JP2002143849A - Method for producing water - Google Patents

Method for producing water

Info

Publication number
JP2002143849A
JP2002143849A JP2001259208A JP2001259208A JP2002143849A JP 2002143849 A JP2002143849 A JP 2002143849A JP 2001259208 A JP2001259208 A JP 2001259208A JP 2001259208 A JP2001259208 A JP 2001259208A JP 2002143849 A JP2002143849 A JP 2002143849A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
raw water
water
concentration
addition
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001259208A
Other languages
Japanese (ja)
Other versions
JP2002143849A5 (en )
Inventor
Masahiro Kihara
Takuhei Kimura
Yuichiro Nakaoki
優一郎 中沖
正浩 木原
拓平 木村
Original Assignee
Toray Ind Inc
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/10Relating to general water supply, e.g. municipal or domestic water supply
    • Y02A20/124Water desalination
    • Y02A20/126Water desalination characterized by the method
    • Y02A20/131Reverse-osmosis

Abstract

PROBLEM TO BE SOLVED: To provide a method hardly causing the deposition of microorganisms or their metabolic products on a separation membrane and the reduction of the amount of produced water in the method for producing water by using a separation membrane. SOLUTION: In the process of adding a sterilizer to the raw water and supplying the water to the separation membrane, at least one condition selected from the group of the concentration of the sterilizer added, time of addition and frequency of addition is controlled based on the following factors. The factors are the viable cell count in the raw water and the concentration of assimilable organic carbon, or the volume of bacteria in the raw water and the concentration of assimilable organic carbon, or the viable cell count in the raw water and the biofilm formation rate, or the volume of bacteria in the raw water and the biofilm formation rate.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、逆浸透膜などの分離膜を用いて海水やかん水などの脱塩を行い淡水を得たり、工業排水などを浄化して上水などを得たりする際に好適に用いることのできる造水方法に関する。 The present invention relates may or obtained freshwater was desalted such as sea water or brackish water using a separation membrane such as a reverse osmosis membrane, when or give such clean water to purify and industrial wastewater about desalination method that can be preferably used in the.

【0002】 [0002]

【従来の技術】膜を用いた分離技術は、海水やかん水の淡水化処理、工業用水や廃水などの処理に広く用いられている。 BACKGROUND ART membrane separation techniques using the desalination process of seawater or brackish water, is widely used for processing such as industrial water and waste water. これらの処理においては、微生物の膜への付着や増殖、また、それらの代謝物の付着などにより膜の透過性能や分離性能が低下するため、解決手法が種々模索されてきた。 These in processing, adhesion and proliferation of the microbial membrane, also, since the permeability and separation performance adhesion due membranes of these metabolites is reduced, solving methods have been variously sought. 中でも、塩素系の殺菌剤を添加する方法や、殺菌剤を添加した後に還元剤を添加する方法、さらに、それらに加えて亜硫酸水素ナトリウムを添加する方法などが効果的であるとして用いられてきた。 Among them, a method of adding a chlorine-based disinfectant, a method of adding a reducing agent after the addition of disinfectant, further including a method of adding sodium bisulfite has been used as an effective addition to their .

【0003】しかしながら、これらの方法は、いずれも、ある一定の添加濃度や添加時間、添加頻度で実施されているため、原水に含まれる微生物の数や水質に変動によって、過剰の殺菌剤が添加されることになったり、 However, these methods are both constant doping concentration and addition time that, because it is carried out in addition frequency, by variations in the number and quality of microorganisms contained in the raw water, excess sterilant is added or it is to be,
また、殺菌剤が不足し微生物が急速に増殖して膜に堆積するなどの問題を生じていた。 In addition, had caused problems such as microbial fungicide is insufficient is deposited on the film is rapidly growing.

【0004】 [0004]

【発明が解決しようとする課題】本発明の目的は、上記した従来技術の問題点を解決し、膜への微生物やその代謝物の堆積が少なく、造水量低下が少ない造水方法を提供することにある。 OBJECTS OF THE INVENTION It is an object of the present invention is to solve the problems of the prior art described above, the deposition of microorganisms and their metabolites in the film is small, to provide a desalination rate reduction is small desalination methods It lies in the fact.

【0005】 [0005]

【課題を解決するための手段】上記目的を達成するための本発明は、原水に殺菌剤を添加して分離膜に供給するにあたり、原水に含まれる生菌数および同化可能有機炭素濃度、原水に含まれる菌体量および同化可能有機炭素濃度、原水に含まれる生菌数およびバイオフィルム形成速度、もしくは、原水に含まれる菌体量およびバイオフィルム形成速度に基づいて、殺菌剤の添加濃度、添加時間および添加頻度からなる群から選ばれる少なくとも1 The present invention for achieving the above object In order to achieve the above, when supplied to the separation membrane by adding a disinfectant to the raw water, the viable cell count and assimilable organic carbon concentration in the raw water, raw water cell amount and assimilable organic carbon concentration, live bacteria number and biofilm formation rate contained in the raw water or, based on the cell amount and biofilm formation rate contained in the raw water, the addition concentration of the sterilizing agent contained in, adding at least one selected from the time and the group consisting of adding the frequency
つの条件を制御する造水方法を特徴とする。 And wherein fresh water generating method for controlling One condition. ここで、原水のpHを4以下に制御することも好ましく、殺菌剤として硫酸を用いることも好ましい。 Here, it is also preferable to control the pH of the raw water to 4 or less, it is also preferable to use sulfuric acid as fungicides.

【0006】また、分離膜として逆浸透膜を用いることも好ましく、原水として海水またはかん水を用いることも好ましい。 [0006] It is also preferable to use a reverse osmosis membrane as a separation membrane, it is also preferable to use a sea water or brackish water as raw water.

【0007】さらに、原水に酸化剤を添加した後、還元剤を添加し、次いで殺菌剤を添加する、上記の造水方法も好ましい。 Furthermore, after adding an oxidizing agent to the raw water, a reducing agent is added, followed by addition of disinfectant, the above desalination method is also preferred.

【0008】また、原水に含まれる生菌数および同化可能有機炭素濃度、原水に含まれる菌体量および同化可能有機炭素濃度、原水に含まれる生菌数およびバイオフィルム形成速度、もしくは、原水に含まれる菌体量およびバイオフィルム形成速度に基づいて、酸化剤または還元剤の添加濃度、添加時間および添加頻度からなる群から選ばれる少なくとも1つの条件を制御することも好ましく、さらに、上記の方法により得られた水も好ましい。 Further, the viable cell count and assimilable organic carbon concentration in the raw water, cell volume and assimilable organic carbon concentration in the raw water, the viable cell count contained in the raw water and biofilm formation speed, or, in the raw water it is also preferred that based on the cell amount and biofilm formation rate included, addition concentration of the oxidizing or reducing agent, to control at least one condition selected from the group consisting of addition times and frequencies, Furthermore, the above method also preferred water obtained by.

【0009】 [0009]

【発明の実施の形態】本発明者らは、微生物の増殖が、 DETAILED DESCRIPTION OF THE INVENTION The present inventors have found that the growth of microorganisms,
供給原水中に存在する微生物数だけではなく、供給原水に含まれる有機炭素、特に微生物の栄養素として摂取され得る同化可能有機炭素[以下、AOC(Assimirable Not only microbial count present in the feed raw water, the organic carbon contained in the feed raw water, assimilable organic carbon [hereinafter, which may be particularly consumed as a nutrient of microorganisms, AOC (Assimirable
Organic Carbon)という]の量によって決定されるという考えに基づき、原水中の微生物の生菌数やAOC濃度が少ない場合には、膜分離装置に供給する殺菌剤の添加条件(添加濃度や添加時間、添加頻度)を緩やかにし、 Based on the idea that is determined by the amount of Organic Carbon) that, when the viable cell count and AOC concentration of microorganisms in the raw water is small, adding conditions (addition concentration and addition time of the disinfectant supplied to the membrane separation device , the gradual addition of frequency),
逆に生菌数やAOC濃度が多い場合には、殺菌剤の添加条件を強化する、というように原水中の微生物の生菌数やAOC濃度に応じて殺菌剤の添加条件を制御することによって、最適な殺菌効果が得られることを見出した。 When the viable cell count and AOC concentration is large in the reverse, by controlling the addition condition for enhancing the added condition of the sterilizing agent, depending on the viable cell count and AOC concentration of microorganisms in the raw water so as fungicides , it was found that the optimal sterilization effect is obtained.

【0010】また、分離膜による処理に先立つ前処理における殺菌についても、前処理で塩素系殺菌剤等の酸化剤を添加することによって、供給液中に存在する有機炭素が酸化分解し、微生物の栄養素として摂取されやすいAOCに変換されるという説(ABHamida and I.Moch, [0010] As for the sterilization in the pretreatment prior to treatment with the separation membrane, by adding an oxidizing agent such as a chlorine-based germicide in the pretreatment, organic carbon present in the feed solution is decomposed oxidation, microbial theory that is converted into easily ingested as a nutrient AOC (ABHamida and I.Moch,
Jr.,Desalination & Water Reuse, 6/3, 40〜45,(199 Jr., Desalination & Water Reuse, 6/3, 40~45, (199
6).))に基づき、膜分離装置の殺菌と同様、原水中の微生物の生菌数とAOC濃度に応じて酸化剤と還元剤の添加条件を変更することによって、過剰なAOCを作り出すことなく、上述した膜分離装置の殺菌方法と組み合わせることによって、さらに効果的に膜分離装置における微生物の増殖を抑制することができることを見出し、本発明に到達したものである。 6).) Based on), similarly to the sterilization of the membrane separation apparatus, by changing the addition conditions of the oxidizing agent and reducing agent in accordance with the number of viable cells and AOC concentration of microorganisms in the raw water, the creation of excessive AOC without, combined with sterilization method of the above-described membrane separation apparatus, it found that it is possible to inhibit the growth of microorganisms in more effective membrane separation apparatus, in which have reached the present invention.

【0011】さて、本発明の造水方法について、図1に示す造水装置を用いて説明する。 [0011] Now, the fresh water generating method of the present invention will be described with reference to the fresh water generator shown in FIG.

【0012】図1において、造水装置50は、原水の流れる方向に関して上流側から、取水管1、取水ポンプ2、凝集ろ過装置4a、ポリッシングろ過装置4b、中間槽5、保安フィルタ7、高圧ポンプ8、分離膜モジュール9、透過水流路10、脱炭酸装置11a、カルシウム添加装置11bの順に接続、構成されている。 [0012] In FIG 1, fresh water generator 50, from the upstream side with respect to the direction of flow of the raw water, water intake pipe 1, the intake pump 2, flocculation filtration device 4a, a polishing filtration device 4b, an intermediate tank 5, security filter 7, the high-pressure pump 8, the separation membrane module 9, permeate passage 10, CO 2 removal unit 11a, connected in the order of the calcium addition device 11b, is constructed. また、 Also,
分離膜モジュール9の濃縮水側には濃縮水中和装置13 Concentrated water neutralizer in the retentate side of the separation membrane module 9 13
および濃縮水流路14が接続され、さらに、取水ポンプ2と凝集ろ過装置4aとの間の経路には薬品注入装置3 And concentrated water flow path 14 is connected, furthermore, the dosing device in a path between the intake pump 2 and the cohesive filtering device 4a 3
が、中間槽5と保安フィルタ7との間の経路には薬品注入装置6a、6bが、カルシウム添加装置11bの下流側の経路には塩素注入装置12がそれぞれ接続されている。 But dosing device 6a in the path between the intermediate chamber 5 and security filter 7, 6b is chlorine injection device 12 is connected to the downstream path of the calcium addition device 11b.

【0013】海や貯水槽から、取水ポンプにより取水管1を通じて取水された原水は、薬品注入装置3により凝集剤や殺菌剤などが添加された後、凝集ろ過装置4aやポリッシングろ過装置4bなどの前処理装置により処理され中間槽5に一旦貯えられる。 [0013] from the sea or reservoir, the raw water is water intake through intake tube 1 by intake pump, after such flocculant and disinfectant is added by chemical injection device 3, such as flocculation filtration device 4a and polishing filtration device 4b be stored temporarily in the intermediate tank 5 is treated by the pretreatment device. 次いで、薬品注入装置6a、6bにより還元剤や殺菌剤が添加され、保安フィルタ7を通って高圧ポンプ8により分離膜モジュール9 Then, chemical injection device 6a, a reducing agent or fungicide is added by 6b, separated by the high pressure pump 8 through a security filter 7 membrane module 9
に供給される。 It is supplied to. 供給された原水は、透過水と濃縮水とに分離され、そのうち濃縮水は濃縮水中和装置13によりpHが中性付近に調整され、濃縮水流路14を通ってもとの海や貯水槽へ戻される。 Supplied raw water is separated into a permeate and a retentate, of which concentrated water is pH is adjusted to near neutral by concentrated water neutralizer 13, under the sea or the reservoir through the concentrated water flow path 14 It is returned. 一方、透過水は、透過水経路10を通って脱炭酸装置11a、カルシウム添加装置11a、塩素注入装置12により処理され、たとえば、 On the other hand, permeate, CO 2 removal unit 11a through the permeate path 10, calcium addition device 11a, is processed by chlorine injection equipment 12, for example,
飲料水基準に適合するような淡水として造水装置から取り出される。 It is taken out from the fresh water generator freshwater to fit drinking water standards.

