このように本実施形態によれば、システムからイオン交換器5を取り出すことなく、イオン交換樹脂の再生を行うことができる。したがって、イオン交換樹脂の交換に伴うメンテナンス費用を低減することが可能となると共に、金属イオンによる汚染に起因する燃料電池の性能低下を防止することができる。   Thus, according to this embodiment, it is possible to regenerate the ion exchange resin without taking out the ion exchanger 5 from the system. Therefore, it is possible to reduce the maintenance cost associated with the replacement of the ion exchange resin, and it is possible to prevent the performance of the fuel cell from being deteriorated due to contamination by metal ions.

図5は、本発明による燃料電池発電システムの第3の実施形態を示す構成図で、図1と同一部品には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。   FIG. 5 is a block diagram showing a third embodiment of the fuel cell power generation system according to the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals and the description thereof is omitted, and different parts will be described here.

第3の実施形態では、電解水装置12の陽極12a及び陰極12bにそれぞれ陽極電解水供給配管10a及び陰極電解水供給配管10bを接続し、陽極電解水供給配管10aを陽極電解水供給バルブ11を介して水タンク3に接続し、また陰極電解水供給配管10bを飲料水利用口16に接続する構成として上水供給源15より上水を供給するようにしたもので、他の構成は図1と同様である。   In the third embodiment, the anode electrolyzed water supply pipe 10a and the cathode electrolyzed water supply pipe 10b are respectively connected to the anode 12a and the cathode 12b of the electrolyzed water device 12, and the anode electrolyzed water supply pipe 10a is connected to the anode electrolyzed water supply valve 11. The water supply is supplied from the water supply source 15 as a configuration in which the cathode electrolyzed water supply pipe 10b is connected to the drinking water use port 16 and the other configuration is shown in FIG. It is the same.

次に上記のように構成された燃料電池発電システムの作用を述べる。   Next, the operation of the fuel cell power generation system configured as described above will be described.

上水供給源15から供給された上水は、電解水装置12の陽極12a及び陰極12b間に直流電源13の直流電圧が印加されることで、電解処理される。このとき、上水に含まれるミネラル分を主とする金属イオンは陰極側に引き寄せられ、陰極で生成した陰極電解水は、陰極電解水供給配管10bから飲料水利用口16を介してミネラル分を多く含む飲料水として利用される。   The clean water supplied from the clean water supply source 15 is electrolyzed by applying a DC voltage of the DC power supply 13 between the anode 12 a and the cathode 12 b of the electrolyzed water device 12. At this time, metal ions mainly composed of minerals contained in clean water are attracted to the cathode side, and the cathodic electrolyzed water generated at the cathode is dehydrated from the cathodic electrolyzed water supply pipe 10b via the drinking water use port 16. It is used as drinking water containing a lot.

一方、電解水装置12の陽極では、上水供給源から供給される上水よりも金属イオン濃度が低減され、且つプロトン濃度が上昇した陽極電解水が生成され、燃料電池水循環系2に配置されたイオン交換器5に前述同様に供給される。   On the other hand, in the anode of the electrolyzed water device 12, anode electrolyzed water having a reduced metal ion concentration and an increased proton concentration is generated as compared with clean water supplied from a clean water supply source, and is disposed in the fuel cell water circulation system 2. The ion exchanger 5 is supplied in the same manner as described above.

本実施形態によれば、第1の実施形態と同様に燃料電池水循環系2に配置したイオン交換器5に供給される水の金属イオン濃度が低減されるため、イオン交換樹脂の交換に伴うメンテナンス費用を低減することが可能になると共に、金属イオンによる汚染に起因する燃料電池の性能低下を防止することができる。   According to the present embodiment, since the metal ion concentration of water supplied to the ion exchanger 5 disposed in the fuel cell water circulation system 2 is reduced as in the first embodiment, maintenance accompanying the replacement of the ion exchange resin is performed. The cost can be reduced, and the deterioration of the performance of the fuel cell due to contamination by metal ions can be prevented.

