JP6617071B2 - Pure water production method and apparatus - Google Patents

Pure water production method and apparatus Download PDF

Info

Publication number
JP6617071B2
JP6617071B2 JP2016084554A JP2016084554A JP6617071B2 JP 6617071 B2 JP6617071 B2 JP 6617071B2 JP 2016084554 A JP2016084554 A JP 2016084554A JP 2016084554 A JP2016084554 A JP 2016084554A JP 6617071 B2 JP6617071 B2 JP 6617071B2
Authority
JP
Japan
Prior art keywords
pure water
membrane
vacuum pump
deaeration
deaerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016084554A
Other languages
Japanese (ja)
Other versions
JP2017192898A (en
Inventor
隆文 星野
俊希 潮
浩 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2016084554A priority Critical patent/JP6617071B2/en
Publication of JP2017192898A publication Critical patent/JP2017192898A/en
Application granted granted Critical
Publication of JP6617071B2 publication Critical patent/JP6617071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

本発明は、脱気処理により溶存酸素濃度などを低減させた純水を供給するために用いられる純水製造方法及び装置に関する。   The present invention relates to a pure water production method and apparatus used for supplying pure water whose dissolved oxygen concentration is reduced by deaeration treatment.

血液自動分析装置などの分析装置において使用される純水を製造する純水製造装置は、例えばイオン交換処理や逆浸透処理によって生成した一次純水を大気開放下の純水タンクに一時的に貯留し、必要に応じて純水タンク内の一次純水をポンプによってユースポイントに供給する構成となっている。分析装置における分析項目によっては、溶存酸素量を低減した純水を必要とすることがあるから、そのような場合には、特許文献1などに記載されるように、純水タンクからユースポイントまでの送水ラインに膜脱気装置を設けている。膜脱気装置は、脱気膜の一方の側(液相側)に純水を流しつつ、他方の側(気相側)を減圧状態とすることにより、純水から酸素等を取り除く。   A pure water production apparatus that produces pure water used in an analyzer such as an automatic blood analyzer temporarily stores primary pure water generated by, for example, ion exchange treatment or reverse osmosis treatment in a pure water tank that is open to the atmosphere. And it is the structure which supplies the primary pure water in a pure water tank to a use point with a pump as needed. Depending on the analysis item in the analyzer, pure water with a reduced amount of dissolved oxygen may be required. In such a case, as described in Patent Document 1, etc., from a pure water tank to a use point. A membrane deaerator is installed in the water supply line. The membrane deaerator removes oxygen and the like from pure water by flowing pure water on one side (liquid phase side) of the deaeration membrane and reducing the pressure on the other side (gas phase side).

溶存酸素濃度を低減させた純水をユースポイントに供給するこのような純水製造装置では、ユースポイントにおいて純水を使用しない時間帯、例えば夜間や休日などにおいては膜脱気装置の動作も停止させるのが一般的である。膜脱気装置として中空糸膜を有するものを使用する場合、真空ポンプを停止して膜脱気装置の動作を停止したときに中空糸膜内に水が凝縮し、この凝縮水によって中空糸膜の実効的な面積が減少するため、膜脱気装置の再起動時に装置の立ち上がりが遅くなることがある。特許文献2には、膜脱気装置において使用される中空糸膜に水が凝縮することを防ぐために、膜脱気装置の運転を停止したのちに、脱気膜の気相側に不活性ガスを供給することが開示されている。   In such a pure water production system that supplies pure water with a reduced dissolved oxygen concentration to the point of use, the membrane deaerator stops operating at times when the point of use does not use pure water, such as at night or on holidays. It is common to make it. When a membrane deaerator having a hollow fiber membrane is used, water is condensed in the hollow fiber membrane when the vacuum pump is stopped and the membrane deaerator is stopped. Since the effective area of the device decreases, the start-up of the device may be delayed when the membrane degassing device is restarted. In Patent Document 2, in order to prevent water from condensing in the hollow fiber membrane used in the membrane degassing device, after the operation of the membrane degassing device is stopped, an inert gas is provided on the gas phase side of the degassing membrane. Is disclosed.

実開平1−167385号公報Japanese Utility Model Publication 1-167385 特開2000−185203号公報JP 2000-185203 A

EICネット 環境用語集 “溶存酸素”,[online],2009年10月14日,一般財団法人環境イノベーション情報機構,[2016年3月17日検索],インターネット<URL:http://www.eic.or.jp/ecoterm/?act=view&serial=2623>EIC Net Environmental Glossary “Dissolved Oxygen”, [online], October 14, 2009, Environmental Innovation Information Organization, [Search March 17, 2016], Internet <URL: http: //www.eic .or.jp / ecoterm /? act = view & serial = 2623>

