JP2002143849A - Method for producing water - Google Patents

Method for producing water

Info

Publication number
JP2002143849A
JP2002143849A JP2001259208A JP2001259208A JP2002143849A JP 2002143849 A JP2002143849 A JP 2002143849A JP 2001259208 A JP2001259208 A JP 2001259208A JP 2001259208 A JP2001259208 A JP 2001259208A JP 2002143849 A JP2002143849 A JP 2002143849A
Authority
JP
Japan
Prior art keywords
water
concentration
raw water
addition
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001259208A
Other languages
Japanese (ja)
Other versions
JP2002143849A5 (en
Inventor
Masahiro Kihara
正浩 木原
Yuichiro Nakaoki
優一郎 中沖
Takuhei Kimura
拓平 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001259208A priority Critical patent/JP2002143849A/en
Publication of JP2002143849A publication Critical patent/JP2002143849A/en
Publication of JP2002143849A5 publication Critical patent/JP2002143849A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

PROBLEM TO BE SOLVED: To provide a method hardly causing the deposition of microorganisms or their metabolic products on a separation membrane and the reduction of the amount of produced water in the method for producing water by using a separation membrane. SOLUTION: In the process of adding a sterilizer to the raw water and supplying the water to the separation membrane, at least one condition selected from the group of the concentration of the sterilizer added, time of addition and frequency of addition is controlled based on the following factors. The factors are the viable cell count in the raw water and the concentration of assimilable organic carbon, or the volume of bacteria in the raw water and the concentration of assimilable organic carbon, or the viable cell count in the raw water and the biofilm formation rate, or the volume of bacteria in the raw water and the biofilm formation rate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、逆浸透膜などの分
離膜を用いて海水やかん水などの脱塩を行い淡水を得た
り、工業排水などを浄化して上水などを得たりする際に
好適に用いることのできる造水方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for desalinating seawater or brine using a separation membrane such as a reverse osmosis membrane to obtain fresh water, or purifying industrial wastewater to obtain clean water. The present invention relates to a desalination method that can be suitably used for water.

【0002】[0002]

【従来の技術】膜を用いた分離技術は、海水やかん水の
淡水化処理、工業用水や廃水などの処理に広く用いられ
ている。これらの処理においては、微生物の膜への付着
や増殖、また、それらの代謝物の付着などにより膜の透
過性能や分離性能が低下するため、解決手法が種々模索
されてきた。中でも、塩素系の殺菌剤を添加する方法
や、殺菌剤を添加した後に還元剤を添加する方法、さら
に、それらに加えて亜硫酸水素ナトリウムを添加する方
法などが効果的であるとして用いられてきた。
2. Description of the Related Art Separation techniques using membranes are widely used for desalination of seawater and brackish water, and for treatment of industrial water and wastewater. In these treatments, the permeation performance and separation performance of the membrane are reduced due to the attachment and growth of microorganisms to the membrane and the attachment of their metabolites, and various solutions have been sought. Among them, a method of adding a chlorine-based disinfectant, a method of adding a reducing agent after adding a disinfectant, and a method of adding sodium bisulfite in addition to them have been used as effective. .

【0003】しかしながら、これらの方法は、いずれ
も、ある一定の添加濃度や添加時間、添加頻度で実施さ
れているため、原水に含まれる微生物の数や水質に変動
によって、過剰の殺菌剤が添加されることになったり、
また、殺菌剤が不足し微生物が急速に増殖して膜に堆積
するなどの問題を生じていた。
[0003] However, since all of these methods are carried out at a certain addition concentration, addition time, and addition frequency, an excess bactericide is added depending on the number of microorganisms contained in the raw water and the water quality. To be done,
In addition, there has been a problem that a bactericide is insufficient and microorganisms rapidly grow and deposit on a film.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
した従来技術の問題点を解決し、膜への微生物やその代
謝物の堆積が少なく、造水量低下が少ない造水方法を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a fresh water producing method in which the accumulation of microorganisms and their metabolites on a membrane is small and a decrease in the amount of fresh water is small. It is in.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明は、原水に殺菌剤を添加して分離膜に供給する
にあたり、原水に含まれる生菌数および同化可能有機炭
素濃度、原水に含まれる菌体量および同化可能有機炭素
濃度、原水に含まれる生菌数およびバイオフィルム形成
速度、もしくは、原水に含まれる菌体量およびバイオフ
ィルム形成速度に基づいて、殺菌剤の添加濃度、添加時
間および添加頻度からなる群から選ばれる少なくとも1
つの条件を制御する造水方法を特徴とする。ここで、原
水のpHを4以下に制御することも好ましく、殺菌剤と
して硫酸を用いることも好ましい。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a method for adding a bactericide to raw water and supplying it to a separation membrane, wherein the number of viable bacteria contained in the raw water, the assimilable organic carbon concentration, the raw water The amount of bacteria and assimilable organic carbon concentration contained in, the number of viable bacteria and biofilm formation rate contained in the raw water, or, based on the amount of bacteria contained in the raw water and the biofilm formation rate, the concentration of the fungicide added, At least one selected from the group consisting of addition time and addition frequency
It features a desalination method that controls two conditions. Here, it is preferable to control the pH of the raw water to 4 or less, and it is also preferable to use sulfuric acid as a bactericide.

【0006】また、分離膜として逆浸透膜を用いること
も好ましく、原水として海水またはかん水を用いること
も好ましい。
It is also preferable to use a reverse osmosis membrane as the separation membrane, and it is also preferable to use seawater or brine as raw water.

【0007】さらに、原水に酸化剤を添加した後、還元
剤を添加し、次いで殺菌剤を添加する、上記の造水方法
も好ましい。
[0007] Further, the above-mentioned fresh water producing method in which an oxidizing agent is added to raw water, a reducing agent is added, and then a bactericide is added is also preferable.

【0008】また、原水に含まれる生菌数および同化可
能有機炭素濃度、原水に含まれる菌体量および同化可能
有機炭素濃度、原水に含まれる生菌数およびバイオフィ
ルム形成速度、もしくは、原水に含まれる菌体量および
バイオフィルム形成速度に基づいて、酸化剤または還元
剤の添加濃度、添加時間および添加頻度からなる群から
選ばれる少なくとも1つの条件を制御することも好まし
く、さらに、上記の方法により得られた水も好ましい。
In addition, the number of viable bacteria and the concentration of assimilable organic carbon contained in the raw water, the amount of cells contained in the raw water and the concentration of assimilable organic carbon, the number of viable bacteria and the biofilm formation rate contained in the raw water, or It is also preferable to control at least one condition selected from the group consisting of the concentration of the oxidizing agent or the reducing agent, the time of addition, and the frequency of addition, based on the amount of cells contained and the rate of biofilm formation. Is also preferred.

【0009】[0009]

【発明の実施の形態】本発明者らは、微生物の増殖が、
供給原水中に存在する微生物数だけではなく、供給原水
に含まれる有機炭素、特に微生物の栄養素として摂取さ
れ得る同化可能有機炭素[以下、AOC(Assimirable
Organic Carbon)という]の量によって決定されるとい
う考えに基づき、原水中の微生物の生菌数やAOC濃度
が少ない場合には、膜分離装置に供給する殺菌剤の添加
条件(添加濃度や添加時間、添加頻度)を緩やかにし、
逆に生菌数やAOC濃度が多い場合には、殺菌剤の添加
条件を強化する、というように原水中の微生物の生菌数
やAOC濃度に応じて殺菌剤の添加条件を制御すること
によって、最適な殺菌効果が得られることを見出した。
BEST MODE FOR CARRYING OUT THE INVENTION
Not only the number of microorganisms present in the raw feed water, but also the organic carbon contained in the raw feed water, particularly assimilable organic carbon that can be taken as nutrients of the microorganism [hereinafter referred to as AOC (Assimirable
Organic Carbon) is determined by the amount of microorganisms in the raw water, and when the concentration of AOC is low, the addition conditions (addition concentration and addition time) of the bactericide to be supplied to the membrane separation device are considered. , Frequency of addition)
Conversely, when the number of viable bacteria and the AOC concentration are high, the conditions for adding the bactericide are strengthened, for example, by controlling the conditions for adding the bactericide according to the number of viable bacteria and the AOC concentration of the microorganisms in the raw water. And an optimum bactericidal effect can be obtained.

【0010】また、分離膜による処理に先立つ前処理に
おける殺菌についても、前処理で塩素系殺菌剤等の酸化
剤を添加することによって、供給液中に存在する有機炭
素が酸化分解し、微生物の栄養素として摂取されやすい
AOCに変換されるという説(A.B.Hamida and I.Moch,
Jr.,Desalination & Water Reuse, 6/3, 40〜45,(199
6).))に基づき、膜分離装置の殺菌と同様、原水中の微
生物の生菌数とAOC濃度に応じて酸化剤と還元剤の添
加条件を変更することによって、過剰なAOCを作り出
すことなく、上述した膜分離装置の殺菌方法と組み合わ
せることによって、さらに効果的に膜分離装置における
微生物の増殖を抑制することができることを見出し、本
発明に到達したものである。
[0010] In addition, regarding the sterilization in the pretreatment prior to the treatment with the separation membrane, by adding an oxidizing agent such as a chlorine-based germicide in the pretreatment, the organic carbon present in the feed solution is oxidized and decomposed, and microorganisms are removed. The theory that it is converted to AOC, which is easily taken as a nutrient (ABHamida and I. Moch,
Jr., Desalination & Water Reuse, 6/3, 40-45, (199
6).)), As in the sterilization of the membrane separation device, to create excess AOC by changing the addition conditions of the oxidizing agent and the reducing agent according to the number of viable microorganisms in the raw water and the AOC concentration. In addition, the present inventors have found that by combining with the above-described method for sterilizing a membrane separation device, it is possible to more effectively suppress the growth of microorganisms in the membrane separation device, and have reached the present invention.

【0011】さて、本発明の造水方法について、図1に
示す造水装置を用いて説明する。
Now, the fresh water producing method of the present invention will be described using a fresh water producing apparatus shown in FIG.

【0012】図1において、造水装置50は、原水の流
れる方向に関して上流側から、取水管1、取水ポンプ
2、凝集ろ過装置4a、ポリッシングろ過装置4b、中
間槽5、保安フィルタ7、高圧ポンプ8、分離膜モジュ
ール9、透過水流路10、脱炭酸装置11a、カルシウ
ム添加装置11bの順に接続、構成されている。また、
分離膜モジュール9の濃縮水側には濃縮水中和装置13
および濃縮水流路14が接続され、さらに、取水ポンプ
2と凝集ろ過装置4aとの間の経路には薬品注入装置3
が、中間槽5と保安フィルタ7との間の経路には薬品注
入装置6a、6bが、カルシウム添加装置11bの下流
側の経路には塩素注入装置12がそれぞれ接続されてい
る。
In FIG. 1, a fresh water generator 50 includes an intake pipe 1, an intake pump 2, a coagulation filtration device 4a, a polishing filtration device 4b, an intermediate tank 5, a security filter 7, and a high-pressure pump from the upstream side with respect to the flowing direction of raw water. 8, a separation membrane module 9, a permeated water flow path 10, a decarbonation device 11a, and a calcium addition device 11b are connected and configured in this order. Also,
A concentrated water neutralization device 13 is provided on the concentrated water side of the separation membrane module 9.
And a concentrated water flow path 14, and a chemical injection device 3 is provided in a path between the water intake pump 2 and the coagulation filtration device 4 a.
However, chemical injection devices 6a and 6b are connected to a path between the intermediate tank 5 and the security filter 7, and a chlorine injection device 12 is connected to a path downstream of the calcium addition device 11b.

【0013】海や貯水槽から、取水ポンプにより取水管
1を通じて取水された原水は、薬品注入装置3により凝
集剤や殺菌剤などが添加された後、凝集ろ過装置4aや
ポリッシングろ過装置4bなどの前処理装置により処理
され中間槽5に一旦貯えられる。次いで、薬品注入装置
6a、6bにより還元剤や殺菌剤が添加され、保安フィ
ルタ7を通って高圧ポンプ8により分離膜モジュール9
に供給される。供給された原水は、透過水と濃縮水とに
分離され、そのうち濃縮水は濃縮水中和装置13により
pHが中性付近に調整され、濃縮水流路14を通っても
との海や貯水槽へ戻される。一方、透過水は、透過水経
路10を通って脱炭酸装置11a、カルシウム添加装置
11a、塩素注入装置12により処理され、たとえば、
飲料水基準に適合するような淡水として造水装置から取
り出される。
Raw water taken from the sea or a water storage tank through a water intake pipe 1 by a water intake pump is added with a coagulant or a bactericide by a chemical injection device 3 and then supplied to a coagulation filtration device 4a or a polishing filtration device 4b. It is processed by the pretreatment device and temporarily stored in the intermediate tank 5. Next, a reducing agent or a bactericide is added by the chemical injection devices 6a and 6b, passes through the security filter 7, and is supplied to the separation membrane module 9 by the high-pressure pump 8.
Supplied to The supplied raw water is separated into permeated water and concentrated water, of which the concentrated water is adjusted to near neutral pH by the concentrated water neutralization device 13 and passes through the concentrated water passage 14 to the original sea or reservoir. Will be returned. On the other hand, the permeated water passes through the permeated water path 10 and is treated by the decarbonation device 11a, the calcium addition device 11a, and the chlorine injection device 12, for example,
It is removed from the freshwater generator as fresh water that meets the drinking water standards.

