JP2011156483A - Water recovery system - Google Patents

Water recovery system Download PDF

Info

Publication number
JP2011156483A
JP2011156483A JP2010020589A JP2010020589A JP2011156483A JP 2011156483 A JP2011156483 A JP 2011156483A JP 2010020589 A JP2010020589 A JP 2010020589A JP 2010020589 A JP2010020589 A JP 2010020589A JP 2011156483 A JP2011156483 A JP 2011156483A
Authority
JP
Japan
Prior art keywords
water
membrane
cooling
membrane device
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010020589A
Other languages
Japanese (ja)
Other versions
JP5562670B2 (en
Inventor
Kyosuke Komiya
強介 小宮
Takashi Ogawa
高史 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2010020589A priority Critical patent/JP5562670B2/en
Priority to CN 201020657383 priority patent/CN202131179U/en
Publication of JP2011156483A publication Critical patent/JP2011156483A/en
Application granted granted Critical
Publication of JP5562670B2 publication Critical patent/JP5562670B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an industrial process (water recovery system) which has equipment for evaporating pure water to generate vapor and cooling equipment using a circulation cooling water, and blows down a part of the circulation cooling water in the cooling equipment, wherein the amount of use of city water as an industrial water is efficiently reduced. <P>SOLUTION: The water recovery system includes the equipment for evaporating the pure water to generate the vapor and the cooling equipment using the circulation cooling water, and blows down a part of the circulation cooling water in the cooling equipment, wherein at least a part of the blow-down water is treated by a MF or UF membrane apparatus after an alkaline and a flocculant are added; a membrane permeating water obtained is further treated by an RO membrane apparatus, and at least a part of the permeating water from the RO membrane apparatus is used as the pure water. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、化学工業、製紙工業、製鉄工業、電力工業等の工業プロセスにおいて、純水を蒸発させて水蒸気を発生させる設備と循環冷却水を用いた冷却設備とを有し、該冷却設備において循環冷却水の一部がブローダウンされる工業プロセスにおける水回収システムに関する。   The present invention has a facility for evaporating pure water to generate water vapor and a cooling facility using circulating cooling water in an industrial process such as chemical industry, paper industry, steel industry, electric power industry, etc. The present invention relates to a water recovery system in an industrial process in which a part of circulating cooling water is blown down.

工業プロセスに用いられる純水は、洗浄用途、冷却用途、水蒸気原料等に多量に、かつ多様な品質水準で用いられている。特に、ボイラー等水蒸気を発生させる設備で用いられる純水の使用量は極めて多量であるが、地球規模で水不足が進む中で、この純水を製造するための市水使用量を少なくする技術が強く求められている。発生させた水蒸気を凝縮させて再利用する事により市水使用量を少なくする方法は良く知られており、実際に多くの工業プロセスで現実に採用されているが、市水使用量をさらに削減したいという要求は依然として高い。一方で、地球規模での水汚染の問題も、純水製造時の廃棄物発生量に影響を及ぼしている。例えば、市水をイオン交換樹脂で処理して純水を製造する場合、市水の品質が悪化するに伴いイオン交換樹脂の劣化速度が大きくなり廃樹脂の発生量が増加すると共に、イオン交換樹脂を再生する為の薬剤使用量も増加する為再生廃液の発生量も増加してしまう。
また、河川水を市水として使用する場合には、天候の変動等による河川水の品質変動等により、純水を製造する上でのオペレーションの安定性が損なわれるという問題も生じる。
Pure water used in industrial processes is used in large quantities and at various quality levels for cleaning applications, cooling applications, steam raw materials, and the like. In particular, the amount of pure water used in boilers and other facilities that generate water vapor is extremely large. However, as water shortages progress on a global scale, there is a technology for reducing the amount of city water used to produce this pure water. There is a strong demand. The method of reducing the amount of city water used by condensing and reusing the generated water vapor is well known and actually used in many industrial processes, but further reducing the amount of city water used. The demand to do so is still high. On the other hand, the problem of water pollution on a global scale also affects the amount of waste generated during the production of pure water. For example, when pure water is produced by treating city water with an ion exchange resin, the deterioration rate of the ion exchange resin increases as the quality of the city water deteriorates, and the amount of waste resin generated increases, and the ion exchange resin increases. As the amount of chemicals used to regenerate the wastewater increases, the amount of regenerated waste liquid generated also increases.
In addition, when river water is used as city water, there is a problem that the stability of operation in producing pure water is impaired due to fluctuations in the quality of river water due to changes in weather and the like.

一方で、循環冷却水を用いた冷却設備を備えている工業プロセスも極めて多い。水蒸気で加熱されたプロセス流体を熱交換器で循環冷却水を用いて冷却し、この循環冷却水を冷却塔で冷却する方式は、その代表例である。このような場合、その工業プロセスは上述した水蒸気を発生させる設備と循環冷却水を用いた冷却設備の両方を備えている事が多い。   On the other hand, there are very many industrial processes equipped with cooling equipment using circulating cooling water. A typical example is a method in which a process fluid heated by water vapor is cooled by a heat exchanger using circulating cooling water, and the circulating cooling water is cooled by a cooling tower. In such a case, the industrial process often includes both the above-described equipment for generating water vapor and the cooling equipment using the circulating cooling water.

冷却塔に用いる水の使用量を削減する方法も数多く知られている。例えば、特開2003−1256号では、循環冷却水系からブローダウンされた水に酸を添加した後逆浸透膜(RO膜)で脱イオン処理して冷却水と混合し、混合後のPHを中性ないしアルカリ性にする方法を提案している。該方法によれば、冷却塔に用いる市水等の使用量を削減する事ができるので、水不足の解消には貢献するものの、上述した純水を製造する為の廃棄物使用量の削減や、同じく純水を製造する為のオペレーション安定性を高めると言う課題に応えることはできなかった。   Many methods for reducing the amount of water used in the cooling tower are also known. For example, in Japanese Patent Application Laid-Open No. 2003-1256, an acid is added to water blown down from a circulating cooling water system, then deionized with a reverse osmosis membrane (RO membrane), mixed with cooling water, and the PH after mixing is medium. A method to make it alkaline or alkaline is proposed. According to the method, since the amount of city water used for the cooling tower can be reduced, it contributes to the elimination of water shortage, but the reduction of the amount of waste used for producing the pure water described above, Similarly, it was not possible to meet the problem of improving operational stability for producing pure water.