大気開放した純水タンクからの一次純水に対して膜脱気装置において脱気を行って溶存酸素量を低減し、溶存酸素量を低減した純水をユースポイントに供給する純水製造装置では、特に運転停止時にユースポイントへの送水ラインや純水タンク内に発生する生菌によりいわゆるスライムが形成されて脱気膜が閉塞し、運転再開後の送水流量が低下するという問題がある。脱気膜の閉塞が進行した場合には、脱気膜を交換する必要が生じる。紫外線(UV)殺菌装置により生菌の繁殖を抑えることも考えられるが、紫外線殺菌ではオゾン(O3)などが発生するので、溶存酸素量を低減したことの意味が失われる。特許文献2に記載されるように、運転停止時に膜脱気装置の減圧側に不活性ガスを供給することによって好気性菌の発生を抑えることも考えられるが、不活性ガスを供給するための設備にコストがかかる。 In a pure water production system that reduces the amount of dissolved oxygen by degassing primary pure water from a pure water tank released to the atmosphere in a membrane deaeration device, and supplying pure water with a reduced amount of dissolved oxygen to the point of use In particular, there is a problem that so-called slime is formed by viable bacteria generated in the water supply line to the use point and the pure water tank when the operation is stopped, the degassing membrane is blocked, and the water supply flow rate after the operation is restarted is reduced. When the blockage of the deaeration membrane proceeds, it is necessary to replace the deaeration membrane. Although it is conceivable to suppress the growth of viable bacteria with an ultraviolet (UV) sterilizer, ozone (O 3 ) and the like are generated by ultraviolet sterilization, so that the meaning of reducing the amount of dissolved oxygen is lost. As described in Patent Document 2, it is conceivable to suppress the generation of aerobic bacteria by supplying an inert gas to the decompression side of the membrane deaerator when the operation is stopped. Equipment is expensive.

本発明の目的は、生菌による脱気膜の閉塞を簡単な構成で防止することができる純水製造方法及び装置を提供することにある。   The objective of this invention is providing the pure water manufacturing method and apparatus which can prevent obstruction | occlusion of the deaeration membrane by a living microbe with a simple structure.

本発明の純水製造方法は、純水タンクに貯えた一次純水を、脱気膜を備える膜脱気装置に通液して脱気処理を行い、脱気処理後の純水をユースポイントに供給する純水製造方法であって、ユースポイントへの純水の供給を中断する中断期間内において、脱気膜の液相側に純水が存在する状態を保ったまま、脱気膜の気相側で膜脱気装置に接続している真空ポンプを間欠的に運転する。   In the pure water production method of the present invention, primary pure water stored in a pure water tank is passed through a membrane deaerator equipped with a deaeration membrane to perform deaeration treatment, and the pure water after deaeration treatment is used as a point of use. In the deionized membrane manufacturing method, the degassing membrane is kept in a state where pure water is present on the liquid phase side of the degassing membrane within the interruption period in which the supply of pure water to the use point is interrupted. The vacuum pump connected to the membrane deaerator is operated intermittently on the gas phase side.

本発明の第1の純水製造装置は、一次純水を貯える純水タンクと、脱気膜を備え、純水タンク内の一次純水が通液されて膜脱気を行う膜脱気装置と、脱気膜の気相側で膜脱気装置に接続する真空ポンプと、ユースポイントへの純水の供給を中断する中断期間内において、脱気膜の液相側に純水が存在する状態を保ったまま、真空ポンプを間欠的に動作させる制御装置と、を有し、膜脱気装置で膜脱気された純水をユースポイントに供給する。   A first deionized water production apparatus of the present invention includes a deionized water tank that stores primary deionized water and a degassing membrane, and a membrane deaerator that performs degassing by passing primary deionized water in the deionized water tank. In addition, there is pure water on the liquid phase side of the degassing membrane in the vacuum pump connected to the membrane degassing device on the gas phase side of the degassing membrane and the interruption period in which the supply of pure water to the use point is interrupted A control device that intermittently operates the vacuum pump while maintaining the state, and supplies pure water deaerated by the membrane deaerator to the use point.

本発明の第2の純水製造装置は、一次純水を貯える純水タンクと、脱気膜を備え、純水タンク内の一次純水が通液されて膜脱気を行う膜脱気装置と、純水タンクの出口と膜脱気装置との間の送水ライン上に設けられたフィルターと、を有し、膜脱気装置において膜脱気された純水をユースポイントに供給する。   A second deionized water production apparatus of the present invention includes a deionized water tank that stores primary deionized water and a degassing membrane, and a membrane degassing apparatus that performs degassing by passing primary deionized water in the deionized water tank. And a filter provided on a water supply line between the outlet of the pure water tank and the membrane deaerator, and supplies pure water deaerated in the membrane deaerator to the use point.

本発明では、膜脱気装置の位置において好気性微生物の活動を抑制することにより、生菌による脱気膜の閉塞を防ぐことができる。   In the present invention, the activity of aerobic microorganisms is suppressed at the position of the membrane deaerator, thereby preventing the deaeration membrane from being blocked by viable bacteria.

本発明の実施の一形態の純水製造装置の構成を示す図である。It is a figure which shows the structure of the pure water manufacturing apparatus of one Embodiment of this invention. 真空ポンプ停止後の経過時間と溶存酸素濃度との関係を示すグラフである。It is a graph which shows the relationship between the elapsed time after a vacuum pump stop, and dissolved oxygen concentration. 本発明の別の実施形態の純水製造装置の構成を示す図である。It is a figure which shows the structure of the pure water manufacturing apparatus of another embodiment of this invention.