【0014】本発明は、上記の取水管1により取水され
る海水(原水)に含まれる生菌数および同化可能有機炭
素濃度に基づいて、薬品注入装置3、6bにより添加さ
れる殺菌剤の添加濃度や添加時間、添加頻度などの条件
を制御し、各配管や分離膜モジュール9などに微生物が
繁殖しないようにしながら透過水を得るものである。
The present invention is based on the number of viable bacteria contained in the seawater (raw water) withdrawn by the above-mentioned water intake pipe 1 and the concentration of assimilable organic carbon. Conditions such as concentration, addition time, and addition frequency are controlled to obtain permeated water while preventing microorganisms from propagating in each pipe, separation membrane module 9 and the like.

【0015】上記において、取水は直接、海の表層部分
から行ってもよいし、いわゆる深層水をくみ出しても構
わない。また、海底砂層などをフィルタとして用いる浸
透取水法により取水してもよく、くみ出した海水は、一
旦沈殿池などで砂などの粒子を分離しておくことが好ま
しい。次いで、薬品注入装置3により、殺菌剤や凝集剤
が添加されるわけであるが、用いる殺菌剤としては、酸
化性の殺菌剤、たとえば、遊離塩素を発生させ得る薬剤
であればよく、塩素ガスを注入したり、次亜素酸ナトリ
ウムなどを添加して殺菌を行う。また、凝集剤として
は、塩化第2鉄やポリ塩化アルミニウムなどを用いるこ
とができる。その後、凝集ろ過装置4a、ポリッシング
ろ過装置4bにより前処理を行う。これは、砂ろ過など
により行ってもよく、また、限外ろ過膜や精密ろ過膜、
ルースRO膜などの膜による処理を行っても構わない。
この前処理は、下流の各工程に負荷をかけないように、
必要な程度まで原水を精製する目的を有し、原水の汚濁
の程度により適宜選択される工程であり、上記した各処
理を適宜組み合わせて行えばよい。次に、前処理を終え
た原水は中間槽5に貯えられるが、これは、水量調節機
能や水質の緩衝機能を提供するもので、必要に応じて設
ける。次いで、薬品注入装置6aにより亜硫酸水素ナト
リウムなどの還元剤が添加される。これは、上流の工程
で酸化性殺菌剤を添加した場合に行うもので、残留塩素
などが分離膜を劣化させることを防ぐためのものであ
る。次いで、薬品注入装置6bにより硫酸などの殺菌剤
を添加し、保安フィルタ7を通す。保安フィルタは、分
離膜モジュールに供給される原水中の固形分を除去し、
ポンプや膜の性能劣化を防ぐ効果を有している。
In the above, water may be taken directly from the surface of the sea or so-called deep water may be extracted. In addition, water may be collected by a permeation water intake method using a seabed sand layer or the like as a filter, and it is preferable that the extracted seawater is once separated into particles such as sand in a sedimentation tank or the like. Next, a germicide or a coagulant is added by the chemical injection device 3, and the germicide to be used may be an oxidizing germicide, for example, a chemical that can generate free chlorine. And sterilization is performed by adding sodium hypochlorite or the like. Further, as a coagulant, ferric chloride, polyaluminum chloride, or the like can be used. Thereafter, pretreatment is performed by the coagulation filtration device 4a and the polishing filtration device 4b. This may be performed by sand filtration, etc., or an ultrafiltration membrane, a microfiltration membrane,
Processing using a film such as a loose RO film may be performed.
This pretreatment does not impose a load on each downstream step,
The process has the purpose of purifying the raw water to a necessary degree and is appropriately selected depending on the degree of contamination of the raw water, and may be performed by appropriately combining the above-described respective processes. Next, the raw water after the pretreatment is stored in the intermediate tank 5, which provides a water volume adjusting function and a water quality buffering function, and is provided as necessary. Next, a reducing agent such as sodium bisulfite is added by the chemical injection device 6a. This is performed when an oxidizing germicide is added in an upstream process, and is for preventing residual chlorine and the like from deteriorating the separation membrane. Next, a bactericide such as sulfuric acid is added by the chemical injection device 6b and passed through the security filter 7. The security filter removes solids in the raw water supplied to the separation membrane module,
It has the effect of preventing performance degradation of pumps and membranes.

【0016】上記の薬品注入装置、特に、殺菌剤を添加
する3、6bについては、後述するように、原水の性状
に合わせて殺菌剤の添加条件を制御するために、自動的
に添加量や添加時間、添加頻度などがコントロールでき
るバルブやポンプを有する制御機構を備えていることが
好ましい。これは、たとえば、pH計やタイマーなどを
設置し、それらから得られる情報に基づいて、バルブや
ポンプなどの開度を制御するようにして行うことができ
る。
[0016] The above-mentioned chemical injection device, in particular, 3 and 6b to which a disinfectant is added, as will be described later, automatically controls the amount of the disinfectant added in order to control the addition conditions of the disinfectant according to the properties of the raw water. It is preferable to provide a control mechanism having a valve or a pump capable of controlling the addition time, the addition frequency, and the like. This can be performed, for example, by installing a pH meter, a timer, and the like, and controlling the opening of a valve, a pump, and the like based on information obtained from the pH meter and the timer.

【0017】もちろん、殺菌剤等の薬剤の添加タイミン
グは任意に決定すればよいが、好ましくは、取水した直
後や、前処理前または前処理中、保安フィルタの通過前
後である。
Of course, the timing of adding a chemical such as a bactericide may be arbitrarily determined, but is preferably immediately after water withdrawal, before or during pretreatment, or before and after passing through a security filter.

【0018】分離膜モジュール9は、たとえば、逆浸透
膜を用いたモジュールや限外ろ過膜、精密ろ過膜などを
用いたモジュールとすることができるが、海水やかん水
を処理する場合には、逆浸透膜を用いた逆浸透膜モジュ
ールとすることが好ましい。
The separation membrane module 9 can be, for example, a module using a reverse osmosis membrane, a module using an ultrafiltration membrane, a microfiltration membrane, or the like. It is preferable to use a reverse osmosis membrane module using an osmosis membrane.

【0019】なお、ここで、逆浸透膜とは、供給原水中
の一部の成分、たとえば、溶媒を透過させ他の成分を透
過させない半透性の膜をいい、いわゆるナノフィルトレ
ーション膜やルースRO膜なども含まれる。素材として
は、酢酸セルロース系ポリマーやポリアミド、ポリエス
テル、ポリイミド、ピニルポリマーなどの高分子材料を
用いることが好ましい。また、その膜構造としては、少
なくとも片面に徴密層を持ち、徴密層から膜内部あるい
はもう片方の面に向けて徐々に大きな孔径の微細孔を有
する非対称構造としたり、非対称膜の徴密層の上に別の
素材で形成された分離機能層を有する複合膜構造とする
こともできる。膜形態としては、中空糸膜や平膜の形態
で用いることができる。膜厚としては、中空糸膜および
平膜ともに10μm〜1mmの範囲内であると好まし
く、中空糸膜を用いる場合、その外径は50μm〜4m
mの範囲内であると好ましい。また、平膜では非対称構
造を有しているとよく、複合膜では織物や編み物、不織
布などの基材で支持されていることが好ましい。代表的
な逆浸透膜としては、たとえば、酢酸セルロース系やポ
リアミド系の非対称膜およびポリアミド系やポリ尿素系
の分離機能層を有する複合膜などがあるが、中でも、本
発明においては、酢酸セルロース系の非対称膜やボリア
ミド系の複合膜を用いると効果が高い。特に、特開昭6
2−121603号公報や特開平8−138658号公
報、米国特許第4277344号明細書に記載されてい
る芳香族系のボリアミド複合膜を用いると効果が大き
い。
Here, the reverse osmosis membrane refers to a semipermeable membrane which permeates some components in the feed water, for example, a solvent and does not allow other components to permeate, such as a so-called nanofiltration membrane. A loose RO film is also included. As a material, it is preferable to use a polymer material such as a cellulose acetate polymer, polyamide, polyester, polyimide, and pinyl polymer. In addition, the membrane structure may be an asymmetric structure having a dense layer on at least one side and gradually having fine pores with a large pore diameter from the dense layer toward the inside of the membrane or the other surface, or a dense layer of the asymmetric membrane. A composite membrane structure having a separation function layer formed of another material on the layer can also be used. As the membrane form, a hollow fiber membrane or a flat membrane can be used. The thickness of the hollow fiber membrane and the flat membrane is preferably in the range of 10 μm to 1 mm. When a hollow fiber membrane is used, the outer diameter thereof is 50 μm to 4 m.
m is preferably within the range. The flat membrane preferably has an asymmetric structure, and the composite membrane is preferably supported by a substrate such as a woven fabric, a knitted fabric, or a nonwoven fabric. Representative reverse osmosis membranes include, for example, a cellulose acetate-based or polyamide-based asymmetric membrane and a composite membrane having a polyamide-based or polyurea-based separation function layer. Among them, in the present invention, cellulose acetate-based membranes are used. The use of an asymmetric membrane or a polyamide composite membrane is highly effective. In particular, JP-A-6
Use of an aromatic polyamide composite film described in JP-A-2-121603, JP-A-8-138658, and U.S. Pat. No. 4,277,344 has a large effect.

【0020】また、分離膜モジュールとは、上記した逆
浸透膜などを実際に使用するために筐体に組み込んだも
のであり、平膜形態の膜を用いる場合は、スパイラル型
モジュールや、チューブラー型モジュール、プレート・
アンド・フレーム型モジュールとして、また、中空糸膜
を用いる場合は、束ねたうえでU字状やI字状に筐体に
組み込んでモジュールとするとよい。上記の内、スパイ
ラル型モジュールは、たとえば、特開平9−14106
0号公報や特開平9−141067号公報に記載される
ように、供給水流路材や透過水流路材などの部材を組み
込んでおり、溶質濃度の高い海水を原水として用いた
り、高圧で装置を運転する場合などに高い効果がある。
The separation membrane module is one in which the above-mentioned reverse osmosis membrane or the like is incorporated in a casing for actual use. When a flat membrane type membrane is used, a spiral type module or a tubular type module is used. Mold module, plate
When a hollow fiber membrane is used as the and frame type module, it is preferable to bundle the module and incorporate it into a U-shaped or I-shaped casing to form a module. Of the above, a spiral type module is disclosed in, for example,
No. 0 and Japanese Patent Application Laid-Open No. 9-141067 incorporate members such as a supply water flow path material and a permeate flow path material, and use seawater having a high solute concentration as raw water, or operate the apparatus at high pressure. It is highly effective when driving.

【0021】上記の分離膜モジュールで得られる透過水
は、脱炭酸装置11a、カルシウム添加装置11b、塩
素注入装置12による処理を受け、飲料水などの用途に
用いられる。
The permeated water obtained by the above separation membrane module is treated by a decarbonation device 11a, a calcium addition device 11b, and a chlorine injection device 12, and is used for purposes such as drinking water.

【0022】造水装置の高圧ポンプの運転圧力は、原水
の種類や運転方法などにより適宜設定できるが、かん水
や超純水など浸透圧の低い溶液を供給原水とする場合に
は0.1〜3.0MPa程度の比較的低圧で、海水淡水
化や廃水処理、有用物の回収などの場合には2.5〜1
5.0MPa程度の比較的高圧で使用するのが、電力等
のエネルギーの無駄がなく、かつ良好な透過水の水質を
得ることができ好ましい。また、適当な供給圧力、運転
圧力を得るために、造水装置には、任意の経路にポンプ
を設置することができる。
The operating pressure of the high-pressure pump of the fresh water generator can be set as appropriate according to the type of raw water, the operating method, and the like. At a relatively low pressure of about 3.0 MPa, 2.5 to 1 in the case of seawater desalination, wastewater treatment, recovery of useful materials, etc.
It is preferable to use at a relatively high pressure of about 5.0 MPa because energy such as electric power is not wasted and good quality of permeated water can be obtained. In addition, a pump can be installed in an arbitrary route in the fresh water generator in order to obtain appropriate supply pressure and operating pressure.

【0023】また、造水装置の運転温度は、0℃よりも
低いと供給水が凍結して使用できず、100℃よりも高
い場合には供給水の蒸発が起こり使用できないため、0
〜100℃の範囲内で適宜設定するが、装置や逆浸透膜
の性能を良好に維持するためには、5〜50℃の範囲と
するのが好ましい。
When the operating temperature of the fresh water generator is lower than 0 ° C., the supplied water is frozen and cannot be used. When the operating temperature is higher than 100 ° C., the supplied water is evaporated and cannot be used.
The temperature is appropriately set within the range of -100 ° C, but is preferably in the range of 5-50 ° C in order to maintain good performance of the apparatus and the reverse osmosis membrane.

【0024】造水装置の回収率は、5〜98%の範囲内
で適宜設定することができる。ただし、供給原水や濃縮
水の性状、濃度、浸透圧に応じて前処理条件や運転圧力
などを考慮する必要がある(特開平8−108048号
公報)。たとえば、海水淡水化の場合には、通常10〜
40%、高効率の装置の場合には40〜70%の回収率
を設定する。また、かん水淡水化や超純水製造の場合に
は70%以上、さらには、90〜95%の回収率で運転
することもできる。
The recovery rate of the fresh water generator can be appropriately set within a range of 5 to 98%. However, it is necessary to consider pretreatment conditions, operating pressure, and the like in accordance with the properties, concentration, and osmotic pressure of the raw feed water and concentrated water (Japanese Patent Laid-Open No. 8-108048). For example, in the case of seawater desalination, usually 10 to 10
A recovery rate of 40% to 70% is set for a device with a high efficiency of 40%. In addition, in the case of desalination or ultrapure water production, the operation can be performed at a recovery rate of 70% or more, further, 90 to 95%.