【0014】本発明は、上記の取水管1により取水される海水(原水)に含まれる生菌数および同化可能有機炭素濃度に基づいて、薬品注入装置3、6bにより添加される殺菌剤の添加濃度や添加時間、添加頻度などの条件を制御し、各配管や分離膜モジュール9などに微生物が繁殖しないようにしながら透過水を得るものである。 The present invention, addition of sterilizing agent on the basis of the number of viable cells and assimilable organic carbon concentration in the sea water (raw water) that is intake by intake tube 1 above is added by the dosing device 3,6b concentration and addition time, and controls the conditions such as the addition frequency, microorganisms such as the pipes and the separation membrane module 9 is to obtain a permeate while not breed.

【0015】上記において、取水は直接、海の表層部分から行ってもよいし、いわゆる深層水をくみ出しても構わない。 [0015] In the above, water intake directly, may be performed from the surface layer part of the sea, it may be pumped so-called deep water. また、海底砂層などをフィルタとして用いる浸透取水法により取水してもよく、くみ出した海水は、一旦沈殿池などで砂などの粒子を分離しておくことが好ましい。 It is also possible to intake by infiltration water intake method using seabed sand as a filter, pumping seawater, it is preferable to separate particles such as sand, etc. Once sedimentation basin. 次いで、薬品注入装置3により、殺菌剤や凝集剤が添加されるわけであるが、用いる殺菌剤としては、酸化性の殺菌剤、たとえば、遊離塩素を発生させ得る薬剤であればよく、塩素ガスを注入したり、次亜素酸ナトリウムなどを添加して殺菌を行う。 Then, the dosing device 3, but not fungicides and coagulant is added, as the sterilizing agent used, the oxidation of the fungicide, for example, may be a drug that can generate free chlorine, chlorine gas or injected, performing sterilization by the addition of such as sodium hypochlorite periodate. また、凝集剤としては、塩化第2鉄やポリ塩化アルミニウムなどを用いることができる。 As the aggregating agent, or the like can be used ferric or polyaluminum chloride. その後、凝集ろ過装置4a、ポリッシングろ過装置4bにより前処理を行う。 Thereafter, the pretreated aggregation filtration device 4a, a polishing filtration device 4b. これは、砂ろ過などにより行ってもよく、また、限外ろ過膜や精密ろ過膜、 This may be performed by such as sand filtration and ultrafiltration membrane and microfiltration membrane,
ルースRO膜などの膜による処理を行っても構わない。 It may be subjected to a treatment due to the film, such as a loose RO membrane.
この前処理は、下流の各工程に負荷をかけないように、 This pretreatment, To avoid overloading the downstream of each step,
必要な程度まで原水を精製する目的を有し、原水の汚濁の程度により適宜選択される工程であり、上記した各処理を適宜組み合わせて行えばよい。 It has the purpose of purifying the raw water to the extent necessary, a step is appropriately selected depending on the degree of pollution of the raw water, may be performed in combination as appropriate each process described above. 次に、前処理を終えた原水は中間槽5に貯えられるが、これは、水量調節機能や水質の緩衝機能を提供するもので、必要に応じて設ける。 Next, the raw water having been subjected to the pretreatment is stored in the intermediate tank 5, which is intended to provide a cushioning function of the water amount adjustment function and water quality, provided if necessary. 次いで、薬品注入装置6aにより亜硫酸水素ナトリウムなどの還元剤が添加される。 Then, a reducing agent such as sodium bisulfite is added by dosing device 6a. これは、上流の工程で酸化性殺菌剤を添加した場合に行うもので、残留塩素などが分離膜を劣化させることを防ぐためのものである。 This is performed in a case where the upstream process was added an oxidizing disinfectant, such as residual chlorine is needed to avoid degrading the separation membrane. 次いで、薬品注入装置6bにより硫酸などの殺菌剤を添加し、保安フィルタ7を通す。 Then, the dosing device 6b by adding disinfectant such as sulfuric acid, through a security filter 7. 保安フィルタは、分離膜モジュールに供給される原水中の固形分を除去し、 Safety filter removes solids in the raw water supplied to the separation membrane module,
ポンプや膜の性能劣化を防ぐ効果を有している。 It has the effect of preventing deterioration of the performance of the pump and membrane.

【0016】上記の薬品注入装置、特に、殺菌剤を添加する3、6bについては、後述するように、原水の性状に合わせて殺菌剤の添加条件を制御するために、自動的に添加量や添加時間、添加頻度などがコントロールできるバルブやポンプを有する制御機構を備えていることが好ましい。 [0016] The dosing device, in particular, for 3,6b adding a disinfectant, as will be described later, in order to control the addition condition of the sterilizing agent in accordance with the nature of the raw water, the amount Ya automatically added addition time, it is preferable that such addition frequently provided with a control mechanism having a control can valves and pumps. これは、たとえば、pH計やタイマーなどを設置し、それらから得られる情報に基づいて、バルブやポンプなどの開度を制御するようにして行うことができる。 This, for example, to the installation pH meter or a timer, based on the information obtained from them can be performed so as to control the opening of such valves and pumps.

【0017】もちろん、殺菌剤等の薬剤の添加タイミングは任意に決定すればよいが、好ましくは、取水した直後や、前処理前または前処理中、保安フィルタの通過前後である。 [0017] Of course, the addition timing of the drug, such as fungicides may be arbitrarily determined, but is preferably, and immediately after intake, during preprocessing before or pretreatment, before and after passage of the safety filter.

【0018】分離膜モジュール9は、たとえば、逆浸透膜を用いたモジュールや限外ろ過膜、精密ろ過膜などを用いたモジュールとすることができるが、海水やかん水を処理する場合には、逆浸透膜を用いた逆浸透膜モジュールとすることが好ましい。 The separation membrane module 9, for example, module and ultrafiltration membrane using a reverse osmosis membrane, can be a module using a microfiltration membrane, when processing sea water or brackish water is reversed it is preferable that the reverse osmosis membrane module using the osmotic membrane.

【0019】なお、ここで、逆浸透膜とは、供給原水中の一部の成分、たとえば、溶媒を透過させ他の成分を透過させない半透性の膜をいい、いわゆるナノフィルトレーション膜やルースRO膜なども含まれる。 [0019] Here, the reverse osmosis membrane, some components of the feed raw water, for example, is transmitted through the solvent means a semipermeable membrane which is impermeable to other ingredients, Ya-called nanofiltration membrane Ruth RO membranes such as are also included. 素材としては、酢酸セルロース系ポリマーやポリアミド、ポリエステル、ポリイミド、ピニルポリマーなどの高分子材料を用いることが好ましい。 The material, cellulose acetate polymer, polyamide, polyester, polyimide, to use a polymeric material such Piniruporima preferred. また、その膜構造としては、少なくとも片面に徴密層を持ち、徴密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称構造としたり、非対称膜の徴密層の上に別の素材で形成された分離機能層を有する複合膜構造とすることもできる。 Further, examples of the film structure, having at least one side Chomitsu layer, or an asymmetrical structure having a gradually larger pore diameter micropores toward the membrane inside or other surface from Chomitsu layer, Chomitsu asymmetric membrane It may be a composite membrane structure having a separation function layer formed by another material on the layer. 膜形態としては、中空糸膜や平膜の形態で用いることができる。 The membrane form, can be used in the form of a hollow fiber membrane or a flat membrane. 膜厚としては、中空糸膜および平膜ともに10μm〜1mmの範囲内であると好ましく、中空糸膜を用いる場合、その外径は50μm〜4m The film thickness, and preferably in the range of 10μm~1mm both hollow fiber membrane and a flat membrane, when using the hollow fiber membranes, an outer diameter 50μm~4m
mの範囲内であると好ましい。 Preferably in the range of from m. また、平膜では非対称構造を有しているとよく、複合膜では織物や編み物、不織布などの基材で支持されていることが好ましい。 Also, well when the flat membrane has an asymmetric structure, it is preferable that the composite membrane is supported by the substrate, such as fabric or knit, non-woven fabric. 代表的な逆浸透膜としては、たとえば、酢酸セルロース系やポリアミド系の非対称膜およびポリアミド系やポリ尿素系の分離機能層を有する複合膜などがあるが、中でも、本発明においては、酢酸セルロース系の非対称膜やボリアミド系の複合膜を用いると効果が高い。 Typical reverse osmosis membrane, for example, there are such a composite membrane having a separation function layer of the asymmetric membrane and polyamide and polyurea type of cellulose acetate and polyamide, among others, in the present invention, cellulose acetate using the asymmetric membrane and Boriamido composite film of the highly effective. 特に、特開昭6 In particular, JP-A-6
2−121603号公報や特開平8−138658号公報、米国特許第4277344号明細書に記載されている芳香族系のボリアミド複合膜を用いると効果が大きい。 2-121603 and JP 8-138658, JP-effective With Boriamido composite film of an aromatic system described in U.S. Patent No. 4,277,344.

【0020】また、分離膜モジュールとは、上記した逆浸透膜などを実際に使用するために筐体に組み込んだものであり、平膜形態の膜を用いる場合は、スパイラル型モジュールや、チューブラー型モジュール、プレート・ Further, the separation membrane module, which incorporates the housing in order to actually use such as reverse osmosis membrane described above, in the case of using a film of the flat membrane form, and spiral modules, tubular type module, plate
アンド・フレーム型モジュールとして、また、中空糸膜を用いる場合は、束ねたうえでU字状やI字状に筐体に組み込んでモジュールとするとよい。 As and-frame-type modules, In the case of using a hollow fiber membrane, or equal to the module incorporated in the casing in a U-shape or I-shape in terms of bundled. 上記の内、スパイラル型モジュールは、たとえば、特開平9−14106 Among the above, spiral module, for example, JP-A-9-14106
0号公報や特開平9−141067号公報に記載されるように、供給水流路材や透過水流路材などの部材を組み込んでおり、溶質濃度の高い海水を原水として用いたり、高圧で装置を運転する場合などに高い効果がある。 As described in 0 and JP 9-141067 and JP incorporates members such as supply water channel material and permeate channel material, or having a high solute concentration sea water as raw water, the apparatus at a high pressure there is a highly effective, for example, to operation.

【0021】上記の分離膜モジュールで得られる透過水は、脱炭酸装置11a、カルシウム添加装置11b、塩素注入装置12による処理を受け、飲料水などの用途に用いられる。 The permeate obtained by the above separation membrane module, CO 2 removal unit 11a, the calcium addition device 11b, subjected to processing by the chlorine injection equipment 12, used in applications such as drinking water.

【0022】造水装置の高圧ポンプの運転圧力は、原水の種類や運転方法などにより適宜設定できるが、かん水や超純水など浸透圧の低い溶液を供給原水とする場合には0.1〜3.0MPa程度の比較的低圧で、海水淡水化や廃水処理、有用物の回収などの場合には2.5〜1 The operating pressure of the high-pressure pump fresh water generator, can be set as appropriate depending on the type and driving method of the raw water, 0.1 in the case of the raw water supply low solution osmotic pressure such as brine or ultrapure water a relatively low pressure of about 3.0 MPa, seawater desalination and wastewater treatment, in the case of a collection of useful product 2.5 to 1
5.0MPa程度の比較的高圧で使用するのが、電力等のエネルギーの無駄がなく、かつ良好な透過水の水質を得ることができ好ましい。 For use in a relatively high pressure of about 5.0MPa is preferable can be obtained without waste of energy such as electric power, and the quality of good permeate. また、適当な供給圧力、運転圧力を得るために、造水装置には、任意の経路にポンプを設置することができる。 Also, suitable supply pressure, in order to obtain the operating pressure, the fresh water generator can be installed the pump to any route.

【0023】また、造水装置の運転温度は、0℃よりも低いと供給水が凍結して使用できず、100℃よりも高い場合には供給水の蒸発が起こり使用できないため、0 Further, since the operating temperature of the fresh water generator, 0 low and can not be used in the supply water is frozen than ° C., unusable occur vaporization of the feed water is higher than 100 ° C., 0
〜100℃の範囲内で適宜設定するが、装置や逆浸透膜の性能を良好に維持するためには、5〜50℃の範囲とするのが好ましい。 Although appropriately set within the range of to 100 ° C., in order to maintain good performance of the device and the reverse osmosis membrane is preferably in the range of 5 to 50 ° C..