次に、本発明の好ましい実施の形態について、図面を参照して説明する。   Next, a preferred embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の実施の一形態の純水製造装置を示している。図1に示す純水製造装置は、イオン交換処理や逆浸透処理によって得られた一次純水を受け入れ、膜脱気を行って溶存酸素量などを低減し、膜脱気後の純水を分析装置などのユースポイントに供給するものである。この純水製造装置は、一次純水を受け入れる大気に開放した純水タンク11と、純水タンク11の出口に設けられた弁12と、膜脱気装置14と、弁12から流出する純水を膜脱気装置14へ向けて送水する送液ポンプ13と、膜脱気装置14の出口に設けられた弁15と、を備えている。膜脱気装置14は、例えば中空糸膜を脱気膜として備えるものであって、脱気膜の一方の側に送液ポンプ13からの純水が出口に向けて流されるようになっている。脱気膜の他方の側は気相側であり、気相側を減圧状態とするために、膜脱気装置14の気相側は、配管16を介して真空ポンプ17に接続している。この配管16には、弁18の一端が接続し、弁18の他端は大気に開放している。さらに純水製造装置には、送液ポンプ13及び真空ポンプ17の駆動を制御し、弁15,18の開閉を制御する制御装置20が設けられている。弁18は、真空ポンプ17の始動時に真空ポンプ18が過負荷となることを防ぐために設けられており、真空ポンプ17を始動する際に一定の時間(例えば数秒)だけ開となって配管16内に少量の空気を導入し、それ以外のときは閉じたままとなるように制御される。   FIG. 1 shows a pure water producing apparatus according to an embodiment of the present invention. The pure water production apparatus shown in FIG. 1 accepts primary pure water obtained by ion exchange treatment or reverse osmosis treatment, performs membrane deaeration to reduce the amount of dissolved oxygen, etc., and analyzes the pure water after membrane deaeration. It is supplied to use points such as equipment. The pure water production apparatus includes a pure water tank 11 opened to the atmosphere for receiving primary pure water, a valve 12 provided at the outlet of the pure water tank 11, a membrane deaerator 14, and pure water flowing out from the valve 12. Is supplied to the membrane deaerator 14, and a valve 15 provided at the outlet of the membrane deaerator 14 is provided. The membrane deaerator 14 includes, for example, a hollow fiber membrane as a deaeration membrane, and pure water from the liquid feed pump 13 is caused to flow toward the outlet on one side of the deaeration membrane. . The other side of the degassing membrane is a gas phase side, and the gas phase side of the membrane degassing device 14 is connected to a vacuum pump 17 via a pipe 16 in order to bring the gas phase side into a reduced pressure state. One end of a valve 18 is connected to the pipe 16 and the other end of the valve 18 is open to the atmosphere. Further, the pure water production apparatus is provided with a control device 20 that controls the driving of the liquid feed pump 13 and the vacuum pump 17 and controls the opening and closing of the valves 15 and 18. The valve 18 is provided to prevent the vacuum pump 18 from being overloaded when the vacuum pump 17 is started. When the vacuum pump 17 is started, the valve 18 is opened for a certain period of time (for example, several seconds) and the pipe 18 is opened. It is controlled so that a small amount of air is introduced into the tank and kept closed otherwise.

次に、この純水製造装置を用いた純水製造方法について説明する。この純水製造装置は、脱気処理によって溶存酸素濃度が低下した純水を供給するものであるが、ユースポイントとして血液自動分析装置などの分析装置を想定しているので、常時、一定流量で純水を供給するのではなく、純水の必要が生じるたびにその要求された量の純水を供給し、また分析装置などの非稼働時には純水の供給を中断する。そこでこの純水製造装置の動作は、就業日の就業時間中など、ユースポイントでの純水の需要が発生するたびに直ちに純水をユースポイントに供給する供給期間と、夜間や休日などの、純水の需要が見込めないために純水の供給を中断する中断期間との2通りの期間に分けられる。供給期間は、必ずしも連続的に純水を供給する期間ではないが、例えば長くても数十分の期間内には純水の需要が発生すると見込まれる期間である。これに対し中断期間は、数十分から数時間以上わたってユースポイントへの純水を行わなくてもよいことが見込まれるために純水製造装置の動作を最小のものとする期間である。   Next, the pure water manufacturing method using this pure water manufacturing apparatus is demonstrated. This pure water production device supplies pure water whose dissolved oxygen concentration has been reduced by deaeration treatment. However, since it is assumed that an analyzer such as an automatic blood analyzer is used as a point of use, it is always at a constant flow rate. Instead of supplying pure water, the required amount of pure water is supplied each time pure water is needed, and the supply of pure water is interrupted when the analyzer is not in operation. Therefore, the operation of this pure water production system is as follows: during working hours on working days, the supply period for supplying pure water immediately to the use point whenever there is a demand for pure water at the use point, Since the demand for pure water cannot be expected, it can be divided into two periods: an interruption period in which the supply of pure water is interrupted. The supply period is not necessarily a period for supplying pure water continuously, but is a period in which demand for pure water is expected to occur within a few tens of minutes at the longest. On the other hand, the interruption period is a period in which the operation of the pure water production apparatus is minimized because it is expected that pure water to the use point does not have to be performed for several tens of minutes to several hours or more.