【0025】また、造水装置における分離膜モジュール
9は、1段とすることも、また、多段とすることもで
き、さらに、供給水に対して直列でも並列に配しても構
わない。直列に配列する場合は、モジュール間に昇圧ポ
ンプを設置してもよい。海水淡水化を行う場合におい
て、逆浸透膜モジュールを用いて直列配置を採用する場
合は、装置コストや効率等の観点から、特に、前段の濃
縮水を後段の供給水とする濃縮水2段の配列が好まし
く、直列に配列したモジュールの間に昇圧ポンプを設置
して供給水を1〜5MPaの範囲内で昇圧して後段のモ
ジュールに供給することが好ましい(特開平8−108
048号公報)。供給水に対して分離膜モジュールを直
列に配列した場合には、分離膜モジュールと供給水が接
触する時間が長いので本発明の方法の効果が大きい。さ
らに、前段の透過水を後段の供給水とする透過水2段の
配列も、前段の透過水の水質が不十分な場合や透過水中
の溶質成分を回収したい場合には好ましい方法である。
この場合、モジュール間にポンプを設置し、透過水を再
び加圧するか、前段で余分に圧力をかけておき背圧をか
けて膜分離することができる。また、後段の膜モジュー
ル部分の殺菌を行うために殺菌剤の添加装置を膜モジュ
ール間に設けてもよい。
Further, the separation membrane module 9 in the fresh water generator may be provided in one stage or in multiple stages, and may be arranged in series or in parallel with the supply water. When arranged in series, a booster pump may be installed between the modules. In the case of seawater desalination, in the case of employing a reverse osmosis membrane module and employing a serial arrangement, from the viewpoint of equipment cost and efficiency, etc., in particular, the two-stage concentrated water in which the concentrated water in the preceding stage is used as the supply water in the subsequent stage. It is preferable to arrange the booster pump between the modules arranged in series to increase the pressure of the supply water within a range of 1 to 5 MPa and supply it to the subsequent module (Japanese Patent Laid-Open No. 8-108).
048). When the separation membrane modules are arranged in series with the supply water, the time of contact between the separation membrane module and the supply water is long, so that the effect of the method of the present invention is large. Further, an arrangement of two stages of permeated water in which the permeated water in the first stage is the supply water in the second stage is also a preferable method when the quality of the permeated water in the first stage is insufficient or when it is desired to recover solute components in the permeated water.
In this case, a pump can be installed between the modules to pressurize the permeated water again, or extra pressure can be applied in the previous stage to apply back pressure to perform membrane separation. Further, a disinfectant addition device may be provided between the membrane modules in order to sterilize the subsequent membrane module portion.

【0026】上記の造水装置においては、供給水のう
ち、膜を透過しなかった部分は濃縮水として膜モジュー
ルから取り出される。この濃縮水は用途に応じて処理し
た後に廃棄したり、さらに他の方法で濃縮することも可
能である。また、濃縮水はその一部又は全てを供給水に
循環することもできる。膜を透過した透過水においても
用途に応じて廃棄したり、そのまま利用したり、あるい
は供給水にその一部または全てを循環することもでき
る。
In the above fresh water generator, a portion of the feed water that has not passed through the membrane is taken out of the membrane module as concentrated water. The concentrated water can be treated and discarded according to the intended use, or can be further concentrated by another method. Also, part or all of the concentrated water can be circulated to the feed water. The permeated water that has passed through the membrane may be discarded or used as it is, or a part or all of the permeated water may be circulated to the supply water.

【0027】逆浸透膜を用いた造水装置の濃縮水は圧力
エネルギーを有しており、運転コストの低減化のために
は、このエネルギーを回収することが好ましい。エネル
ギー回収の方法としては任意の部分の高圧ポンプに取り
付けたエネルギー回収装置で回収することもできるが、
高圧ポンプの前後や、モジュール間に取り付けた専用の
タービンタイプのエネルギー回収ポンプで回収すること
が好ましい。また、造水装置の処理能力は一日当たり水
量で0.5〜100万m3の範囲内とすることができ
る。
The concentrated water of the fresh water generator using the reverse osmosis membrane has pressure energy, and it is preferable to recover this energy in order to reduce operating costs. As a method of energy recovery, it can also be recovered by an energy recovery device attached to a high pressure pump of any part,
It is preferable to use a dedicated turbine type energy recovery pump attached before and after the high-pressure pump or between the modules. Further, the processing capacity of the fresh water generator can be in the range of 0.5 to 1,000,000 m 3 in terms of the amount of water per day.

【0028】また、造水装置の配管は、できるだけ滞留
部の少ない構造とすることが好ましい。さらに、後述す
るように、原水のpHは4以下とすることが好ましいた
め、そのような酸性の水が流れる配管やバルブその他の
部材には、ステンレス鋼や2相ステンレス鋼などの耐酸
性を有する材料を用いることが好ましい。
Further, it is preferable that the piping of the fresh water generator has a structure having as few stagnation portions as possible. Further, as described later, since the pH of raw water is preferably 4 or less, pipes, valves and other members through which such acidic water flows have acid resistance such as stainless steel and duplex stainless steel. It is preferable to use a material.

【0029】さて、本発明において、殺菌剤は、分離膜
に供給する原水に含まれる微生物の生菌数およびAOC
の濃度に基づいて、その添加濃度や添加時間、添加頻度
が制御される。これは、分離膜の殺菌を効率よく、しか
も確実に行うために非常に効果的である。
In the present invention, the bactericide includes the viable cell count of microorganisms contained in the raw water supplied to the separation membrane and the AOC.
, The addition concentration, the addition time, and the addition frequency are controlled. This is very effective for efficiently and surely sterilizing the separation membrane.

【0030】たとえば、塩分濃度が0.1〜4.5重量%
である海水やかん水を原水とした場合、原水中の生菌数
が1.0×103cfu/ml未満(以下、本発明にお
いて用いる生菌数の単位は、原水1ml中に認められる
コロニーの数[cfu/ml:colony form
ing unit)で表す。]で、かつ、AOC濃度が
10μg/l未満であるような、微生物的に比較的きれ
いな原水では、殺菌剤の添加濃度を50〜150mg/
lの範囲内、添加時間を0.5〜1時間の範囲内、添加
頻度を1回/2ヶ月〜1回/6ヶ月の範囲内で選択する
ことが好ましい。また、原水中の生菌数が1.0×10
3〜1.0×105cfu/mlの範囲内で、かつ、AO
C濃度が10〜50μg/lの範囲内であるような原水
の場合は、殺菌剤の添加濃度を150〜200mg/l
の範囲内、添加時間を1〜2時間の範囲内、添加頻度を
1回/週〜1回/2ヶ月の範囲内で選択することが好ま
しく、さらに、原水中の生菌数が1.0×105cfu
/mlを超え、かつ、AOC濃度が50μg/lを超え
るような、微生物が非常に多い原水では、殺菌剤の添加
濃度を200〜250mg/lの範囲内、添加時間を2
〜4時間の範囲内、添加頻度を1回/日〜1回/週の範
囲内で選択することが好ましい。このように、原水に含
まれる生菌数やAOC濃度に基づいて、殺菌剤の添加濃
度、添加時間および添加頻度の3条件を全て制御するこ
とにより、より効率的に分離膜上の微生物の繁殖を抑
え、分離膜の造水量低下を防ぐことができる。
For example, when the salt concentration is 0.1 to 4.5% by weight.
In the case where seawater or brackish water is used as raw water, the viable cell count in the raw water is less than 1.0 × 10 3 cfu / ml (hereinafter, the unit of the viable cell count used in the present invention is the number of colonies found in 1 ml of raw water. Number [cfu / ml: colony form
ing unit). And in microbiologically relatively clean raw water having an AOC concentration of less than 10 μg / l, the concentration of the fungicide added is 50 to 150 mg / l.
It is preferable that the addition time is selected within the range of 1 to 1, 0.5 to 1 hour, and the addition frequency within the range of 1 time / 2 months to 1 time / 6 months. In addition, the number of viable bacteria in raw water is 1.0 × 10
Within the range of 3 to 1.0 × 10 5 cfu / ml and AO
In the case of raw water in which the C concentration is in the range of 10 to 50 μg / l, the concentration of the fungicide to be added is 150 to 200 mg / l.
, The addition time is preferably in the range of 1 to 2 hours, and the addition frequency is preferably in the range of 1 time / week to 1 time / 2 months. × 10 5 cfu
/ Ml and AOC concentration exceeding 50 µg / l in raw water with a large amount of microorganisms, the disinfectant concentration should be within the range of 200 to 250 mg / l and the addition time should be 2 hours.
It is preferable to select the addition frequency within a range of 1 to 4 hours and a frequency of once / day to once / week. As described above, by controlling all three conditions of the addition concentration, addition time and addition frequency of the bactericide based on the number of viable bacteria contained in the raw water and the AOC concentration, the propagation of microorganisms on the separation membrane can be performed more efficiently. And a decrease in the amount of fresh water produced by the separation membrane can be prevented.

【0031】なお、上記においては、制御項目として殺
菌剤の添加濃度、添加時間および添加頻度のいずれをも
制御する例について説明したが、もちろん、そのいずれ
か1つまたは2つを制御するだけでも十分に効果を発揮
することができる。
In the above, an example has been described in which all of the concentration, time and frequency of addition of a bactericide are controlled as control items. However, it is needless to say that controlling only one or two of them is also possible. The effect can be sufficiently exhibited.

【0032】たとえば、1つの条件のみ変更する場合
は、原水に含まれる生菌数やAOC濃度にかかわらず、
殺菌剤の添加時間を1時間、添加頻度を1回/日などと
いったように一定にしておいて、原水中の生菌数が1.
0×103cfu/ml未満で、かつ、AOC濃度が1
0μg/l未満である場合には、添加濃度を50〜15
0mg/lの範囲内とし、生菌数が1.0×103
1.0×105cfu/mlの範囲内で、かつ、AOC
濃度が10〜50μg/lの範囲内である場合には、添
加濃度を150〜200mg/lの範囲内とし、生菌数
が1.0×105cfu/mlを超え、かつ、AOC濃
度が50μg/lを超える場合には、添加濃度を200
〜250mg/lの範囲内として制御することが好まし
い。
For example, when only one condition is changed, regardless of the number of viable bacteria contained in the raw water and the AOC concentration,
The addition time of the fungicide is fixed at 1 hour, the addition frequency is once / day, etc., and the number of viable bacteria in the raw water is 1.
Less than 0 × 10 3 cfu / ml and AOC concentration of 1
When the concentration is less than 0 μg / l, the addition concentration is 50 to 15
0 mg / l, and the viable cell count is 1.0 × 10 3-
Within the range of 1.0 × 10 5 cfu / ml and AOC
When the concentration is in the range of 10 to 50 μg / l, the addition concentration is in the range of 150 to 200 mg / l, the viable cell count exceeds 1.0 × 10 5 cfu / ml, and the AOC concentration is When the concentration exceeds 50 μg / l, the addition concentration is 200
It is preferable to control the amount within the range of 250 mg / l.

【0033】また、たとえば、添加濃度を150mg/
l、添加頻度を1回/日などといったように一定にして
おいて、原水中の生菌数が1.0×103cfu/ml
未満で、かつ、AOC濃度が10μg/l未満の場合に
は、添加時間を0.5〜1時間の範囲内とし、生菌数が
1.0×103〜1.0×105cfu/mlの範囲内
で、かつ、AOC濃度が10〜50μg/lの範囲内に
ある場合には、添加時間を1〜2時間の範囲内とし、生
菌数が1.0×105cfu/mlを超え、かつ、AO
C濃度が50μg/lを超える場合には、添加時間を2
〜4時間の範囲内として制御することも好ましい。
Further, for example, when the addition concentration is 150 mg /
1, the addition frequency is fixed at once / day, etc., and the number of viable bacteria in the raw water is 1.0 × 10 3 cfu / ml.
When the AOC concentration is less than 10 μg / l, the addition time is set within the range of 0.5 to 1 hour, and the number of viable bacteria is 1.0 × 10 3 to 1.0 × 10 5 cfu / l. When the AOC concentration is within the range of 10 to 50 μg / l and the addition time is within the range of 1 to 2 hours, the viable cell count is 1.0 × 10 5 cfu / ml. And AO
If the C concentration exceeds 50 μg / l, the addition time should be 2
It is also preferable to control it within the range of 4 hours.