【0024】造水装置の回収率は、5〜98%の範囲内で適宜設定することができる。 The recovery rate of the fresh water generator can be appropriately set within a range of 5-98%. ただし、供給原水や濃縮水の性状、濃度、浸透圧に応じて前処理条件や運転圧力などを考慮する必要がある(特開平8−108048号公報)。 However, the properties of the feed raw and concentrated water, concentration, osmotic pressure should be considered, such as pretreatment conditions and operating pressure in accordance with (JP-8-108048 JP). たとえば、海水淡水化の場合には、通常10〜 For example, in the case of seawater desalination, usually 10
40%、高効率の装置の場合には40〜70%の回収率を設定する。 40%, to set the recovery rate of 40% to 70% in the case of a high efficiency of the device. また、かん水淡水化や超純水製造の場合には70%以上、さらには、90〜95%の回収率で運転することもできる。 Also, 70% or more in the case of brackish water desalination and ultrapure water production, furthermore, can also be operated at 90-95% recovery.

【0025】また、造水装置における分離膜モジュール9は、1段とすることも、また、多段とすることもでき、さらに、供給水に対して直列でも並列に配しても構わない。 Further, the separation membrane module 9 in the fresh water generator, also a one-stage, also can be a multi-stage, further, may be arranged in parallel in series with the feed water. 直列に配列する場合は、モジュール間に昇圧ポンプを設置してもよい。 If arranged in series, a boost pump may be placed between modules. 海水淡水化を行う場合において、逆浸透膜モジュールを用いて直列配置を採用する場合は、装置コストや効率等の観点から、特に、前段の濃縮水を後段の供給水とする濃縮水2段の配列が好ましく、直列に配列したモジュールの間に昇圧ポンプを設置して供給水を1〜5MPaの範囲内で昇圧して後段のモジュールに供給することが好ましい(特開平8−108 In case of a seawater desalination, when adopting the serial arrangement with a reverse osmosis membrane module, from the viewpoint of equipment cost and efficiency, in particular, the concentrated water two stages of the pre-stage of concentrated water and feed water in the subsequent stage sequences are preferred, it is preferable to supply to the subsequent module by boosting the supply water by installing a booster pump between the modules arranged in series within the 1 to 5 MPa (JP 8-108
048号公報)。 048 JP). 供給水に対して分離膜モジュールを直列に配列した場合には、分離膜モジュールと供給水が接触する時間が長いので本発明の方法の効果が大きい。 When an array of separation membrane module in series to the supply water is very effective in the process of the present invention since a long time to supply water and the separation membrane module are in contact. さらに、前段の透過水を後段の供給水とする透過水2段の配列も、前段の透過水の水質が不十分な場合や透過水中の溶質成分を回収したい場合には好ましい方法である。 Furthermore, the sequence of permeate 2 stages to the front permeate and feed water of the subsequent stages, when it is desired to recover when water is insufficient and solute component of the transmitted water permeate of the preceding stage is the preferred method.
この場合、モジュール間にポンプを設置し、透過水を再び加圧するか、前段で余分に圧力をかけておき背圧をかけて膜分離することができる。 In this case, a pump is placed between the modules, or pressurize the permeate once again, it can be membrane separation over a backpressure keep extra pressurized with front. また、後段の膜モジュール部分の殺菌を行うために殺菌剤の添加装置を膜モジュール間に設けてもよい。 Further, the addition device fungicide may be provided between the membrane modules in order to perform the sterilization of the subsequent membrane module parts.

【0026】上記の造水装置においては、供給水のうち、膜を透過しなかった部分は濃縮水として膜モジュールから取り出される。 [0026] In the fresh water generator, among the feed water, the portion which has not permeated through the membrane is removed from the membrane module as concentrated water. この濃縮水は用途に応じて処理した後に廃棄したり、さらに他の方法で濃縮することも可能である。 The retentate or discarded after processing in accordance with the application, can be further concentrated in another way. また、濃縮水はその一部又は全てを供給水に循環することもできる。 Further, the concentrated water can be circulated some or all of the feed water. 膜を透過した透過水においても用途に応じて廃棄したり、そのまま利用したり、あるいは供給水にその一部または全てを循環することもできる。 Or discarded depending on the even application in the permeated water that has passed through the membrane, it is also possible to circulate a part or all or use as it is or the feed water.

【0027】逆浸透膜を用いた造水装置の濃縮水は圧力エネルギーを有しており、運転コストの低減化のためには、このエネルギーを回収することが好ましい。 The concentrated water of the fresh water generator using a reverse osmosis membrane has a pressure energy, for reduction of operating costs, it is preferred to recover this energy. エネルギー回収の方法としては任意の部分の高圧ポンプに取り付けたエネルギー回収装置で回収することもできるが、 Although a method of energy recovery can also be recovered by energy recovery device attached to the high-pressure pump of any part,
高圧ポンプの前後や、モジュール間に取り付けた専用のタービンタイプのエネルギー回収ポンプで回収することが好ましい。 Front and rear and the high-pressure pump, it is preferably recovered by a dedicated turbine type energy recovery pump which is attached between modules. また、造水装置の処理能力は一日当たり水量で0.5〜100万m 3の範囲内とすることができる。 The processing capacity of the fresh water generator may be in the range of 0.5 to 1,000,000 m 3 in one day water.

【0028】また、造水装置の配管は、できるだけ滞留部の少ない構造とすることが好ましい。 Further, piping of the fresh water generator is preferably less as possible retention unit structure. さらに、後述するように、原水のpHは4以下とすることが好ましいため、そのような酸性の水が流れる配管やバルブその他の部材には、ステンレス鋼や2相ステンレス鋼などの耐酸性を有する材料を用いることが好ましい。 Further, as described later, since the pH of the raw water is preferably set to 4 or less, the piping and valves other members of water such acidic flows, acid-resistant, such as stainless steel or duplex stainless steel it is preferable to use a material.

【0029】さて、本発明において、殺菌剤は、分離膜に供給する原水に含まれる微生物の生菌数およびAOC [0029] Now, in the present invention, fungicide, viable cell count of a microorganism contained in the raw water supplied to the separation membrane and AOC
の濃度に基づいて、その添加濃度や添加時間、添加頻度が制御される。 Based on the concentration, the addition concentration and addition time, addition frequency is controlled. これは、分離膜の殺菌を効率よく、しかも確実に行うために非常に効果的である。 This efficiently sterilization of the separation membrane, yet in order to reliably perform highly effective.

【0030】たとえば、塩分濃度が0.1〜4.5重量% [0030] For example, the salt concentration is 0.1 to 4.5% by weight
である海水やかん水を原水とした場合、原水中の生菌数が1.0×10 3 cfu/ml未満(以下、本発明において用いる生菌数の単位は、原水1ml中に認められるコロニーの数[cfu/ml:colony form If the sea water or brackish water and raw water is, the viable cell count of 1.0 × less than 10 3 cfu / ml of raw water (hereinafter, the unit of the number of live bacteria used in the present invention, the colonies found in raw water 1ml number [cfu / ml: colony form
ing unit)で表す。 Represented by ing unit). ]で、かつ、AOC濃度が10μg/l未満であるような、微生物的に比較的きれいな原水では、殺菌剤の添加濃度を50〜150mg/ ] In and, AOC concentration as less than 10 [mu] g / l, in the microbially relatively clean raw water, the addition concentration of the disinfectant 50 to 150 mg /
lの範囲内、添加時間を0.5〜1時間の範囲内、添加頻度を1回/2ヶ月〜1回/6ヶ月の範囲内で選択することが好ましい。 In the range of l, within the range of addition time 0.5 to 1 hour, it is preferable to select the added frequency in the range of one / two months to 1 times / 6 months. また、原水中の生菌数が1.0×10 In addition, the number of viable bacteria in the raw water is 1.0 × 10
3 〜1.0×10 5 cfu/mlの範囲内で、かつ、AO 3 in the range of ~1.0 × 10 5 cfu / ml, and, AO
C濃度が10〜50μg/lの範囲内であるような原水の場合は、殺菌剤の添加濃度を150〜200mg/l If C concentration of the raw water, such as in the range of 10-50 / l, the addition concentration of the sterilizing agent 150 to 200 mg / l
の範囲内、添加時間を1〜2時間の範囲内、添加頻度を1回/週〜1回/2ヶ月の範囲内で選択することが好ましく、さらに、原水中の生菌数が1.0×10 5 cfu In the range of within the range of the addition time 1-2 hours, is preferably selected within the range of the addition frequency once / week to 1 times / 2 months, further, the number of viable bacteria in the raw water 1.0 × 10 5 cfu
/mlを超え、かつ、AOC濃度が50μg/lを超えるような、微生物が非常に多い原水では、殺菌剤の添加濃度を200〜250mg/lの範囲内、添加時間を2 / Exceeded ml, and, AOC concentration exceeding 50 [mu] g / l, microorganisms at very high raw water is in the range of addition concentration of 200 to 250 mg / l of fungicides, the addition time 2
〜4時間の範囲内、添加頻度を1回/日〜1回/週の範囲内で選択することが好ましい。 In the range of 4 hours, it is preferable to select the added frequency in the range of 1 / day to 1 times / week. このように、原水に含まれる生菌数やAOC濃度に基づいて、殺菌剤の添加濃度、添加時間および添加頻度の3条件を全て制御することにより、より効率的に分離膜上の微生物の繁殖を抑え、分離膜の造水量低下を防ぐことができる。 Thus, based on viable cell number and AOC concentration in the raw water, the addition concentration of the disinfectant, by controlling all three conditions of time and addition frequency addition, more efficient breeding of microorganisms on the separation membrane the restrained, it is possible to prevent the water production rate reduction of the separation membrane.

【0031】なお、上記においては、制御項目として殺菌剤の添加濃度、添加時間および添加頻度のいずれをも制御する例について説明したが、もちろん、そのいずれか1つまたは2つを制御するだけでも十分に効果を発揮することができる。 [0031] In the above, the addition concentration of the fungicide as the control items, an example is described of controlling any of the addition times and frequency, of course, also only by controlling any one or two of it is possible to sufficiently exhibit the effect.

【0032】たとえば、1つの条件のみ変更する場合は、原水に含まれる生菌数やAOC濃度にかかわらず、 [0032] For example, when changing only one condition, regardless of the number of viable cells or AOC concentration in the raw water,
殺菌剤の添加時間を1時間、添加頻度を1回/日などといったように一定にしておいて、原水中の生菌数が1. 1 hour addition time of the sterilizing agent, and had been in constant addition frequency to, such as once / day, the number of viable bacteria in the raw water 1.
0×10 3 cfu/ml未満で、かつ、AOC濃度が1 Less than 0 × 10 3 cfu / ml, and, AOC concentration 1
0μg/l未満である場合には、添加濃度を50〜15 If it is less than 0 Pg / l is the addition concentration 50 to 15
0mg/lの範囲内とし、生菌数が1.0×10 3 Set in the range of 0 mg / l, the number of viable bacteria 1.0 × 10 3 ~
1.0×10 5 cfu/mlの範囲内で、かつ、AOC In the range of 1.0 × 10 5 cfu / ml, and, AOC
濃度が10〜50μg/lの範囲内である場合には、添加濃度を150〜200mg/lの範囲内とし、生菌数が1.0×10 5 cfu/mlを超え、かつ、AOC濃度が50μg/lを超える場合には、添加濃度を200 If the concentration is in the range of 10-50 / l is added concentration in the range of 150 to 200 mg / l, the number of live bacteria exceeds 1.0 × 10 5 cfu / ml, and the AOC concentration if it exceeds 50 [mu] g / l, the addition concentration of 200
〜250mg/lの範囲内として制御することが好ましい。 It is preferable to control as in the range of 250 mg / l.

【0033】また、たとえば、添加濃度を150mg/ [0033] Also, for example, the addition concentration of 150mg /
l、添加頻度を1回/日などといったように一定にしておいて、原水中の生菌数が1.0×10 3 cfu/ml l, leave this constant addition frequency as such as once / day, number of live bacteria in the raw water 1.0 × 10 3 cfu / ml
未満で、かつ、AOC濃度が10μg/l未満の場合には、添加時間を0.5〜1時間の範囲内とし、生菌数が1.0×10 3 〜1.0×10 5 cfu/mlの範囲内で、かつ、AOC濃度が10〜50μg/lの範囲内にある場合には、添加時間を1〜2時間の範囲内とし、生菌数が1.0×10 5 cfu/mlを超え、かつ、AO Less than in and, if AOC concentration is less than 10 [mu] g / l is the addition time was in the range of 0.5 to 1 hour, viable bacteria 1.0 × 10 3 ~1.0 × 10 5 cfu / within the scope of ml, and, when the AOC concentration is in the range of 10-50 / l is the addition time was in the range of 1 to 2 hours, the viable cell count 1.0 × 10 5 cfu / ml beyond, and, AO
C濃度が50μg/lを超える場合には、添加時間を2 When the C concentration exceeds 50 [mu] g / l, the addition time 2
〜4時間の範囲内として制御することも好ましい。 It is also preferable to control a range of 4 hours.