図1に示す純水製造装置によりユースポイントに純水を供給する場合には、まず、純水タンク11に一次純水を貯留し、弁12を開ける。そして、始業時刻など供給期間の開始時点において、膜脱気装置14の脱気膜の液相側に純水が存在しかつ弁15が閉じた状態で真空ポンプ17を始動し、膜脱気装置14の気相側を減圧状態とする。そして、ユースポイントでの純水の需要が発生すると、その需要に応じ、送液ポンプ13を動作させると同時に弁15を開ける。その結果、膜脱気装置14を通過したことにより脱気され、溶存酸素濃度が低減された純水がユースポイントに供給される。ユースポイントにおける純水の需要が間欠的に発生するものとして、1回の供給が終われば、弁15を閉じると同時に送液ポンプ13を停止させる。供給期間では、純水についての次の需要が例えば数十分以内に発生すると見込まれるので、真空ポンプ17は動作させたままとし、膜脱気装置14の気相側の減圧状態を維持する。このとき、脱気膜の液相側には純水が存在したままである。制御装置20は、送液ポンプ13の動作及び停止と弁15の開閉とが同期するように制御を行う。   When pure water is supplied to the use point by the pure water production apparatus shown in FIG. 1, first, primary pure water is stored in the pure water tank 11 and the valve 12 is opened. Then, at the start of the supply period such as the start time, the vacuum pump 17 is started in a state where pure water is present on the liquid phase side of the deaeration membrane of the membrane deaerator 14 and the valve 15 is closed, and the membrane deaerator The gas phase side of 14 is in a reduced pressure state. When the demand for pure water at the use point is generated, the valve 15 is opened at the same time as the liquid feed pump 13 is operated according to the demand. As a result, deionized water having passed through the membrane deaerator 14 and pure water with a reduced dissolved oxygen concentration are supplied to the use point. Assuming that the demand for pure water is intermittently generated at the use point, when one supply is finished, the valve 15 is closed and the liquid feed pump 13 is stopped simultaneously. During the supply period, it is expected that the next demand for pure water will occur within, for example, several tens of minutes. Therefore, the vacuum pump 17 is kept operating, and the reduced pressure state on the gas phase side of the membrane deaerator 14 is maintained. At this time, pure water still exists on the liquid phase side of the degassing membrane. The control device 20 performs control so that the operation and stop of the liquid feed pump 13 and the opening and closing of the valve 15 are synchronized.

例えば終業時刻において、供給期間から中断期間に純水製造装置を切り替える。中断期間では、真空ポンプ17も停止して膜脱気装置14の運転を停止させる。この状態でも、脱気膜の液相側には純水が存在したままである。長時間にわたって膜脱気装置14の運転を停止したとき、[背景技術]の欄でも説明したように、純水タンク11が大気に開放していることもあり、純水タンク11の内部や純水タンク11から膜脱気装置14に至るラインの内部で生菌が繁殖し、その結果、膜脱気装置14内の脱気膜が生菌により閉塞することがある。この生菌は主に好気性微生物である。一般に好気性微生物は、水中の溶存酸素濃度(DO)が2mg/L以上の条件で活発に活動するものとされている。そこで本実施形態の純水製造装置では、膜脱気装置14の内部または近傍での純水中の溶存酸素濃度を、好気性微生物が活発に活動するために必要な溶存酸素濃度よりも低くあり続けるようにする。具体的には、数十分から数時間以上にわたって純水の供給が中断する場合において、その中断期間中において、間欠的に真空ポンプ17を動作させる。真空ポンプ17を常時動作させることも考えられるが、真空ポンプは稼働時間に応じて寿命が短くなり、また、ランニングコストも上昇するので、本実施形態では中断期間中においては間欠的に真空ポンプ17を動作させるものとしている。制御装置20は、中断期間中において間欠的に真空ポンプ17を動作させるために、真空ポンプ17及び弁18を制御する。   For example, at the end time, the pure water production apparatus is switched from the supply period to the interruption period. During the interruption period, the vacuum pump 17 is also stopped to stop the operation of the membrane deaerator 14. Even in this state, pure water still exists on the liquid phase side of the degassing membrane. When the operation of the membrane deaerator 14 is stopped for a long time, the pure water tank 11 may be open to the atmosphere as described in the “Background Art” section. Viable bacteria propagate in the line from the water tank 11 to the membrane degassing device 14, and as a result, the degassing membrane in the membrane degassing device 14 may be blocked by the living bacteria. These live bacteria are mainly aerobic microorganisms. In general, aerobic microorganisms are considered to be active actively under conditions where the dissolved oxygen concentration (DO) in water is 2 mg / L or more. Therefore, in the pure water production apparatus of the present embodiment, the dissolved oxygen concentration in the pure water in or near the membrane degassing apparatus 14 is lower than the dissolved oxygen concentration necessary for active aerobic microorganisms. Try to continue. Specifically, when the supply of pure water is interrupted for several tens of minutes to several hours or more, the vacuum pump 17 is operated intermittently during the interruption period. Although it is conceivable that the vacuum pump 17 is always operated, the life of the vacuum pump is shortened according to the operation time, and the running cost is increased. Therefore, in the present embodiment, the vacuum pump 17 is intermittently provided during the interruption period. Is supposed to work. The control device 20 controls the vacuum pump 17 and the valve 18 in order to operate the vacuum pump 17 intermittently during the interruption period.