【0034】さらに、たとえば、添加濃度を150mg
/l、添加時間を1時間などといったように一定にして
おいて、原水中の生菌数が1.0×103cfu/ml
未満で、かつ、AOC濃度が10μg/l未満である場
合には、添加頻度を1回/2ヶ月〜1回/6ヶ月の範囲
内とし、生菌数が1.0×103〜1.0×105cfu
/mlの範囲内で、かつ、AOC濃度が10〜50μg
/lの範囲内にある場合には、添加頻度を1回/週〜1
回/2ヶ月の範囲内とし、生菌数が1.0×105cf
u/mlを超え、かつ、AOC濃度が50μg/lを超
える場合には、添加頻度を1回/日〜1回/週の範囲内
として制御してもよい。
Further, for example, when the addition concentration is 150 mg
/ L, the addition time is fixed at 1 hour, etc., and the number of viable bacteria in the raw water is 1.0 × 10 3 cfu / ml.
When the AOC concentration is less than 10 μg / l, the addition frequency is set within the range of once / two months to one time / 6 months, and the number of viable bacteria is 1.0 × 10 3 -1. 0 × 10 5 cfu
/ Ml and the AOC concentration is 10 to 50 μg
/ L, the addition frequency is once / week to 1
Times / two months, and the number of viable bacteria is 1.0 × 10 5 cf
When the concentration exceeds u / ml and the AOC concentration exceeds 50 μg / l, the addition frequency may be controlled within the range of once / day to once / week.

【0035】また、殺菌剤の添加濃度、添加時間および
添加頻度のいずれか1つの条件を一定にしておいて、残
り2つの条件を制御することもできる。たとえば、殺菌
剤の添加濃度を生菌数やAOC濃度にかかわらず一定条
件にしておいて、添加時間と添加頻度の2条件を原水の
生菌数およびAOC濃度に応じて制御しても良いし、添
加時間を一定条件にしておいて、添加濃度と添加頻度の
2条件を制御してもかまわないし、また、添加頻度を一
定条件にしておいて、添加濃度と添加時間の2条件を制
御しても良い。
It is also possible to keep one of the conditions of the concentration, time and frequency of addition of the germicide constant and control the remaining two conditions. For example, the addition concentration of the fungicide may be kept constant regardless of the number of viable bacteria and the AOC concentration, and the two conditions of the addition time and the addition frequency may be controlled according to the number of viable bacteria in the raw water and the AOC concentration. The addition time may be kept constant, and the two conditions of the addition concentration and the addition frequency may be controlled. Alternatively, the addition frequency may be kept constant, and the two conditions of the addition concentration and the addition time may be controlled. May be.

【0036】なお、原水中の生菌数とAOC濃度の水準
分けは、必ずしも上述したような3つの水準に分類する
必要はなく、たとえば生菌数が1.0×104cfu/
ml未満で、かつ、AOC濃度が30μg/l未満の場
合と、生菌数が1.0×10 4cfu/ml以上で、か
つAOC濃度が30μg/l以上の場合、といった2つ
の水準にしても良いし、さらに、生菌数が1.0×10
3cfu/ml未満で、かつ、AOC濃度が10μg/
l未満の場合、生菌数が1.0×103〜1.0×104
cfu/mlに範囲内で、かつ、AOC濃度が10〜3
0μg/lの範囲内にある場合、生菌数が1.0×10
4〜1.0×105cfu/mlの範囲内で、かつ、AO
C濃度が30〜50μg/lの範囲内にある場合、生菌
数が1.0×105cfu/mlを超え、かつ、AOC
濃度が50μg/lを超える場合の様に4つの水準にし
ても良い。また、さらに多くの水準に分類してもかまわ
ないが、むやみに水準数を多くしても殺菌効果に大きな
差が現れることはあまり期待できないので、分類数が2
〜5の範囲内で生菌数とAOC濃度の水準を分類するの
が好ましい。
The number of viable bacteria in raw water and the level of AOC concentration
Classification is always classified into the three levels as described above.
It is not necessary, for example, if the number of viable bacteria is 1.0 × 10Fourcfu /
ml and the AOC concentration is less than 30 μg / l
When the number of viable bacteria is 1.0 × 10 Fourmore than cfu / ml
When the AOC concentration is 30 μg / l or more
And the number of viable bacteria is 1.0 × 10
Threeless than cfu / ml and an AOC concentration of 10 μg /
l, the viable cell count is 1.0 × 10Three~ 1.0 × 10Four
cfu / ml and AOC concentration of 10-3
When it is within the range of 0 μg / l, the viable cell count is 1.0 × 10
Four~ 1.0 × 10Fivewithin the range of cfu / ml and AO
When the C concentration is in the range of 30 to 50 μg / l,
The number is 1.0 × 10FiveExceeds cfu / ml and AOC
Four levels, such as when the concentration exceeds 50 μg / l
May be. In addition, it can be classified into more levels.
No, but even if the number of levels is increased unnecessarily, the sterilization effect is large.
Since it is not expected that a difference appears, the number of classifications is 2
Classify the number of viable bacteria and the level of AOC concentration within the range of ~ 5
Is preferred.

【0037】このように、原水中の生菌数とAOC濃度
に基づいて殺菌条件を変更することにより、膜の殺菌を
確実かつ無駄なく行うことが可能となる。
As described above, by changing the sterilization conditions based on the number of viable bacteria in the raw water and the AOC concentration, it is possible to sterilize the membrane reliably and without waste.

【0038】殺菌条件を原水の性状によらず常に一定に
すると、生菌数やAOCが少ないときは、分離膜の殺菌
は確実に行えるが、本来不必要な殺菌を繰り返すことと
なり、無駄が多くなる。また、生菌数やAOCが多いと
きは、分離膜の殺菌は確実に行えず、膜面に微生物が付
着したり堆積したりして、造水量低下などの膜性能が低
下する傾向にある。
If the sterilization conditions are always constant irrespective of the nature of the raw water, the sterilization of the separation membrane can be performed reliably when the number of viable bacteria or AOC is small, but unnecessary sterilization is repeated, which is wasteful. Become. In addition, when the number of viable bacteria or AOC is large, sterilization of the separation membrane cannot be carried out reliably, and microorganisms tend to adhere or accumulate on the membrane surface, resulting in a decrease in membrane performance such as a decrease in water production.

【0039】また、原水の性状を微生物の生菌数だけで
判断すると、たとえば生菌数が1.0×103cfu/
ml程度でも、AOCが少ない場合と多い場合とでは、
微生物の増殖度合いが異なるため、最適な殺菌条件が選
定できにくくなり、一方、AOC濃度だけで判断して
も、当然のことながら生菌数が把握できなければ、最適
な殺菌条件を選定することは困難となる。
When the properties of the raw water are judged only by the viable cell count of the microorganism, for example, the viable cell count is 1.0 × 10 3 cfu /
Even when the amount of AOC is small or large,
Because the degree of growth of microorganisms is different, it is difficult to select the optimum sterilization conditions. On the other hand, if the number of viable bacteria cannot be grasped naturally, even if judging only by the AOC concentration, the optimum sterilization conditions should be selected. Will be difficult.

【0040】本発明では、殺菌剤の添加は間欠的に行う
ことが好ましい。殺菌剤の添加を連続的に行うことは、
薬剤を多量に消費し無駄が多くなるのみならず、微生物
学的にみても、常に同じ環境を作り出すこととなり、殺
菌剤に耐性のある微生物の異常増殖を招きやすくなる。
殺菌剤を間欠的に添加することによって、薬剤消費の無
駄をなくすことができ、かつ、微生物学的にも、環境を
変化させることになるので、耐性菌などの特定の微生物
の異常増殖を防ぐことができる。
In the present invention, the addition of the bactericide is preferably performed intermittently. Continuous addition of fungicide
Not only will a large amount of the drug be consumed and waste will increase, but also microbiologically, the same environment will always be created, and abnormal growth of microorganisms that are resistant to bactericides is likely to occur.
By intermittently adding fungicides, waste of drug consumption can be eliminated, and microbiologically, the environment will be changed, thus preventing abnormal growth of specific microorganisms such as resistant bacteria. be able to.

【0041】なお、本発明において、生菌数およびAO
C濃度とは、それぞれ、以下に示す方法により測定され
た値をいう。
In the present invention, the viable cell count and AO
The C concentration refers to a value measured by the method described below.

【0042】生菌数: pH7.0に調整した海洋性細
菌用寒天培地に海水サンプルを100μl塗沫し、20
℃で3日間培養した後、培地に形成されたコロニーの数
を計数し、その数を10倍した値を生菌数(単位:cf
u/ml)とする。
Viable cell count: 100 μl of a seawater sample was spread on an agar medium for marine bacteria adjusted to pH 7.0,
After culturing at 3 ° C. for 3 days, the number of colonies formed in the medium was counted, and the value obtained by multiplying the number by 10 was counted as the viable cell count (unit: cf).
u / ml).

【0043】AOC濃度:海水サンプルに硫酸を濃度が
300mg/lとなるように添加し、あらかじめ滅菌し
た平底試験管に硫酸を添加した海水サンプルを入れ、1
N水酸化ナトリウムでpH8付近に中和する。
AOC concentration: A sulfuric acid was added to a seawater sample so as to have a concentration of 300 mg / l, and a seawater sample to which sulfuric acid had been added was added to a previously sterilized flat-bottomed test tube.
Neutralize to around pH 8 with N sodium hydroxide.

【0044】さらに、硝酸ナトリウムが2.8mg/l
(窒素原子として0.5mg/l)、リン酸二カリウム
が0.3mg/l(リン元素として0.05mg/
l)、TES(Trace Element Solu
tion:溶質としてエチレンジアミン四酢酸四ナトリ
ウム、硫酸鉄、ホウ酸、塩化コバルト、塩化亜鉛、塩化
マンガン、モリブデン酸ナトリウム、塩化ニッケル、塩
化銅、亜セレン酸を含む)を溶質濃度として0.032
mg/l、酢酸ナトリウムを50μg/l、100μg
/l、150μg/lの3水準となるように海水サンプ
ルに添加し、さらに同時に採取した硫酸無添加の海水を
濃度が1%となるようこれに添加して、ポリプロピレン
製キャップをした後、サンプル採取時の海水温度にあわ
せたインキュベーター内で暗所静置培養する。
Further, 2.8 mg / l of sodium nitrate
(0.5 mg / l as nitrogen atom), 0.3 mg / l dipotassium phosphate (0.05 mg / l as phosphorus element)
l), TES (Trace Element Solu)
Tion: Tetrasodium ethylenediaminetetraacetate, iron sulfate, boric acid, cobalt chloride, zinc chloride, manganese chloride, sodium molybdate, nickel chloride, copper chloride, selenious acid as a solute) is 0.032 as a solute concentration.
mg / l, sodium acetate 50 μg / l, 100 μg
/ L and 150 μg / l to seawater sample, and simultaneously added seawater without sulfuric acid added thereto so as to have a concentration of 1%, and capped with polypropylene. Incubate in the dark in an incubator adjusted to the seawater temperature at the time of collection.

【0045】培養開始から24時間ごとに、暗所静置培
養した海水サンプルからサンプリングし、滅菌した2.
5%食塩水で10倍、100倍、1000倍およびから
10000倍の4水準に希釈して、海洋性細菌用寒天培
地に各稀釈度ごとに3枚ずつ塗抹し、海水サンプルと同
じ温度で培養する。
[0045] Every 24 hours from the start of the culture, a sample was taken from a seawater sample cultured statically in the dark and sterilized.
Dilute to 4 levels of 10 times, 100 times, 1000 times and 10000 times with 5% saline, spread 3 plates at each dilution on an agar medium for marine bacteria, and culture at the same temperature as the seawater sample. I do.

【0046】上記の培地サンプルについて、各サンプリ
ング時間ごとに、培養後のコロニー数が一枚あたり30
から300個の範囲に入っている稀釈度を選定し、コロ
ニー数平均を計測して、この値からからそれぞれの最大
増殖数を求め、酢酸ナトリウム濃度と最大増殖数の相関
を求めて回帰分析し、生菌数とAOC濃度に関して以下
の相関式を求め、この式から供給海水に含まれるAOC
濃度を計算する。
With respect to the above-mentioned medium sample, the number of colonies after culturing was 30
The dilutions within the range of 300 were selected, the average number of colonies was measured, and the maximum growth number of each colony was calculated from this value, and the correlation between the sodium acetate concentration and the maximum growth number was calculated and regression analysis was performed. , The following equation is obtained with respect to the viable cell count and the AOC concentration, and the AOC contained in the supplied seawater is calculated from this equation.
Calculate the concentration.

【0047】(AOC濃度:μg/l)=[(生菌数:
cfu/ml)−A]/B (但し、上式の係数A及びBの値は、増殖する菌種によ
って異なるため、異なる場所の海水では必ずしも同じ値
になるとは限らない。)また、本発明では、上述のよう
な生菌数を基準として用いる代わりに、原水に含まれる
菌体量を用いることもできる。
(AOC concentration: μg / l) = [(viable cell count:
cfu / ml) -A] / B (However, since the values of the coefficients A and B in the above equation differ depending on the type of growing bacteria, they do not always have the same value in seawater at different locations.) Then, instead of using the viable cell count as a reference as described above, the amount of cells contained in the raw water can also be used.