また、燃料電池が金属イオンで汚染された場合には、燃料電池にプロトン濃度が高い陽極電解水が供給されるので、触媒層や電解質膜に含有されるプロトン交換基上の金属イオンがプロトンで再置換がなされ、燃料電池を汚染していた金属イオンが取り除かれる。したがって、燃料電池の性能が回復し、燃料電池の性能の低下を抑制することができる。   In addition, when the fuel cell is contaminated with metal ions, anode electrolyzed water having a high proton concentration is supplied to the fuel cell, so that the metal ions on the proton exchange groups contained in the catalyst layer and the electrolyte membrane are protons. Re-replacement is performed to remove metal ions that have contaminated the fuel cell. Therefore, the performance of the fuel cell is recovered, and a decrease in the performance of the fuel cell can be suppressed.

さらに、本実施形態の燃料電池発電システムによれば、上水から陰極電解水を製造し、飲料水として利用すると同時に副生される陽極電解水を燃料電池供給水として利用できるので、水補給に伴う水道代を節約できるという効果も得られる。   Furthermore, according to the fuel cell power generation system of the present embodiment, the cathode electrolyzed water is produced from the tap water and used as drinking water, and at the same time, the anode electrolyzed water produced as a by-product can be used as the fuel cell supply water. The effect of saving the water bill accompanying it is also obtained.

図6は、本発明による燃料電池発電システムの第4の実施形態を示す構成図で、図5と同一部品には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。   FIG. 6 is a block diagram showing a fourth embodiment of the fuel cell power generation system according to the present invention. The same parts as those in FIG. 5 are denoted by the same reference numerals, and the description thereof is omitted. Different parts will be described here.

第4の実施形態では、上水配管15aに飲料水浄水用の逆浸透膜器17を設け、この逆浸透膜器17を通過した上水を電解水装置12へ供給する構成としたもので、他の構成は図5と同様である。   In 4th Embodiment, it is set as the structure which provides the reverse osmosis membrane device 17 for drinking water water purification in the water supply piping 15a, and supplies the clean water which passed this reverse osmosis membrane device 17 to the electrolyzed water apparatus 12. Other configurations are the same as those in FIG.

次に上記のように構成された燃料電池発電システムの作用を述べる。   Next, the operation of the fuel cell power generation system configured as described above will be described.

上水供給源15より供給される上水は、逆浸透膜器17によって上水中の重金属や塩素化合物が除去されるので、電解水装置12で電解処理された陰極電解水中の重金属イオンや陽極電解水中の塩化物イオン濃度が低下する。すなわち、飲料水系統に供給される重金属イオンが低減されると共に、燃料電池水供給系2に配置したイオン交換器5に供給される塩化物イオンの濃度が低減される。   Since the heavy metal and chlorine compounds in the clean water are removed from the clean water supplied from the clean water supply source 15 by the reverse osmosis membrane device 17, heavy metal ions and anodic electrolysis in the catholyzed water electrolyzed by the electrolyzed water device 12 are used. The chloride ion concentration in water decreases. That is, the heavy metal ions supplied to the drinking water system are reduced, and the concentration of chloride ions supplied to the ion exchanger 5 disposed in the fuel cell water supply system 2 is reduced.

本実施形態によれば、上水から陰極電解水を製造し、飲料水として利用する際に、人体に悪影響のある重金属イオンが逆浸透膜器17によって除去されると共に、副生される陽極電解水中の金属イオン及び塩化物イオン濃度が低減されるため、燃料電池水循環系水2の金属イオンや塩化物イオンの濃度が低減される。したがって、イオン交換樹脂の交換に伴うメンテナンス費用を低減することが可能となると共に、金属イオンによる汚染に起因する燃料電池の性能低下を防止することができる。   According to the present embodiment, when producing cathodic electrolyzed water from tap water and using it as drinking water, heavy metal ions that have an adverse effect on the human body are removed by the reverse osmosis membrane device 17 and by-produced anodic electrolysis Since the concentration of metal ions and chloride ions in the water is reduced, the concentration of metal ions and chloride ions in the fuel cell water circulation system water 2 is reduced. Therefore, it is possible to reduce the maintenance cost associated with the replacement of the ion exchange resin, and it is possible to prevent the performance of the fuel cell from being deteriorated due to contamination by metal ions.