次に、中断期間中における真空ポンプ17の運転条件に関し、本発明者らが行った実験の結果を説明する。   Next, the results of experiments conducted by the present inventors regarding the operating conditions of the vacuum pump 17 during the interruption period will be described.

[実験例1]
図1に示した純水製造装置を組み立て、純水タンク11に一次純水を供給した。膜脱気装置14として、三菱レイヨン株式会社製の脱気・給気用膜モジュールであるステラポアー(登録商標)2000シリーズ品番20M0060Aを用いた。この脱気・給気用膜モジュールは、脱気膜として、三層複合膜である中空糸膜を用いたものである。純水タンク11中の純水に含まれる一般細菌の数を計測したところ、8200個/mLであった。
[Experimental Example 1]
The pure water production apparatus shown in FIG. 1 was assembled, and primary pure water was supplied to the pure water tank 11. As the membrane deaerator 14, Sterapore (registered trademark) 2000 series product number 20M0060A, which is a membrane module for deaeration and supply from Mitsubishi Rayon Co., Ltd., was used. This membrane module for deaeration and supply uses a hollow fiber membrane that is a three-layer composite membrane as a deaeration membrane. When the number of general bacteria contained in the pure water in the pure water tank 11 was measured, it was 8200 / mL.

次に、純水タンク11内の純水を送液ポンプから13から膜脱気装置14まで導入し、弁15を閉じた状態で真空ポンプ17を連続50時間運転した。連続50時間運転後に膜脱気装置14の近傍における純水を採取してその純水に含まれる一般細菌の数を計測したところ、2200個/mLであった。このことは、膜脱気装置14を運転させて脱気を行い、純水中の溶存酸素濃度を低減することで菌数が減少することを示しており、運転期間中においても膜脱気装置14の近傍での純水の溶存酸素濃度を低減することにより、生菌による脱気膜の閉塞を防止できることを示している。   Next, pure water in the pure water tank 11 was introduced from the liquid feed pump 13 to the membrane deaerator 14, and the vacuum pump 17 was continuously operated for 50 hours with the valve 15 closed. When the pure water in the vicinity of the membrane deaerator 14 was collected after 50 hours of continuous operation and the number of general bacteria contained in the pure water was measured, it was 2200 / mL. This indicates that the number of bacteria is reduced by operating the membrane deaerator 14 to reduce the dissolved oxygen concentration in the pure water, and the membrane deaerator is also used during the operation period. 14 shows that reducing the dissolved oxygen concentration of pure water in the vicinity of 14 can prevent clogging of the deaeration membrane by viable bacteria.

[実験例2]
次に、実験例1と同じ装置を用い、送液ポンプから13から膜脱気装置14まで導入し、弁15を閉じた状態で真空ポンプ17を運転した。このとき、配管16の圧力は絶対圧で11.3kPaであった。真空ポンプ17を停止し、膜脱気装置14の近傍の純水中の溶存酸素濃度を測定し、真空ポンプ17の停止からの経過時間に応じた溶存酸素濃度の変化を調べた。溶存酸素の測定には、東亜ディーケーケー製のDO30Aを用いた。結果を図2に示す。真空ポンプ17の停止から時間が経つにつれて配管16の真空度は低下し、45分経過後の配管16の圧力は絶対圧で41.3kPaであった。
[Experiment 2]
Next, using the same apparatus as in Experimental Example 1, the vacuum pump 17 was operated with the valve 15 being closed from the liquid feed pump 13 through the membrane deaerator 14. At this time, the pressure of the pipe 16 was 11.3 kPa in absolute pressure. The vacuum pump 17 was stopped, the dissolved oxygen concentration in the pure water near the membrane deaerator 14 was measured, and the change in the dissolved oxygen concentration according to the elapsed time from the stop of the vacuum pump 17 was examined. For measurement of dissolved oxygen, DO30A manufactured by Toa DKK was used. The results are shown in FIG. The vacuum degree of the piping 16 decreased with time from the stop of the vacuum pump 17, and the pressure of the piping 16 after 45 minutes was 41.3 kPa in absolute pressure.