【0048】菌体量の測定方法としては、ATP測定法
を用いるのが正確、簡便、かつ迅速に測定できるため好
ましい。ATP測定法は、細菌を含むサンプルに抽出試
薬として酸や界面活性剤を加えて、細胞壁を溶解し、A
TP(アデノシン−5’−三リン酸)を抽出し、さらに
発光試薬としてルシフェラーゼ等の酵素を添加して発光
させ、その発光量でATPの量を定量することにより菌
体量を測定する方法で、これにより求めた菌体量は、通
常、サンプル1リットル当りに含まれるATPの量で示
され、通常、単位は(ng−ATP/l)となる。
As a method for measuring the amount of bacterial cells, it is preferable to use an ATP measurement method because accurate, simple and rapid measurement can be performed. The ATP assay involves adding an acid or a surfactant as an extraction reagent to a sample containing bacteria, dissolving the cell wall,
A method of extracting TP (adenosine-5'-triphosphate), further adding an enzyme such as luciferase as a luminescent reagent to cause luminescence, and quantifying the amount of ATP by the amount of luminescence to measure the amount of bacterial cells. The amount of cells thus determined is usually indicated by the amount of ATP contained per liter of sample, and the unit is usually (ng-ATP / l).

【0049】さらに、本発明においては同化可能有機炭
素濃度の代わりに、原水のバイオフィルム形成速度[以
下、BFR(Biofilm Formation Rate)と称す]を用い
てもよい。BFRは単位面積、単位時間当りに担体表面
上に形成される微生物膜の付着量を示すものである。
Further, in the present invention, a biofilm formation rate of raw water (hereinafter referred to as BFR (Biofilm Formation Rate)) may be used instead of the assimilable organic carbon concentration. BFR indicates the amount of microbial membrane adhered to the carrier surface per unit area and per unit time.

【0050】BFRの測定方法としては、例えば、原水
中にガラスなどの平滑平板を浸漬し、一定時間後に取り
出して、ガラス板表面に付着した微生物を掻き取り、そ
の付着量を測定する。微生物付着量の測定は、上述のA
TP測定法などを用いるのが正確であるので好ましい。
ATP測定法を用いた場合、BFRの単位は1日当り、
1cm2当りに付着する菌体量で示され、通常、単位は
(pg−ATP/cm2/d)となる。
As a method of measuring the BFR, for example, a flat plate such as glass is immersed in raw water, taken out after a certain period of time, the microorganisms adhering to the surface of the glass plate are scraped, and the adhering amount is measured. The measurement of the amount of microorganisms attached is performed by the above-mentioned A
It is preferable to use a TP measurement method or the like because it is accurate.
When the ATP measurement method is used, the unit of BFR is per day,
It is indicated by the amount of cells adhering per 1 cm 2 , and the unit is usually (pg-ATP / cm 2 / d).

【0051】本発明においては、前述のように原水中の
生菌数とAOC濃度に基づいて殺菌を制御する代わり
に、上述の菌体量とAOC濃度の組合せに基づいて殺菌
を制御しても良いし、また生菌数とBFRの組合せに基
づいて殺菌を制御しても良いし、さらに菌体量とBFR
の組合せに基づいて殺菌を制御しても良い。その組合せ
は、生菌数と菌体量のどちらか一方と、AOC濃度とB
FRのどちらか一方との組合せから選択すればよい。
In the present invention, instead of controlling the disinfection based on the number of viable bacteria in the raw water and the AOC concentration as described above, the disinfection may be controlled based on the combination of the amount of the cells and the AOC concentration. Good, and the sterilization may be controlled based on the combination of the viable cell count and the BFR.
Sterilization may be controlled based on a combination of the above. The combination is either the viable cell count or the bacterial mass, AOC concentration and B
What is necessary is just to select from the combination with either one of FR.

【0052】たとえば、菌体量とAOC濃度の組合せに
基づいて殺菌を制御するならば、前述の生菌数とAOC
濃度の場合と同様、塩分濃度が0.1〜4.5重量%であ
る海水やかん水を原水とした場合、原水中の菌体量が
1.0ng−ATP/l未満で、かつ、AOC濃度が1
0μg/l未満であるような、微生物的に比較的きれい
な原水では、殺菌剤の添加濃度を50〜150mg/l
の範囲内、添加時間を0.5〜1時間の範囲内、添加頻
度を1回/2ヶ月〜1回/6ヶ月の範囲内で選択するこ
とが好ましい。また、原水中の生菌数が1〜100ng
−ATP/lの範囲内で、かつ、AOC濃度が10〜5
0μg/lの範囲内であるような原水の場合は、殺菌剤
の添加濃度を150〜200mg/lの範囲内、添加時
間を1〜2時間の範囲内、添加頻度を1回/週〜1回/
2ヶ月の範囲内で選択することが好ましく、さらに、原
水中の菌体量が50ng−ATP/lを超え、かつ、A
OC濃度が50μg/lを超えるような、微生物が非常
に多い原水では、殺菌剤の添加濃度を200〜250m
g/lの範囲内、添加時間を2〜4時間の範囲内、添加
頻度を1回/日〜1回/週の範囲内で選択することが好
ましい。
For example, if the sterilization is controlled based on the combination of the amount of cells and the AOC concentration, the above-mentioned viable cell count and AOC
As in the case of the concentration, when seawater or brackish water having a salt concentration of 0.1 to 4.5% by weight is used as raw water, the amount of cells in the raw water is less than 1.0 ng-ATP / l and the AOC concentration Is 1
In microbiologically relatively clean raw water, such as less than 0 μg / l, the concentration of fungicide added is 50-150 mg / l.
, The addition time is preferably selected within the range of 0.5 to 1 hour, and the addition frequency is preferably selected within the range of 1 time / 2 months to 1 time / 6 months. The number of viable bacteria in raw water is 1-100ng
-Within the range of ATP / l and an AOC concentration of 10 to 5
In the case of raw water in the range of 0 μg / l, the concentration of the fungicide is in the range of 150 to 200 mg / l, the addition time is in the range of 1 to 2 hours, and the addition frequency is 1 time / week to 1 time. Times /
It is preferable to select within a range of 2 months, and furthermore, the amount of cells in raw water exceeds 50 ng-ATP / l, and A
In raw water having a very large number of microorganisms such as an OC concentration exceeding 50 μg / l, the concentration of the fungicide to be added is 200 to 250 m
It is preferable to select the addition time within the range of g / l, the addition time within the range of 2 to 4 hours, and the addition frequency within the range of once / day to once / week.

【0053】また、生菌数とBFRの組合せに基づいて
殺菌を制御するならば、同様に原水中の生菌数が1.0
×103cfu/ml未満で、かつ、BFRが10pg
−ATP/cm2/d未満であるような、微生物的に比
較的きれいな原水では、殺菌剤の添加濃度を50〜15
0mg/lの範囲内、添加時間を0.5〜1時間の範囲
内、添加頻度を1回/2ヶ月〜1回/6ヶ月の範囲内で
選択することが好ましい。また、原水中の生菌数が1.
0×103〜1.0×105cfu/mlの範囲内で、
かつ、BFRが10〜50pg−ATP/cm2/dの
範囲内であるような原水の場合は、殺菌剤の添加濃度を
150〜200mg/lの範囲内、添加時間を1〜2時
間の範囲内、添加頻度を1回/週〜1回/2ヶ月の範囲
内で選択することが好ましく、さらに、原水中の生菌数
が1.0×105cfu/mlを超え、かつ、BFRが
50pg−ATP/cm2/dを超えるような、微生物
が非常に多い原水では、殺菌剤の添加濃度を200〜2
50mg/lの範囲内、添加時間を2〜4時間の範囲
内、添加頻度を1回/日〜1回/週の範囲内で選択する
ことが好ましい。
Further, if the sterilization is controlled based on the combination of the viable cell count and the BFR, the viable cell count in the raw water is also reduced to 1.0.
× less than 103 cfu / ml and BFR of 10 pg
-In microbiologically relatively clean raw water, such as less than ATP / cm < 2 > / d, the concentration of the fungicide added should be between 50 and 15
It is preferable that the addition time is selected in the range of 0 mg / l, the addition time is in the range of 0.5 to 1 hour, and the addition frequency is in the range of 1 time / 2 months to 1 time / 6 months. In addition, the number of viable bacteria in raw water is 1.
Within the range of 0 × 103 to 1.0 × 105 cfu / ml,
In the case of raw water having a BFR in the range of 10 to 50 pg-ATP / cm 2 / d, the concentration of the disinfectant is in the range of 150 to 200 mg / l, and the addition time is in the range of 1 to 2 hours. Of these, the addition frequency is preferably selected within the range of once / week to once / two months. Furthermore, the number of viable bacteria in raw water exceeds 1.0 × 10 5 cfu / ml, and the BFR is 50 pg-. In raw water having a large number of microorganisms such as exceeding ATP / cm 2 / d, the concentration of the fungicide added is 200 to 2
It is preferable to select the addition time within the range of 50 mg / l, the addition time within the range of 2 to 4 hours, and the addition frequency within the range of once / day to once / week.

【0054】さらに菌体量とBFRの組合せに基づいて
殺菌を制御するならば、原水中の菌体量が1.0ng−
ATP/l未満で、かつ、BFRが10pg−ATP/
cm 2/d未満であるような、微生物的に比較的きれい
な原水では、殺菌剤の添加濃度を50〜150mg/l
の範囲内、添加時間を0.5〜1時間の範囲内、添加頻
度を1回/2ヶ月〜1回/6ヶ月の範囲内で選択するこ
とが好ましい。また、原水中の菌体量が1.0〜100
ng−ATP/lの範囲内で、かつ、BFRが10〜5
0pg−ATP/cm2/dの範囲内であるような原水
の場合は、殺菌剤の添加濃度を150〜200mg/l
の範囲内、添加時間を1〜2時間の範囲内、添加頻度を
1回/週〜1回/2ヶ月の範囲内で選択することが好ま
しく、さらに、原水中の菌体量が100ng−ATP/
lを超え、かつ、BFRが50pg−ATP/cm2
dを超えるような、微生物が非常に多い原水では、殺菌
剤の添加濃度を200〜250mg/lの範囲内、添加
時間を2〜4時間の範囲内、添加頻度を1回/日〜1回
/週の範囲内で選択することが好ましい。本発明におい
ては、殺菌剤添加時の原水のpHを4以下とすること
が、分離膜に対して高い殺菌効果を発揮できるため好ま
しい。特に、海水を供給水として用いる場合に、この効
果は顕著である。微生物の死滅するpHは個々の微生物
に対して異なり、たとえば、大腸菌の場合、生育の下限
はpH4.6であるが、死滅はpH3.4以下でおこ
る。一方、海水中にも多種多様の微生物が存在し、それ
ぞれ死滅するpHが異なる。しかし、本発明において
は、多種の生菌を含む海水をpH4以下に一定時間保持
すれば、50〜100%を死滅させることが可能であ
る。またpHを3.9以下としたり、さらにpHを3.
7以下とすることも、海水由来の菌を死滅させるという
観点で好ましい。このようにpHを制御することにより
高い殺菌効果が得られるばかりでなく、配管などに堆積
したスケールをも除去できるという効果も期待できる。
Further, based on the combination of the amount of cells and BFR
If sterilization is controlled, the amount of cells in raw water is 1.0 ng-
Less than ATP / l and BFR of 10 pg-ATP /
cm TwoMicrobiologically relatively clean, less than / d
In raw water, the concentration of the fungicide added is 50 to 150 mg / l.
, The addition time is in the range of 0.5 to 1 hour,
The degree can be selected from once / two months to once / six months.
Is preferred. In addition, the amount of cells in raw water is 1.0 to 100.
ng-ATP / l and BFR of 10-5
0pg-ATP / cmTwoRaw water that is in the range of / d
In the case of, the addition concentration of the bactericide is 150-200 mg / l.
Within the range of 1 to 2 hours, the frequency of addition
It is preferable to select within the range of once / week to once / two months.
And the amount of cells in raw water is 100 ng-ATP /
1 and the BFR is 50 pg-ATP / cmTwo/
In raw water that is very rich in microorganisms, such as exceeding d,
Add the concentration of the agent within the range of 200-250mg / l
The time is in the range of 2 to 4 hours, and the addition frequency is once / day to once
/ Week is preferred. In the present invention
The pH of raw water at the time of disinfectant addition should be 4 or less
However, it is preferable because it can exert a high sterilizing effect on the separation membrane.
New This is especially true when using seawater as feedwater.
The fruits are remarkable. The pH at which microorganisms die is determined by the individual microorganism
For example, in the case of E. coli,
Is pH 4.6, but kills at pH 3.4 or less.
You. On the other hand, a wide variety of microorganisms also exist in seawater,
The pH at which they die is different. However, in the present invention
Maintains seawater containing various live bacteria at pH 4 or lower for a certain period of time
Then 50 to 100% can be killed.
You. Further, the pH is set to 3.9 or less, and the pH is further set to 3.
It is also said that killing bacteria derived from seawater will be less than 7
It is preferable from a viewpoint. By controlling the pH in this way,
Not only high sterilization effect is obtained, but also accumulated on pipes
The effect of removing even scales can be expected.