さらに、本実施形態では、飲料水系統の重金属低減を目的に逆浸透膜を利用しているため、新たなコスト発生は伴わないという効果がある。   Furthermore, in this embodiment, since the reverse osmosis membrane is used for the purpose of reducing heavy metals in the drinking water system, there is an effect that no new cost is involved.

次に本発明の第4の実施形態である燃料電池発電システムの最良の運転方法について説明する。   Next, the best operation method of the fuel cell power generation system according to the fourth embodiment of the present invention will be described.

燃料電池発電システムを設置する環境の水質を基に予め設定したタイミングで陽極電解水供給バルブ11を開き、燃料電池水循環系2に陽極電解水を供給した。ここで、陽極電解水の供給と同期させて陰極電解水が陰極電解水タンク18へ供給され、その後、電解水装置12に上水配管を経由して上水が供給されるような運転を実施した。   The anode electrolyzed water supply valve 11 was opened at a preset timing based on the water quality of the environment where the fuel cell power generation system is installed, and the anode electrolyzed water was supplied to the fuel cell water circulation system 2. Here, in synchronism with the supply of the anodic electrolyzed water, the cathodic electrolyzed water is supplied to the cathodic electrolyzed water tank 18, and then the electrolyzed water device 12 is supplied with the clean water via the water supply pipe. did.

このように予め設定したタイミングで燃料電池水供給系2に金属イオン濃度の低い陽極電解水が補給させる運転を実施することにより、燃料電池水循環系2は常時許容値以下の伝導度に維持される。   The fuel cell water circulation system 2 is always maintained at a conductivity below the allowable value by performing the operation in which the anode electrolytic water having a low metal ion concentration is replenished to the fuel cell water supply system 2 at the preset timing. .

本実施形態によれば、定期的に金属イオン濃度の低い陽極電解水が補給されるので、イオン交換器5に供給される金属イオン量が減少する。したがって、イオン交換樹脂の交換に伴うメンテナンス費用を低減することが可能となると共に、金属イオンによる汚染に起因する燃料電池の性能低下を防止することができる。   According to this embodiment, since the anode electrolyzed water having a low metal ion concentration is periodically replenished, the amount of metal ions supplied to the ion exchanger 5 is reduced. Therefore, it is possible to reduce the maintenance cost associated with the replacement of the ion exchange resin, and it is possible to prevent the performance of the fuel cell from being deteriorated due to contamination by metal ions.

図7は、本発明による燃料電池発電システムの第5の実施形態を示す構成図で、図6と同一部品には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。   FIG. 7 is a block diagram showing a fifth embodiment of the fuel cell power generation system according to the present invention. The same components as those in FIG. 6 are denoted by the same reference numerals and the description thereof is omitted, and different parts will be described here.

第5の実施形態では、電解水装置12の陽極12aを陽極電解水供給配管10aにより水タンク3に直接接続し、陰極電解水供給配管10bを飲料水利用バルブ19を介して飲料水利用口16に接続する構成としたもので、その他の構成は図6の構成と同様である。   In the fifth embodiment, the anode 12a of the electrolyzed water device 12 is directly connected to the water tank 3 by the anode electrolyzed water supply pipe 10a, and the catholyte water supply pipe 10b is connected to the potable water use port 16 through the potable water use valve 19. The other configurations are the same as those in FIG.

次に上記のように構成された燃料電池発電システムの作用を述べる。   Next, the operation of the fuel cell power generation system configured as described above will be described.