【0034】さらに、たとえば、添加濃度を150mg [0034] Further, for example, the addition concentration 150mg
/l、添加時間を1時間などといったように一定にしておいて、原水中の生菌数が1.0×10 3 cfu/ml / L, leave this constant addition time as such as 1 hour, viable bacteria in the raw water 1.0 × 10 3 cfu / ml
未満で、かつ、AOC濃度が10μg/l未満である場合には、添加頻度を1回/2ヶ月〜1回/6ヶ月の範囲内とし、生菌数が1.0×10 3 〜1.0×10 5 cfu And less than, in the case AOC concentration is less than 10 [mu] g / l is the added frequency in the range of one / two months to 1 times / 6 months, the number of viable bacteria 1.0 × 10 3 to 1. 0 × 10 5 cfu
/mlの範囲内で、かつ、AOC濃度が10〜50μg / Ml in the range, and, AOC concentration 10~50μg
/lの範囲内にある場合には、添加頻度を1回/週〜1 / If there is within the range of l, added frequency once / week to 1
回/2ヶ月の範囲内とし、生菌数が1.0×10 5 cf And within the range of times / 2 months, the number of live bacteria is 1.0 × 10 5 cf
u/mlを超え、かつ、AOC濃度が50μg/lを超える場合には、添加頻度を1回/日〜1回/週の範囲内として制御してもよい。 Exceed u / ml, and, when the AOC concentration exceeds 50 [mu] g / l may control the added frequency as 1 / day in the range of ~ 1 times / week.

【0035】また、殺菌剤の添加濃度、添加時間および添加頻度のいずれか1つの条件を一定にしておいて、残り2つの条件を制御することもできる。 Further, the addition concentration of the sterilizing agent, and any one of the conditions of addition times and the frequency had been fixed, it is also possible to control the remaining two conditions. たとえば、殺菌剤の添加濃度を生菌数やAOC濃度にかかわらず一定条件にしておいて、添加時間と添加頻度の2条件を原水の生菌数およびAOC濃度に応じて制御しても良いし、添加時間を一定条件にしておいて、添加濃度と添加頻度の2条件を制御してもかまわないし、また、添加頻度を一定条件にしておいて、添加濃度と添加時間の2条件を制御しても良い。 For example, the addition concentration of the sterilizing agent kept in the constant condition regardless of the viable cell count and AOC concentration, to the two conditions of the addition time and the addition frequency may be controlled in response to the live bacteria count and AOC concentration of the raw water and leave the addition time constant conditions, it does not may be controlled two conditions of addition concentration and the addition frequency, also leave the added frequency constant conditions, and controls the two conditions of the additive concentration and the addition time and it may be.

【0036】なお、原水中の生菌数とAOC濃度の水準分けは、必ずしも上述したような3つの水準に分類する必要はなく、たとえば生菌数が1.0×10 4 cfu/ It should be noted, the level dividing viable cell number and the AOC concentration in the raw water is not necessarily classified into three levels as described above, for example, viable count is 1.0 × 10 4 cfu /
ml未満で、かつ、AOC濃度が30μg/l未満の場合と、生菌数が1.0×10 Less than ml, and, in the case AOC concentration is less than 30 [mu] g / l, the number of viable bacteria 1.0 × 10 4 cfu/ml以上で、かつAOC濃度が30μg/l以上の場合、といった2つの水準にしても良いし、さらに、生菌数が1.0×10 In 4 cfu / ml or more, and if AOC concentration is not less than 30 [mu] g / l, to such may be two levels, further, the number of viable bacteria 1.0 × 10
3 cfu/ml未満で、かつ、AOC濃度が10μg/ Less than 3 cfu / ml, and, AOC concentration 10 [mu] g /
l未満の場合、生菌数が1.0×10 3 〜1.0×10 4 If it is less than l, the number of viable bacteria 1.0 × 10 3 ~1.0 × 10 4
cfu/mlに範囲内で、かつ、AOC濃度が10〜3 Within the cfu / ml, and the AOC concentration 10-3
0μg/lの範囲内にある場合、生菌数が1.0×10 If in the range of 0 Pg / l, the number of viable bacteria 1.0 × 10
4 〜1.0×10 5 cfu/mlの範囲内で、かつ、AO 4 in the range of ~1.0 × 10 5 cfu / ml, and, AO
C濃度が30〜50μg/lの範囲内にある場合、生菌数が1.0×10 5 cfu/mlを超え、かつ、AOC If the C concentration is in the range of 30~50μg / l, the number of live bacteria exceeds 1.0 × 10 5 cfu / ml, and, AOC
濃度が50μg/lを超える場合の様に4つの水準にしても良い。 Concentration may be in four levels as in the case of more than 50μg / l. また、さらに多くの水準に分類してもかまわないが、むやみに水準数を多くしても殺菌効果に大きな差が現れることはあまり期待できないので、分類数が2 In addition, because the further it may be classified into a number of levels, can not be expected is that also appear is a large difference in the sterilization effect by increasing the blindly number of levels, the number of classifications 2
〜5の範囲内で生菌数とAOC濃度の水準を分類するのが好ましい。 Preferably, to classify the level of viable cell count and AOC concentration in the range of 5.

【0037】このように、原水中の生菌数とAOC濃度に基づいて殺菌条件を変更することにより、膜の殺菌を確実かつ無駄なく行うことが可能となる。 [0037] Thus, by changing the sterilization conditions based on the viable cell count and AOC concentration in the raw water, it is possible to perform reliably and without waste sterilization of the membrane.

【0038】殺菌条件を原水の性状によらず常に一定にすると、生菌数やAOCが少ないときは、分離膜の殺菌は確実に行えるが、本来不必要な殺菌を繰り返すこととなり、無駄が多くなる。 [0038] With a constant always regardless of the nature of the sterilization conditions raw water, when the viable cell count and AOC is small, although the sterilization of the separation membrane can be reliably performed, it becomes possible to repeat unnecessary sterilization inherently wasteful Become. また、生菌数やAOCが多いときは、分離膜の殺菌は確実に行えず、膜面に微生物が付着したり堆積したりして、造水量低下などの膜性能が低下する傾向にある。 Further, when the viable cell count and AOC is large, sterilization of the separation membrane is not reliably performed, or by depositing or adhering microorganisms on the membrane surface, membrane performance, such as desalination rate reduction tends to decrease.

【0039】また、原水の性状を微生物の生菌数だけで判断すると、たとえば生菌数が1.0×10 3 cfu/ [0039] In addition, if the properties of the raw water to determine only viable count of microorganisms, for example, the number of viable cells is 1.0 × 10 3 cfu /
ml程度でも、AOCが少ない場合と多い場合とでは、 Be about ml, in the case often is the case is less AOC,
微生物の増殖度合いが異なるため、最適な殺菌条件が選定できにくくなり、一方、AOC濃度だけで判断しても、当然のことながら生菌数が把握できなければ、最適な殺菌条件を選定することは困難となる。 Since the growth degree of the microorganism are different, hardly can be selected optimum sterilization conditions, while, be determined only by AOC concentration, if viable count can be grasped course, possible to select the optimum sterilization conditions It is difficult.

【0040】本発明では、殺菌剤の添加は間欠的に行うことが好ましい。 [0040] In the present invention, addition of sterilizing agent is preferably performed intermittently. 殺菌剤の添加を連続的に行うことは、 Performing the addition of the disinfectant is continuously,
薬剤を多量に消費し無駄が多くなるのみならず、微生物学的にみても、常に同じ環境を作り出すこととなり、殺菌剤に耐性のある微生物の異常増殖を招きやすくなる。 Not only is the drug to the large amount of consumption waste increases, even if viewed in a microbiological, always to create the same environment, tends to lead to abnormal growth of microorganisms that are resistant to fungicides.
殺菌剤を間欠的に添加することによって、薬剤消費の無駄をなくすことができ、かつ、微生物学的にも、環境を変化させることになるので、耐性菌などの特定の微生物の異常増殖を防ぐことができる。 By intermittently added disinfectant, can avoid wasting of drug consumption, and also microbiological, it means changing the environment, preventing the abnormal growth of certain microorganisms such resistant bacteria be able to.

【0041】なお、本発明において、生菌数およびAO [0041] In the present invention, the viable cell count and AO
C濃度とは、それぞれ、以下に示す方法により測定された値をいう。 The C concentration, respectively, refers to a value measured by the following methods.

【0042】生菌数: pH7.0に調整した海洋性細菌用寒天培地に海水サンプルを100μl塗沫し、20 The number of viable bacteria: a sea water sample to 100μl smeared in marine bacteria for the agar medium was adjusted to pH7.0, 20
℃で3日間培養した後、培地に形成されたコロニーの数を計数し、その数を10倍した値を生菌数(単位:cf After culturing for 3 days at ° C., counting the number of colonies formed in the culture medium, the viable cell count of the value of that number was 10 times (unit: cf
u/ml)とする。 u / ml) to.

【0043】AOC濃度:海水サンプルに硫酸を濃度が300mg/lとなるように添加し、あらかじめ滅菌した平底試験管に硫酸を添加した海水サンプルを入れ、1 The AOC concentration: sea water sample to a sulfuric acid was added to a concentration of 300mg / l, put the seawater samples spiked with sulfuric acid to pre-sterile flat-bottomed test tube, 1
N水酸化ナトリウムでpH8付近に中和する。 Neutralized to near pH8 with N sodium hydroxide.

【0044】さらに、硝酸ナトリウムが2.8mg/l [0044] In addition, sodium nitrate is 2.8mg / l
(窒素原子として0.5mg/l)、リン酸二カリウムが0.3mg/l(リン元素として0.05mg/ (A nitrogen atom as 0.5 mg / l), 0.05 mg as dipotassium phosphate 0.3 mg / l (elemental phosphorus /
l)、TES(Trace Element Solu l), TES (Trace Element Solu
tion:溶質としてエチレンジアミン四酢酸四ナトリウム、硫酸鉄、ホウ酸、塩化コバルト、塩化亜鉛、塩化マンガン、モリブデン酸ナトリウム、塩化ニッケル、塩化銅、亜セレン酸を含む)を溶質濃度として0.032 tion: tetrasodium ethylenediaminetetraacetate as a solute, ferrous sulfate, boric acid, cobalt chloride, zinc chloride, manganese chloride, sodium molybdate, 0.032 nickel chloride, copper chloride, including selenite) as a solute concentration
mg/l、酢酸ナトリウムを50μg/l、100μg mg / l, sodium acetate 50 [mu] g / l, 100 [mu] g
/l、150μg/lの3水準となるように海水サンプルに添加し、さらに同時に採取した硫酸無添加の海水を濃度が1%となるようこれに添加して、ポリプロピレン製キャップをした後、サンプル採取時の海水温度にあわせたインキュベーター内で暗所静置培養する。 / L, was added to the seawater sample at 3 levels of 150 [mu] g / l, further addition of seawater sulfate without addition taken simultaneously thereto so that the concentration becomes 1%, after the polypropylene caps, sample the dark to stationary culture in an incubator to match the sea water temperature at the time of harvesting.

【0045】培養開始から24時間ごとに、暗所静置培養した海水サンプルからサンプリングし、滅菌した2. [0045] every 24 hours from the start of the culture, and sampling from seawater samples dark static culture, was sterilized 2.
5%食塩水で10倍、100倍、1000倍およびから10000倍の4水準に希釈して、海洋性細菌用寒天培地に各稀釈度ごとに3枚ずつ塗抹し、海水サンプルと同じ温度で培養する。 10 times with 5% brine, 100-fold, diluted to 4 levels 10000 times 1000 times and, smeared three pieces for each dilution of the agar medium for marine bacteria, incubated at the same temperature as the seawater sample to.

【0046】上記の培地サンプルについて、各サンプリング時間ごとに、培養後のコロニー数が一枚あたり30 [0046] For the above media samples, for each sampling time, the number of colonies 30 per sheet after culture
から300個の範囲に入っている稀釈度を選定し、コロニー数平均を計測して、この値からからそれぞれの最大増殖数を求め、酢酸ナトリウム濃度と最大増殖数の相関を求めて回帰分析し、生菌数とAOC濃度に関して以下の相関式を求め、この式から供給海水に含まれるAOC Select a 300 of that dilution degree within the range from measures the average number of colonies, determined the maximum growth speed of each from this value, regression analysis to determine the correlation between the sodium acetate concentration and the maximum growth number obtains the following correlation equation with respect to the number of viable cells and AOC concentration, AOC contained in feed seawater from the equation
濃度を計算する。 To calculate the concentration.

【0047】(AOC濃度:μg/l)=[(生菌数: [0047] (AOC concentration: μg / l) = [(number of viable bacteria:
cfu/ml)−A]/B (但し、上式の係数A及びBの値は、増殖する菌種によって異なるため、異なる場所の海水では必ずしも同じ値になるとは限らない。)また、本発明では、上述のような生菌数を基準として用いる代わりに、原水に含まれる菌体量を用いることもできる。 cfu / ml) -A] / B (where the value of the coefficient A and B in the above equation, because it depends on species growing, at different locations of the seawater is not necessarily to be the same value.) Further, the present invention so instead of using as a reference the number of viable bacteria as described above, it can also be used cell mass contained in the raw water.