【0055】殺菌剤としては、たとえば、塩素ガスや次
亜塩素酸ナトリウム、硫酸、塩酸、硝酸、クエン酸など
を用いることができる。中でも、殺菌剤として酸を用い
れば、上記したpHの制御も同時に行いやすくなり好ま
しい。酸としては、有機酸、無機酸いずれを用いても差
し支えないが、経済的な面を考えると、硫酸を用いるこ
とが好ましい。またpHを4以下に制御するために必要
な硫酸の添加量は、供給液の塩濃度に比例し、たとえ
ば、塩濃度が1重量%程度の原水では硫酸を50mg/
lとなるように添加することでpH3.2まで低下する
が、海水(塩濃度約3.5重量%)では120mg/l
以上添加することが好ましい。最大添加量は、経済性や
配管等設備への影響を考えると、400mg/l、より
好ましくは300mg/lである。なお、海水への硫酸
添加濃度を150mg/l、200mg/lとすると、
pHの範囲は、それぞれ3.2〜3.0、2.8〜2.
9となり、添加濃度が高くなるに従ってpH変動は減少
する。
As a disinfectant, for example, chlorine gas, sodium hypochlorite, sulfuric acid, hydrochloric acid, nitric acid, citric acid and the like can be used. Above all, it is preferable to use an acid as a bactericide, since the above-mentioned pH control is easily performed at the same time. As the acid, either an organic acid or an inorganic acid may be used, but from the viewpoint of economy, it is preferable to use sulfuric acid. The addition amount of sulfuric acid necessary to control the pH to 4 or less is proportional to the salt concentration of the feed solution. For example, in raw water having a salt concentration of about 1% by weight, 50 mg /
1 to make the pH fall to 3.2, but 120 mg / l in seawater (salt concentration of about 3.5% by weight).
It is preferable to add the above. The maximum addition amount is 400 mg / l, more preferably 300 mg / l, in consideration of the economy and the effect on facilities such as piping. In addition, assuming that the concentration of sulfuric acid added to seawater is 150 mg / l and 200 mg / l,
The pH ranges are 3.2-3.0, 2.8-2.2, respectively.
9, and the pH fluctuation decreases as the added concentration increases.

【0056】さて、従来においても、膜を用いた分離装
置においては種々の殺菌手法が取り入れられていたわけ
であるが、それは、塩素等の酸化剤を連続的に添加する
ものであった。この方法によれば、供給水は耐性菌が出
現しない限りほぼ完全に殺菌できるが、酸化剤が通常は
逆浸透膜の化学的劣化をもたらすため、膜分離装置の手
前で亜硫酸水素ナトリウムを代表とする還元剤を添加す
る。しかし、還元剤により過剰の酸化剤を除去した後の
供給水は微生物が容易に繁殖できる状態となる。しか
も、殺菌剤添加前の原海水のように種々雑多な微生物で
はなく、かなり選別された微生物群がそこに存在し、そ
の中には耐酸性菌も多く含まれることになる。また還元
剤添加が不充分な場合は、酸化剤が完全には消去できず
に膜の劣化をもたらす場合があるが、一方、過剰添加す
ることによってある種の細菌が繁殖することもある。従
って、本発明の膜分離装置の供給原水に、硫酸などの酸
を添加して殺菌方法を実施する際には、酸化剤を添加し
ないことが好ましいが、この場合は逆に前の処理工程で
生物が繁殖することになる。
By the way, in the past, various sterilization techniques have been adopted in the separation apparatus using the membrane, but the oxidizing agent such as chlorine is continuously added. According to this method, the feed water can be almost completely sterilized unless resistant bacteria appear, but since the oxidizing agent usually causes chemical degradation of the reverse osmosis membrane, sodium hydrogen sulfite is represented before the membrane separation device. Add a reducing agent. However, the supply water after removing the excess oxidizing agent with the reducing agent is in a state where microorganisms can easily propagate. Moreover, rather than various microorganisms as in the raw seawater before the addition of the fungicide, a considerably selected group of microorganisms exists there, and many acid-resistant bacteria are also contained therein. If the addition of the reducing agent is insufficient, the oxidizing agent may not be completely eliminated and may cause the deterioration of the film. On the other hand, the excessive addition may cause the propagation of certain bacteria. Therefore, when the sterilizing method is performed by adding an acid such as sulfuric acid to the raw water supplied to the membrane separation device of the present invention, it is preferable not to add an oxidizing agent. Creatures will breed.

【0057】この問題に対しては、間欠的に、前処理工
程において酸化剤、および膜分離装置への供給前に還元
剤を添加することによって、非注入時に前処理工程の配
管やろ過水槽等に付着、堆積した生物を殺菌することで
解決される。この方法によれば、同時に膜の劣化を防止
するためにも有効である。
To cope with this problem, an oxidizing agent is added intermittently in the pretreatment step, and a reducing agent is added before the supply to the membrane separation device, so that the pipe of the pretreatment step, the filtration water tank, etc. The problem is solved by disinfecting organisms that have adhered to and deposited on the surface. According to this method, it is also effective to prevent the deterioration of the film at the same time.

【0058】このときの酸化剤と還元剤の添加濃度や添
加時間、あるいは添加頻度は、膜分離装置の殺菌の場合
と同様に、原水中の生菌数とAOC濃度、菌体量とAO
C濃度、生菌数とBFR、あるいは菌体量とBFRの組
合せから求められる値に応じて適宜変えるのが良い。た
とえば生菌数とAOC濃度の組合せの場合では、原水中
の生菌数が1.0×103cfu/ml未満で、かつ、
AOC濃度が10μg/l未満であるような、微生物的
に比較的きれいな原水では、酸化剤の添加濃度は0.1
〜1.0mg/lの範囲内、添加時間は0.1〜1.0
時間の範囲内、添加頻度は1年〜1月に1回の範囲内と
することが好ましく、逆に、原水中の生菌数が1.0×
105cfu/ml以上で、かつ、AOC濃度が50μ
g/l以上であるような微生物が非常に多い原水では、
たとえば、殺菌剤の添加濃度は1.0〜5.0mg/lの
範囲内、添加時間は1.0〜5時間の範囲内、添加頻度
は1週間〜1日に1回の範囲内といった条件で殺菌すれ
ばよい。その他の組合せに基づく場合でも上記と同様な
方法で殺菌を行うのが良い。また、還元剤の添加につい
ては、いずれも場合でも、酸化剤の添加時間、頻度に合
わせて、完全に酸化剤を消去するのに必要な相当量を添
加することが好ましい。
At this time, the addition concentration, the addition time, or the addition frequency of the oxidizing agent and the reducing agent were determined in the same manner as in the case of sterilization of the membrane separation device, such as the number of viable bacteria in the raw water and the AOC concentration, the amount of the bacterial cells and the AO
It is preferable to appropriately change the C concentration, the number of viable cells and BFR, or the value obtained from the combination of the amount of cells and BFR. For example, in the case of a combination of the viable cell count and the AOC concentration, the viable cell count in the raw water is less than 1.0 × 10 3 cfu / ml, and
In microbiologically relatively clean raw water, where the AOC concentration is less than 10 μg / l, the concentration of oxidizing agent added is 0.1.
~ 1.0 mg / l, addition time is 0.1 ~ 1.0
Within the range of time, the addition frequency is preferably within a range of once a year to once a month. Conversely, the number of viable bacteria in raw water is 1.0 ×
10 5 cfu / ml or more, and AOC concentration is 50μ
g / l or more of raw water that is very rich in microorganisms,
For example, the addition concentration of the fungicide is in the range of 1.0 to 5.0 mg / l, the addition time is in the range of 1.0 to 5 hours, and the addition frequency is in the range of once a week to once a day. Should be sterilized. Even in the case of other combinations, it is preferable to perform sterilization by the same method as described above. Regarding the addition of the reducing agent, in any case, it is preferable to add a considerable amount necessary to completely eliminate the oxidizing agent in accordance with the time and frequency of adding the oxidizing agent.

【0059】さらに、前処理における殺菌とその後工程
である膜分離装置の殺菌は、その時期を合わせて、すな
わち同期させて行うのが殺菌効率が高くなるため好まし
い。このような、前処理工程における間欠的な酸化剤
(塩素殺菌剤)添加方法は、連続的な酸化剤の添加に対
して、薬品代など処理費の著しい低減効果をもたらす
が、これは本発明の造水方法において顕著であり、従来
行われていた高濃度の亜硫酸水素ナトリウム添加による
殺菌方法では、実施が困難であった。
Further, it is preferable that the sterilization in the pretreatment and the sterilization of the membrane separation device, which is the subsequent step, be performed at the same time, that is, in synchronization with each other, since the sterilization efficiency is increased. Such an intermittent oxidizing agent (chlorine disinfectant) adding method in the pretreatment step has a remarkable effect of reducing the processing cost such as the cost of chemicals with respect to the continuous addition of the oxidizing agent. This is remarkable in the fresh water producing method described above, and it has been difficult to carry out the conventional sterilizing method by adding a high concentration of sodium bisulfite.

【0060】本発明の造水方法は、精密ろ過膜を用いた
液体と固形分の分離や濃縮、限外ろ過膜を用いた濁質成
分の分離や濃縮を行うにあたっても好適に適用できるも
のであるが、特に、逆浸透膜を用いて溶解成分の分離や
濃縮を行うのに適している。中でも、海水やかん水の淡
水化、工業用水の製造、純水や超純水の製造、医薬用水
の製造、果汁などの濃縮、水道原水の除濁、水道におけ
る高度処理などに効果が大である。また、飲料水製造の
場合には、本発明によれば過剰な遊離塩素を発生させに
くいので、トリハロメタン等の発生を低く抑えることが
できる。本発明の方法は、特に、海水中に含まれる菌や
微生物の殺菌に有効な方法である。
The method for producing fresh water of the present invention can be suitably applied to separation and concentration of liquids and solids using a microfiltration membrane, and separation and concentration of turbid components using an ultrafiltration membrane. However, it is particularly suitable for separating or concentrating dissolved components using a reverse osmosis membrane. Above all, it is highly effective in desalination of seawater and brackish water, production of industrial water, production of pure water or ultrapure water, production of medicinal water, concentration of fruit juice, turbidity of tap water, advanced treatment in tap water, etc. . In addition, in the case of producing drinking water, according to the present invention, it is difficult to generate excessive free chlorine, so that generation of trihalomethane and the like can be suppressed low. The method of the present invention is a particularly effective method for killing bacteria and microorganisms contained in seawater.

【0061】[0061]

【実施例】(実施例1)愛媛県松前港の表層海水を供給
水として用い、凝集砂ろ過とポリッシングろ過を行う前
処理装置、および直径4インチの架橋芳香族ポリアミド
系逆浸透膜モジュールを有する膜分離装置からなるライ
ンを3系列有する図2に示すような海水淡水化装置を運
転し、海水を淡水化する逆浸透分離を行った。図2にお
いては、同じ装置については図1と同じ図番号を付し
た。各装置の作用等については図1で示したのと同様で
ある。また、供給海水中の生菌数およびAOC濃度の測
定は以下の通り行った。
(Example 1) A pretreatment device for performing coagulated sand filtration and polishing filtration using surface seawater of Matsumae Port, Ehime Prefecture as a feedwater, and a cross-linked aromatic polyamide-based reverse osmosis membrane module with a diameter of 4 inches are provided. A seawater desalination apparatus as shown in FIG. 2 having three lines of membrane separation devices was operated to perform reverse osmosis separation for desalinating seawater. In FIG. 2, the same devices are denoted by the same reference numerals as those in FIG. The operation of each device is the same as that shown in FIG. The measurement of the viable cell count and the AOC concentration in the supplied seawater was performed as follows.

【0062】生菌数:pH7に調整した海洋性細菌用寒
天培地に供給海水サンプルを100μl塗沫し、20℃
で3日間培養してコロニーを計数し、生菌数を測定し
た。
Viable cell count: 100 μl of the supplied seawater sample was spread on an agar medium for marine bacteria adjusted to pH 7, and the temperature was adjusted to 20 ° C.
For 3 days, the number of colonies was counted, and the number of viable cells was measured.

【0063】AOC濃度:供給海水サンプルに硫酸を3
00mg/lとなるように添加し、あらかじめ滅菌した
平底試験管に、上記の硫酸を添加した海水サンプルを入
れ、1N水酸化ナトリウムでpH8付近に中和した。さ
らに、硝酸ナトリウムが2.8mg/l(窒素原子とし
て0.5mg/l)、リン酸二カリウムが0.3mg/
l(リン元素として0.05mg/l)、TES(Tr
ace Element Solution:溶質とし
てエチレンジアミン四酢酸四ナトリウム、硫酸鉄、ホウ
酸、塩化コバルト、塩化亜鉛、塩化マンガン、モリブデ
ン酸ナトリウム、塩化ニッケル、塩化銅、亜セレン酸を
含む)を溶質濃度として0.032mg/l、酢酸ナト
リウムを50μg/l、100μg/l、150μg/
lの3水準となるように添加し、さらに同時に採取した
硫酸無添加の海水を1%となるよう添加して、ポリプロ
ピレン製キャップをした後、サンプル採取時の海水温度
にあわせたインキュベーター内で暗所静置培養し、培養
開始から24時間ごとにサンプリングし、滅菌した2.
5%食塩水で10、100、1000および10000
倍の4水準に希釈して海洋性細菌用寒天培地に各稀釈水
準ごとに3枚ずつ塗抹して海水試料と同じ温度で培養し
た。24時間ごとにサンプリングして培養した培地サン
プルについて、各サンプリング時間ごとに、培養後のコ
ロニー数が一枚あたり30から300個の範囲に入って
いる稀釈度を選び、コロニー数平均からそれぞれの最大
増殖数を計数し、酢酸ナトリウム濃度と最大増殖数の相
関を求めて回帰分析し、生菌数とAOC濃度に関して以
下の相関式を求め、供給海水に含まれるAOC濃度を求
めた。
AOC concentration: 3% sulfuric acid was added to the supplied seawater sample.
The above seawater sample to which sulfuric acid had been added was placed in a flat-bottomed test tube which had been added to a concentration of 00 mg / l and sterilized in advance, and neutralized to a pH of about 8 with 1N sodium hydroxide. Further, 2.8 mg / l of sodium nitrate (0.5 mg / l as a nitrogen atom) and 0.3 mg / l of dipotassium phosphate were used.
l (0.05 mg / l as a phosphorus element), TES (Tr
ace Element Solution: Tetrasodium ethylenediaminetetraacetate, iron sulfate, boric acid, cobalt chloride, zinc chloride, manganese chloride, sodium molybdate, nickel chloride, copper chloride, and selenite are contained as the solute in a concentration of 0.032 mg. / L, 50 μg / l, 100 μg / l, 150 μg /
l, and 1% of the seawater without sulfuric acid added at the same time was added so as to have a concentration of 1%, and a cap made of polypropylene was added. Then, in a dark place in an incubator adjusted to the seawater temperature at the time of sample collection. 1. Stationary culture, and sampled and sterilized every 24 hours from the start of culture
10, 100, 1000 and 10000 in 5% saline
After dilution to four times the standard, three plates were spread on an agar medium for marine bacteria at each dilution level and cultured at the same temperature as the seawater sample. For medium samples sampled and cultured every 24 hours, select a dilution at which the number of colonies after culturing is in the range of 30 to 300 per plate for each sampling time. The number of proliferation was counted, the correlation between the sodium acetate concentration and the maximum number of proliferation was determined and regression analysis was performed.