すなわち、純水を蒸発させて水蒸気を発生させる設備と、循環冷却水を用いた冷却設備の両方を有する工業プロセスにおいて、水蒸気発生設備単独での水使用量削減や、冷却設備単独での水使用量削減については、多くの方法が提案されているものの、これら両設備を組み合わせて、最適に水使用量を削減する方法については従来全く知られていない。
また、冷却設備においては、循環冷却水中でレジオネラ属菌が増殖し、蓄積したレジオネラ属菌が冷却塔から飛散し、付近の環境に悪影響を及ぼすことが問題となっている。
In other words, in an industrial process that has both equipment that evaporates pure water to generate water vapor and cooling equipment that uses circulating cooling water, water consumption can be reduced by the water vapor generating equipment alone, or water can be used by the cooling equipment alone. Although many methods have been proposed for reducing the amount of water, there has been no known method for optimally reducing the amount of water used by combining these two facilities.
Further, in the cooling facility, Legionella spp. Grows in the circulating cooling water, and the accumulated Legionella spatters from the cooling tower, which adversely affects the surrounding environment.

特開2003−1256号公報JP 2003-1256 A

本発明は、純水を蒸発させて水蒸気を発生させる設備と循環冷却水を用いた冷却設備とを有し、該冷却設備において循環冷却水の一部がブローダウンされる工業プロセスにおいて、工業用水としての市水の使用量を減らし、イオン交換樹脂の廃樹脂やイオン交換樹脂を再生する為の薬剤を由来とする廃液の発生量を削減し、かつ安定した運転条件で純水を製造できる水回収システムの提供を課題とする。   The present invention has an equipment for evaporating pure water to generate water vapor and a cooling equipment using circulating cooling water, and in an industrial process in which a part of the circulating cooling water is blown down in the cooling equipment, Water that can reduce the amount of city water used, reduce the amount of waste resin from ion exchange resin and the amount of waste liquid derived from chemicals for regenerating ion exchange resin, and produce pure water under stable operating conditions The issue is to provide a collection system.

本発明者等は、シリカが市水の3〜10倍に濃縮された冷却設備からのブローダウン水の再利用を検討した結果、ブローダウン水にアルカリおよび凝集剤を添加した後、MFまたはUF膜装置によって処理し、得られた膜透過水をさらにRO膜装置で処理すると、該RO膜装置からの膜透過水は純水を蒸発させて水蒸気を発生させる設備に供給する純水として使用でき、しかも該RO膜装置からの濃縮水は冷却設備の循環冷却水として使用できることを見出し、本発明を完成させたものである。   As a result of studying reuse of blowdown water from a cooling facility in which silica is concentrated 3 to 10 times as much as city water, the present inventors have added alkali and flocculant to blowdown water, and then MF or UF When the membrane permeated water obtained by treatment with the membrane device is further treated with the RO membrane device, the membrane permeated water from the RO membrane device can be used as pure water to be supplied to facilities that evaporate pure water and generate water vapor. In addition, the present inventors have found that the concentrated water from the RO membrane device can be used as circulating cooling water for a cooling facility, and completed the present invention.

即ち、本発明は下記の発明を提供する。
(1)純水を蒸発させて水蒸気を発生させる設備と循環冷却水を用いた冷却設備とを有し、該冷却設備において循環冷却水の一部がブローダウンされる工業プロセスにおいて、該ブローダウン水の少なくとも一部が、アルカリおよび凝集剤が添加された後、MFまたはUF膜装置により処理され、得られた膜透過水がさらにRO膜装置で処理され、該RO膜装置からの膜透過水の少なくとも一部が該純水として用いられることを特徴とする水回収システム。
(2)RO膜装置からの濃縮水の少なくとも一部が循環冷却水として用いられることを特徴とする上記1項に記載の水回収システム。
(3)MFまたはUF膜装置からの膜透過水の一部が循環冷却水として用いられる上記1または2項に記載の水回収システム。
(4)RO膜装置の回収率が60〜90%である上記1〜3項のいずれか一項に記載の水回収システム。
That is, the present invention provides the following inventions.
(1) In an industrial process having a facility for evaporating pure water to generate water vapor and a cooling facility using circulating cooling water, and a part of the circulating cooling water is blown down in the cooling facility, the blow down At least a part of the water is treated with the MF or UF membrane device after the alkali and the flocculant are added, and the obtained membrane permeated water is further treated with the RO membrane device, and the membrane permeated water from the RO membrane device. A water recovery system, wherein at least a part of the water is used as the pure water.
(2) The water recovery system according to item 1 above, wherein at least a part of the concentrated water from the RO membrane device is used as circulating cooling water.
(3) The water recovery system according to item 1 or 2, wherein a part of the membrane permeated water from the MF or UF membrane device is used as circulating cooling water.
(4) The water recovery system according to any one of the above items 1 to 3, wherein the RO membrane device has a recovery rate of 60 to 90%.