【0048】菌体量の測定方法としては、ATP測定法を用いるのが正確、簡便、かつ迅速に測定できるため好ましい。 The method for measuring the cell amount is correct to use the ATP measurement method, simple and preferable because it can be measured quickly. ATP測定法は、細菌を含むサンプルに抽出試薬として酸や界面活性剤を加えて、細胞壁を溶解し、A ATP measurement method, by adding an acid or a surfactant as an extraction reagent to a sample containing bacteria, the cells were lysed wall, A
TP(アデノシン−5'−三リン酸)を抽出し、さらに発光試薬としてルシフェラーゼ等の酵素を添加して発光させ、その発光量でATPの量を定量することにより菌体量を測定する方法で、これにより求めた菌体量は、通常、サンプル1リットル当りに含まれるATPの量で示され、通常、単位は(ng−ATP/l)となる。 In a method of extracting the TP (adenosine 5'-triphosphate), further by emitting adding enzymes such as luciferase as a luminescent reagent, measuring the cell mass by quantifying the amount of ATP in the amount of light emission , thereby cell weight determined is usually indicated by the amount of ATP in the sample per liter, typically, the unit becomes (ng-ATP / l).

【0049】さらに、本発明においては同化可能有機炭素濃度の代わりに、原水のバイオフィルム形成速度[以下、BFR(Biofilm Formation Rate)と称す]を用いてもよい。 [0049] Further, instead of assimilable organic carbon concentration in the present invention, raw water biofilm formation rate [hereinafter referred to as the BFR (Biofilm Formation Rate)] may be used. BFRは単位面積、単位時間当りに担体表面上に形成される微生物膜の付着量を示すものである。 BFR shows a deposition amount of biofilm formed on the support surface per unit area, unit time.

【0050】BFRの測定方法としては、例えば、原水中にガラスなどの平滑平板を浸漬し、一定時間後に取り出して、ガラス板表面に付着した微生物を掻き取り、その付着量を測定する。 The method for measuring the BFR, for example, a smooth flat plate such as glass was immersed in the raw water is taken out after a predetermined time, it scraped microorganisms attached to the surface of a glass plate, to measure the deposition amount. 微生物付着量の測定は、上述のA Measurement of microbial attachment amount, the above A
TP測定法などを用いるのが正確であるので好ましい。 TP measurement to use such preferred since it is accurate.
ATP測定法を用いた場合、BFRの単位は1日当り、 When using the ATP measurement method, the unit of BFR per day,
1cm 2当りに付着する菌体量で示され、通常、単位は(pg−ATP/cm 2 /d)となる。 Indicated by cell amount adhering per 1 cm 2, usually, the unit becomes (pg-ATP / cm 2 / d).

【0051】本発明においては、前述のように原水中の生菌数とAOC濃度に基づいて殺菌を制御する代わりに、上述の菌体量とAOC濃度の組合せに基づいて殺菌を制御しても良いし、また生菌数とBFRの組合せに基づいて殺菌を制御しても良いし、さらに菌体量とBFR [0051] In the present invention, instead of controlling the disinfection based on viable cell count and AOC concentration in raw water, as described above, it is used to control the sterilization based on a combination of cell amount and AOC concentration above it may, also may be controlled sterilization based on a combination of the viable cell count and BFR, further cell amount and BFR
の組合せに基づいて殺菌を制御しても良い。 It may control the sterilization on the basis of the combination. その組合せは、生菌数と菌体量のどちらか一方と、AOC濃度とB The combination, and either of the viable cell count and cell amount, AOC concentration and B
FRのどちらか一方との組合せから選択すればよい。 Either may be selected from a combination of one of the FR.

【0052】たとえば、菌体量とAOC濃度の組合せに基づいて殺菌を制御するならば、前述の生菌数とAOC [0052] For example, if controlling the sterilization based on a combination of cell amount and AOC concentration, viable cell count above and AOC
濃度の場合と同様、塩分濃度が0.1〜4.5重量%である海水やかん水を原水とした場合、原水中の菌体量が1.0ng−ATP/l未満で、かつ、AOC濃度が1 As with the concentration, if the salt concentration was the raw seawater or brackish water is from 0.1 to 4.5 wt%, cell amount in the raw water is less than 1.0 ng-ATP / l, and, AOC concentration There 1
0μg/l未満であるような、微生物的に比較的きれいな原水では、殺菌剤の添加濃度を50〜150mg/l 0 Pg / l less than a is such, in the microbially relatively clean raw water, the addition concentration of the disinfectant 50 to 150 mg / l
の範囲内、添加時間を0.5〜1時間の範囲内、添加頻度を1回/2ヶ月〜1回/6ヶ月の範囲内で選択することが好ましい。 In the range of within the range of addition time of 0.5-1 hours, preferably selected additives frequently in the range of one / two months to 1 times / 6 months. また、原水中の生菌数が1〜100ng In addition, the number of viable bacteria in the raw water 1~100ng
−ATP/lの範囲内で、かつ、AOC濃度が10〜5 Within the scope of -ATP / l, and the AOC concentration 10-5
0μg/lの範囲内であるような原水の場合は、殺菌剤の添加濃度を150〜200mg/lの範囲内、添加時間を1〜2時間の範囲内、添加頻度を1回/週〜1回/ If raw water such as in the range of 0 Pg / l, within a range of addition concentration of 150 to 200 mg / l of bactericide in the range of the addition time 1-2 hours, adding frequency once / week to 1 times /
2ヶ月の範囲内で選択することが好ましく、さらに、原水中の菌体量が50ng−ATP/lを超え、かつ、A Is preferably selected within a range of 2 months, further cell amount of raw water exceeds 50 ng-ATP / l, and, A
OC濃度が50μg/lを超えるような、微生物が非常に多い原水では、殺菌剤の添加濃度を200〜250m OC concentration is in excess of 50μg / l, the microorganism is a very large raw water, 200~250m the addition concentration of fungicide
g/lの範囲内、添加時間を2〜4時間の範囲内、添加頻度を1回/日〜1回/週の範囲内で選択することが好ましい。 In the range of g / l, within the scope of the addition time 2-4 hours, it is preferable to select the added frequency in the range of 1 / day to 1 times / week.

【0053】また、生菌数とBFRの組合せに基づいて殺菌を制御するならば、同様に原水中の生菌数が1.0 [0053] In addition, if you control the sterilization based on a combination of the number of viable cells and the BFR, the number of viable bacteria in the same way the raw water is 1.0
×103cfu/ml未満で、かつ、BFRが10pg Less than × 103cfu / ml, and, BFR is 10pg
−ATP/cm 2 /d未満であるような、微生物的に比較的きれいな原水では、殺菌剤の添加濃度を50〜15 -ATP / cm 2 / is as below d, the microbially relatively clean raw water, the addition concentration of the disinfectant 50 to 15
0mg/lの範囲内、添加時間を0.5〜1時間の範囲内、添加頻度を1回/2ヶ月〜1回/6ヶ月の範囲内で選択することが好ましい。 In the range of 0 mg / l, in the range of addition time of 0.5-1 hours, preferably selected additives frequently in the range of one / two months to 1 times / 6 months. また、原水中の生菌数が1. In addition, the number of viable bacteria in the raw water 1.
0×103〜1.0×105cfu/mlの範囲内で、 In the range of 0 × 103~1.0 × 105cfu / ml,
かつ、BFRが10〜50pg−ATP/cm 2 /dの範囲内であるような原水の場合は、殺菌剤の添加濃度を150〜200mg/lの範囲内、添加時間を1〜2時間の範囲内、添加頻度を1回/週〜1回/2ヶ月の範囲内で選択することが好ましく、さらに、原水中の生菌数が1.0×105cfu/mlを超え、かつ、BFRが50pg−ATP/cm 2 /dを超えるような、微生物が非常に多い原水では、殺菌剤の添加濃度を200〜2 And, if BFR is raw water, such as in the range of 10~50pg-ATP / cm 2 / d , within the range of the addition concentration of 150 to 200 mg / l fungicide, it ranges addition time of 1-2 hours among them, it is preferable to select the addition frequency within a range of 1 times / week to 1 times / 2 months, further, the number of viable bacteria in the raw water exceeds 1.0 × 10 5 cfu / ml, and, BFR is 50pg- exceeding ATP / cm 2 / d, microorganisms at very high raw water, the addition concentration of the fungicide 200-2
50mg/lの範囲内、添加時間を2〜4時間の範囲内、添加頻度を1回/日〜1回/週の範囲内で選択することが好ましい。 In the range of 50 mg / l, within the scope of the addition time 2-4 hours, it is preferable to select the added frequency in the range of 1 / day to 1 times / week.

【0054】さらに菌体量とBFRの組合せに基づいて殺菌を制御するならば、原水中の菌体量が1.0ng− [0054] If further control the sterilization based on a combination of cell amount and BFR, cell amount in the raw water 1.0ng-
ATP/l未満で、かつ、BFRが10pg−ATP/ In less than ATP / l, and, BFR is 10pg-ATP /
cm cm 2 /d未満であるような、微生物的に比較的きれいな原水では、殺菌剤の添加濃度を50〜150mg/l 2 / d less than a is such, in the microbially relatively clean raw water, the addition concentration of the disinfectant 50 to 150 mg / l
の範囲内、添加時間を0.5〜1時間の範囲内、添加頻度を1回/2ヶ月〜1回/6ヶ月の範囲内で選択することが好ましい。 In the range of within the range of addition time of 0.5-1 hours, preferably selected additives frequently in the range of one / two months to 1 times / 6 months. また、原水中の菌体量が1.0〜100 In addition, cell amount of raw water is 1.0 to 100
ng−ATP/lの範囲内で、かつ、BFRが10〜5 Within the scope of ng-ATP / l, and, BFR is 10-5
0pg−ATP/cm 2 /dの範囲内であるような原水の場合は、殺菌剤の添加濃度を150〜200mg/l 0pg-ATP / cm 2 / If the raw water, such as in the range of d, the addition concentration of the disinfectant 150 to 200 mg / l
の範囲内、添加時間を1〜2時間の範囲内、添加頻度を1回/週〜1回/2ヶ月の範囲内で選択することが好ましく、さらに、原水中の菌体量が100ng−ATP/ Range, the range of the addition time 1-2 hours, it is preferable to select the addition frequency within a range of 1 times / week to 1 times / 2 months, further cell amount in the raw water 100 ng-ATP in /
lを超え、かつ、BFRが50pg−ATP/cm 2 beyond the l, and, BFR is 50pg-ATP / cm 2 /
dを超えるような、微生物が非常に多い原水では、殺菌剤の添加濃度を200〜250mg/lの範囲内、添加時間を2〜4時間の範囲内、添加頻度を1回/日〜1回/週の範囲内で選択することが好ましい。 Exceeding d, the microorganism is very large raw water, the range of addition concentration of 200 to 250 mg / l of bactericide in the range of 2 to 4 hours addition time, addition frequency once / day to 1 times / it is preferably selected within the range of the week. 本発明においては、殺菌剤添加時の原水のpHを4以下とすることが、分離膜に対して高い殺菌効果を発揮できるため好ましい。 In the present invention, it is less 4 the pH of the raw water during fungicides added, preferred because it can exhibit a high bactericidal effect on the separation membrane. 特に、海水を供給水として用いる場合に、この効果は顕著である。 Particularly, in the case of using seawater as feed water, this effect is remarkable. 微生物の死滅するpHは個々の微生物に対して異なり、たとえば、大腸菌の場合、生育の下限はpH4.6であるが、死滅はpH3.4以下でおこる。 pH of killing of microorganisms is different for each microorganism, for example, the case of E. coli, the lower limit of the growth is pH 4.6, killing occurs at pH3.4 or less. 一方、海水中にも多種多様の微生物が存在し、それぞれ死滅するpHが異なる。 On the other hand, there are a wide variety of microorganisms in sea water, pH is different for die respectively. しかし、本発明においては、多種の生菌を含む海水をpH4以下に一定時間保持すれば、50〜100%を死滅させることが可能である。 However, in the present invention, if a predetermined time holding seawater containing live bacteria of a wide to pH4 or less, it is possible to kill 50 to 100%. またpHを3.9以下としたり、さらにpHを3. The or 3.9 or less pH, further pH 3.
7以下とすることも、海水由来の菌を死滅させるという観点で好ましい。 It is also desirable in view of killing bacteria from sea water to 7 or less. このようにpHを制御することにより高い殺菌効果が得られるばかりでなく、配管などに堆積したスケールをも除去できるという効果も期待できる。 Thus not only a high sterilization effect can be obtained by controlling the pH, it can also be expected an effect that may remove scale deposited in a pipe or the like.