【0064】(AOC濃度:μg/l)=[(生菌数:
cfu/ml)−774,000]/3,080 以上の操作を1ヶ月ごとに実施して、都度供給海水中の
生菌数とAOC濃度を測定し、これに合わせた殺菌条件
を表1に示す実施例1の組合せの中から選定して、図2
の海水淡水化装置の第1系列の殺菌を実施し1年間運転
を行った。 (実施例2)実施例1と同じ場所で同じ供給海水と同じ
装置を用い、生菌数の代わりに、ATP測定法による菌
体量、AOC濃度の代わりにBFRを以下のように測定
した。
(AOC concentration: μg / l) = [(viable cell count:
cfu / ml) -774,000] / 3,080 The above operation was carried out every month, and the number of viable bacteria and AOC concentration in the supplied seawater were measured each time. As shown in FIG.
Of the first series of the seawater desalination plant was operated for one year. (Example 2) The same supply seawater and the same apparatus were used in the same place as in Example 1, and the amount of the viable cells was measured by the ATP measurement method instead of the viable cell count, and the BFR was measured as follows instead of the AOC concentration.

【0065】菌体量:供給海水サンプル1mlを試験管
に入れ、これにATP抽出試薬を添加した後、ATP発
光試薬(ルシフェラーゼ、ルシフェリン等の混合物)を
添加し、ただちにATP発光量測定器(ヤマト科学製、
コンパクトルミVS501)に入れてATP濃度を測定
し、その数値を菌体量とする。
Cell quantity: A 1 ml sample of the supplied seawater was placed in a test tube, an ATP extraction reagent was added thereto, and an ATP luminescence reagent (a mixture of luciferase, luciferin, etc.) was added. Made by science,
ATP concentration is measured in a compact Lumi VS501), and the numerical value is defined as the bacterial cell amount.

【0066】BFR:片面の面積が20cm2のスライ
ドグラスを原海水の取水管近傍に浸漬しておき、約3週
間後に引き上げて、スライドガラス表面の付着物を掻き
取り、その重量を測定する。次にこの付着物サンプル1
0mgをATP測定用試験管に入れ、無菌水の純水で希
釈、分散させ、上記菌体量の測定と同様の方法でサンプ
ルのATP濃度を測定し、1cm2当り、1日当りの付
着速度を求め、BFR値とする。
BFR: A slide glass having a surface area of 20 cm 2 on one side is immersed in the vicinity of an intake pipe of raw seawater, pulled up after about three weeks, scraped off the attached matter on the surface of the slide glass, and weighed. Next, this attached sample 1
0 mg was put into a test tube for ATP measurement, diluted and dispersed in pure water of sterile water, and the ATP concentration of the sample was measured in the same manner as in the measurement of the amount of cells, and the adhesion rate per day per cm 2 was measured. The BFR value is obtained.

【0067】以上の操作を2ヶ月ごとに実施して、都度
供給海水中の菌体量とBFRを測定し、これに合わせた
殺菌条件を表1に示す実施例2の組合せの中から選定し
て、図2の海水淡水化装置の第1系列の殺菌を実施し1
年間運転を行った。 (実施例3)実施例1と同じ場所で同じ供給海水と同じ
装置を用い、供給海水中のAOC濃度とATP測定法に
よる菌体量とをそれぞれ実施例1および2と同じ方法で
2ヶ月ごとに測定し、これに合わせた殺菌条件を表1に
示す実施例3の組合せの中から選定して、図2の海水淡
水化装置の第2系列の殺菌を実施し1年間運転を行っ
た。 (実施例4)実施例1と同じ場所で同じ供給海水と同じ
装置を用い、供給海水中の生菌数と、BFRをそれぞれ
実施例1および2と同じ方法で、2ヶ月ごとに測定し、
これに併せた殺菌条件を表1に示す実施例4の組合せの
中から選定して、図2の海水淡水化装置の第3系列の殺
菌を実施し1年間運転を行った。 (比較例1)運転開始時に、供給海水中の生菌数を実施
例と同様の方法で測定した結果、生菌数が8.5×10
4cfu/mlであったので、表1における比較例1の
ように条件を選定し、以後1年間この条件を変更するこ
となく(制御を行わず)、前記図2の第2系列の殺菌を
実施しながら実施例1と同様に運転を行った。 (比較例2)供給海水中の生菌数およびAOC濃度に関
係なく、表1における比較例2の条件で1年間、条件変
更することなく(制御を行わず)、前記図2の第3系列
の殺菌を実施しながら実施例と同様に運転を行った。
The above operation was carried out every two months to measure the amount of bacterial cells in the supplied seawater and the BFR each time, and the sterilization conditions were selected from the combinations of Example 2 shown in Table 1 below. Then, the first series of sterilization of the seawater desalination apparatus of FIG.
I ran for a year. (Example 3) The same supply seawater and the same apparatus were used in the same place as in Example 1, and the AOC concentration in the supply seawater and the amount of cells by the ATP measurement method were determined every two months by the same method as in Examples 1 and 2, respectively. The sterilization conditions according to this were selected from the combinations of Example 3 shown in Table 1, and the second series of sterilization of the seawater desalination apparatus shown in FIG. 2 was performed and operated for one year. (Example 4) The number of viable bacteria in the supplied seawater and the BFR were measured every two months by the same method as in Examples 1 and 2 using the same supplied seawater and the same device at the same place as in Example 1,
The sterilization conditions were selected from the combinations of Example 4 shown in Table 1, and the third series of sterilization of the seawater desalination apparatus shown in FIG. 2 was performed and operated for one year. (Comparative Example 1) At the start of operation, the number of viable bacteria in the supplied seawater was measured in the same manner as in the example.
Since it was 4 cfu / ml, conditions were selected as in Comparative Example 1 in Table 1, and the sterilization of the second series in FIG. 2 was performed without changing these conditions for one year (without controlling). The operation was performed in the same manner as in Example 1 while performing the operation. (Comparative Example 2) Regardless of the number of viable bacteria in the supplied seawater and the AOC concentration, the condition of Comparative Example 2 in Table 1 was used for one year without changing the conditions (without controlling), and the third series of FIG. The operation was carried out in the same manner as in the example, while performing the sterilization of.

【0068】以上、実施例1〜4および比較例1、2に
ついて、1年間の逆浸透膜モジュールの造水量の変化を
図3に示す。また、1年後にそれぞれ、逆浸透膜モジュ
ール内のエレメントを抜き出し、解体して膜面付着物中
の有機物の量を測定した結果と、1年間に消費した次亜
塩素酸ナトリウム、亜硫酸水素ナトリウムおよび硫酸の
量を表1に示す。
FIG. 3 shows the change in the amount of fresh water produced by the reverse osmosis membrane module for one year in Examples 1 to 4 and Comparative Examples 1 and 2. In addition, one year later, each element in the reverse osmosis membrane module was extracted, disassembled, and the amount of organic matter in the attached matter on the membrane surface was measured. The results show that sodium hypochlorite, sodium bisulfite consumed in one year and Table 1 shows the amount of sulfuric acid.

【0069】以上の結果、実施例1〜4では1年間の逆
浸透膜モジュールの造水量変化はほとんどなく、また、
解体膜に付着していた有機物の量は非常に少なかった。
これに対し、比較例1では、消費した薬品量は実施例よ
りも少なくなったが、逆浸透膜モジュールの造水量は低
下し、解体膜に付着していた有機物の量は実施例よりも
多くなった。また、比較例2では、消費した薬品量は最
も多かったにもかかわらず、逆浸透膜モジュールの造水
量低下と、解体膜に付着していた有機物量は最も多くな
った。
As a result, in Examples 1 to 4, there was almost no change in the amount of fresh water produced by the reverse osmosis membrane module for one year.
The amount of organic matter attached to the disassembly film was very small.
On the other hand, in Comparative Example 1, although the amount of consumed chemicals was smaller than that of the example, the amount of water produced by the reverse osmosis membrane module was reduced, and the amount of organic substances attached to the disassembly membrane was larger than that of the example. became. Further, in Comparative Example 2, although the amount of the consumed chemical was the largest, the amount of water produced in the reverse osmosis membrane module was reduced, and the amount of the organic substances attached to the disassembly membrane was the largest.

【0070】[0070]

【表1】 [Table 1]

【0071】[0071]

【表2】 [Table 2]

【0072】[0072]

【発明の効果】本発明においては、原水に殺菌剤を添加
して分離膜に供給するにあたり、原水に含まれる生菌数
および同化可能有機炭素濃度、原水に含まれる菌体量お
よび同化可能有機炭素濃度、原水に含まれる生菌数およ
びバイオフィルム形成速度、もしくは、原水に含まれる
菌体量およびバイオフィルム形成速度に基づいて、殺菌
剤の添加濃度、添加時間および添加頻度からなる群から
選ばれる少なくとも1つの条件を制御するので、原水の
性状に合わせて最適な殺菌条件を選択することができ、
殺菌剤が不足したり、また、過剰となったりすることが
少なく、効率的な殺菌を行うことができる。したがっ
て、造水装置の配管や分離膜に微生物やその代謝物が堆
積したりすることが抑えられ、造水量の低下を招くこと
なく造水装置の性能を高く維持しておくことができる。
According to the present invention, when adding a bactericide to raw water and supplying it to the separation membrane, the number of viable bacteria and assimilable organic carbon concentration in raw water, the amount of cells contained in raw water and the amount of assimilable organic Based on the carbon concentration, the number of viable bacteria contained in the raw water and the biofilm formation rate, or the amount of cells contained in the raw water and the biofilm formation rate, selected from the group consisting of the addition concentration of the fungicide, the addition time and the addition frequency Since at least one condition is controlled, optimal sterilization conditions can be selected according to the properties of raw water,
Insufficient or excessive sterilizing agents are less likely to occur, and efficient sterilization can be performed. Therefore, accumulation of microorganisms and metabolites thereof on the piping and the separation membrane of the fresh water generator is suppressed, and the performance of the fresh water generator can be maintained at a high level without lowering the amount of fresh water.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施態様に係る造水方法を実施す
るための造水装置を示す概略図である。
FIG. 1 is a schematic diagram showing a fresh water generator for performing a fresh water method according to an embodiment of the present invention.

【図2】 実施例および比較例において用いた海水淡水
化装置を示す概略図である。
FIG. 2 is a schematic diagram showing a seawater desalination apparatus used in Examples and Comparative Examples.