上記(1)〜(4)に記載した本発明の水回収システムにより、純水を蒸発させて水蒸気を発生させる設備と循環冷却水を用いた冷却設備との両方を有し、該冷却設備において循環冷却水の一部がブローダウンされる工業プロセスにおいて、純水の製造や循環冷却水の補給水に使用する市水の使用量を減らせるだけでなく、イオン交換樹脂の廃樹脂やイオン交換樹脂を再生する為の薬剤を由来とする廃液の発生量も削減することができ、さらに驚くべき事に安定な運転条件で純水を製造できる。上記純水を製造する原料水や、上記補給冷却水としては通常市水が用いられる。上記ブローダウン水は補給冷却水を濃縮したものであるから、市水より水質は悪いはずである。しかしながら、市水より水質の悪いブローダウン水を用いても、本発明の水回収システムによれば安定に純水を製造できるのである。その理由は、本発明の水回収システムがMF/UF膜とMO膜とを含む運転安定性の良い設備である事にもよるが、さらに上記冷却設備では、通常、補給冷却水量に比べ循環水の滞留量が多く、循環水量も大きい為均一組成となり、このため市水の水質が変動しても、ブローダウン水の変動が生じにくい事にもよる。市水から純水を製造する場合は、市水を循環させたり攪拌させたりして組成変動を吸収するため設備が設けられる事は通常ない。該冷却設備が循環により組成が均一化することも、通常市水から純水を製造する設備で組成を均一化する設備がない事も、当業者は事実として知っている事ではあるが、本発明によって純水製造の安定性が増すことについて従来思い至る事はなかった。おそらく、水蒸気を発生させる設備と冷却設備の各々で水をリサイクル使用することには思い至ったものの、これらを組み合わせて最適な水回収システムを構築する発想が生じなかった事、冷却設備のブローダウン水は水質が悪く、これを処理して純水として使用する事は難しいという先入観が有った為と推察される。
さらに、本発明によれば、循環冷却水中に蓄積したレジオネラ属菌を含む雑菌が効率よく除去される。
The water recovery system of the present invention described in the above (1) to (4) has both a facility for evaporating pure water to generate water vapor and a cooling facility using circulating cooling water. In an industrial process in which a part of the circulating cooling water is blown down, not only the amount of city water used for the production of pure water and the supplementary water for the circulating cooling water can be reduced, but also the waste resin of the ion exchange resin and the ion exchange It is possible to reduce the amount of waste liquid derived from a chemical for regenerating the resin, and surprisingly, it is possible to produce pure water under stable operating conditions. City water is usually used as the raw water for producing the pure water and the supplementary cooling water. Since the blowdown water is a concentrate of makeup cooling water, the water quality should be worse than city water. However, even if blowdown water having a lower quality than city water is used, the water recovery system of the present invention can produce pure water stably. The reason for this is that the water recovery system of the present invention is a facility with good operational stability including an MF / UF membrane and an MO membrane. However, in the above cooling facility, the circulating water is usually compared with the amount of supplementary cooling water. Since the amount of stagnation is large and the amount of circulating water is large, it has a uniform composition. For this reason, even if the quality of city water varies, it is difficult to cause fluctuations in blowdown water. When pure water is produced from city water, facilities are not usually provided to absorb composition fluctuations by circulating or stirring city water. Those skilled in the art know that the cooling equipment has a uniform composition due to circulation and that there is no equipment that produces pure water from ordinary city water. There has never been a conceivable increase in the stability of pure water production by the invention. Perhaps we thought of recycling water in each of the equipment that generates water vapor and the cooling equipment, but there was no idea to construct an optimal water recovery system by combining these, blowdown of cooling equipment It is speculated that there was a preconception that water is poor in quality and it is difficult to treat it and use it as pure water.
Furthermore, according to the present invention, miscellaneous bacteria including Legionella bacteria accumulated in the circulating cooling water are efficiently removed.

本発明の水回収システムの一例を示した図である。It is the figure which showed an example of the water collection | recovery system of this invention.

以下、本発明について図面を用いて詳細に説明する。
図1は本発明の水回収システムの一例を示した図である。図中、1は純水を蒸発させて水蒸気を発生させる設備、2は冷却塔、3は熱交換器、4はMFまたはUF膜装置、5はRO膜装置、6はアルカリ、7は凝集剤、10は市水、11はプロセス水である。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing an example of a water recovery system of the present invention. In the figure, 1 is a facility for evaporating pure water to generate water vapor, 2 is a cooling tower, 3 is a heat exchanger, 4 is an MF or UF membrane device, 5 is an RO membrane device, 6 is an alkali, and 7 is a flocculant. 10 is city water and 11 is process water.

本発明において、純水を蒸発させて水蒸気を発生させる設備とは、通常ボイラー設備と称されるものである。また、純水を高温の金属等に触れさせて蒸発させる場合も本発明の水蒸気を発生させる設備の範囲である。図1において、1で示されている。
また、本発明において、循環冷却水を用いた冷却設備とは、例えば、加熱されたプロセス流体を熱交換器で循環冷却水を用いて冷却し、昇温した循環冷却水を冷却塔で冷却する方式の冷却設備である。図1において、冷却塔2および熱交換器3で示され、ライン21により循環冷却水が両者間を循環している。
In the present invention, the equipment for evaporating pure water to generate water vapor is usually called boiler equipment. Also, when pure water is brought into contact with a high temperature metal or the like to evaporate, it is within the scope of the facility for generating water vapor of the present invention. In FIG. 1, it is shown by 1.
In the present invention, the cooling facility using the circulating cooling water is, for example, cooling the heated process fluid with the heat exchanger using the circulating cooling water, and cooling the heated circulating fluid with the cooling tower. This is a cooling system. In FIG. 1, the cooling tower 2 and the heat exchanger 3 are shown, and circulating cooling water is circulated between the two through a line 21.

純水を蒸発させて水蒸気を発生させる設備1で発生した水蒸気はプロセス中の他の設備で使用された後、ライン22により熱交換器3に送られ、凝縮され、ライン23により純水を蒸発させて水蒸気を発生させる設備1に戻され、純水として再利用される。ライン31は、純水中に金属塩等の不純物が蓄積するのを防ぐための純水のブローダウンラインである。   The water vapor generated in the facility 1 for evaporating pure water to generate water vapor is used in other equipment in the process, then sent to the heat exchanger 3 through the line 22 and condensed, and the pure water is evaporated through the line 23. And returned to the facility 1 for generating water vapor and reused as pure water. The line 31 is a pure water blow-down line for preventing impurities such as metal salts from accumulating in the pure water.

冷却塔2および熱交換器3を循環している循環冷却水には通常市水が用いられており、市水中に含まれているシリカが濃縮されて析出しないように、濃縮倍率が3〜10倍程度になるようにライン24よりブローダウンされ、市水10が新たに補給されている。
一般に、市水には金属塩等の不純物が含まれ、電導度は通常100〜300μS/cmであり、シリカ濃度は通常1〜10mg/lである。従って、循環冷却水中では不純物が濃縮され、電導度は通常500〜2000μS/cm程度であり、シリカ濃度は通常5〜70mg/lである。さらに、空気中から混入してくるレジオネラ属菌等が増殖し、レジオネラ属菌を含む雑菌の菌体数は10000個/100mlを超えるような場合もある。
本発明においては、ブローダウン水を再利用するに当たって、先ず、ブローダウン水にライン24においてアルカリ6が添加され、さらに凝集剤7が添加された後、MFまたはUF膜装置4に供給される。
Usually, city water is used as the circulating cooling water circulating through the cooling tower 2 and the heat exchanger 3, and the concentration ratio is 3 to 10 so that silica contained in the city water is not concentrated and precipitated. It is blown down from the line 24 so as to be about double, and the city water 10 is newly replenished.
In general, city water contains impurities such as metal salts, conductivity is usually 100 to 300 μS / cm, and silica concentration is usually 1 to 10 mg / l. Therefore, impurities are concentrated in the circulating cooling water, the conductivity is usually about 500 to 2000 μS / cm, and the silica concentration is usually 5 to 70 mg / l. Furthermore, Legionella spp. Or the like mixed from the air may grow, and the number of bacteria containing Legionella spp. May exceed 10,000 / 100 ml.
In the present invention, when the blowdown water is reused, the alkali 6 is first added to the blowdown water in the line 24, and the flocculant 7 is further added, and then supplied to the MF or UF membrane device 4.