【0055】殺菌剤としては、たとえば、塩素ガスや次亜塩素酸ナトリウム、硫酸、塩酸、硝酸、クエン酸などを用いることができる。 [0055] As the fungicides, for example, can be used chlorine gas or sodium hypochlorite, sulfuric acid, hydrochloric acid, nitric acid, and citric acid. 中でも、殺菌剤として酸を用いれば、上記したpHの制御も同時に行いやすくなり好ましい。 Among them, the use of the acid as a disinfectant, preferred easier done simultaneously control the pH as described above. 酸としては、有機酸、無機酸いずれを用いても差し支えないが、経済的な面を考えると、硫酸を用いることが好ましい。 As the acid, an organic acid, but no problem be either inorganic acids, given the economical viewpoint, it is preferred to use sulfuric acid. またpHを4以下に制御するために必要な硫酸の添加量は、供給液の塩濃度に比例し、たとえば、塩濃度が1重量%程度の原水では硫酸を50mg/ The amount of sulfuric acid needed to control the pH to 4 or less, proportional to the salt concentration of the feed solution, for example, sulfuric acid in the raw water of about 1% by weight salt concentration 50 mg /
lとなるように添加することでpH3.2まで低下するが、海水(塩濃度約3.5重量%)では120mg/l Drops to pH3.2 by the addition so that the l, but seawater (salt concentration of about 3.5 wt%) in the 120 mg / l
以上添加することが好ましい。 It is preferable to add more. 最大添加量は、経済性や配管等設備への影響を考えると、400mg/l、より好ましくは300mg/lである。 Maximum amount, given the impact on the economy and piping equipment, 400 mg / l, more preferably 300 mg / l. なお、海水への硫酸添加濃度を150mg/l、200mg/lとすると、 Incidentally, the sulfuric acid concentration of added to seawater 150 mg / l, when the 200 mg / l,
pHの範囲は、それぞれ3.2〜3.0、2.8〜2. Range of pH, respectively 3.2~3.0,2.8~2.
9となり、添加濃度が高くなるに従ってpH変動は減少する。 Next 9, pH variation decreases with addition concentration is high.

【0056】さて、従来においても、膜を用いた分離装置においては種々の殺菌手法が取り入れられていたわけであるが、それは、塩素等の酸化剤を連続的に添加するものであった。 [0056] Now, in the past, the separation device using a membrane is not had incorporated various sterilization techniques, it has been to continuously adding an oxidizing agent such as chlorine. この方法によれば、供給水は耐性菌が出現しない限りほぼ完全に殺菌できるが、酸化剤が通常は逆浸透膜の化学的劣化をもたらすため、膜分離装置の手前で亜硫酸水素ナトリウムを代表とする還元剤を添加する。 According to this method, the supply water can be almost completely sterilize unless the resistant bacteria does not appear, the oxidizing agent is usually to bring the chemical degradation of the reverse osmosis membrane, a representative of sodium bisulfite before the membrane separation unit the addition of a reducing agent. しかし、還元剤により過剰の酸化剤を除去した後の供給水は微生物が容易に繁殖できる状態となる。 However, the supply water after removal of the excess oxidizing agent by the reducing agent is in a state of microorganisms can be easily bred. しかも、殺菌剤添加前の原海水のように種々雑多な微生物ではなく、かなり選別された微生物群がそこに存在し、その中には耐酸性菌も多く含まれることになる。 Moreover, rather than miscellaneous microorganisms as raw seawater before fungicide addition, there there is considerable sorted microorganisms will include many acid resistance bacteria therein. また還元剤添加が不充分な場合は、酸化剤が完全には消去できずに膜の劣化をもたらす場合があるが、一方、過剰添加することによってある種の細菌が繁殖することもある。 Also if the reducing agent addition insufficient, although completely oxidizing agent can lead to deterioration of the film can not be erased, whereas, sometimes certain bacteria may grow by excessive addition. 従って、本発明の膜分離装置の供給原水に、硫酸などの酸を添加して殺菌方法を実施する際には、酸化剤を添加しないことが好ましいが、この場合は逆に前の処理工程で生物が繁殖することになる。 Thus, the supply of raw water membrane separation apparatus of the present invention, in practicing the sterilization method by addition of an acid such as sulfuric acid is preferably not added an oxidizing agent, conversely this case in the previous processing step so that the organisms to breed.

【0057】この問題に対しては、間欠的に、前処理工程において酸化剤、および膜分離装置への供給前に還元剤を添加することによって、非注入時に前処理工程の配管やろ過水槽等に付着、堆積した生物を殺菌することで解決される。 [0057] For this problem, intermittently, oxidizing agents in the pretreatment step, and film before supply to the separator by adding a reducing agent, the pretreatment step during non-injection pipe and filtering water tank or the like the deposition is solved by sterilizing the deposited organism. この方法によれば、同時に膜の劣化を防止するためにも有効である。 According to this method, it is also effective to simultaneously prevent the deterioration of the membrane.

【0058】このときの酸化剤と還元剤の添加濃度や添加時間、あるいは添加頻度は、膜分離装置の殺菌の場合と同様に、原水中の生菌数とAOC濃度、菌体量とAO [0058] addition concentration and addition time, or adding the frequency of the oxidizing agent and reducing agent in this case, as in the case of sterilization of the membrane separation device, the viable cell count and AOC concentration in the raw water, cell volume and AO
C濃度、生菌数とBFR、あるいは菌体量とBFRの組合せから求められる値に応じて適宜変えるのが良い。 C concentration, it is preferable suitably varied according to the value obtained from the viable cell count and BFR or cell amount and BFR combination. たとえば生菌数とAOC濃度の組合せの場合では、原水中の生菌数が1.0×10 3 cfu/ml未満で、かつ、 For example, in the case of a combination of live bacteria count and AOC concentration, the number of live bacteria in the raw water is less than 1.0 × 10 3 cfu / ml, and,
AOC濃度が10μg/l未満であるような、微生物的に比較的きれいな原水では、酸化剤の添加濃度は0.1 AOC concentration as less than 10 [mu] g / l, in the microbially relatively clean raw water, the addition concentration of the oxidizing agent is 0.1
〜1.0mg/lの範囲内、添加時間は0.1〜1.0 Within the range of ~1.0mg / l, addition time is 0.1 to 1.0
時間の範囲内、添加頻度は1年〜1月に1回の範囲内とすることが好ましく、逆に、原水中の生菌数が1.0× Within the time, the addition frequency is preferably set within one range of 1 year to January, conversely, the viable count in the raw water 1.0 ×
10 5 cfu/ml以上で、かつ、AOC濃度が50μ 10 5 cfu / ml or more, and, AOC concentration 50μ
g/l以上であるような微生物が非常に多い原水では、 In microorganisms such as some in g / l or more is very large raw water,
たとえば、殺菌剤の添加濃度は1.0〜5.0mg/lの範囲内、添加時間は1.0〜5時間の範囲内、添加頻度は1週間〜1日に1回の範囲内といった条件で殺菌すればよい。 For example, conditions within the range of the addition concentration is 1.0~5.0mg / l of fungicide, within the scope of the addition time is 1.0 to 5 hours, the addition frequency, such as in the range of once a week to a day in may be sterilized. その他の組合せに基づく場合でも上記と同様な方法で殺菌を行うのが良い。 Even when based on other combinations above and good to carry out the sterilization in the same manner. また、還元剤の添加については、いずれも場合でも、酸化剤の添加時間、頻度に合わせて、完全に酸化剤を消去するのに必要な相当量を添加することが好ましい。 Also, the addition of the reducing agent, even if any, addition time of the oxidizing agent, in accordance with the frequency, it is preferable to add a substantial amount needed to clear the complete oxidation agent.

【0059】さらに、前処理における殺菌とその後工程である膜分離装置の殺菌は、その時期を合わせて、すなわち同期させて行うのが殺菌効率が高くなるため好ましい。 [0059] In addition, sterilization of sterilization and thereafter a step membrane separator in the pretreatment is combined that time, namely preferable because carried out in synchronization becomes high sterilization efficiency. このような、前処理工程における間欠的な酸化剤(塩素殺菌剤)添加方法は、連続的な酸化剤の添加に対して、薬品代など処理費の著しい低減効果をもたらすが、これは本発明の造水方法において顕著であり、従来行われていた高濃度の亜硫酸水素ナトリウム添加による殺菌方法では、実施が困難であった。 Such pretreatment intermittent oxidizing agent in step (chlorine disinfectant) method of addition relative to addition of successive oxidants, leads to a significant reduction of processing costs, such as chemicals cost, this invention the prominent in desalination method, conventionally performed have high concentrations sterilizing method according sodium bisulfite addition of implementation was difficult.

【0060】本発明の造水方法は、精密ろ過膜を用いた液体と固形分の分離や濃縮、限外ろ過膜を用いた濁質成分の分離や濃縮を行うにあたっても好適に適用できるものであるが、特に、逆浸透膜を用いて溶解成分の分離や濃縮を行うのに適している。 [0060] desalination process of the present invention, which can be suitably applied when performing separation and concentration of turbid component using liquid and solids separation and concentration using the microfiltration membrane, an ultrafiltration membrane there is, in particular, suitable for performing separation and concentration of dissolved components by using a reverse osmosis membrane. 中でも、海水やかん水の淡水化、工業用水の製造、純水や超純水の製造、医薬用水の製造、果汁などの濃縮、水道原水の除濁、水道における高度処理などに効果が大である。 Among them, desalination of sea water or brackish water, production of industrial water, pure water or ultrapure water production, the manufacture of a medicament water, concentration of fruit juice, dividing the raw water turbidity, the effect is large in such advanced treatment in water . また、飲料水製造の場合には、本発明によれば過剰な遊離塩素を発生させにくいので、トリハロメタン等の発生を低く抑えることができる。 In the case of drinking water production is not easily to generate excess free chlorine according to the present invention, it is possible to suppress the generation of trihalomethanes such low. 本発明の方法は、特に、海水中に含まれる菌や微生物の殺菌に有効な方法である。 The method of the present invention, in particular, is an effective method to sterilize bacteria and microorganisms contained in sea water.

【0061】 [0061]

【実施例】(実施例1)愛媛県松前港の表層海水を供給水として用い、凝集砂ろ過とポリッシングろ過を行う前処理装置、および直径4インチの架橋芳香族ポリアミド系逆浸透膜モジュールを有する膜分離装置からなるラインを3系列有する図2に示すような海水淡水化装置を運転し、海水を淡水化する逆浸透分離を行った。 With EXAMPLES (Example 1) Ehime Masaki Harbor surface seawater as feed water, the processing apparatus before performing the aggregation sand filter and polishing filtration, and a 4 inch diameter crosslinked aromatic polyamide-based reverse osmosis membrane module operating the membrane separator line 3 series with seawater desalination, as shown in FIG. 2 apparatus consisting of seawater was subjected to reverse osmosis separation of desalination. 図2においては、同じ装置については図1と同じ図番号を付した。 In Figure 2, for the same device denoted by the same figure number as FIG. 各装置の作用等については図1で示したのと同様である。 The operation of each device is the same as that shown in FIG. また、供給海水中の生菌数およびAOC濃度の測定は以下の通り行った。 The measurement of viable cell number and AOC concentration in the feed seawater was performed as follows.

【0062】生菌数:pH7に調整した海洋性細菌用寒天培地に供給海水サンプルを100μl塗沫し、20℃ [0062] viable count: pH 7 to supply seawater samples adjusted marine bacteria agar medium and 100μl smear, 20 ° C.
で3日間培養してコロニーを計数し、生菌数を測定した。 Cultured and colonies counted in 3 days to measure the number of viable cells.

【0063】AOC濃度:供給海水サンプルに硫酸を3 [0063] AOC concentration: 3 sulfuric acid to supply sea water sample
00mg/lとなるように添加し、あらかじめ滅菌した平底試験管に、上記の硫酸を添加した海水サンプルを入れ、1N水酸化ナトリウムでpH8付近に中和した。 Was added in an amount of 200 mg / l, the pre-sterilized flat-bottomed test tubes, put seawater samples spiked with said sulfuric acid, and neutralized to near pH8 with 1N sodium hydroxide. さらに、硝酸ナトリウムが2.8mg/l(窒素原子として0.5mg/l)、リン酸二カリウムが0.3mg/ Moreover, (0.5 mg / l as nitrogen atom) of sodium nitrate is 2.8 mg / l, dipotassium phosphate 0.3 mg /
l(リン元素として0.05mg/l)、TES(Tr l (0.05mg as elemental phosphorus / l), TES (Tr
ace Element Solution:溶質としてエチレンジアミン四酢酸四ナトリウム、硫酸鉄、ホウ酸、塩化コバルト、塩化亜鉛、塩化マンガン、モリブデン酸ナトリウム、塩化ニッケル、塩化銅、亜セレン酸を含む)を溶質濃度として0.032mg/l、酢酸ナトリウムを50μg/l、100μg/l、150μg/ ace Element Solution: tetrasodium ethylenediaminetetraacetate as a solute, ferrous sulfate, boric acid, cobalt chloride, zinc chloride, manganese chloride, sodium molybdate, 0.032 mg of nickel chloride, copper chloride, including selenite) as a solute concentration / l, sodium acetate 50μg / l, 100μg / l, 150μg /
lの3水準となるように添加し、さらに同時に採取した硫酸無添加の海水を1%となるよう添加して、ポリプロピレン製キャップをした後、サンプル採取時の海水温度にあわせたインキュベーター内で暗所静置培養し、培養開始から24時間ごとにサンプリングし、滅菌した2. Was added to a 3 levels of l, was added to a further 1% of seawater sulfate without addition taken at the same time, after the polypropylene caps, dark in an incubator adjusted to the sea water temperature during sampling and TokoroShizu置 culture was sampled every 24 hours from the start of the culture and sterilized 2.
5%食塩水で10、100、1000および10000 With 5% aqueous sodium chloride solution 10, 100, 1000 and 10000
倍の4水準に希釈して海洋性細菌用寒天培地に各稀釈水準ごとに3枚ずつ塗抹して海水試料と同じ温度で培養した。 Diluted to 4 levels of magnification smeared three pieces for each dilution level in an agar medium for marine bacteria were cultured at the same temperature as the seawater sample. 24時間ごとにサンプリングして培養した培地サンプルについて、各サンプリング時間ごとに、培養後のコロニー数が一枚あたり30から300個の範囲に入っている稀釈度を選び、コロニー数平均からそれぞれの最大増殖数を計数し、酢酸ナトリウム濃度と最大増殖数の相関を求めて回帰分析し、生菌数とAOC濃度に関して以下の相関式を求め、供給海水に含まれるAOC濃度を求めた。 For media samples were cultured sampled every 24 hours, for each sampling time, select the dilution degree of the number of colonies after incubation is on from 30 per sheet to 300 range, the maximum of number average of the respective colonies the number of growth were counted, and regression analysis the correlation of sodium acetate concentration and the maximum growth rate, determine the following correlation equation with respect to the number of viable cells and AOC concentration was determined AOC concentration in the feed seawater.