飲料水利用の要求によって、飲料水利用バルブ19が開かれると、飲料水利用配管10bに陰極電解水が供給される。また、それと同期して陽極電解水が陽極電解水供給配管10aを経由して水タンク3に補給され、燃料電池水循環系2に供給される。その後、電解水装置12に上水配管を経由して上水が供給される。   When the drinking water use valve 19 is opened due to a request for drinking water use, cathodic electrolyzed water is supplied to the drinking water use pipe 10b. In synchronism with this, anodic electrolyzed water is supplied to the water tank 3 via the anodic electrolyzed water supply pipe 10 a and supplied to the fuel cell water circulation system 2. Thereafter, clean water is supplied to the electrolyzed water device 12 via the clean water pipe.

また、飲料水の利用のタイミングで燃料電池水循環系2に金属イオン濃度が低減された陽極電解水が供給されるので、燃料電池循環水系2には飲料水の需要の高い、外気温の高い時期には特に多く補給される。   In addition, since the anode electrolyzed water having a reduced metal ion concentration is supplied to the fuel cell water circulation system 2 at the timing of use of the drinking water, the fuel cell circulation water system 2 has a high demand for drinking water and a high outdoor temperature. Is particularly replenished.

このように飲料水の需要の高い時期には、外気温や上水の温度が高い。したがって、熱交換器6に供給した排出ガスを外気や上水との熱交換によって、排出ガス中の水分の回収を行う燃料電池発電システムにおいては、熱交換器6の能力を増強したり、頻繁に水を補給したりする必要がある。   Thus, during periods when demand for drinking water is high, the outside air temperature and the temperature of clean water are high. Therefore, in the fuel cell power generation system that recovers the moisture in the exhaust gas by exchanging the exhaust gas supplied to the heat exchanger 6 with the outside air or clean water, the capacity of the heat exchanger 6 is increased, It is necessary to replenish water.

しかし、本実施形態の燃料電池発電システムでは、前記第4の実施形態で説明した水質維持効果や水補給に伴うコスト低減効果の他に、熱交換器の能力を低減してコンパクト化が実現できる。また、燃料電池水循環系に陽極電解水を供給する際に複雑な制御を用いていないため、システム制御の簡素化につながるという効果も得られる。   However, in the fuel cell power generation system according to the present embodiment, in addition to the water quality maintenance effect and the cost reduction effect associated with water replenishment described in the fourth embodiment, the capacity of the heat exchanger can be reduced to achieve compactness. . Moreover, since complicated control is not used when supplying anode electrolyzed water to the fuel cell water circulation system, an effect of simplifying system control can be obtained.

図8は本発明による燃料電池発電システムの第6の実施形態を示す構成図であり、図7と同一部品には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。   FIG. 8 is a block diagram showing a sixth embodiment of the fuel cell power generation system according to the present invention. The same parts as those in FIG. 7 are denoted by the same reference numerals and the description thereof is omitted, and different parts will be described here.

図8において、実線は水配管を、破線は電気配線をそれぞれ示している。   In FIG. 8, a solid line indicates a water pipe, and a broken line indicates an electrical wiring.

第6の実施形態では、直流電圧源として、燃料電池の起電力をDC/DCコンバータ20で調整したものを用いる構成としたものである。   In the sixth embodiment, a configuration in which an electromotive force of a fuel cell adjusted by a DC / DC converter 20 is used as a DC voltage source.

上記構成の燃料電池発電システムにおいて、燃料電池による出力に余剰があるときに、電解水を製造するという運転を実施した。   In the fuel cell power generation system configured as described above, when there is a surplus in the output from the fuel cell, an operation of producing electrolyzed water was performed.

このような運転を実施すれば、燃料電池から出力された直流電力はDC/DCコンバータ20で所定の直流電圧に調整され、直接電解水装置12の電解処理に用いられる。したがって、直流・交流間の変換効率に起因するエネルギーロスを除去することができる。また、電力余剰時に電解処理することによって、燃料電池の出力の変動が低減される。   If such an operation is performed, the DC power output from the fuel cell is adjusted to a predetermined DC voltage by the DC / DC converter 20 and used directly in the electrolysis treatment of the electrolyzed water device 12. Therefore, the energy loss resulting from the conversion efficiency between direct current and alternating current can be removed. Moreover, the fluctuation of the output of the fuel cell is reduced by performing the electrolytic treatment when the power is surplus.