ブローダウン水にアルカリを添加する手段としては、ライン24中に設けたラインミキサーに直接或いは、別途設けたpH調整槽に、アルカリを薬注ポンプ等により添加することなどを挙げることができる。ここで使用されるアルカリは特に限定されるものではなく、水酸化ナトリウムおよび水酸化カリウムなどのアルカリ金属水酸化物を好適に用いることができる。   Examples of means for adding alkali to the blowdown water include adding alkali directly to a line mixer provided in the line 24 or to a pH adjusting tank provided separately by a chemical injection pump or the like. The alkali used here is not particularly limited, and alkali metal hydroxides such as sodium hydroxide and potassium hydroxide can be suitably used.

アルカリの添加量は、ブローダウン水のpHが8〜10、好ましくは9〜10になるように調節される。ブローダウン水のpHがこの範囲にあれば、後の凝集剤の添加により、循環冷却水中に濃縮されたシリカが凝集しやすく、MFまたはUF膜装置4によって効率的に除去される。   The amount of alkali added is adjusted so that the pH of the blowdown water is 8 to 10, preferably 9 to 10. If the pH of the blow-down water is within this range, the silica concentrated in the circulating cooling water tends to aggregate due to the subsequent addition of the flocculant and is efficiently removed by the MF or UF membrane device 4.

凝集剤を添加する手段としては、アルカリ添加手段と同様、ライン24中に設けたラインミキサーに直接或いは、別途設けた調整槽に、凝集剤を薬注ポンプ等により添加することなどを挙げることができる。ここで使用される凝集剤は、シリカ凝集作用がある限り特に限定されるものではなく、ポリ塩化アルミニウム(PAC)、塩化第二鉄、硫酸アルミニウムおよびアルミン酸ナトリウム等が挙げられ、ポリ塩化アルミニウム(PAC)が好ましい。   As the means for adding the flocculant, like the alkali addition means, the flocculant may be added directly to the line mixer provided in the line 24 or to a separately provided adjustment tank by a chemical injection pump or the like. it can. The flocculant used here is not particularly limited as long as it has a silica aggregating action, and examples thereof include polyaluminum chloride (PAC), ferric chloride, aluminum sulfate and sodium aluminate. PAC) is preferred.

凝集剤の添加量は、例えば凝集剤としてPACを用いる場合、ブローダウン水中のシリカ濃度(SiO2換算)とPAC濃度(Al23換算)の比(Al23/SiO2)が0.5〜3、好ましくは1〜2になるように調節される。ブローダウン水中の凝集剤がシリカに対してこのような比率で存在すれば、循環冷却水中に濃縮されたシリカが凝集しやすく、MFまたはUF膜装置4によって効率的に除去される。 For example, when PAC is used as the flocculant, the ratio (Al 2 O 3 / SiO 2 ) of the silica concentration (converted to SiO 2 ) and the PAC concentration (converted to Al 2 O 3 ) in blowdown water is 0. .5-3, preferably adjusted to 1-2. If the flocculant in the blowdown water is present in such a ratio with respect to the silica, the silica concentrated in the circulating cooling water tends to aggregate and is efficiently removed by the MF or UF membrane device 4.

MFまたはUF膜装置4で用いられるMFまたはUF膜としては、膜単位面積あたりの流量が大きく取れるMF膜が好ましい。MFまたはUF膜の平均孔径は、凝集されたシリカおよび雑菌の除去性能の観点から、0.2μm以下とするのが好ましい。平均孔径以外は特に限定されず、例えば材質については、ポリアクリロニトリル、ポリスルホン、ポリオレフィン、ポリフッ化ビニリデンおよびそれらの化学的変性物等の如何なるものでもよい。   The MF or UF membrane used in the MF or UF membrane device 4 is preferably an MF membrane that allows a large flow rate per membrane unit area. The average pore size of the MF or UF membrane is preferably 0.2 μm or less from the viewpoint of the ability to remove aggregated silica and bacteria. Other than the average pore size, there is no particular limitation. For example, the material may be any of polyacrylonitrile, polysulfone, polyolefin, polyvinylidene fluoride, and chemically modified products thereof.

MFまたはUF膜装置4の仕様や使用条件は特に限定されず、公知のMFまたはUF膜装置を通常の使用条件で用いればよい。例えば、膜モジュールとしては中空糸型、スパイラル型および管状型等のどのような膜モジュールも使用することができ、また、濾過方式にも制限はなく、内圧濾過、外圧濾過、クロスフロー濾過および全量濾過のいずれの方式も使用可能である。   The specifications and use conditions of the MF or UF membrane device 4 are not particularly limited, and a known MF or UF membrane device may be used under normal use conditions. For example, any membrane module such as a hollow fiber type, a spiral type, and a tubular type can be used as the membrane module, and the filtration method is not limited, and internal pressure filtration, external pressure filtration, crossflow filtration, and total amount Any method of filtration can be used.