【図3】 実施例および比較例における造水量の変化を
示す概略図である。
FIG. 3 is a schematic diagram showing a change in the amount of fresh water in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 :取水管 2 :取水ポンプ 3 :薬品注入装置(凝集剤、酸化性殺菌剤) 4a:凝集ろ過装置 4b:ポリッシングろ過装置 5 :中間槽 6a:薬品注入装置(還元剤) 6b:薬品注入装置(殺菌剤) 7 :保安フィルタ 8 :高圧ポンプ 9 :分離膜モジュール 10 :透過水流路 11a:脱炭酸装置 11b:カルシウム添加装置 12 :塩素注入装置 13 :濃縮水中和装置 14 :濃縮水流路 16a:第1系列 16b:第2系列 16c:第3系列 50 :造水装置(全体) 1: intake pipe 2: intake pump 3: chemical injection device (coagulant, oxidizing germicide) 4a: coagulation filtration device 4b: polishing filtration device 5: intermediate tank 6a: chemical injection device (reducing agent) 6b: chemical injection device (Disinfectant) 7: Security filter 8: High pressure pump 9: Separation membrane module 10: Permeated water flow channel 11 a: Decarbonation device 11 b: Calcium addition device 12: Chlorine injection device 13: Concentrated water neutralization device 14: Concentrated water flow channel 16 a: 1st line 16b: 2nd line 16c: 3rd line 50: Fresh water generator (whole)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 510 C02F 1/50 510A 520 520F 531 531J 531M 531P 532 532B 540 540B 550 550H 560 560E 1/76 1/76 A Fターム(参考) 4D006 GA03 HA21 HA41 HA61 KA03 KA51 KD06 KD11 KD12 KD23 KD24 KE07R KE30Q MC54 PB03 4D050 AA06 AB06 BB05 BB06 BD06 CA09 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/50 510 C02F 1/50 510A 520 520F 531 531J 531M 531P 532 532B 540 540B 550 550H 560 560E 1/76 1/76 A F term (reference) 4D006 GA03 HA21 HA41 HA61 KA03 KA51 KD06 KD11 KD12 KD23 KD24 KE07R KE30Q MC54 PB03 4D050 AA06 AB06 BB05 BB06 BD06 CA09

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 原水に殺菌剤を添加して分離膜に供給す
るにあたり、原水に含まれる生菌数および同化可能有機
炭素濃度、原水に含まれる菌体量および同化可能有機炭
素濃度、原水に含まれる生菌数およびバイオフィルム形
成速度、もしくは、原水に含まれる菌体量およびバイオ
フィルム形成速度に基づいて、殺菌剤の添加濃度、添加
時間および添加頻度からなる群から選ばれる少なくとも
1つの条件を制御することを特徴とする造水方法。
1. A method of adding a bactericide to raw water and supplying it to a separation membrane, wherein the number of viable bacteria and the concentration of assimilable organic carbon contained in the raw water, the amount of cells contained in the raw water and the concentration of assimilable organic carbon, At least one condition selected from the group consisting of the concentration, time and frequency of addition of a bactericide based on the number of viable bacteria and the rate of biofilm formation, or the amount of biomass and the rate of biofilm formation in the raw water. Controlling fresh water.
【請求項2】 原水のpHを4以下に制御する、請求項
1に記載の造水方法。
2. The fresh water producing method according to claim 1, wherein the pH of the raw water is controlled to 4 or less.
【請求項3】 殺菌剤として硫酸を用いる、請求項1ま
たは2に記載の造水方法。
3. The fresh water producing method according to claim 1, wherein sulfuric acid is used as a bactericide.
【請求項4】 分離膜として逆浸透膜を用いる、請求項
1〜3のいずれかに記載の造水方法。
4. The method for producing fresh water according to claim 1, wherein a reverse osmosis membrane is used as the separation membrane.
【請求項5】 原水として海水またはかん水を用いる、
請求項1〜4のいずれかに記載の造水方法。
5. Use of seawater or brackish water as raw water,
The fresh water producing method according to claim 1.
【請求項6】 原水に酸化剤を添加した後、還元剤を添
加し、次いで殺菌剤を添加する、請求項1〜5のいずれ
かに記載の造水方法。
6. The fresh water producing method according to claim 1, wherein an oxidizing agent is added to the raw water, a reducing agent is added, and then a bactericide is added.
【請求項7】 原水に含まれる生菌数および同化可能有
機炭素濃度、原水に含まれる菌体量および同化可能有機
炭素濃度、原水に含まれる生菌数およびバイオフィルム
形成速度、もしくは、原水に含まれる菌体量およびバイ
オフィルム形成速度に基づいて、酸化剤または還元剤の
添加濃度、添加時間および添加頻度からなる群から選ば
れる少なくとも1つの条件を制御する、請求項6に記載
の造水方法。
7. The number of viable bacteria and assimilable organic carbon concentration in raw water, the amount of cells and assimilable organic carbon concentration in raw water, the viable bacterial count and biofilm formation rate in raw water, or The fresh water production according to claim 6, wherein at least one condition selected from the group consisting of an addition concentration, an addition time, and an addition frequency of the oxidizing agent or the reducing agent is controlled based on the amount of the contained bacterial cells and the biofilm formation rate. Method.
【請求項8】 請求項1〜7のいずれかに記載の造水方
法により得られた水。
8. Water obtained by the method for producing fresh water according to claim 1.
JP2001259208A 2000-08-31 2001-08-29 Method for producing water Pending JP2002143849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001259208A JP2002143849A (en) 2000-08-31 2001-08-29 Method for producing water

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-262858 2000-08-31
JP2000262858 2000-08-31
JP2001259208A JP2002143849A (en) 2000-08-31 2001-08-29 Method for producing water

Publications (2)

Publication Number Publication Date
JP2002143849A true JP2002143849A (en) 2002-05-21
JP2002143849A5 JP2002143849A5 (en) 2008-10-09

Family

ID=26598929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001259208A Pending JP2002143849A (en) 2000-08-31 2001-08-29 Method for producing water

Country Status (1)

Country Link
JP (1) JP2002143849A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080671A1 (en) * 2001-04-05 2002-10-17 Toray Industries, Inc. Bactericide for use in water treatment, method for water treatment and apparatus for water treatment
JP2005254066A (en) * 2004-03-09 2005-09-22 Akira Hiraishi Waste water treatment method
JP2006015236A (en) * 2004-07-01 2006-01-19 Toray Ind Inc Apparatus and method for preparing regenerated water
WO2008038575A1 (en) 2006-09-25 2008-04-03 Toray Industries, Inc. Method for operating reverse osmosis membrane filtration plant, and reverse osmosis membrane filtration plant
SG144735A1 (en) * 2002-04-02 2008-08-28 Toray Industries Water-treating microbicide, water treatment method and water treatment apparatus
JP2008237979A (en) * 2007-03-26 2008-10-09 Miura Co Ltd Water treatment apparatus
JP2010058120A (en) * 2004-12-24 2010-03-18 Siemens Water Technologies Corp Cleaning in membrane filtration system
JP2011088151A (en) * 2011-02-09 2011-05-06 Toray Ind Inc Apparatus and method for preparing regenerated water
WO2011105550A1 (en) * 2010-02-26 2011-09-01 株式会社日立製作所 Seawater desalination device
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
JP2013193075A (en) * 2012-03-23 2013-09-30 Hitachi Ltd Desalination system
US8622222B2 (en) 2007-05-29 2014-01-07 Siemens Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8623202B2 (en) 2007-04-02 2014-01-07 Siemens Water Technologies Llc Infiltration/inflow control for membrane bioreactor
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
WO2015002194A1 (en) * 2013-07-03 2015-01-08 三菱重工業株式会社 Water treatment system and water treatment method
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
JP2015188787A (en) * 2014-03-27 2015-11-02 東洋紡株式会社 Forward osmosis treatment method and forward osmosis treatment device
JP2015233236A (en) * 2014-06-10 2015-12-24 三浦工業株式会社 Remote management control system for river water filter device
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
JP2017209654A (en) * 2016-05-27 2017-11-30 野村マイクロ・サイエンス株式会社 Reverse osmosis membrane device and operation method of reverse osmosis membrane device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042544A (en) * 1998-07-31 2000-02-15 Toyobo Co Ltd Pretreatment for desalination by reverse osmosis membrane method
JP2000167554A (en) * 1998-10-02 2000-06-20 Toray Ind Inc Water making and membrane separator
JP2001194364A (en) * 2000-01-14 2001-07-19 Toray Ind Inc Method for measuring assimilatory organic carbon in sea water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042544A (en) * 1998-07-31 2000-02-15 Toyobo Co Ltd Pretreatment for desalination by reverse osmosis membrane method
JP2000167554A (en) * 1998-10-02 2000-06-20 Toray Ind Inc Water making and membrane separator
JP2001194364A (en) * 2000-01-14 2001-07-19 Toray Ind Inc Method for measuring assimilatory organic carbon in sea water

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
US7090780B2 (en) 2001-04-05 2006-08-15 Toray Industries, Inc. Bactericide for use in water treatment, method for water treatment and apparatus for water treatment
WO2002080671A1 (en) * 2001-04-05 2002-10-17 Toray Industries, Inc. Bactericide for use in water treatment, method for water treatment and apparatus for water treatment
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
SG144735A1 (en) * 2002-04-02 2008-08-28 Toray Industries Water-treating microbicide, water treatment method and water treatment apparatus
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
JP2005254066A (en) * 2004-03-09 2005-09-22 Akira Hiraishi Waste water treatment method
JP4569132B2 (en) * 2004-03-09 2010-10-27 明 平石 Wastewater treatment method
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
JP2006015236A (en) * 2004-07-01 2006-01-19 Toray Ind Inc Apparatus and method for preparing regenerated water
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
JP2010058120A (en) * 2004-12-24 2010-03-18 Siemens Water Technologies Corp Cleaning in membrane filtration system
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
EP2067520A4 (en) * 2006-09-25 2012-10-10 Toray Industries Method for operating reverse osmosis membrane filtration plant, and reverse osmosis membrane filtration plant
JP5600864B2 (en) * 2006-09-25 2014-10-08 東レ株式会社 Operation method of reverse osmosis membrane filtration plant and reverse osmosis membrane filtration plant
TWI400120B (en) * 2006-09-25 2013-07-01 Toray Industries Reverse osmosis membrane filtration equipment operation method and reverse osmosis membrane filtration equipment
KR101370689B1 (en) * 2006-09-25 2014-03-05 도레이 카부시키가이샤 Method for operating reverse osmosis membrane filtration plant, and reverse osmosis membrane filtration plant
WO2008038575A1 (en) 2006-09-25 2008-04-03 Toray Industries, Inc. Method for operating reverse osmosis membrane filtration plant, and reverse osmosis membrane filtration plant
AU2007301269B2 (en) * 2006-09-25 2011-05-26 Toray Industries, Inc. Method for operating reverse osmosis membrane filtration plant, and reverse osmosis membrane filtration plant
EP2067520A1 (en) * 2006-09-25 2009-06-10 Toray Industries, Inc. Method for operating reverse osmosis membrane filtration plant, and reverse osmosis membrane filtration plant
JP2008237979A (en) * 2007-03-26 2008-10-09 Miura Co Ltd Water treatment apparatus
US8623202B2 (en) 2007-04-02 2014-01-07 Siemens Water Technologies Llc Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8622222B2 (en) 2007-05-29 2014-01-07 Siemens Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
WO2011105550A1 (en) * 2010-02-26 2011-09-01 株式会社日立製作所 Seawater desalination device
JP2011177604A (en) * 2010-02-26 2011-09-15 Hitachi Ltd Seawater desalination apparatus
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
JP2011088151A (en) * 2011-02-09 2011-05-06 Toray Ind Inc Apparatus and method for preparing regenerated water
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
JP2013193075A (en) * 2012-03-23 2013-09-30 Hitachi Ltd Desalination system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
AU2014285172B2 (en) * 2013-07-03 2016-10-20 Aqua Systems Limited Water treatment system and water treatment method
EP2990386A4 (en) * 2013-07-03 2016-07-13 Mitsubishi Heavy Ind Ltd Water treatment system and water treatment method
JP2015013238A (en) * 2013-07-03 2015-01-22 三菱重工業株式会社 Water treatment system and water treatment method
WO2015002194A1 (en) * 2013-07-03 2015-01-08 三菱重工業株式会社 Water treatment system and water treatment method
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
JP2015188787A (en) * 2014-03-27 2015-11-02 東洋紡株式会社 Forward osmosis treatment method and forward osmosis treatment device
JP2015233236A (en) * 2014-06-10 2015-12-24 三浦工業株式会社 Remote management control system for river water filter device
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
WO2017204054A1 (en) * 2016-05-27 2017-11-30 野村マイクロ・サイエンス株式会社 Reverse osmosis membrane apparatus and method for operating reverse osmosis membrane apparatus
JP2017209654A (en) * 2016-05-27 2017-11-30 野村マイクロ・サイエンス株式会社 Reverse osmosis membrane device and operation method of reverse osmosis membrane device

Similar Documents

Publication Publication Date Title
JP2002143849A (en) Method for producing water
JP2002143849A5 (en)
US6743363B2 (en) Method of bacteriostasis or disinfection for permselective membrane
KR101370689B1 (en) Method for operating reverse osmosis membrane filtration plant, and reverse osmosis membrane filtration plant
JP5804228B1 (en) Water treatment method
EP3156111A1 (en) Method for treating water used for industrial purposes
Visvanathan et al. Pretreatment of seawater for biodegradable organic content removal using membrane bioreactor
JP2009028724A (en) Method for water treatment and apparatus for water treatment
JP6447133B2 (en) Fresh water generation system and fresh water generation method
JP5190908B2 (en) Water treatment method and water treatment apparatus
Seo et al. Long term operation of high concentration powdered activated carbon membrane bio-reactor for advanced water treatment
JP2015134327A (en) Evaluation method of separation membrane surface, control method of water treatment system and water treatment system
JP2000300966A (en) Membrane sterilization method and membrane separation device
JP3087750B2 (en) Sterilization method of membrane
JP3269496B2 (en) Sterilization method and fresh water method of membrane
JP2000167554A (en) Water making and membrane separator
Hardörfer et al. Bacteriophobic membranes for decreasing biofilm formation in waste water treatment
Farhat et al. Biofilms in membrane systems for drinking water production
JPH10225683A (en) Reverse osmotic method seawater desaltinating system
JP2004121896A (en) Method of producing treated water and salt water treatment equipment
JP2000301148A (en) Fresh water producing method
JP2005040661A (en) Method and apparatus for treating fresh water or salt water
JP2014171987A (en) Water making method
JP2000237546A (en) Production of fresh water
Kristjánsdóttir Membrane-based Algal Harvesting Process: Process design and Nutrient recovery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120124