本実施形態によれば、直流・交流間の変換を伴わないため、電解処理時の消費電力の低減が可能である。また、燃料電池の出力変動幅が低減されるので、システム制御の簡素化を図ることができる。   According to this embodiment, since conversion between direct current and alternating current is not involved, it is possible to reduce power consumption during electrolytic treatment. In addition, since the output fluctuation range of the fuel cell is reduced, the system control can be simplified.

本発明による燃料電池発電システムの第1の実施形態を示す構成図。The block diagram which shows 1st Embodiment of the fuel cell power generation system by this invention. 同実施形態の第1の変形例を示す構成図。The block diagram which shows the 1st modification of the embodiment. 同じく第2の変形例を示す構成図。The block diagram which similarly shows the 2nd modification. 本発明による燃料電池発電システムの第2の実施形態を示す構成図。The block diagram which shows 2nd Embodiment of the fuel cell power generation system by this invention. 本発明による燃料電池発電システムの第3の実施形態を示す構成図。The block diagram which shows 3rd Embodiment of the fuel cell power generation system by this invention. 本発明による燃料電池発電システムの第4の実施形態を示す構成図。The block diagram which shows 4th Embodiment of the fuel cell power generation system by this invention. 本発明による燃料電池発電システムの第5の実施形態を示す構成図。The block diagram which shows 5th Embodiment of the fuel cell power generation system by this invention. 本発明による燃料電池発電システムの第6の実施形態を示す構成図。The block diagram which shows 6th Embodiment of the fuel cell power generation system by this invention. 従来の燃料電池発電システムの一例を示す構成図。The block diagram which shows an example of the conventional fuel cell power generation system.

符号の説明Explanation of symbols

1:燃料電池スタック、2:燃料電池水循環系、3:水タンク、4:水ポンプ、5:イオン交換器、6:熱交換器、7:水供給源、8:水供給バルブ、9:オートドレン、10a:陽極電解水供給配管、10b:陰極電解水供給配管、11:陽極電解水供給バルブ、12:電解水装置、12a:電解水装置陽極、12b:電解水装置陰極、13:直流電圧源、14a: 切換バルブ、14b:イオン交換器排水口、15:上水供給源、15a:上水配管、16:飲料水利用系、17:逆浸透膜器、18:陰極電解水タンク、19:飲料水利用バルブ、20:DC/DCコンバーター   1: Fuel cell stack, 2: Fuel cell water circulation system, 3: Water tank, 4: Water pump, 5: Ion exchanger, 6: Heat exchanger, 7: Water supply source, 8: Water supply valve, 9: Auto Drain, 10a: anode electrolyzed water supply pipe, 10b: cathode electrolyzed water supply pipe, 11: anode electrolyzed water supply valve, 12: electrolyzed water apparatus, 12a: electrolyzed water apparatus anode, 12b: electrolyzed water apparatus cathode, 13: DC voltage 14a: Switching valve, 14b: Ion exchanger drain, 15: Water supply source, 15a: Water supply piping, 16: Drinking water utilization system, 17: Reverse osmosis membrane device, 18: Cathodic electrolyzed water tank, 19 : Drinking water use valve, 20: DC / DC converter

Claims (9)