上述したように、好気性微生物の活発な活動には溶存酸素濃度が2mg/L以上であることが必要であるから、好気性微生物の活動を抑えて脱気膜の閉塞を防ぐためには、膜脱気装置14の内部または近傍の純水の溶存酸素濃度を2.0mg/L未満でありつづけるようにすればよい。図2に示した結果では、真空ポンプ17が停止すると溶存酸素濃度が徐々に上昇しているが、真空ポンプ17の停止から30分以内であれば溶存酸素濃度が1.5mg/L以下となっており、停止から45分以内であれば、溶存酸素濃度が1.6mg/L以下となっている。図2に示す結果を外挿したところ、真空ポンプ17の停止から100分を過ぎたところで溶存酸素濃度が2.0mg/Lを超えるようにあった。したがって、真空ポンプ17を例えば30分に1回、間欠的に動作させれば、膜脱気装置14の内部または近傍の純水の溶存酸素濃度を1.5mg/L未満でありつづけるようにすることができ、生菌による脱気膜の閉塞をより確実に防ぐことができることになる。1回の間欠動作において、真空ポンプ17は、例えば1分間運転される。制御装置20は、膜脱気装置14の内部または近傍に存在する純水の溶存酸素濃度が2mg/L未満であり続けるように中断期間内における真空ポンプの運転条件(例えば100分間に1回、1分間以上作動)を設定し、好ましくは1.6mg/L以下であり続けるように運転条件(例えば45分間に1回、1分間以上作動)を設定し、さらに好ましくは1.5mg/L以下であり続けるような運転条件(例えば30分間に1回、1分間以上作動)を設定する。   As described above, the active activity of the aerobic microorganism requires that the dissolved oxygen concentration be 2 mg / L or more. Therefore, in order to suppress the activity of the aerobic microorganism and prevent clogging of the deaeration membrane, The dissolved oxygen concentration in or near the deaerator 14 may be kept below 2.0 mg / L. In the results shown in FIG. 2, the dissolved oxygen concentration gradually increases when the vacuum pump 17 is stopped, but the dissolved oxygen concentration is 1.5 mg / L or less within 30 minutes from the stop of the vacuum pump 17. If it is within 45 minutes from the stop, the dissolved oxygen concentration is 1.6 mg / L or less. When the results shown in FIG. 2 were extrapolated, the dissolved oxygen concentration exceeded 2.0 mg / L after 100 minutes from the stop of the vacuum pump 17. Therefore, if the vacuum pump 17 is operated intermittently, for example, once every 30 minutes, the dissolved oxygen concentration in or near the membrane deaerator 14 is kept below 1.5 mg / L. Therefore, it is possible to more reliably prevent occlusion of the deaeration membrane by viable bacteria. In one intermittent operation, the vacuum pump 17 is operated for 1 minute, for example. The control device 20 is configured so that the dissolved oxygen concentration of pure water existing in or near the membrane deaerator 14 is kept below 2 mg / L (for example, once every 100 minutes) Set the operating conditions (for example, once every 45 minutes, operate for 1 minute or more), more preferably 1.5 mg / L or less. The operating conditions (for example, once every 30 minutes, for one minute or more) are set.

次に、本発明の別の実施形態の純水製造装置について説明する。純水製造装置の中断期間中に膜脱気装置の脱気膜の閉塞の原因となる好気性微生物は、主として、大気開放下にある純水タンクから由来するものであると考えられる。したがって、純水タンクと膜脱気装置との間の送水ラインにフィルターを設け、このフィルターにより好気性微生物が膜脱気装置に達することを阻止すれば、好気性微生物による脱気膜の閉塞をより効果的に防ぐことができることになる。   Next, the pure water manufacturing apparatus of another embodiment of this invention is demonstrated. It is considered that aerobic microorganisms that cause clogging of the deaeration membrane of the membrane deaerator during the interruption period of the pure water production apparatus are mainly derived from the pure water tank that is open to the atmosphere. Therefore, if a filter is provided in the water supply line between the pure water tank and the membrane deaerator, and this filter prevents the aerobic microorganisms from reaching the membrane deaerator, the deaeration membrane is blocked by the aerobic microorganisms. It can be prevented more effectively.

図3に示す本発明の別の実施形態の純水製造装置は、図1に示したものと同様の構成のものであるが、送液ポンプ13の出口と膜脱気装置14の入口の間の送水ラインにフィルター21が設けられている点で、図1に示したものと異なっている。フィルター21としては、好気性微生物が通過しないような孔径を有する精密濾過膜を用いることが好ましい。精密濾過膜の孔径は、例えば、1μm以下である。図3に示した純水製造装置では、純水タンク11から膜脱気装置14までの送水ラインにおいて膜脱気装置14の入口の手前にフィルター21が設けられているので、純水タンク11中に好気性微生物が混入したとしても、この好気性微生物はフィルター21において純水から除去され、膜脱気装置14には到達しなくなる。したがって、図3に示した純水製造装置では、中断期間中に膜脱気装置14の脱気膜が好気性微生物によって閉塞することを防ぐことができる。もっとも、純水製造装置の組み立て時に既に部材に付着していた好気性微生物や、フィルター21をすり抜けた好気性微生物が存在する可能性があるので、図3に示した純水製造装置においても、図1に示した純水製造装置と同様に、夜間や休日などの中断期間中に、間欠的に(例えば、30分ごとに1分間)真空ポンプ17を作動させることが望ましい。当初から存在する好気性微生物やフィルター21をすり抜ける好気性微生物の存在を無視できる場合には、図3に示す純水製造装置では、中断期間中に真空ポンプ17を間欠的に駆動しなくてもよい。   The pure water producing apparatus according to another embodiment of the present invention shown in FIG. 3 has the same configuration as that shown in FIG. 1, but between the outlet of the liquid feed pump 13 and the inlet of the membrane deaerator 14. 1 is different from that shown in FIG. 1 in that a filter 21 is provided in the water supply line. As the filter 21, it is preferable to use a microfiltration membrane having a pore size that does not allow aerobic microorganisms to pass through. The pore diameter of the microfiltration membrane is, for example, 1 μm or less. In the pure water production apparatus shown in FIG. 3, the filter 21 is provided in front of the entrance of the membrane deaerator 14 in the water supply line from the pure water tank 11 to the membrane deaerator 14. Even if aerobic microorganisms are mixed in, the aerobic microorganisms are removed from the pure water in the filter 21 and do not reach the membrane deaerator 14. Therefore, in the pure water manufacturing apparatus shown in FIG. 3, it is possible to prevent the deaeration membrane of the membrane deaeration device 14 from being blocked by aerobic microorganisms during the interruption period. However, since there may be aerobic microorganisms already attached to the member at the time of assembling the pure water production apparatus and aerobic microorganisms that have passed through the filter 21, the pure water production apparatus shown in FIG. Similarly to the pure water production apparatus shown in FIG. 1, it is desirable to operate the vacuum pump 17 intermittently (for example, every 30 minutes for 1 minute) during interruption periods such as nighttime and holidays. When the presence of aerobic microorganisms existing from the beginning or aerobic microorganisms that pass through the filter 21 can be ignored, the pure water production apparatus shown in FIG. 3 does not require the vacuum pump 17 to be intermittently driven during the interruption period. Good.