【0064】(AOC濃度:μg/l)=[(生菌数: [0064] (AOC concentration: μg / l) = [(number of viable bacteria:
cfu/ml)−774,000]/3,080 以上の操作を1ヶ月ごとに実施して、都度供給海水中の生菌数とAOC濃度を測定し、これに合わせた殺菌条件を表1に示す実施例1の組合せの中から選定して、図2 cfu / ml) -774,000] / 3,080 by performing the above operation for each month, the viable cell count and AOC concentration each time the supply seawater was measured, combined sterilization conditions to Table 1 be selected from the combinations of the first embodiment shown, FIG. 2
の海水淡水化装置の第1系列の殺菌を実施し1年間運転を行った。 The sterilization of the first series of seawater desalination apparatus was operated for one year the implementation of. (実施例2)実施例1と同じ場所で同じ供給海水と同じ装置を用い、生菌数の代わりに、ATP測定法による菌体量、AOC濃度の代わりにBFRを以下のように測定した。 (Example 2) using the same apparatus as the same feed seawater at the same place as in Example 1, in place of the viable cell count, cell mass by ATP measurement method, the BFR in place of AOC concentration was measured as follows.

【0065】菌体量:供給海水サンプル1mlを試験管に入れ、これにATP抽出試薬を添加した後、ATP発光試薬(ルシフェラーゼ、ルシフェリン等の混合物)を添加し、ただちにATP発光量測定器(ヤマト科学製、 [0065] cell mass: supplying seawater samples 1ml placed in a test tube, after the addition of ATP extraction reagent thereto, the addition of ATP light emission reagent (luciferase, a mixture of such luciferin), immediately ATP luminescence measuring instrument (Yamato scientific Co., Ltd.,
コンパクトルミVS501)に入れてATP濃度を測定し、その数値を菌体量とする。 The ATP concentration was determined taking into compact Rumi VS501), to that number and cell amount.

【0066】BFR:片面の面積が20cm 2のスライドグラスを原海水の取水管近傍に浸漬しておき、約3週間後に引き上げて、スライドガラス表面の付着物を掻き取り、その重量を測定する。 [0066] BFR: one side of the area previously by immersing the slides in 20 cm 2 in the vicinity intake pipe of the original seawater, pulled up after about 3 weeks, scraped deposits on the surface of the slide glass, and measuring the weight. 次にこの付着物サンプル1 Then this deposit Sample 1
0mgをATP測定用試験管に入れ、無菌水の純水で希釈、分散させ、上記菌体量の測定と同様の方法でサンプルのATP濃度を測定し、1cm 2当り、1日当りの付着速度を求め、BFR値とする。 0mg placed in a test tube for ATP measurement, diluted with pure water sterile water, is dispersed, the ATP concentration of the sample in the same manner as the measurement of the cell amount was measured, 1 cm 2 per one day deposition rate required, and BFR value.

【0067】以上の操作を2ヶ月ごとに実施して、都度供給海水中の菌体量とBFRを測定し、これに合わせた殺菌条件を表1に示す実施例2の組合せの中から選定して、図2の海水淡水化装置の第1系列の殺菌を実施し1 [0067] In carrying out the above operation every two months, to measure the cell volume and BFR in each time feed in seawater, combined sterilization conditions thereto selected from the combinations of the second embodiment shown in Table 1 Te, carried out sterilization of a first series of desalination apparatus of FIG 1
年間運転を行った。 Annual operation was carried out. (実施例3)実施例1と同じ場所で同じ供給海水と同じ装置を用い、供給海水中のAOC濃度とATP測定法による菌体量とをそれぞれ実施例1および2と同じ方法で2ヶ月ごとに測定し、これに合わせた殺菌条件を表1に示す実施例3の組合せの中から選定して、図2の海水淡水化装置の第2系列の殺菌を実施し1年間運転を行った。 (Example 3) The same apparatus using the same feed seawater at the same place as in Example 1, every two months from the bacteria amount by AOC concentration and ATP measurements in the feed seawater respective Examples 1 and 2 the same way the measured, combined sterilization conditions to be selected from the combinations of the third embodiment shown in Table 1, were carried out by operating one year sterilization of the second series of desalination apparatus of FIG. (実施例4)実施例1と同じ場所で同じ供給海水と同じ装置を用い、供給海水中の生菌数と、BFRをそれぞれ実施例1および2と同じ方法で、2ヶ月ごとに測定し、 (Example 4) The same apparatus using the same feed seawater at the same place as in Example 1, and the number of viable bacteria in the feed seawater, in each Examples 1 and 2 the same way the BFR, measured every 2 months,
これに併せた殺菌条件を表1に示す実施例4の組合せの中から選定して、図2の海水淡水化装置の第3系列の殺菌を実施し1年間運転を行った。 The sterilization conditions in conjunction thereto selected from the combinations of the fourth embodiment shown in Table 1, were carried out by operating one year disinfection of the third series of desalination apparatus of FIG. (比較例1)運転開始時に、供給海水中の生菌数を実施例と同様の方法で測定した結果、生菌数が8.5×10 (Comparative Example 1) at the start of operation, the results of the viable count in the feed seawater was measured in the same manner as in Example, the number of viable bacteria 8.5 × 10
4 cfu/mlであったので、表1における比較例1のように条件を選定し、以後1年間この条件を変更することなく(制御を行わず)、前記図2の第2系列の殺菌を実施しながら実施例1と同様に運転を行った。 4 cfu / ml and which was so selected conditions as in Comparative Example 1 in Table 1, hereinafter 1 year (without control) without changing the conditions, the sterilization of the second series of the Figure 2 It was operated in the same manner as in example 1 while performing. (比較例2)供給海水中の生菌数およびAOC濃度に関係なく、表1における比較例2の条件で1年間、条件変更することなく(制御を行わず)、前記図2の第3系列の殺菌を実施しながら実施例と同様に運転を行った。 (Comparative Example 2) regardless of the number of viable cells and AOC concentration in the feed seawater, 1 year under the conditions of Comparative Example 2 in Table 1, (without control) without any condition change, the third sequence of FIG 2 It was operated as in example while performing the sterilization.

【0068】以上、実施例1〜4および比較例1、2について、1年間の逆浸透膜モジュールの造水量の変化を図3に示す。 [0068] Although the Examples 1 to 4 and Comparative Examples 1 and 2, shows the water production amount of change in the year of the reverse osmosis membrane module in Fig. また、1年後にそれぞれ、逆浸透膜モジュール内のエレメントを抜き出し、解体して膜面付着物中の有機物の量を測定した結果と、1年間に消費した次亜塩素酸ナトリウム、亜硫酸水素ナトリウムおよび硫酸の量を表1に示す。 Moreover, each year later, extracting the elements in the reverse osmosis membrane module, a result of measuring the amount of organic matter of the film surface deposits in and dismantled, sodium hypochlorite consumed each year, sodium bisulfite and Table 1 shows the amount of sulfuric acid.

【0069】以上の結果、実施例1〜4では1年間の逆浸透膜モジュールの造水量変化はほとんどなく、また、 [0069] As a result, desalination amount changes little reverse osmosis membrane module of Example 1-4 in 1 year, also,
解体膜に付着していた有機物の量は非常に少なかった。 The amount of organic matter adhering to the dismantling film was very small.
これに対し、比較例1では、消費した薬品量は実施例よりも少なくなったが、逆浸透膜モジュールの造水量は低下し、解体膜に付着していた有機物の量は実施例よりも多くなった。 In contrast, in Comparative Example 1, but consumed chemicals amount was less than Example, desalination of the reverse osmosis membrane module is reduced, the amount of organic matter adhering to the dismantling film larger than Example became. また、比較例2では、消費した薬品量は最も多かったにもかかわらず、逆浸透膜モジュールの造水量低下と、解体膜に付着していた有機物量は最も多くなった。 In Comparative Example 2, consumed chemicals amount even though was highest, and the reduction desalination of the reverse osmosis membrane module, amount of organic substances adhering to the dismantling film became most.

【0070】 [0070]

【表1】 [Table 1]

【0071】 [0071]

【表2】 [Table 2]

【0072】 [0072]

【発明の効果】本発明においては、原水に殺菌剤を添加して分離膜に供給するにあたり、原水に含まれる生菌数および同化可能有機炭素濃度、原水に含まれる菌体量および同化可能有機炭素濃度、原水に含まれる生菌数およびバイオフィルム形成速度、もしくは、原水に含まれる菌体量およびバイオフィルム形成速度に基づいて、殺菌剤の添加濃度、添加時間および添加頻度からなる群から選ばれる少なくとも1つの条件を制御するので、原水の性状に合わせて最適な殺菌条件を選択することができ、 In the present invention according to the present invention, upon supply to the separation membrane by adding a disinfectant to the raw water, the viable cell count and assimilable organic carbon concentration in the raw water, cell volume and assimilable contained in raw water organic carbon concentration, live bacteria number and biofilm formation rate contained in the raw water or, based on the cell amount and biofilm formation rate contained in the raw water, selected from the group consisting of addition concentration, addition times and frequency of the sterilizing agent and controls at least one condition is, it is possible to select an optimal sterilization conditions in accordance with the nature of the raw water,
殺菌剤が不足したり、また、過剰となったりすることが少なく、効率的な殺菌を行うことができる。 Or insufficient fungicides, also less likely to be or become excessive, it is possible to perform efficient sterilization. したがって、造水装置の配管や分離膜に微生物やその代謝物が堆積したりすることが抑えられ、造水量の低下を招くことなく造水装置の性能を高く維持しておくことができる。 Accordingly, it is suppressed to or deposited microorganisms and their metabolites in the piping and the separation membrane of the fresh water apparatus can be maintained high performance without fresh water generator that lowers the desalination amount.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 本発明の一実施態様に係る造水方法を実施するための造水装置を示す概略図である。 It is a schematic diagram showing a fresh water generator for carrying out the desalination process according to one embodiment of the present invention; FIG.

【図2】 実施例および比較例において用いた海水淡水化装置を示す概略図である。 2 is a schematic diagram showing a seawater desalination apparatus used in Examples and Comparative Examples.