MFまたはUF膜を透過した膜透過水はライン26によりRO膜装置5に送られる。ブローダウン水中のシリカや雑菌は凝集剤と共にMFまたはUF膜によって除去されるので、膜透過水中のシリカ濃度は2〜10mg/lと市水並みまたはそれ以下に減少し、雑菌はほとんど0になる。従って、膜透過水の一部をライン27により冷却塔2に送り、循環冷却水として利用することもできる。
MFまたはUF膜を透過しなかった濃縮水は、シリカ濃度および雑菌濃度が増大しているので、ライン25によりそのまま全量廃棄される。しかし、ライン24におけるアルカリ6の添加位置よりも上流側に少なくとも一部を還流することもでき、これにより、ブローダウン水の利用率を高めることができる。
The membrane permeated water that has passed through the MF or UF membrane is sent to the RO membrane device 5 through the line 26. Silica and bacteria in the blowdown water are removed by the MF or UF membrane together with the flocculant, so that the silica concentration in the membrane permeated water is reduced to 2-10 mg / l or below the city water, and the bacteria are almost zero. . Therefore, a part of the membrane permeated water can be sent to the cooling tower 2 through the line 27 and used as circulating cooling water.
Concentrated water that has not permeated through the MF or UF membrane has an increased silica concentration and various germ concentrations, and is therefore discarded as it is through the line 25. However, at least a part can be recirculated to the upstream side of the addition position of the alkali 6 in the line 24, thereby increasing the utilization rate of blowdown water.

RO膜装置5では、ライン26によりMFまたはUF膜装置で処理されたブローダウン水を受け入れて、ブローダウン水のうちRO膜を透過した部分である膜透過水と、RO膜を透過しなかった部分である濃縮水とに分離する。RO膜装置は一段でもよいし、複数段でもよい。使用するRO膜装置は特に限定されず、例えば、膜モジュールとしては中空糸型、スパイラル型および管状型等のどのような膜モジュールも使用することができ、また、濾過方式にも制限はなく、内圧濾過、外圧濾過およびクロスフロー濾過等のいずれの方式も使用可能である。RO膜装置の運転圧力および回収率等の運転条件や、使用するRO膜の仕様に関しては、常法に従って行えば良く特に制限されない。ただし、純水生産量を多く得ることおよびRO濃縮水側でシリカの析出を起こさないために回収率は60〜90%程度が好ましい。   In the RO membrane device 5, the blowdown water treated by the MF or UF membrane device was received by the line 26, and the membrane permeated water that was the portion of the blowdown water that permeated the RO membrane and the RO membrane was not permeated. Separated into concentrated water. The RO membrane device may be a single stage or a plurality of stages. The RO membrane device to be used is not particularly limited. For example, any membrane module such as a hollow fiber type, a spiral type, and a tubular type can be used as the membrane module, and there is no limitation on the filtration method. Any system such as internal pressure filtration, external pressure filtration, and cross flow filtration can be used. The operating conditions such as the operating pressure and recovery rate of the RO membrane device and the specifications of the RO membrane to be used are not particularly limited as long as they are performed in accordance with conventional methods. However, the recovery rate is preferably about 60 to 90% in order to obtain a large amount of pure water production and to prevent precipitation of silica on the RO concentrated water side.

RO膜を透過した膜透過水は、MFまたはUF膜透過水中に残存していたシリカや金属塩等の不純物がほとんどRO膜により除去され、シリカ濃度が0〜2mg/l程度、電導度が0.5〜10μS/cm程度となるので、ライン29により、純水を蒸発させて水蒸気を発生させる設備1に送られ、純水として利用される。しかし、膜透過水の一部をライン30から抜き出し、プロセス中の他の設備で利用することもできる。   Membrane permeated water that has passed through the RO membrane has almost all impurities such as silica and metal salts remaining in the MF or UF membrane permeated water removed by the RO membrane, the silica concentration is about 0 to 2 mg / l, and the conductivity is 0. Since it is about 5 to 10 μS / cm, it is sent to the facility 1 for evaporating pure water and generating water vapor through the line 29 and used as pure water. However, a portion of the membrane permeate can be withdrawn from line 30 and used in other equipment during the process.

RO膜を透過しなかった濃縮水はライン28により冷却塔2に送られ、循環冷却水の補給水として利用される。この際、濃縮水中のシリカや金属塩等の不純物はMFまたはUF膜透過水よりも増大するので、濃縮水中のシリカ濃度を120mg/l以下に抑えるようにRO膜装置を運転することが好ましく、さらに好ましくは90mg/l以下、特に好ましくは50mg/l以下に抑えることである。   The concentrated water that has not passed through the RO membrane is sent to the cooling tower 2 through the line 28, and is used as makeup water for circulating cooling water. At this time, since impurities such as silica and metal salts in the concentrated water increase more than the MF or UF membrane permeated water, it is preferable to operate the RO membrane device so that the silica concentration in the concentrated water is suppressed to 120 mg / l or less. More preferably, it is 90 mg / l or less, and particularly preferably 50 mg / l or less.

図1は本発明の実施の形態の一例を示すものであって、本発明はその要旨を超えない限り、何ら図示のものに限定されるものではない。例えば、図1では、RO膜透過水はRO膜装置5から純水を蒸発させて水蒸気を発生させる設備1に直接供給されているが、RO膜透過水のシリカ濃度および電導度によっては、膜透過水をイオン交換樹脂で処理した後、純水を蒸発させて水蒸気を発生させる設備に供給してもよい。この態様は、循環冷却水を用いた冷却設備と純水を蒸発させて水蒸気を発生させる設備との規模の関係で、RO膜装置の濃縮水を少なくして運転し、膜透過水のシリカ濃度等が少し高めになった場合に有効である。   FIG. 1 shows an example of an embodiment of the present invention, and the present invention is not limited to the illustrated one as long as the gist thereof is not exceeded. For example, in FIG. 1, RO membrane permeated water is directly supplied from the RO membrane device 5 to the facility 1 for evaporating pure water to generate water vapor, but depending on the silica concentration and conductivity of the RO membrane permeated water, the membrane After the permeated water is treated with the ion exchange resin, the purified water may be evaporated and supplied to a facility for generating water vapor. In this aspect, due to the scale relationship between the cooling equipment using circulating cooling water and the equipment for evaporating pure water to generate water vapor, the RO membrane device is operated with less concentrated water, and the silica concentration of the membrane permeated water It is effective when etc. become a little higher.

また、図1では、ブローダウン水は全てMFまたはUF膜装置4に供給されているが、アルカリ供給以前にその一部が廃棄されてもよい。同様に、RO膜装置5の濃縮水もその一部が廃棄されてもよいし、ライン24のアルカリ供給以前に戻されてもよい。   In FIG. 1, all the blowdown water is supplied to the MF or UF membrane device 4, but a part of the blowdown water may be discarded before supplying the alkali. Similarly, a part of the concentrated water of the RO membrane device 5 may be discarded, or may be returned before supplying the alkali in the line 24.