燃料電池スタックと、この燃料電池スタックに水を供給する燃料電池水循環系と、陽極と陰極及びこれら両極間に直流電圧を印加する直流電圧源を備え水供給源から供給される水を電解処理する電解水装置と、この電解水装置の陽極で生成された電解水を前記燃料電池水循環系に供給する陽極電解水供給系とを備えたことを特徴とする燃料電池発電システム。   A fuel cell stack, a fuel cell water circulation system for supplying water to the fuel cell stack, an anode, a cathode, and a DC voltage source for applying a DC voltage between the two electrodes, and electrolytically treating water supplied from the water supply source A fuel cell power generation system comprising: an electrolyzed water device; and an anode electrolyzed water supply system that supplies electrolyzed water generated at an anode of the electrolyzed water device to the fuel cell water circulation system. 燃料電池スタックと、この燃料電池スタックに水を供給する燃料電池水循環系と、この燃料電池水循環系に設けられたイオン交換器と、陽極と陰極及びこれら両極間に直流電圧を印加する直流電圧源を備え水供給源から供給される水を電解処理する電解水装置と、前記電解水装置の陽極で生成された電解水を前記イオン交換器に給水および排水を行う陽極電解水供給系および陽極電解水排出系とを備えたことを特徴とする燃料電池発電システム。   A fuel cell stack, a fuel cell water circulation system for supplying water to the fuel cell stack, an ion exchanger provided in the fuel cell water circulation system, a direct current voltage source for applying a direct current voltage between the anode and the cathode and both electrodes An electrolyzed water device that electrolyzes water supplied from a water supply source, and an electrolyzed water supply system that supplies and drains the electrolyzed water generated at the anode of the electrolyzed water device to the ion exchanger and anodic electrolysis A fuel cell power generation system comprising a water discharge system. 前記水供給源から前記電解水装置に繋がる水供給系に逆浸透膜器を配置したことを特徴とする請求項1又は請求項2に記載の燃料電池発電システム。   The fuel cell power generation system according to claim 1 or 2, wherein a reverse osmosis membrane device is disposed in a water supply system connected from the water supply source to the electrolyzed water device. 燃料電池スタックと、この燃料電池スタックに水を供給する燃料電池水循環系と、上水供給系と、陽極と陰極及びこれら両極間に直流電圧を印加する直流電圧源を備え前記上水供給系より供給される上水を電解処理する電解水装置と、この電解水装置の陰極で生成された電解水を飲料水系統に供給する陰極電解水供給系と、前記電解水装置の陽極で生成された電解水を前記燃料電池水循環系に供給する陽極電解水供給系とを備えたことを特徴とする燃料電池発電システム。   A fuel cell stack, a fuel cell water circulation system for supplying water to the fuel cell stack, a water supply system, an anode and a cathode, and a DC voltage source for applying a DC voltage between the two electrodes; An electrolyzed water device that electrolyzes the supplied water, a cathodic electrolyzed water supply system that supplies electrolyzed water generated at the cathode of the electrolyzed water device to a drinking water system, and an anode of the electrolyzed water device. An anode electrolyzed water supply system for supplying electrolyzed water to the fuel cell water circulation system. 前記上水供給系から前記電解水装置に繋がる水供給系に逆浸透膜器を配置したことを特徴とする請求項4に記載の燃料電池発電システム。   5. The fuel cell power generation system according to claim 4, wherein a reverse osmosis membrane device is disposed in a water supply system connected from the water supply system to the electrolyzed water device. 前記電解水装置へ印加する直流電圧源として、燃料電池から出力された直流電力を用いることを特徴とする請求項1乃至請求項5のいずれかに記載の燃料電池発電システム。   6. The fuel cell power generation system according to claim 1, wherein DC power output from a fuel cell is used as a DC voltage source applied to the electrolyzed water device. 前記電解水装置の陽極で生成された電解水を予め定められた間隔で前記燃料電池水循環系に供給することを特徴とする請求項1乃至請求項6のいずれかに記載の燃料電池発電システムの運転方法。   The fuel cell power generation system according to any one of claims 1 to 6, wherein the electrolyzed water generated at the anode of the electrolyzed water device is supplied to the fuel cell water circulation system at a predetermined interval. how to drive. 前記飲料水系の上流に配置された飲料水利用バルブを有し、この飲料水利用バルブが開いたときに、前記電解水装置の陽極で生成された電解水を燃料電池水循環系に供給することを特徴とする請求項3又は請求項5に記載の燃料電池発電システムの運転方法。   A drinking water utilization valve disposed upstream of the drinking water system, and when the drinking water utilization valve is opened, the electrolytic water generated at the anode of the electrolytic water device is supplied to the fuel cell water circulation system. 6. A method of operating a fuel cell power generation system according to claim 3 or claim 5, wherein 前記燃料電池発電システムから出力される電力が電力需要よりも過剰なときに、前記燃料電池から出力された直流電力を前記電解装置に印加することを特徴とする請求項6記載の燃料電池発電システムの運転方法。   7. The fuel cell power generation system according to claim 6, wherein when the power output from the fuel cell power generation system is excessive than the power demand, DC power output from the fuel cell is applied to the electrolyzer. Driving method.
JP2003420627A 2003-12-18 2003-12-18 Fuel cell power generation system and operation method thereof Expired - Fee Related JP4713079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003420627A JP4713079B2 (en) 2003-12-18 2003-12-18 Fuel cell power generation system and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003420627A JP4713079B2 (en) 2003-12-18 2003-12-18 Fuel cell power generation system and operation method thereof