11 純水タンク
12,15,18 弁
13 送液ポンプ
14 膜脱気装置
16 配管
17 真空ポンプ
20 制御装置
21 フィルター
11 Pure water tank 12, 15, 18 Valve 13 Liquid feed pump 14 Membrane deaerator 16 Piping 17 Vacuum pump 20 Controller 21 Filter

Claims (5)

純水タンクに貯えた一次純水を、脱気膜を備える膜脱気装置に通液して脱気処理を行い、脱気処理後の純水をユースポイントに供給する純水製造方法であって、
前記ユースポイントへの純水の供給を中断する中断期間内において、前記脱気膜の液相側に純水が存在する状態を保ったまま、前記脱気膜の気相側で前記膜脱気装置に対して配管を介して接続している真空ポンプを間欠的に運転する工程を有し
前記膜脱気装置の内部または近傍に存在する純水の溶存酸素濃度が2mg/L未満であり続けるように、前記中断期間内における前記真空ポンプの運転間隔を設定し、
前記真空ポンプの始動時において、一定の時間だけ前記配管に空気を導入する、純水製造方法。
This is a pure water production method in which primary pure water stored in a pure water tank is passed through a membrane deaerator equipped with a deaeration membrane for deaeration treatment, and the deionized water is supplied to the point of use. And
Within the interruption period in which the supply of pure water to the use point is interrupted, the membrane degassing is performed on the gas phase side of the degassing membrane while maintaining the state where pure water is present on the liquid phase side of the degassing membrane. have intermittently operated to process a vacuum pump connected via a pipe for the device,
Setting the operation interval of the vacuum pump within the interruption period so that the dissolved oxygen concentration of pure water existing in or near the membrane deaerator is kept below 2 mg / L,
A method for producing pure water , wherein air is introduced into the pipe for a certain period of time when the vacuum pump is started .
前記中断期間外の、前記ユースポイントでの需要に応じて前記脱気処理後の純水を前記ユースポイントに供給する供給期間において、前記真空ポンプを連続運転しながら、前記需要が発生するごとに、前記一次純水を前記膜脱気装置に送水する送液ポンプを作動させる、請求項1に記載の純水製造方法Each time the demand occurs while continuously operating the vacuum pump in a supply period for supplying the use point with pure water after the deaeration treatment according to the demand at the use point outside the interruption period. The pure water manufacturing method according to claim 1, wherein a liquid feed pump for feeding the primary pure water to the membrane deaerator is operated. 一次純水を貯える純水タンクと、
脱気膜を備え、前記純水タンク内の一次純水が通液されて膜脱気を行う膜脱気装置と、
前記脱気膜の気相側で前記膜脱気装置に対して配管を介して接続する真空ポンプと、
一端が前記配管に接続するとともに他端が大気に開放した弁と、
ユースポイントへの純水の供給を中断する中断期間内において、前記脱気膜の液相側に純水が存在する状態を保ったまま、前記真空ポンプを間欠的に動作させる制御装置と、
を有し、
前記膜脱気装置で膜脱気された純水を前記ユースポイントに供給し、
前記制御装置は、前記膜脱気装置の内部または近傍に存在する純水の溶存酸素濃度が2mg/L未満であり続けるように前記中断期間内における前記真空ポンプの運転間隔を設定し、
前記制御装置は、前記真空ポンプの始動時に一定の時間だけ前記弁を開に制御する、純水製造装置。
A pure water tank for storing primary pure water;
A membrane deaeration device comprising a deaeration membrane, wherein primary deionized water in the pure water tank is passed to perform membrane deaeration;
A vacuum pump connected via a pipe for the membrane degasifier in the gas phase side of the degassing membrane,
A valve having one end connected to the pipe and the other end open to the atmosphere;
A control device that intermittently operates the vacuum pump while maintaining a state in which pure water is present on the liquid phase side of the degassing membrane within an interruption period in which the supply of pure water to the use point is interrupted,
Have
Supply pure water deaerated by the membrane deaerator to the point of use ,
The control device sets the operation interval of the vacuum pump within the interruption period so that the dissolved oxygen concentration of pure water existing in or near the membrane deaerator is kept below 2 mg / L,
The said control apparatus is a pure water manufacturing apparatus which controls the said valve to open only for the fixed time at the time of starting of the said vacuum pump .
前記純水タンクの出口に接続して前記一次純水を前記膜脱気装置に送液する送液ポンプをさらに備え、
前記制御装置は、前記中断期間外の、前記ユースポイントでの需要に応じて前記膜脱気された純水を前記ユースポイントに供給する供給期間において、前記真空ポンプを連続運転しながら、前記需要が発生するごとに前記送液ポンプを作動させる、請求項に記載の純水製造装置。
A liquid feed pump connected to an outlet of the pure water tank and feeding the primary pure water to the membrane deaerator;
The control device is configured to supply the demand while continuously operating the vacuum pump in a supply period in which the membrane-degassed pure water is supplied to the use point according to the demand at the use point outside the interruption period. The pure water manufacturing apparatus according to claim 3 , wherein the liquid feed pump is operated each time the water is generated.
前記純水タンクの出口と前記膜脱気装置との間の送水ライン上に設けられたフィルターをさらに備える、請求項3または4に記載の純水製造装置。 The pure water manufacturing apparatus of Claim 3 or 4 further provided with the filter provided on the water supply line between the exit of the said pure water tank, and the said membrane deaeration apparatus.
JP2016084554A 2016-04-20 2016-04-20 Pure water production method and apparatus Active JP6617071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016084554A JP6617071B2 (en) 2016-04-20 2016-04-20 Pure water production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016084554A JP6617071B2 (en) 2016-04-20 2016-04-20 Pure water production method and apparatus