以下、実施例および比較例を用いて本発明をより具体的に説明する。しかし、本発明はこの実施例のみに限定されるものではない。
(実施例1)
図1に示した水回収システムと同様のシステムによって実験を行なった。MFまたはUF膜装置4には旭化成ケミカルズ(株)製のMFろ過膜(商品名:マイクローザ UNA-620A、公称孔径:0.1μm)を用い、RO膜装置5には東洋紡績(株)製のRO膜(商品名:HU10155EI)を用いた。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the present invention is not limited to this example.
Example 1
The experiment was conducted using a system similar to the water recovery system shown in FIG. As the MF or UF membrane device 4, an MF filter membrane (trade name: Microza UNA-620A, nominal pore size: 0.1 μm) manufactured by Asahi Kasei Chemicals Co., Ltd. is used. RO membrane (trade name: HU10155EI) was used.

冷却塔2と熱交換器3の間で循環冷却水が循環しており、熱交換器3には蒸気ボイラー1で発生した水蒸気が400m3/hrでライン22より送られ、凝固されて純水としてライン23から蒸気ボイラー1に戻された。循環冷却水が冷却塔2で蒸発する量は約400m3/hrで、冷却塔2には循環冷却水の補給水として市水10が474m3/hrで供給され、ブローダウン水は100m3/hrでライン24より抜き出された。
市水はシリカ濃度が10mg/l、電導度が150μS/cmであり、レジオネラ属菌を含む雑菌は検出されなかった。また、ブローダウン水はシリカ濃度が50mg/l、電導度が750μS/cmであり、雑菌の濃度は100個/100mlであった。
Circulating cooling water circulates between the cooling tower 2 and the heat exchanger 3, and the steam generated in the steam boiler 1 is sent to the heat exchanger 3 from the line 22 at 400 m 3 / hr and is solidified to be purified water. And returned to the steam boiler 1 from the line 23. A circulating amount of the coolant is evaporated in the cooling tower 2 is about 400 meters 3 / hr, the cooling tower 2 city water 10 is supplied at 474 m 3 / hr as makeup water for cooling water circulates, blowdown water 100 m 3 / It was extracted from the line 24 by hr.
The city water had a silica concentration of 10 mg / l and an electric conductivity of 150 μS / cm, and no bacteria including Legionella were detected. The blowdown water had a silica concentration of 50 mg / l, an electric conductivity of 750 μS / cm, and a concentration of miscellaneous bacteria of 100/100 ml.

ライン24より抜き出されたブローダウン水に以下の処理を連続で行なった。先ず、アルカリ6として水酸化ナトリウムがライン24に供給され、ラインミキサーで混合され、ブローダウン水のpHが9に調節された。さらに、凝集剤7としてPACがライン24に供給され、ラインミキサーで混合され、ブローダウン水のシリカ濃度とPAC濃度の比(Al23/SiO2)が1.5に調節された。次いで、ブローダウン水はMFまたはUF膜装置4に送られた。 The following treatment was continuously performed on the blow-down water extracted from the line 24. First, sodium hydroxide as alkali 6 was supplied to the line 24 and mixed with a line mixer, and the pH of the blowdown water was adjusted to 9. Furthermore, PAC was supplied to the line 24 as the flocculant 7 and mixed by a line mixer, and the ratio of the silica concentration of the blowdown water to the PAC concentration (Al 2 O 3 / SiO 2 ) was adjusted to 1.5. The blowdown water was then sent to the MF or UF membrane device 4.

MFまたはUF膜装置4は、膜を透過する透過水が90m3/hr、膜を透過しない濃縮水が10m3/hrになるように運転された。透過水のシリカ濃度は2mg/lであり、雑菌は検出されず、電導度は879μS/cmであった。透過水90m3/hrの内、80m3/hrはライン26によりRO膜装置5に送られ、残りの10m3/hrは循環冷却水の補給水としてライン27により冷却装置2に戻された。一方、濃縮水はシリカ濃度が400mg/lであり、雑菌の濃度は1000個/100mlであり、全量ライン25より廃棄された。 The MF or UF membrane device 4 was operated such that the permeated water that permeated the membrane was 90 m 3 / hr and the concentrated water that did not permeate the membrane was 10 m 3 / hr. The silica concentration of the permeated water was 2 mg / l, no germs were detected, and the conductivity was 879 μS / cm. Of the permeated water of 90 m 3 / hr, 80 m 3 / hr was sent to the RO membrane device 5 through the line 26, and the remaining 10 m 3 / hr was returned to the cooling device 2 through the line 27 as makeup water for circulating cooling water. On the other hand, the concentrated water had a silica concentration of 400 mg / l, and the concentration of miscellaneous bacteria was 1000/100 ml.

RO膜装置5は回収率80%で運転された。従って、膜を透過する透過水は64m3/hr、膜を透過しない濃縮水が16m3/hrであった。透過水はシリカ濃度が0.9mg/lと非常に低く、電導度も0.8μS/cmと非常に低かったので、ライン31からのブローダウン量の20m3/hrに相当する量をライン29によりそのまま水蒸気ボイラー1に送った。残りの44m3/hrは他の設備におけるプロセス水11として利用した。
一方、濃縮水はシリカ濃度が35mg/lであり、電導度が4320μS/cmであり、循環冷却水の補給水としてライン28により冷却装置2に戻された。
以上のように、本実施例では、ブローダウン水の90%が回収され、再利用された。
The RO membrane device 5 was operated at a recovery rate of 80%. Therefore, the permeated water that permeated the membrane was 64 m 3 / hr, and the concentrated water that did not permeate the membrane was 16 m 3 / hr. Since the permeated water had a very low silica concentration of 0.9 mg / l and an electrical conductivity of 0.8 μS / cm, the amount corresponding to 20 m 3 / hr of the blowdown amount from the line 31 was reduced to the line 29. Was sent to the steam boiler 1 as it was. The remaining 44 m 3 / hr was used as process water 11 in another facility.
On the other hand, the concentrated water had a silica concentration of 35 mg / l and an electric conductivity of 4320 μS / cm, and was returned to the cooling device 2 by the line 28 as makeup water for circulating cooling water.
As described above, in this example, 90% of the blowdown water was recovered and reused.