Publications (2)

Publication Number Publication Date
JP2005183109A true JP2005183109A (en) 2005-07-07
JP4713079B2 JP4713079B2 (en) 2011-06-29

Family

ID=34782094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003420627A Expired - Fee Related JP4713079B2 (en) 2003-12-18 2003-12-18 Fuel cell power generation system and operation method thereof

Country Status (1)

Country Link
JP (1) JP4713079B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067369A (en) * 2008-09-08 2010-03-25 Toyota Motor Corp Fuel cell system
JP2013201084A (en) * 2012-03-26 2013-10-03 Tokyo Gas Co Ltd Water treatment system and water treatment method in fuel cell system

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087906A (en) * 1994-06-15 1996-01-12 Tokyo Gas Co Ltd Water treatment device for fuel cell
JPH09161833A (en) * 1995-12-06 1997-06-20 Tokyo Gas Co Ltd Water treating device for fuel cell
JPH1186895A (en) * 1997-09-10 1999-03-30 Toshiba Corp Fuel cell plant water treatment system
JP2001176535A (en) * 1999-12-20 2001-06-29 Fuji Electric Co Ltd Water treatment device of fuel cell power generator and its operating method
JP2001185166A (en) * 1999-12-22 2001-07-06 Toshiba Corp Solid polymeric fuel cell system and automatic vending machine
JP2001232394A (en) * 2000-02-25 2001-08-28 Tokyo Gas Co Ltd Water treatment equipment for fuel cell
JP2001236981A (en) * 2000-02-22 2001-08-31 Fuji Electric Co Ltd Water treatment system for fuel cell generator
JP2002319427A (en) * 2001-04-19 2002-10-31 Toshiba Corp Electric power generating system and fuel cell power generating method
JP2003100336A (en) * 2001-09-21 2003-04-04 Kurita Water Ind Ltd Fuel cell power generation system and its operation method
JP2003109642A (en) * 2001-09-27 2003-04-11 Kurita Water Ind Ltd Water-treatment device
JP2003157869A (en) * 2001-11-22 2003-05-30 Kurita Water Ind Ltd Water treating device for fuel cell
JP2003308859A (en) * 2002-04-17 2003-10-31 Mitsubishi Heavy Ind Ltd Water feeder in fuel cell power generation system and fuel cell power generation system using it
JP2003331877A (en) * 2002-04-13 2003-11-21 Airbus Deutschland Gmbh Method for improving efficiency and for reducing exhaust gas in fuel cell system
JP2004526280A (en) * 2001-02-02 2004-08-26 ビーエーエスエフ アクチェンゲゼルシャフト Method and apparatus for deionizing fuel cell coolant

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087906A (en) * 1994-06-15 1996-01-12 Tokyo Gas Co Ltd Water treatment device for fuel cell
JPH09161833A (en) * 1995-12-06 1997-06-20 Tokyo Gas Co Ltd Water treating device for fuel cell
JPH1186895A (en) * 1997-09-10 1999-03-30 Toshiba Corp Fuel cell plant water treatment system
JP2001176535A (en) * 1999-12-20 2001-06-29 Fuji Electric Co Ltd Water treatment device of fuel cell power generator and its operating method
JP2001185166A (en) * 1999-12-22 2001-07-06 Toshiba Corp Solid polymeric fuel cell system and automatic vending machine
JP2001236981A (en) * 2000-02-22 2001-08-31 Fuji Electric Co Ltd Water treatment system for fuel cell generator
JP2001232394A (en) * 2000-02-25 2001-08-28 Tokyo Gas Co Ltd Water treatment equipment for fuel cell
JP2004526280A (en) * 2001-02-02 2004-08-26 ビーエーエスエフ アクチェンゲゼルシャフト Method and apparatus for deionizing fuel cell coolant
JP2002319427A (en) * 2001-04-19 2002-10-31 Toshiba Corp Electric power generating system and fuel cell power generating method
JP2003100336A (en) * 2001-09-21 2003-04-04 Kurita Water Ind Ltd Fuel cell power generation system and its operation method
JP2003109642A (en) * 2001-09-27 2003-04-11 Kurita Water Ind Ltd Water-treatment device
JP2003157869A (en) * 2001-11-22 2003-05-30 Kurita Water Ind Ltd Water treating device for fuel cell
JP2003331877A (en) * 2002-04-13 2003-11-21 Airbus Deutschland Gmbh Method for improving efficiency and for reducing exhaust gas in fuel cell system
JP2003308859A (en) * 2002-04-17 2003-10-31 Mitsubishi Heavy Ind Ltd Water feeder in fuel cell power generation system and fuel cell power generation system using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067369A (en) * 2008-09-08 2010-03-25 Toyota Motor Corp Fuel cell system
JP2013201084A (en) * 2012-03-26 2013-10-03 Tokyo Gas Co Ltd Water treatment system and water treatment method in fuel cell system

Also Published As

Publication number Publication date
JP4713079B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4867720B2 (en) Pure water production method and apparatus
KR101220199B1 (en) Electrolytic synthesis of hydrogen peroxide directly from water and application thereof
KR100567357B1 (en) Water electrolyzing device
JP2011517012A (en) Device and method for performing a reverse electrodialysis process
CN105329988A (en) Electrolytic bath for treating high-salt industrial waste water by combining Fenton method with bipolar membrane technology
KR20130077164A (en) Water treatment apparatus for fuel cell
KR101163704B1 (en) Fuel cell system using hydrogen from electrolyzer of sea water
JP5415168B2 (en) Water electrolysis system
JP4713079B2 (en) Fuel cell power generation system and operation method thereof
JP2006299323A (en) Water electrolytic device
JP2001338672A (en) Home-use electric power supply system
JP2008161760A (en) Pure water making method and pure water making apparatus
JPH022830A (en) Electric dialysis device
JP2010153195A (en) Fuel cell power generation system of fuel cell and its operation method
WO2018079965A1 (en) Hybrid power generation system and energy-independent hydrogen-electricity hybrid charging station, which use reverse electrodialysis device capable of efficiently producing hydrogen-electricity
JP4662277B2 (en) Electrodeionization equipment
CN205367823U (en) Fenton method combines high salt industrial waste water electrolysis trough of bipolar membrane technical process
JPH06276701A (en) Electric power storing device
CN203613055U (en) Treatment device for wastewater with high salinity and chlorine
JP3240981B2 (en) Electrolytic ozone generator
JP2008161761A (en) Pure water making method and pure water making apparatus
JP2003109642A (en) Water-treatment device
WO2011093124A1 (en) Water treatment device
CN105236631A (en) Method for treating high-salt industrial wastewater based on multi-electrode multi-diaphragm electrolytic cell
KR102041554B1 (en) Hybrid power generation system and self supporting hydrogen-electricity complex charge station using reverse electrodialysis power generation appartus with effective hydrogen-electricity generation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101110

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110324

LAPS Cancellation because of no payment of annual fees