Publications (2)

Publication Number Publication Date
JP2017192898A JP2017192898A (en) 2017-10-26
JP6617071B2 true JP6617071B2 (en) 2019-12-04

Family

ID=60155288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016084554A Active JP6617071B2 (en) 2016-04-20 2016-04-20 Pure water production method and apparatus

Country Status (1)

Country Link
JP (1) JP6617071B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11691111B2 (en) * 2019-04-08 2023-07-04 Mks Instruments, Inc. Systems and methods for generating a dissolved ammonia solution with reduced dissolved carrier gas and oxygen content

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7155373B1 (en) 2021-10-05 2022-10-18 野村マイクロ・サイエンス株式会社 Method for operating liquid ring pump, membrane degassing device, pure water production system, and pure water production method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167385U (en) * 1988-05-13 1989-11-24
JP3473866B2 (en) * 1994-07-04 2003-12-08 株式会社サムソン Membrane deaerator
JP3521778B2 (en) * 1998-12-22 2004-04-19 栗田工業株式会社 Operating method of membrane deaerator
JP4899635B2 (en) * 2006-05-25 2012-03-21 三浦工業株式会社 Deoxygenation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11691111B2 (en) * 2019-04-08 2023-07-04 Mks Instruments, Inc. Systems and methods for generating a dissolved ammonia solution with reduced dissolved carrier gas and oxygen content

Also Published As

Publication number Publication date
JP2017192898A (en) 2017-10-26

Similar Documents

Publication Publication Date Title
JP4472050B2 (en) Fresh water generator and fresh water generation method
US6908546B2 (en) Apparatus and method for producing purified water having microbiological purity
US6071414A (en) Method for desalinating salts-containing water and apparatus therefor
US9259686B2 (en) Water producing system and operation method therefor
WO2000004986A1 (en) Method for inhibiting growth of bacteria or sterilizing around separating membrane
JP2002143849A5 (en)
JP2002143849A (en) Method for producing water
EP2276705A1 (en) Environmentally friendly hybrid microbiological control technologies for cooling towers
JP6617071B2 (en) Pure water production method and apparatus
JP4767803B2 (en) Water purifier
CN201864635U (en) Full-automatic direct drinking device capable of supplying water continuously
JP2000189965A (en) Fresh water maker and production of fresh water
US20100307963A1 (en) Method and System for Filtering Water
KR101446127B1 (en) Water treatment apparatus
RU2323036C2 (en) Method and device for concentrating water solutions of biology-active agents
JP5103769B2 (en) Cleaning method for reclaimed water production equipment
KR20170074641A (en) Water treatment apparatus
JP6398131B2 (en) Water treatment apparatus and operation method thereof
JP6398132B2 (en) Water treatment apparatus and operation method thereof
JP4661009B2 (en) Ultrapure water production system
JPH11179173A (en) Operation method of membrane separator and membrane separator
JP2004033947A (en) Apparatus for manufacturing refined water
JPH10296060A (en) Prevention method for contamination of separation membrane
JP5326723B2 (en) Water treatment equipment
JP2001252659A (en) Fresh water generating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191111

R150 Certificate of patent or registration of utility model

Ref document number: 6617071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250