(比較例)
実施例に記載したシステムにおいて、ブローダウン水にアルカリ6と凝集剤7を供給せずに実験を行なった。実施例と同様に、MFまたはUF膜装置4は、膜を透過する透過水が90m3/hr、膜を透過しない濃縮水が10m3/hrになるように運転されたが、透過水のシリカ濃度は供給されたブローダウン水と同じ50mg/lであった。なお、レジオネラ菌を含む雑菌は検出されなかった。
(Comparative example)
In the system described in the examples, the experiment was performed without supplying alkali 6 and flocculant 7 to the blowdown water. As in the example, the MF or UF membrane device 4 was operated such that the permeated water that permeated the membrane was 90 m 3 / hr and the concentrated water that did not permeate the membrane was 10 m 3 / hr. The concentration was 50 mg / l, the same as the blowdown water supplied. In addition, miscellaneous bacteria including Legionella bacteria were not detected.

MFまたはUF膜装置4の膜透過水はシリカ濃度が高かったので、90m3/hr全量をRO膜装置5に送り、回収率を50%と低く抑えて運転した。しかし、RO膜装置5から得られた膜透過水はシリカ濃度が2.0mg/lであった。従って、膜透過水はイオン交換樹脂で処理して、水蒸気ボイラー1に供給したり、プロセス水11として利用した。
一方、濃縮水はシリカ濃度が96mg/lと高かったので、全量廃棄した。
以上のように、本比較例では、ブローダウン水の回収率が45%と低い上に、イオン交換樹脂での処理が必要であった。
Since the permeated water of the MF or UF membrane device 4 had a high silica concentration, the entire amount of 90 m 3 / hr was sent to the RO membrane device 5 and the operation was performed with the recovery rate kept as low as 50%. However, the membrane permeate obtained from the RO membrane device 5 had a silica concentration of 2.0 mg / l. Therefore, the membrane permeated water was treated with an ion exchange resin and supplied to the steam boiler 1 or used as process water 11.
On the other hand, the concentrated water had a high silica concentration of 96 mg / l, so the entire amount was discarded.
As described above, in this comparative example, the recovery rate of blowdown water was as low as 45%, and treatment with an ion exchange resin was required.

本発明は、純水を蒸発させて水蒸気を発生させる設備と循環冷却水を用いた冷却設備とを有し、該冷却設備において循環冷却水の一部がブローダウンされる工業プロセスにおいて、工業用水としての市水の使用量を効率よく減少できるので、産業上の利用価値は極めて大きい。   The present invention has an equipment for evaporating pure water to generate water vapor and a cooling equipment using circulating cooling water, and in an industrial process in which a part of the circulating cooling water is blown down in the cooling equipment, Since the amount of city water used can be reduced efficiently, the industrial utility value is extremely high.

1 純水を蒸発させて水蒸気を発生させる設備
2 冷却塔
3 熱交換器
4 MFまたはUF膜装置
5 RO膜装置
6 アルカリ
7 凝集剤
10 市水
11 プロセス水
DESCRIPTION OF SYMBOLS 1 Equipment which evaporates pure water and generates water vapor 2 Cooling tower 3 Heat exchanger 4 MF or UF membrane device 5 RO membrane device 6 Alkali 7 Flocculant 10 City water 11 Process water

Claims (4)

純水を蒸発させて水蒸気を発生させる設備と循環冷却水を用いた冷却設備とを有し、該冷却設備において循環冷却水の一部がブローダウンされる工業プロセスにおいて、該ブローダウン水の少なくとも一部が、アルカリおよび凝集剤が添加された後、MFまたはUF膜装置により処理され、得られた膜透過水がさらにRO膜装置で処理され、該RO膜装置からの膜透過水の少なくとも一部が該純水として用いられることを特徴とする水回収システム。   In an industrial process having a facility for evaporating pure water to generate water vapor and a cooling facility using circulating cooling water, and a part of the circulating cooling water is blown down in the cooling facility, at least the blowdown water A portion is treated with an MF or UF membrane device after the addition of alkali and flocculant, and the resulting membrane permeate is further treated with the RO membrane device, at least one of the membrane permeate from the RO membrane device. A water recovery system, wherein the section is used as the pure water. RO膜装置からの濃縮水の少なくとも一部が循環冷却水として用いられる請求項1に記載の水回収システム。   The water recovery system according to claim 1, wherein at least a part of the concentrated water from the RO membrane device is used as circulating cooling water. MFまたはUF膜装置からの膜透過水の一部が循環冷却水として用いられる請求項1または2に記載の水回収システム。   The water recovery system according to claim 1 or 2, wherein a part of the membrane permeated water from the MF or UF membrane device is used as circulating cooling water. RO膜装置の回収率が60〜90%である請求項1〜3のいずれか一項に記載の水回収システム。   The water recovery system according to any one of claims 1 to 3, wherein the RO membrane device has a recovery rate of 60 to 90%.
JP2010020589A 2010-02-01 2010-02-01 Water recovery system Expired - Fee Related JP5562670B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010020589A JP5562670B2 (en) 2010-02-01 2010-02-01 Water recovery system
CN 201020657383 CN202131179U (en) 2010-02-01 2010-12-13 Water recycling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010020589A JP5562670B2 (en) 2010-02-01 2010-02-01 Water recovery system

Publications (2)

Publication Number Publication Date
JP2011156483A true JP2011156483A (en) 2011-08-18
JP5562670B2 JP5562670B2 (en) 2014-07-30

Family

ID=44588939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010020589A Expired - Fee Related JP5562670B2 (en) 2010-02-01 2010-02-01 Water recovery system

Country Status (2)