【図3】 実施例および比較例における造水量の変化を示す概略図である。 Figure 3 is a schematic diagram showing changes in the desalination amount in Examples and Comparative Examples.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 :取水管 2 :取水ポンプ 3 :薬品注入装置(凝集剤、酸化性殺菌剤) 4a:凝集ろ過装置 4b:ポリッシングろ過装置 5 :中間槽 6a:薬品注入装置(還元剤) 6b:薬品注入装置(殺菌剤) 7 :保安フィルタ 8 :高圧ポンプ 9 :分離膜モジュール 10 :透過水流路 11a:脱炭酸装置 11b:カルシウム添加装置 12 :塩素注入装置 13 :濃縮水中和装置 14 :濃縮水流路 16a:第1系列 16b:第2系列 16c:第3系列 50 :造水装置(全体) 1: intake pipe 2: intake pump 3: dosing device (coagulant, oxidizing biocides) 4a: aggregation filtering device 4b: Polishing filtration unit 5: Intermediate tank 6a: dosing device (reducing agent) 6b: dosing apparatus (fungicide) 7: security filter 8: high-pressure pump 9: the separation membrane module 10: permeate flow path 11a: CO 2 removal unit 11b: calcium addition device 12: chlorine injection equipment 13: concentrated water neutralizer 14: concentrated water flow path 16a: first-line 16b: second series 16c: third series 50: fresh water generator (total)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 7識別記号 FI テーマコート゛(参考) C02F 1/50 510 C02F 1/50 510A 520 520F 531 531J 531M 531P 532 532B 540 540B 550 550H 560 560E 1/76 1/76 A Fターム(参考) 4D006 GA03 HA21 HA41 HA61 KA03 KA51 KD06 KD11 KD12 KD23 KD24 KE07R KE30Q MC54 PB03 4D050 AA06 AB06 BB05 BB06 BD06 CA09 ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 7 identifications FI theme coat Bu (reference) C02F 1/50 510 C02F 1/50 510A 520 520F 531 531J 531M 531P 532 532B 540 540B 550 550H 560 560E 1/76 1/76 A F-term (reference) 4D006 GA03 HA21 HA41 HA61 KA03 KA51 KD06 KD11 KD12 KD23 KD24 KE07R KE30Q MC54 PB03 4D050 AA06 AB06 BB05 BB06 BD06 CA09

Claims (8)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 原水に殺菌剤を添加して分離膜に供給するにあたり、原水に含まれる生菌数および同化可能有機炭素濃度、原水に含まれる菌体量および同化可能有機炭素濃度、原水に含まれる生菌数およびバイオフィルム形成速度、もしくは、原水に含まれる菌体量およびバイオフィルム形成速度に基づいて、殺菌剤の添加濃度、添加時間および添加頻度からなる群から選ばれる少なくとも1つの条件を制御することを特徴とする造水方法。 Upon 1. A supplied to the separation membrane by adding a disinfectant to the raw water, the viable cell count and assimilable organic carbon concentration in the raw water, cell volume and assimilable organic carbon concentration in the raw water, the raw water live bacteria count and biofilm formation rate included or, based on the cell amount and biofilm formation rate contained in the raw water, the addition concentration of the sterilizing agent, at least one condition selected from the group consisting of addition times and frequency desalination method characterized by controlling the.
  2. 【請求項2】 原水のpHを4以下に制御する、請求項1に記載の造水方法。 Wherein controlling the pH of the raw water to 4 below, desalination process according to claim 1.
  3. 【請求項3】 殺菌剤として硫酸を用いる、請求項1または2に記載の造水方法。 Wherein sulfuric acid is used as a bactericide, desalination process according to claim 1 or 2.
  4. 【請求項4】 分離膜として逆浸透膜を用いる、請求項1〜3のいずれかに記載の造水方法。 4. A use of reverse osmosis membrane as a separation membrane, fresh water generating method according to any one of claims 1 to 3.
  5. 【請求項5】 原水として海水またはかん水を用いる、 5. using seawater or brackish water as raw water,
    請求項1〜4のいずれかに記載の造水方法。 Desalination process according to claim 1.
  6. 【請求項6】 原水に酸化剤を添加した後、還元剤を添加し、次いで殺菌剤を添加する、請求項1〜5のいずれかに記載の造水方法。 6. After adding the oxidizing agent to the raw water, a reducing agent is added, followed by addition of germicide, desalination process according to claim 1.
  7. 【請求項7】 原水に含まれる生菌数および同化可能有機炭素濃度、原水に含まれる菌体量および同化可能有機炭素濃度、原水に含まれる生菌数およびバイオフィルム形成速度、もしくは、原水に含まれる菌体量およびバイオフィルム形成速度に基づいて、酸化剤または還元剤の添加濃度、添加時間および添加頻度からなる群から選ばれる少なくとも1つの条件を制御する、請求項6に記載の造水方法。 7. A viable cell count and assimilable organic carbon concentration in the raw water, cell volume and assimilable organic carbon concentration in the raw water, the viable cell count and biofilm formation rate contained in the raw water, or, in the raw water based on the cell amount and biofilm formation rate included, addition concentration of the oxidizing or reducing agent, to control at least one condition selected from the group consisting of addition times and frequencies, desalination of claim 6 Method.
  8. 【請求項8】 請求項1〜7のいずれかに記載の造水方法により得られた水。 8. A water obtained by the desalination process according to claim 1.
JP2001259208A 2000-08-31 2001-08-29 Method for producing water Pending JP2002143849A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000262858 2000-08-31
JP2000-262858 2000-08-31
JP2001259208A JP2002143849A (en) 2000-08-31 2001-08-29 Method for producing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001259208A JP2002143849A (en) 2000-08-31 2001-08-29 Method for producing water

Publications (2)

Publication Number Publication Date
JP2002143849A true true JP2002143849A (en) 2002-05-21
JP2002143849A5 true JP2002143849A5 (en) 2002-05-21

Family

ID=26598929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001259208A Pending JP2002143849A (en) 2000-08-31 2001-08-29 Method for producing water

Country Status (1)

Country Link
JP (1) JP2002143849A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080671A1 (en) * 2001-04-05 2002-10-17 Toray Industries, Inc. Bactericide for use in water treatment, method for water treatment and apparatus for water treatment
JP2005254066A (en) * 2004-03-09 2005-09-22 Akira Hiraishi Waste water treatment method
JP2006015236A (en) * 2004-07-01 2006-01-19 Toray Ind Inc Apparatus and method for preparing regenerated water
WO2008038575A1 (en) 2006-09-25 2008-04-03 Toray Industries, Inc. Method for operating reverse osmosis membrane filtration plant, and reverse osmosis membrane filtration plant
JP2008237979A (en) * 2007-03-26 2008-10-09 Miura Co Ltd Water treatment apparatus
JP2010058120A (en) * 2004-12-24 2010-03-18 Siemens Water Technologies Corp Cleaning in membrane filtration system
JP2011088151A (en) * 2011-02-09 2011-05-06 Toray Ind Inc Apparatus and method for preparing regenerated water
WO2011105550A1 (en) * 2010-02-26 2011-09-01 株式会社日立製作所 Seawater desalination device
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
JP2013193075A (en) * 2012-03-23 2013-09-30 Hitachi Ltd Desalination system
US8623202B2 (en) 2007-04-02 2014-01-07 Siemens Water Technologies Llc Infiltration/inflow control for membrane bioreactor
US8622222B2 (en) 2007-05-29 2014-01-07 Siemens Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
WO2015002194A1 (en) * 2013-07-03 2015-01-08 三菱重工業株式会社 Water treatment system and water treatment method
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
JP2015188787A (en) * 2014-03-27 2015-11-02 東洋紡株式会社 Forward osmosis treatment method and forward osmosis treatment device
JP2015233236A (en) * 2014-06-10 2015-12-24 三浦工業株式会社 Remote management control system for river water filter device
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
WO2017204054A1 (en) * 2016-05-27 2017-11-30 野村マイクロ・サイエンス株式会社 Reverse osmosis membrane apparatus and method for operating reverse osmosis membrane apparatus
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042544A (en) * 1998-07-31 2000-02-15 Toyobo Co Ltd Pretreatment for desalination by reverse osmosis membrane method
JP2000167554A (en) * 1998-10-02 2000-06-20 Toray Ind Inc Water making and membrane separator
JP2001194364A (en) * 2000-01-14 2001-07-19 Toray Ind Inc Method for measuring assimilatory organic carbon in sea water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042544A (en) * 1998-07-31 2000-02-15 Toyobo Co Ltd Pretreatment for desalination by reverse osmosis membrane method
JP2000167554A (en) * 1998-10-02 2000-06-20 Toray Ind Inc Water making and membrane separator
JP2001194364A (en) * 2000-01-14 2001-07-19 Toray Ind Inc Method for measuring assimilatory organic carbon in sea water

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
US7090780B2 (en) 2001-04-05 2006-08-15 Toray Industries, Inc. Bactericide for use in water treatment, method for water treatment and apparatus for water treatment
WO2002080671A1 (en) * 2001-04-05 2002-10-17 Toray Industries, Inc. Bactericide for use in water treatment, method for water treatment and apparatus for water treatment
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
JP4569132B2 (en) * 2004-03-09 2010-10-27 明 平石 Waste water treatment method
JP2005254066A (en) * 2004-03-09 2005-09-22 Akira Hiraishi Waste water treatment method
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
JP2006015236A (en) * 2004-07-01 2006-01-19 Toray Ind Inc Apparatus and method for preparing regenerated water
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
JP2010058120A (en) * 2004-12-24 2010-03-18 Siemens Water Technologies Corp Cleaning in membrane filtration system
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
EP2067520A4 (en) * 2006-09-25 2012-10-10 Toray Industries Method for operating reverse osmosis membrane filtration plant, and reverse osmosis membrane filtration plant
WO2008038575A1 (en) 2006-09-25 2008-04-03 Toray Industries, Inc. Method for operating reverse osmosis membrane filtration plant, and reverse osmosis membrane filtration plant
EP2067520A1 (en) * 2006-09-25 2009-06-10 Toray Industries, Inc. Method for operating reverse osmosis membrane filtration plant, and reverse osmosis membrane filtration plant
KR101370689B1 (en) * 2006-09-25 2014-03-05 도레이 카부시키가이샤 Method for operating reverse osmosis membrane filtration plant, and reverse osmosis membrane filtration plant
JP5600864B2 (en) * 2006-09-25 2014-10-08 東レ株式会社 The method of operating a reverse osmosis membrane filtration plant, and the reverse osmosis membrane filtration plant
JP2008237979A (en) * 2007-03-26 2008-10-09 Miura Co Ltd Water treatment apparatus
US8623202B2 (en) 2007-04-02 2014-01-07 Siemens Water Technologies Llc Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8622222B2 (en) 2007-05-29 2014-01-07 Siemens Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
WO2011105550A1 (en) * 2010-02-26 2011-09-01 株式会社日立製作所 Seawater desalination device
JP2011177604A (en) * 2010-02-26 2011-09-15 Hitachi Ltd Seawater desalination apparatus
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
JP2011088151A (en) * 2011-02-09 2011-05-06 Toray Ind Inc Apparatus and method for preparing regenerated water
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
JP2013193075A (en) * 2012-03-23 2013-09-30 Hitachi Ltd Desalination system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
EP2990386A4 (en) * 2013-07-03 2016-07-13 Mitsubishi Heavy Ind Ltd Water treatment system and water treatment method
JP2015013238A (en) * 2013-07-03 2015-01-22 三菱重工業株式会社 Water treatment system and water treatment method
WO2015002194A1 (en) * 2013-07-03 2015-01-08 三菱重工業株式会社 Water treatment system and water treatment method
JP2015188787A (en) * 2014-03-27 2015-11-02 東洋紡株式会社 Forward osmosis treatment method and forward osmosis treatment device
JP2015233236A (en) * 2014-06-10 2015-12-24 三浦工業株式会社 Remote management control system for river water filter device
WO2017204054A1 (en) * 2016-05-27 2017-11-30 野村マイクロ・サイエンス株式会社 Reverse osmosis membrane apparatus and method for operating reverse osmosis membrane apparatus

Similar Documents

Publication Publication Date Title
Matin et al. Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention
Han et al. Influence of sludge retention time on membrane fouling and bioactivities in membrane bioreactor system
Schneider et al. Dynamics of organic carbon and of bacterial populations in a conventional pretreatment train of a reverse osmosis unit experiencing severe biofouling
Pollice et al. Tertiary filtered municipal wastewater as alternative water source in agriculture: a field investigation in Southern Italy
WO2010061879A1 (en) Fresh water production method, fresh water production apparatus, method for desalinating sea water into fresh water, and apparatus for desalinating sea water into fresh water
US6679988B2 (en) Apparatus for producing USP or WFI purified water
Sharrer et al. Membrane biological reactor treatment of a saline backwash flow from a recirculating aquaculture system
Urbain et al. Membrane bioreactor: a new treatment tool
US4988444A (en) Prevention of biofouling of reverse osmosis membranes
Leiknes The effect of coupling coagulation and flocculation with membrane filtration in water treatment: A review
WO2011077815A1 (en) Water production system and operation method therefor
Artiga et al. Use of a hybrid membrane bioreactor for the treatment of saline wastewater from a fish canning factory
US6468430B1 (en) Method for inhibiting growth of bacteria or sterilizing around separating membrane
WO2011021415A1 (en) Fresh water production method
Gryta The assessment of microorganism growth in the membrane distillation system
Griebe et al. Biocide-free antifouling strategy to protect RO membranes from biofouling
US20120024794A1 (en) Method and system for treating water used for industrial purposes
Yap et al. State of the art of osmotic membrane bioreactors for water reclamation
Ma et al. The pretreatment with enhanced coagulation and a UF membrane for seawater desalination with reverse osmosis
US5282967A (en) Method for feeding germ-free pure water
Dong et al. Characteristics and behaviors of soluble microbial products in sequencing batch membrane bioreactors at various sludge retention times
Mohammed et al. Evaluation of using membrane bioreactor for treating municipal wastewater at different operating conditions
JP2002306930A (en) Method for treating water and equipment for water treatment
JP2008161797A (en) Operation method of freshwater production apparatus, and freshwater production apparatus
Holloway et al. The osmotic membrane bioreactor: a critical review

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120124