Country Link
JP (1) JP5562670B2 (en)
CN (1) CN202131179U (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212504A (en) * 2012-03-30 2013-10-17 Spirax-Sarco Ltd Steam plant and operation method therefor
JP2014004529A (en) * 2012-06-25 2014-01-16 Kurita Water Ind Ltd Processing method and processing unit of coolant blow water
WO2014128850A1 (en) * 2013-02-20 2014-08-28 積水化学工業株式会社 Water treatment method and water treatment device
WO2014128851A1 (en) * 2013-02-20 2014-08-28 積水化学工業株式会社 Water treatment method and water treatment device
WO2016158312A1 (en) * 2015-03-31 2016-10-06 栗田工業株式会社 Water treatment method and device
CN106865850A (en) * 2015-12-14 2017-06-20 南京源泉环保科技股份有限公司 Cyanide cadmium wastewater zero emission treatment method
CN109095681A (en) * 2018-08-29 2018-12-28 苏州艾吉克膜科技有限公司 Power plant desulfurization denitration Wastewater from Acid Preparation processing unit and treatment process
JP2021013882A (en) * 2019-07-11 2021-02-12 オルガノ株式会社 Water supply device and water supply method for cooling tower

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111204897A (en) * 2020-01-16 2020-05-29 易通清源环保科技(北京)有限公司 Condensed water treatment device and condensed water treatment process

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001232394A (en) * 2000-02-25 2001-08-28 Tokyo Gas Co Ltd Water treatment equipment for fuel cell
JP2001335660A (en) * 2000-05-30 2001-12-04 Ube Ind Ltd Recycling method of organic waste materials including vinyl chloride resin
JP2002018437A (en) * 2000-05-02 2002-01-22 Kurita Water Ind Ltd Treating method and treating device of water containing calcium and silica
JP2003326259A (en) * 2002-05-14 2003-11-18 Toray Ind Inc Fresh water generating method and fresh water generator
JP2005334703A (en) * 2004-05-24 2005-12-08 Hiroshima Nippon Denki Kk Water treatment method and water treatment apparatus
JP2006192424A (en) * 2005-05-09 2006-07-27 Kansai Toshi Kyoju Service:Kk Method for treating water containing silica and open circulatory cooling water system using treated water
JP2009039599A (en) * 2007-08-06 2009-02-26 Kurita Water Ind Ltd Water treatment system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001232394A (en) * 2000-02-25 2001-08-28 Tokyo Gas Co Ltd Water treatment equipment for fuel cell
JP2002018437A (en) * 2000-05-02 2002-01-22 Kurita Water Ind Ltd Treating method and treating device of water containing calcium and silica
JP2001335660A (en) * 2000-05-30 2001-12-04 Ube Ind Ltd Recycling method of organic waste materials including vinyl chloride resin
JP2003326259A (en) * 2002-05-14 2003-11-18 Toray Ind Inc Fresh water generating method and fresh water generator
JP2005334703A (en) * 2004-05-24 2005-12-08 Hiroshima Nippon Denki Kk Water treatment method and water treatment apparatus
JP2006192424A (en) * 2005-05-09 2006-07-27 Kansai Toshi Kyoju Service:Kk Method for treating water containing silica and open circulatory cooling water system using treated water
JP2009039599A (en) * 2007-08-06 2009-02-26 Kurita Water Ind Ltd Water treatment system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212504A (en) * 2012-03-30 2013-10-17 Spirax-Sarco Ltd Steam plant and operation method therefor
JP2014004529A (en) * 2012-06-25 2014-01-16 Kurita Water Ind Ltd Processing method and processing unit of coolant blow water
WO2014128850A1 (en) * 2013-02-20 2014-08-28 積水化学工業株式会社 Water treatment method and water treatment device
WO2014128851A1 (en) * 2013-02-20 2014-08-28 積水化学工業株式会社 Water treatment method and water treatment device
JPWO2014128851A1 (en) * 2013-02-20 2017-02-02 積水化学工業株式会社 Water treatment method and water treatment apparatus
JPWO2014128850A1 (en) * 2013-02-20 2017-02-02 積水化学工業株式会社 Water treatment method and water treatment apparatus
WO2016158312A1 (en) * 2015-03-31 2016-10-06 栗田工業株式会社 Water treatment method and device
JP2016190224A (en) * 2015-03-31 2016-11-10 栗田工業株式会社 Water treatment method and equipment
CN106865850A (en) * 2015-12-14 2017-06-20 南京源泉环保科技股份有限公司 Cyanide cadmium wastewater zero emission treatment method
CN109095681A (en) * 2018-08-29 2018-12-28 苏州艾吉克膜科技有限公司 Power plant desulfurization denitration Wastewater from Acid Preparation processing unit and treatment process
JP2021013882A (en) * 2019-07-11 2021-02-12 オルガノ株式会社 Water supply device and water supply method for cooling tower
JP7270490B2 (en) 2019-07-11 2023-05-10 オルガノ株式会社 Water supply equipment and water supply method for cooling towers

Also Published As

Publication number Publication date
CN202131179U (en) 2012-02-01
JP5562670B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5562670B2 (en) Water recovery system
US6783682B1 (en) Salt water desalination process using ion selective membranes
US10189733B2 (en) Heating system for desalination
KR101757525B1 (en) Ammonia treatment system
EP1206414B1 (en) A salt water desalination process using ion selective membranes
JP2009095821A (en) Method of treating salt water
JP5082661B2 (en) Water treatment system
JP2011056345A (en) Desalination system
JP6186240B2 (en) Method for evaporating aqueous solution
KR20130050384A (en) Methods and systems for processing waste water
JP2008223115A (en) Method for treating salt water
JP2011016100A (en) Wastewater treatment method
JPH03262585A (en) Ultra-pure water generating apparatus
EP3328523B1 (en) Process for the recovery of sodium sulfate
JP2007307561A (en) High-purity water producing apparatus and method
JP2004108240A (en) Power generation plant and power generation method
JP3137831B2 (en) Membrane processing equipment
KR101778021B1 (en) Eco-friendly desalination system using forward osmosis and reverse osmosis
JP4238654B2 (en) Boiler feed water treatment method and treatment apparatus
CN107662929B (en) Sodium chloride and sodium sulfate separation concentration elutriation process and system in strong brine zero emission
CN110143710A (en) Formation foil production line Sewage treatment utilizes method
JP2009162514A (en) System for purifying system water in secondary system of nuclear power plant with pressurized water reactor
JPH09294974A (en) Water treatment apparatus
JP2017064639A (en) Method and apparatus for recovering and using waste water from steam power plant
JP2013123673A (en) Method for treating hydrofluoric acid wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140611

R150 Certificate of patent or registration of utility model

Ref document number: 5562670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees