JP3505269B2 - Non-sintered positive electrode for alkaline storage battery and method for manufacturing alkaline storage battery - Google Patents

Non-sintered positive electrode for alkaline storage battery and method for manufacturing alkaline storage battery

Info

Publication number
JP3505269B2
JP3505269B2 JP16218395A JP16218395A JP3505269B2 JP 3505269 B2 JP3505269 B2 JP 3505269B2 JP 16218395 A JP16218395 A JP 16218395A JP 16218395 A JP16218395 A JP 16218395A JP 3505269 B2 JP3505269 B2 JP 3505269B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
storage battery
alkaline storage
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16218395A
Other languages
Japanese (ja)
Other versions
JPH0917426A (en
Inventor
幹朗 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP16218395A priority Critical patent/JP3505269B2/en
Publication of JPH0917426A publication Critical patent/JPH0917426A/en
Application granted granted Critical
Publication of JP3505269B2 publication Critical patent/JP3505269B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水酸化ニッケルを主成
分とする活物質が充填されたアルカリ蓄電池用非焼結式
正極並びにアルカリ蓄電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-sintered positive electrode for an alkaline storage battery, which is filled with an active material containing nickel hydroxide as a main component, and a method for producing the alkaline storage battery.

【0002】[0002]

【従来の技術】ニッケル−カドミウム二次電池やニッケ
ル−水素二次電池に代表されるニッケル電極を正極に用
いたアルカリ蓄電池は、水酸化ニッケルを活物質として
含む正極と、カドミウムや水素吸蔵合金を活物質として
含む負極とが、セパレータを介して配されて電極群が構
成され、それがアルカリ電解液で含浸された状態で外装
缶内に収納されている。
2. Description of the Related Art An alkaline storage battery using a nickel electrode represented by a nickel-cadmium secondary battery or a nickel-hydrogen secondary battery as a positive electrode contains a positive electrode containing nickel hydroxide as an active material and a cadmium or hydrogen storage alloy. A negative electrode containing an active material is arranged via a separator to form an electrode group, which is contained in an outer can in a state of being impregnated with an alkaline electrolyte.

【0003】このような電池は、ポータブルエレクトロ
ニクス機器の電源等に用いられており、電池の高容量化
に対する要求も大きいが、その要求に対応するため正極
及び負極に含まれる活物質の利用率を高めたり、できる
だけ多くの量の活物質を詰めるための研究がなされてい
る。電極に含まれる活物質の量は、電極群の体積に伴っ
て大きくすることができるが、外装缶の容積によって電
極群の体積も制限されるので、活物質の量を多くするた
めには高い密度で活物質を詰め込む工夫が必要となる。
Such a battery is used as a power source for a portable electronic device, and there is a great demand for higher capacity of the battery. To meet the demand, the utilization rate of the active material contained in the positive electrode and the negative electrode is changed. Studies have been conducted to raise or pack as much active material as possible. The amount of the active material contained in the electrode can be increased along with the volume of the electrode group, but since the volume of the electrode group is also limited by the volume of the outer can, it is high in order to increase the amount of the active material. It is necessary to devise a way to pack the active material at a density.

【0004】そのため、例えば正極においては、従来か
ら多く用いられてきた焼結式ニッケル正極に代わって非
焼結式ニッケル正極を用いることにより、活物質の充填
量を多くする工夫もなされている。即ち、空孔率の高い
スポンジ状ニッケルやニッケル繊維布を正極の導電基材
として用いることによって、活物質をたくさん充填する
ことができるようになる。また、このような非焼結式ニ
ッケル電極において更に高容量化を実現するため、スポ
ンジ状ニッケルやニッケル繊維布の空孔に対する活物質
の充填密度を大きくする工夫もなされている。
Therefore, for example, in a positive electrode, a non-sintered nickel positive electrode has been used in place of the conventionally used sintered nickel positive electrode so as to increase the filling amount of the active material. That is, by using sponge-like nickel or nickel fiber cloth having a high porosity as the conductive base material of the positive electrode, a large amount of active material can be filled. Further, in order to further increase the capacity of such a non-sintered nickel electrode, an attempt has been made to increase the packing density of the active material in the pores of sponge-like nickel or nickel fiber cloth.

【0005】ところで、このようなニッケル−水素二次
電池を製造する上においては、外装缶内に電極群を収納
すると共に所定量のアルカリ電解液も外装缶内に注入
し、それから外装缶を封口するという工程を通過する
が、所定量のアルカリ電解液を注入するためには、電極
群にアルカリ電解液を含浸させなければならない。
By the way, in manufacturing such a nickel-hydrogen secondary battery, the electrode group is housed in the outer can, and a predetermined amount of alkaline electrolyte is injected into the outer can, and then the outer can is sealed. However, in order to inject a predetermined amount of the alkaline electrolyte, the electrode group must be impregnated with the alkaline electrolyte.

【0006】[0006]

【発明が解決しようとする課題】このようなアルカリ蓄
電池用非焼結式正極において、正極の活物質の充填密度
を高くすると、電極群に対するアルカリ電解液の含浸速
度が遅くなる傾向があり、そのため注液して含浸する工
程に長時間を要するという問題が生じていた。これは、
電極群を外装缶に挿入して、注液し、封口するという一
連の製造工程において、製造効率の低下をもたらすこと
になる。
In such a non-sintered positive electrode for an alkaline storage battery, if the packing density of the positive electrode active material is increased, the impregnation speed of the alkaline electrolyte with respect to the electrode group tends to be slow, and therefore, There has been a problem in that the step of injecting and impregnating requires a long time. this is,
In a series of manufacturing steps of inserting the electrode group into the outer can, injecting the liquid, and sealing, the manufacturing efficiency is lowered.

【0007】このような問題に対して、例えば、注液前
に減圧しておき注液後に常圧に戻したり、加圧すること
によって電極群に含浸させたり、遠心分離機によって強
制的に含浸させるという方法によって、含浸時間自体を
短縮させることは可能ではあるが、減圧機,加圧機,遠
心分離機等の装置が必要であることはもちろんのこと、
細かい操作も必要となるため作業が複雑になるという問
題もある。
[0007] For such a problem, for example, the electrode group is impregnated by decompressing it before injecting it and returning it to normal pressure after injecting it, or pressurizing it by a centrifuge. Although it is possible to shorten the impregnation time itself by such a method, it goes without saying that a device such as a decompressor, a pressurizer, and a centrifuge is required.
There is also a problem that the work becomes complicated because fine operations are required.

【0008】本発明は上記課題に鑑みて、水酸化ニッケ
ルを主成分とする活物質を高い密度で充填した正極を用
いてアルカリ蓄電池を製造する場合に、アルカリ電解液
の含浸時間が長引くという問題を、特別な装置を用いた
り作業を複雑化することなく解決することによって、高
容量の電池を効率的に製造できる技術を提供することを
目的とする。
In view of the above problems, the present invention has a problem that an alkaline electrolyte impregnation time is prolonged when an alkaline storage battery is manufactured by using a positive electrode filled with an active material containing nickel hydroxide as a main component at a high density. It is an object of the present invention to provide a technique capable of efficiently manufacturing a high-capacity battery by solving the above problem without using a special device or complicating the work.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、請求項1記載の発明は、水酸化ニッケルを主成分と
する活物質が3.05g/cc−void以上の充填密
度で充填されたアルカリ蓄電池用非焼結式正極におい
て、活物質は、その含水率が0.8重量%以下であるこ
とを特徴としている。
In order to solve the above problems, the invention according to claim 1 is such that an active material containing nickel hydroxide as a main component is filled at a packing density of 3.05 g / cc-void or more. In the non-sintered positive electrode for alkaline storage batteries, the active material has a water content of 0.8% by weight or less.

【0010】ここで、アルカリ蓄電池用非焼結式正極
は、スポンジ状ニッケルやニッケル繊維布等の多孔体に
活物質を充填させたものや、パンチングメタルの表面に
活物質を保持させて活物質層を形成したもの等であっ
て、アルカリ蓄電池の正極に用いられるものをいう。ま
た、活物質の充填密度(g/cc−void)は、多孔
体に活物質が充填されている正極の場合は孔の体積に対
して充填されている活物質の重量をいい、パンチングメ
タルの表面に活物質を保持させて活物質層が形成されて
いる正極の場合は活物質層が占める体積に対する活物質
の重量をいう。
Here, the non-sintered positive electrode for alkaline storage batteries includes a porous material such as sponge-like nickel or nickel fiber cloth filled with an active material, or an active material obtained by holding the active material on the surface of punching metal. A layered product or the like, which is used for the positive electrode of an alkaline storage battery. Further, the packing density (g / cc-void) of the active material is the weight of the active material packed with respect to the volume of the holes in the case of the positive electrode in which the porous body is packed with the active material, and the packing density of the punching metal. In the case of a positive electrode in which the active material layer is formed by holding the active material on the surface, it means the weight of the active material with respect to the volume occupied by the active material layer.

【0011】また、請求項2記載のアルカリ蓄電池の製
造方法は、水酸化ニッケルを主成分とする活物質の充填
密度が3.05g/cc−void以上で且つ活物質の
含水率が0.8重量%以下である非焼結式正極と、負極
とが、セパレータを介して積層された電極群を作製する
電極群作製工程と、作製した電極群にアルカリ電解液を
含浸する含浸工程とを備えることを特徴としている。
In the method of manufacturing an alkaline storage battery according to a second aspect, the packing density of the active material containing nickel hydroxide as a main component is 3.05 g / cc-void or more and the water content of the active material is 0. 8% by weight or less of a non-sintered positive electrode, a negative electrode, an electrode group production step of producing an electrode group laminated via a separator, and an impregnation step of impregnating the produced electrode group with an alkaline electrolyte. It is characterized by having.

【0012】また、請求項3記載のアルカリ蓄電池の製
造方法は、請求項2記載のアルカリ蓄電池の製造方法に
対して、電極群作製工程は、水酸化ニッケルを主成分と
する活物質の充填密度が3.05g/cc−void以
上で、活物質の含水率が0.8重量%以下である非焼結
式正極を作製する正極作製工程と、正極作製工程で作製
した正極と、負極とを、セパレータを介して積層し、電
極群を作製する電極群組立工程とからなることを特徴と
している。
Further, the method for manufacturing an alkaline storage battery according to claim 3 is different from the method for manufacturing an alkaline storage battery according to claim 2, in that the electrode group manufacturing step includes a packing density of an active material containing nickel hydroxide as a main component. Of 3.05 g / cc-void or more and a water content of the active material is 0.8% by weight or less, a positive electrode manufacturing step of manufacturing a non-sintered positive electrode, a positive electrode manufactured in the positive electrode manufacturing step, and a negative electrode. Is laminated via a separator, and an electrode group assembling step of producing an electrode group is performed.

【0013】[0013]

【作用】本発明者等は、水酸化ニッケルを活物質とする
非焼結式正極を用いてアルカリ蓄電池を製造する方法に
関し、アルカリ電解液を電極群に含浸させる工程につい
ての研究実験を重ねる中、電極群の中でも正極の状態が
含浸速度に与える影響が大きく、正極の活物質の充填密
度とその活物質の含水率によって左右されることを見い
出した。
The present inventors have conducted research and experiments on a process of impregnating an electrode group with an alkaline electrolyte, concerning a method for manufacturing an alkaline storage battery using a non-sintered positive electrode having nickel hydroxide as an active material. It has been found that, among the electrode groups, the state of the positive electrode has a great influence on the impregnation rate, and depends on the packing density of the active material of the positive electrode and the water content of the active material.

【0014】即ち、活物質の含水率を制御しない場合
(強制的に乾燥を行わない場合)においては、活物質の
充填密度が2.85g/cc−void未満では、含浸
速度はほぼ一定であるが、充填密度が2.85g/cc
−void以上では、含浸速度が低下する傾向が見られ
ることがわかった。一方、活物質の充填密度が2.85
g/cc−void以上であっても、強制的に乾燥を行
って活物質の含水率を低く制御すれば、含浸速度の低下
を抑える効果があり、特に活物質の含水率を0.8重量
%以下に制御すると、含浸速度の低下を抑える顕著な効
果があることを見いだした。
That is, when the water content of the active material is not controlled (when forced drying is not performed), the impregnation rate is almost constant when the packing density of the active material is less than 2.85 g / cc-void. Has a packing density of 2.85 g / cc
It was found that the impregnation rate tended to decrease at -void or higher. On the other hand, the packing density of the active material is 2.85.
Even if it is g / cc-void or more, if the water content of the active material is controlled to be low by forcibly drying, there is an effect of suppressing a decrease in the impregnation rate. In particular, the water content of the active material is 0.8% by weight. It has been found that when the content is controlled to be not more than%, there is a remarkable effect of suppressing a decrease in impregnation rate.

【0015】このように、活物質の含水率を低くするほ
ど含浸速度の低下が少なくなる(即ち含浸速度が相対的
に大きくなる)理由としては、水酸化ニッケルを主成分
とする活物質が、ミクロ的に見たときに多孔質であっ
て、含水率が低いほどその吸水作用が高くなるためであ
ると考えられる。請求項1記載のアルカリ蓄電池用非焼
結式正極並びに請求項2及び3記載のアルカリ蓄電池の
製造方法によれば、水酸化ニッケルを主成分とする活物
質の充填密度が2.85g/cc−void以上である
ため、アルカリ電解液の電極群に含浸するときの含浸速
度が低下しやすい条件下にあるものの、活物質の含水率
が0.8重量%以下であるため、その速度低下が抑制さ
れる。
As described above, the reason why the lowering of the water content of the active material decreases the impregnation rate (that is, the impregnation rate becomes relatively large) is that the active material containing nickel hydroxide as a main component is It is considered that this is because it is porous when viewed microscopically, and the lower the water content, the higher the water absorbing effect. According to the non-sintered positive electrode for an alkaline storage battery according to claim 1 and the method for manufacturing an alkaline storage battery according to claims 2 and 3, the packing density of the active material containing nickel hydroxide as a main component is 2.85 g / cc-. Since it is void or more, the impregnation rate when impregnating the electrode group with the alkaline electrolyte is likely to decrease, but since the water content of the active material is 0.8% by weight or less, the decrease in rate is suppressed. To be done.

【0016】従って、正極活物質の充填密度を高く設定
しても、短時間でアルカリ電解液の注液を行うことがで
きる。ここで、請求項3のように、活物質の含水率が
0.8重量%以下である非焼結式正極を作製してから電
極群を組立てれば、正極の活物質の含水率を0.8重量
%以下に容易に調整することができる。
Therefore, even if the packing density of the positive electrode active material is set high, the alkaline electrolyte can be injected in a short time. Here, when the non-sintered positive electrode having the water content of the active material of 0.8% by weight or less is manufactured and then the electrode group is assembled, the water content of the active material of the positive electrode is 0. It can be easily adjusted to 8% by weight or less.

【0017】[0017]

【実施例】以下、本発明の実施例について図面に基づき
詳述する。 (実施例) 〔アルカリ蓄電池の構成についての説明〕図1は、本発
明の一実施例に係るアルカリ蓄電池の斜視図(一部断
面)である。
Embodiments of the present invention will now be described in detail with reference to the drawings. (Embodiment) [Description of Configuration of Alkaline Storage Battery] FIG. 1 is a perspective view (partial cross section) of an alkaline storage battery according to an embodiment of the present invention.

【0018】このアルカリ蓄電池は、非焼結式ニッケル
を活物質とする正極1と水素吸蔵合金を含有する負極2
とがセパレータ3を介して積層され渦巻状に巻かれてな
る電極群4と、これに含浸されたアルカリ電解液(不図
示)と、これらを収容する円筒状の外装缶6等から構成
された4/3Aサイズの円筒形ニッケル−水素アルカリ
蓄電池である。
This alkaline storage battery comprises a positive electrode 1 made of non-sintered nickel as an active material and a negative electrode 2 containing a hydrogen storage alloy.
And an electrode group 4 which is laminated via a separator 3 and wound in a spiral shape, an alkaline electrolyte (not shown) impregnated in the electrode group 4, and a cylindrical outer can 6 for containing these. It is a 4/3 A size cylindrical nickel-hydrogen alkaline storage battery.

【0019】外装缶6上端の円形の開口部には、ガスケ
ット11を介在させて、中央部が開口された封口板12
が配設され、この封口板12に正極端子13が装着され
ている。この封口板12には弁板8、おさえ板9が載置
され、おさえ板9はコイルスプリング10で押圧する構
造となっている。そして、弁板8、おさえ板9、コイル
スプリング10は、電池内圧が上昇したときに矢印A方
向に押圧されて、弁板部に間隙が生じ、内部のガスが大
気中に放出されるようになっている。
A gasket 11 is interposed in a circular opening at the upper end of the outer can 6 and a sealing plate 12 having a central opening is formed.
And the positive electrode terminal 13 is attached to the sealing plate 12. A valve plate 8 and a retainer plate 9 are placed on the sealing plate 12, and the retainer plate 9 is structured to be pressed by a coil spring 10. The valve plate 8, the retaining plate 9, and the coil spring 10 are pressed in the direction of arrow A when the internal pressure of the battery rises, so that a gap is created in the valve plate portion and the gas inside is released to the atmosphere. Has become.

【0020】負極2は、負極集電体5により外装缶6の
底辺部に電気的に接続され、外装缶6が負極端子を兼ね
ており、正極端子13は、正極集電体7及び封口板12
を介して正極1と電気的に接続されている。電極群4
は、外装缶6内部の大部分を占める大きさを有してい
る。正極1は、発泡ニッケルに、水酸化ニッケル粉末と
コバルト酸化物粉末と酸化亜鉛粉末との混合物(重量比
率90:10:3)からなる正極活物質が、ヒドロキシ
プロピルセルロースによって結着された状態で充填さ
れ、厚さ0.6mmに圧延成形されている。
The negative electrode 2 is electrically connected to the bottom portion of the outer can 6 by the negative electrode current collector 5, the outer can 6 also serves as the negative electrode terminal, and the positive electrode terminal 13 is the positive electrode current collector 7 and the sealing plate. 12
Is electrically connected to the positive electrode 1 via. Electrode group 4
Has a size occupying most of the inside of the outer can 6. The positive electrode 1 is a state in which a positive electrode active material composed of a mixture of nickel hydroxide powder, cobalt oxide powder, and zinc oxide powder (weight ratio 90: 10: 3) is bound to foamed nickel with hydroxypropyl cellulose. It is filled and roll-formed to a thickness of 0.6 mm.

【0021】ここで、正極活物質の充填密度は、2.8
5g/cc−void以上の各所定値(2.85 ,
2.90 ,2.95 ,3.00 ,3.05 ,
3.10g/cc−void)に設定されている。ま
た、正極活物質の含水率は、0.8重量%以下に設定さ
れている。負極2は、渦巻板状のパンチングメタルの両
面に、Mm1.0Ni3.2Co1.0Al0.2Mn0.6で示され
る水素吸蔵合金がポリエチレンオキサイドからなる結着
剤によって結着されて形成されている。
Here, the packing density of the positive electrode active material is 2.8.
Each predetermined value (2.85, 5g / cc-void or more)
2.90, 2.95, 3.00, 3.05,
3.10 g / cc-void). The water content of the positive electrode active material is set to 0.8% by weight or less. The negative electrode 2 is formed by binding a hydrogen storage alloy represented by Mm 1.0 Ni 3.2 Co 1.0 Al 0.2 Mn 0.6 to both surfaces of a spiral plate-shaped punching metal with a binder made of polyethylene oxide.

【0022】セパレータ3には、ナイロン製不織布が用
いられている。アルカリ電解液としては、7〜8.5規
定のKOH水溶液が用いられている。なお電池の理論容
量は、正極1によって規定されており、負極2の容量は
それより大きく本実施例では1.5倍程度に設定されて
いる。 〔正極及びアルカリ蓄電池の製造方法についての説明〕
図2は、実施例1にかかるアルカリ蓄電池の製造工程を
示す図である。このアルカリ蓄電池の製造工程は、正極
1を作製する工程と、負極2を作製する工程と、正極
1,負極2及びセパレータ3を重ねて巻回して電極群4
を組立てる工程と、電極群4を外装缶6に挿入する工程
と、アルカリ電解液を注入する工程と、封口板12等で
電池を封口する工程とからなる。
The separator 3 is made of nylon non-woven fabric. As the alkaline electrolyte, a 7-8.5N KOH aqueous solution is used. The theoretical capacity of the battery is defined by the positive electrode 1, and the capacity of the negative electrode 2 is larger than that and is set to about 1.5 times in this embodiment. [Explanation of manufacturing method of positive electrode and alkaline storage battery]
FIG. 2 is a diagram illustrating a manufacturing process of the alkaline storage battery according to the first embodiment. In the manufacturing process of this alkaline storage battery, the process of manufacturing the positive electrode 1, the process of manufacturing the negative electrode 2, the positive electrode 1, the negative electrode 2 and the separator 3 are wound in an overlapping manner to form an electrode group 4.
, A step of inserting the electrode group 4 into the outer can 6, a step of injecting an alkaline electrolyte, and a step of sealing the battery with a sealing plate 12 or the like.

【0023】正極作製工程では、市販の水酸化ニッケル
粉末90重量部,コバルト酸化物10重量部,酸化亜鉛
粉末3重量部,ヒドロキシプロピルセルロース0.2重
量部及び適量の水を混合し、活物質ペーストを作製す
る。次にこの活物質ペーストを多孔度95%,厚さ1.
6mmの発泡ニッケルに充填して乾燥した後、圧延して
厚さ0.6mmに成形する。ここで、活物質ペーストの
充填量を調整することによって、圧延後の正極活物質の
充填密度を所望の値に調整することができる。
In the step of producing the positive electrode, 90 parts by weight of commercially available nickel hydroxide powder, 10 parts by weight of cobalt oxide, 3 parts by weight of zinc oxide powder, 0.2 parts by weight of hydroxypropylcellulose and an appropriate amount of water are mixed to prepare an active material. Make a paste. Next, this active material paste was prepared with a porosity of 95% and a thickness of
It is filled in 6 mm of nickel foam, dried, and then rolled to form a thickness of 0.6 mm. Here, the filling density of the positive electrode active material after rolling can be adjusted to a desired value by adjusting the filling amount of the active material paste.

【0024】この時点での正極活物質の含水率は、作業
環境等によって異なるが、通常は1%程度かそれより高
い値となっている。そこで、この成形物を強制乾燥し
て、正極活物質の含水率が0.8重量%以下となるよう
調整することによって、正極1が生成する。このように
生成した正極1について、正極活物質の充填密度及び正
極活物質の含水率は、次のようにして測定することがで
きる。
The water content of the positive electrode active material at this point is usually about 1% or higher, although it varies depending on the working environment and the like. Therefore, the molded product is forcibly dried and adjusted so that the water content of the positive electrode active material is 0.8% by weight or less, whereby the positive electrode 1 is produced. With respect to the positive electrode 1 thus produced, the packing density of the positive electrode active material and the water content of the positive electrode active material can be measured as follows.

【0025】まず正極1の重量と体積を測定しておく。
次に正極1を40℃で24時間真空乾燥した後にその重
量を測定し、乾燥前の重量との差を正極活物質の含水量
とする。次に、正極1を溶媒で洗浄することによって正
極活物質を洗い落とし、残された発泡ニッケルの重量を
測定する。その重量値をニッケルの比重で除して発泡ニ
ッケルの体積を求め、これと先に測定した正極1の体積
との差を正極1の孔の体積とする。
First, the weight and volume of the positive electrode 1 are measured.
Next, the positive electrode 1 is vacuum dried at 40 ° C. for 24 hours and then its weight is measured, and the difference between the weight before drying and the weight before drying is taken as the water content of the positive electrode active material. Next, the positive electrode 1 is washed with a solvent to wash off the positive electrode active material, and the weight of the remaining nickel foam is measured. The weight value is divided by the specific gravity of nickel to obtain the volume of the foamed nickel, and the difference between this and the previously measured volume of the positive electrode 1 is defined as the volume of the pores of the positive electrode 1.

【0026】一方、溶媒で洗い落とされたものの重量も
測定し、その値を正極1に保持されていた正極活物質の
重量とする。そして、孔の体積に対する正極活物質の重
量の値を、正極1における正極活物質の充填密度とす
る。また、上記正極活物質の重量に対する含水量の値
を、正極活物質に対する含水率とする。
On the other hand, the weight of the material washed off with the solvent is also measured, and the value is taken as the weight of the positive electrode active material held in the positive electrode 1. Then, the value of the weight of the positive electrode active material with respect to the volume of the holes is defined as the packing density of the positive electrode active material in the positive electrode 1. Further, the value of the water content with respect to the weight of the positive electrode active material is defined as the water content with respect to the positive electrode active material.

【0027】負極作製工程では、市販のMm(ミッシュ
メタル)、ニッケル、コバルト、アルミニウム、及びマ
ンガンを、元素比で1.0:3.2:1.0:0.2:
0.6の割合となるように秤量した後、アルゴンガス雰
囲気中の高周波誘導炉内で溶解し、更にこの溶湯を冷却
することによりMm1.0Ni3.2Co1.0Al0.2Mn0. 6
で示される水素吸蔵合金鋳塊が生成する。次に、この水
素吸蔵合金鋳塊を不活性ガス雰囲気中で平均粒径が15
0μm以下となるまで粉砕することによって水素吸蔵合
金が生成する。
In the negative electrode preparation step, commercially available Mm (Misch metal), nickel, cobalt, aluminum, and manganese are used in an element ratio of 1.0: 3.2: 1.0: 0.2:
It was weighed so that the ratio of 0.6, was dissolved in a high frequency induction furnace in an argon gas atmosphere, further Mm 1.0 Ni 3.2 Co 1.0 Al 0.2 Mn 0. By cooling the molten metal 6
A hydrogen storage alloy ingot represented by is generated. Next, the hydrogen storage alloy ingot was made to have an average particle size of 15 in an inert gas atmosphere.
A hydrogen storage alloy is produced by pulverizing until it becomes 0 μm or less.

【0028】この水素吸蔵合金を負極活物質とし、負極
活物質99.5重量部に結着剤となるポリエチレンオキ
サイド粉末0.5重量部と適量の水を加えて混練するこ
とによって負極活物質ペーストを作製する。この負極活
物質ペーストを、パンチングメタルからなる集電体の両
面に塗布し、乾燥後、厚さ0.4mmに圧延することに
よって、平板状の負極2が生成する。
This hydrogen storage alloy is used as a negative electrode active material, and 0.5 parts by weight of polyethylene oxide powder as a binder and an appropriate amount of water are added to 99.5 parts by weight of the negative electrode active material, and the mixture is kneaded to form a negative electrode active material paste. To make. The negative electrode active material paste is applied to both surfaces of a current collector made of punching metal, dried, and rolled to a thickness of 0.4 mm, whereby the flat negative electrode 2 is produced.

【0029】電極群4を組立てる工程では、平板状の正
極1と平板状の負極2とを、ナイロン製不織布からなる
セパレータ3を介して積層し、巻回することによって、
電極群4を作製する。電極群4を外装缶6に挿入する工
程の後、アルカリ電解液を注入する工程では、電極群4
の上部からKOH水溶液を注入する。
In the step of assembling the electrode group 4, the flat plate-shaped positive electrode 1 and the flat plate-shaped negative electrode 2 are laminated with the separator 3 made of nylon non-woven fabric interposed therebetween and wound,
The electrode group 4 is produced. In the step of injecting the alkaline electrolyte after the step of inserting the electrode group 4 into the outer can 6, the electrode group 4
An aqueous KOH solution is injected from above.

【0030】(比較例1)本比較例のアルカリ蓄電池
は、上記実施例のアルカリ蓄電池と同様であるが、正極
における正極活物質の含水率が0.8重量%より大きい
値(0.8〜1.1重量%)に設定されている点が異な
っている。なお、この含水率の値は、強制的に乾燥を行
わない従来の正極の含水率に相当するものである。
Comparative Example 1 The alkaline storage battery of this comparative example is the same as the alkaline storage battery of the above embodiment, but the water content of the positive electrode active material in the positive electrode is larger than 0.8% by weight (0.8 to 0.8%). 1.1% by weight) is different. The value of this water content corresponds to the water content of the conventional positive electrode that is not forcibly dried.

【0031】また、本比較例のアルカリ蓄電池の製造方
法は、上記実施例のアルカリ蓄電池の製造方法と同様で
あるが、正極の製造工程の中で、圧延の後、正極活物質
の含水率を調整する工程で、0.8重量%より大きい値
となるよう湿度を調整する点が異なっている。 (比較例2)本比較例のアルカリ蓄電池は、上記実施例
のアルカリ蓄電池と同様であるが、正極1における正極
活物質の充填密度が2.85g/cc−void未満
(2.75 ,2.80g/cc−void)に設定さ
れている点が異なっている。なお、正極活物質の含水率
の値は、0.3〜1.1重量%の範囲で設定されてい
る。
The method of manufacturing the alkaline storage battery of this comparative example is the same as the method of manufacturing the alkaline storage battery of the above-mentioned embodiment, except that the water content of the positive electrode active material is changed after rolling in the manufacturing process of the positive electrode. The difference is that in the adjusting step, the humidity is adjusted to a value greater than 0.8% by weight. (Comparative Example 2) The alkaline storage battery of this comparative example is the same as the alkaline storage battery of the above example, but the packing density of the positive electrode active material in the positive electrode 1 is less than 2.85 g / cc-void (2.75, 2. The difference is that it is set to 80 g / cc-void). The water content of the positive electrode active material is set in the range of 0.3 to 1.1% by weight.

【0032】また、本比較例のアルカリ蓄電池の製造方
法は、上記実施例のアルカリ蓄電池の製造方法と同様で
あるが、正極の圧延後の充填密度が2.85g/cc−
void未満となるよう充填量を調整する点が異なって
おり、正極活物質の含水率は0.3〜1.1重量%の範
囲で調整する。 (実験)上記の実施例及び比較例1,2の製造方法に従
って、正極活物質の充填密度が上記の各値(2.75
,2.80 ,2.85 ,2.90 ,2.95
,3.00 ,3.05 ,3.10g/cc−vo
id)の未乾燥の正極を複数個づつ作製した。ここで全
ての正極は同じ面積に設定されている。
The method of manufacturing the alkaline storage battery of this comparative example is the same as the method of manufacturing the alkaline storage battery of the above embodiment, but the packing density of the positive electrode after rolling is 2.85 g / cc-.
The difference is that the filling amount is adjusted to be less than void, and the water content of the positive electrode active material is adjusted within the range of 0.3 to 1.1% by weight. (Experiment) According to the manufacturing methods of the above-mentioned Examples and Comparative Examples 1 and 2, the packing density of the positive electrode active material was the above-mentioned respective values (2.75).
, 2.80, 2.85, 2.90, 2.95.
, 3.00, 3.05, 3.10 g / cc-vo
A plurality of undried positive electrodes (id) were prepared. Here, all the positive electrodes are set to have the same area.

【0033】そして、各充填密度の未乾燥の正極につい
て、40℃で24時間真空乾燥した後、様々な湿度雰囲
気下で2時間放置することにより、0.3〜1.1重量
%の範囲内で正極活物質の含水率の調整を行った。この
ようにして、上記各充填密度の正極について、0.3〜
1.1重量%の範囲内で様々な活物質の含水率を有する
正極が作製された。
Then, the undried positive electrode having each packing density was vacuum-dried at 40 ° C. for 24 hours and then allowed to stand for 2 hours under various humidity atmospheres, so that the content was within the range of 0.3 to 1.1% by weight. Then, the water content of the positive electrode active material was adjusted. In this way, 0.3 to
Positive electrodes having various water contents of the active material within the range of 1.1% by weight were prepared.

【0034】作製された各正極を用いて電極群を作製
し、外装缶に挿入した。そして、電極群の上から比重
1.3のKOH水溶液5gを注入し、KOH水溶液の全
てが電極群に含浸されるまでの時間を測定した。図3
は、この実験結果を示すグラフであって、各正極活物質
の充填密度の正極について、正極活物質の含水率に対す
る含浸時間の関係を示している。
An electrode group was prepared using each of the prepared positive electrodes and inserted into an outer can. Then, 5 g of a KOH aqueous solution having a specific gravity of 1.3 was injected from above the electrode group, and the time until all of the KOH aqueous solution was impregnated into the electrode group was measured. Figure 3
[Fig. 4] is a graph showing the results of this experiment, showing the relationship of the impregnation time with respect to the water content of the positive electrode active material, for a positive electrode having a packing density of each positive electrode active material.

【0035】図中の折れ線L1,L2,L3,L4,L5,
L6は、正極活物質の充填密度が2.85 ,2.90
,2.95 ,3.00 ,3.05 ,3.10g
/cc−voidの正極についての実験結果を示してお
り、含水率が0.3〜0.8重量%の範囲は実施例の正
極に関し、含水率が0.8〜1.1重量%の範囲は比較
例1の正極に関するものである。
The broken lines L1, L2, L3, L4, L5,
L6 has a packing density of the positive electrode active material of 2.85 and 2.90.
, 2.95, 3.00, 3.05, 3.10 g
2 shows the experimental results for the / cc-void positive electrode, and the water content is in the range of 0.3 to 0.8% by weight with respect to the positive electrode of the example, and the water content is in the range of 0.8 to 1.1% by weight. Relates to the positive electrode of Comparative Example 1.

【0036】また、図中の折れ線X1,X2は、正極活物
質の充填密度が2.75 ,2.80g/cc−voi
dの正極についての実験結果を示しており、比較例2の
正極に関するものである。図3の実験結果より、正極活
物質の充填密度が2.85g/cc−void未満の正
極(折れ線X1,X2)については、正極活物質の含水率
にかかわらず含浸時間がほぼ一定の低い値(60〜70
秒程度)を示している。
The polygonal lines X1 and X2 in the figure have packing densities of the positive electrode active material of 2.75 and 2.80 g / cc-voi, respectively.
The experimental result about the positive electrode of d is shown, and is related to the positive electrode of Comparative Example 2. From the experimental results shown in FIG. 3, for the positive electrodes (polygonal lines X1 and X2) having a packing density of the positive electrode active material of less than 2.85 g / cc-void, the impregnation time was almost constant regardless of the water content of the positive electrode active material. (60-70
Seconds).

【0037】一方、正極活物質の充填密度が2.85g
/cc−void以上の正極(折れ線L1〜L6)につい
ては、正極活物質の含水率が0.3〜0.5重量%程度
の範囲では同様に100秒未満の低い値を示しているも
のの、正極活物質の含水率が増加するに従って含浸時間
は増加している。ここで、含水率が0.8重量%以下の
範囲では増加率は小さいが、含水率が0.8重量%を越
えると増加率が大きくなっていることがわかる。
On the other hand, the packing density of the positive electrode active material is 2.85 g.
Regarding the positive electrode having a / cc-void or more (the polygonal lines L1 to L6), although the water content of the positive electrode active material shows a low value of less than 100 seconds in the range of about 0.3 to 0.5% by weight, The impregnation time increases as the water content of the positive electrode active material increases. Here, it is understood that the rate of increase is small when the water content is 0.8% by weight or less, but increases when the water content exceeds 0.8% by weight.

【0038】即ち、正極活物質の充填密度が2.85g
/cc−void以上の正極については、正極活物質の
含水率を低くする方が含浸時間を短くすることができ、
特に含水率を0.8重量%以下とすることによってその
効果が大きいことがわかる。このように、正極活物質の
充填密度が2.85g/cc−void以上である場合
について見たとき、比較例1の正極は、正極活物質の含
水率が0.8重量%を越えている、即ち強制的に乾燥を
行わない従来例と同等の含水率であるため含浸時間が長
引くが、実施例のように正極活物質の含水率を0.8重
量%以下とすることにより、含浸時間が長引くのを防止
することができる。
That is, the packing density of the positive electrode active material is 2.85 g.
For a positive electrode of / cc-void or more, lowering the water content of the positive electrode active material can shorten the impregnation time,
It can be seen that the effect is particularly large when the water content is 0.8% by weight or less. As described above, when the packing density of the positive electrode active material is 2.85 g / cc-void or more, the positive electrode of Comparative Example 1 has a water content of the positive electrode active material of more than 0.8% by weight. That is, the impregnation time is prolonged because the water content is the same as that of the conventional example in which forced drying is not performed, but the impregnation time is reduced by setting the water content of the positive electrode active material to 0.8% by weight or less as in the example. Can be prevented from prolonging.

【0039】なお、上記実施例では、正極を強制乾燥し
て正極活物質の含水率を0.8重量%以下に調整した後
に電極群を組立て、アルカリ電解液を含浸する例を示し
たが、電極群を組み立てた後に強制乾燥して正極活物質
の含水率を0.8重量%以下に調整し、アルカリ電解液
を含浸しても同様の効果を奏する。また、上記実施例に
おいては、円筒形アルカリ蓄電池で電極体が渦巻形の例
を示したが、本発明は電池の形式に関わらず、例えば角
形アルカリ蓄電池においても同様に実施することができ
る。
In the above example, the positive electrode is forcibly dried to adjust the water content of the positive electrode active material to 0.8% by weight or less, and then the electrode group is assembled and impregnated with the alkaline electrolyte. Even after assembling the electrode group, it is forcibly dried to adjust the water content of the positive electrode active material to 0.8% by weight or less and impregnated with the alkaline electrolyte to obtain the same effect. Further, in the above-mentioned embodiment, the example in which the electrode body is the spiral type in the cylindrical alkaline storage battery is shown, but the present invention can be similarly applied to a prismatic alkaline storage battery regardless of the type of the battery.

【0040】また、上記実施例においては、正極集電体
として発泡ニッケルを用いる例を示したが、ニッケル繊
維布やパンチングメタルを用いる場合においても同様に
実施することができる。また、上記実施例においては、
負極活物質としてミッシュメタルをベースとした水素吸
蔵合金を用いる例を示したが、例えばチタン系の水素吸
蔵合金を用いたり、或は負極にカドミウムや亜鉛等を用
いる場合のように、一般的にアルカリ蓄電池に用いられ
る負極ならば同様に実施することができる。
Further, in the above-mentioned embodiment, the example in which foamed nickel is used as the positive electrode current collector is shown, but the same can be applied to the case where nickel fiber cloth or punching metal is used. Further, in the above embodiment,
An example of using a hydrogen storage alloy based on misch metal as the negative electrode active material has been shown, but, for example, when using a titanium-based hydrogen storage alloy, or when using cadmium, zinc, or the like for the negative electrode, generally, A negative electrode used in an alkaline storage battery can be similarly implemented.

【0041】また、アルカリ電解液についても、上記実
施例のものに限らず、一般的にアルカリ蓄電池に用いら
れるものであれば同様に実施することができる。
Further, the alkaline electrolyte is not limited to the one in the above-mentioned embodiment, and any alkaline electrolyte generally used in an alkaline storage battery can be used.

【0042】[0042]

【発明の効果】以上の本発明によれば、水酸化ニッケル
を主成分とする活物質を充填した正極を用いてアルカリ
蓄電池を製造する上で、正極活物質の充填密度を2.8
5g/cc−void以上の高い値に設定した場合で
も、正極を強制的に乾燥して活物質の含水率を0.8重
量%以下に制御することにより、アルカリ電解液を電極
群に含浸する時間が長引くのを防止することができる。
As described above, according to the present invention, when the alkaline storage battery is manufactured by using the positive electrode filled with the active material containing nickel hydroxide as the main component, the filling density of the positive electrode active material is 2.8.
Even when a high value of 5 g / cc-void or more is set, the electrode group is impregnated with the alkaline electrolyte by forcibly drying the positive electrode and controlling the water content of the active material to 0.8% by weight or less. It is possible to prevent the time from being prolonged.

【0043】このように、減圧機,加圧機,遠心分離機
などの装置を用いたり複雑な作業を行わなくても、正極
活物質の高充填密度化に伴ってアルカリ電解液の含浸時
間が長引くという問題を解消することができるので、高
容量のアルカリ蓄電池を効率的に製造する上で価値ある
技術である。
As described above, without using a device such as a depressurizer, a pressurizer, a centrifuge, or performing complicated work, the impregnation time of the alkaline electrolyte is prolonged as the packing density of the positive electrode active material is increased. Since this problem can be solved, it is a valuable technology for efficiently manufacturing a high-capacity alkaline storage battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るアルカリ蓄電池の斜視
図(一部断面)である。
FIG. 1 is a perspective view (partial cross section) of an alkaline storage battery according to an embodiment of the present invention.

【図2】実施例にかかるアルカリ蓄電池の製造工程を示
す図である。
FIG. 2 is a diagram showing a manufacturing process of the alkaline storage battery according to the example.

【図3】実施例及び比較例の正極を用いた実験結果を示
すグラフである。
FIG. 3 is a graph showing experimental results using the positive electrodes of Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電極群 6 外装缶 7 正極集電体 12 封口板 1 positive electrode 2 Negative electrode 3 separator 4 electrode group 6 exterior cans 7 Positive electrode current collector 12 Seal plate

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/32 H01M 4/26 H01M 4/52 H01M 10/30 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01M 4/32 H01M 4/26 H01M 4/52 H01M 10/30

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水酸化ニッケルを主成分とする活物質が
3.05g/cc−void以上の充填密度で充填され
たアルカリ蓄電池用非焼結式正極において、前記活物質
は、その含水率が0.8重量%以下であることを特徴と
するアルカリ蓄電池用非焼結式正極。
1. An active material containing nickel hydroxide as a main component
In the non-sintered positive electrode for an alkaline storage battery filled with a packing density of 3.05 g / cc-void or more, the active material has a water content of 0.8% by weight or less. Non-sintered positive electrode for.
【請求項2】水酸化ニッケルを主成分とする活物質の充
填密度が3.05g/cc−void以上で且つ活物質
の含水率が0.8重量%以下である非焼結式正極と、負
極とが、セパレータを介して積層された電極群を作製す
る電極群作製工程と、作製した電極群にアルカリ電解液
を含浸する含浸工程とを備えることを特徴とするアルカ
リ蓄電池の製造方法。
2. A non-sintered positive electrode in which the packing density of the active material containing nickel hydroxide as a main component is 3.05 g / cc-void or more and the water content of the active material is 0.8% by weight or less. A method for producing an alkaline storage battery, comprising: an electrode group producing step of producing an electrode group in which the negative electrode is laminated via a separator; and an impregnating step of impregnating the produced electrode group with an alkaline electrolyte.
【請求項3】前記電極群作製工程は、水酸化ニッケルを
主成分とする活物質の充填密度が3.05g/cc−v
oid以上で、活物質の含水率が0.8重量%以下であ
る非焼結式正極を作製する正極作製工程と、正極作製工
程で作製した正極と、負極とを、セパレータを介して積
層し、電極群を作製する電極群組立工程とからなること
を特徴とする請求項2記載のアルカリ蓄電池の製造方
法。
3. A packing density of an active material containing nickel hydroxide as a main component is 3.05 g / cc-v in the electrode group forming step.
The positive electrode manufacturing step of manufacturing a non-sintered positive electrode having a water content of the active material of 0.8% by weight or less, the positive electrode manufactured in the positive electrode manufacturing step, and the negative electrode are laminated via a separator. 3. The method of manufacturing an alkaline storage battery according to claim 2, further comprising an electrode group assembling step of producing the electrode group.
JP16218395A 1995-06-28 1995-06-28 Non-sintered positive electrode for alkaline storage battery and method for manufacturing alkaline storage battery Expired - Lifetime JP3505269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16218395A JP3505269B2 (en) 1995-06-28 1995-06-28 Non-sintered positive electrode for alkaline storage battery and method for manufacturing alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16218395A JP3505269B2 (en) 1995-06-28 1995-06-28 Non-sintered positive electrode for alkaline storage battery and method for manufacturing alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH0917426A JPH0917426A (en) 1997-01-17
JP3505269B2 true JP3505269B2 (en) 2004-03-08

Family

ID=15749594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16218395A Expired - Lifetime JP3505269B2 (en) 1995-06-28 1995-06-28 Non-sintered positive electrode for alkaline storage battery and method for manufacturing alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3505269B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101578649B1 (en) 2011-09-30 2015-12-18 인텔 코포레이션 Method of increasing an energy density and an achievable power output of an energy storage device
JP2017130669A (en) * 2017-02-27 2017-07-27 インテル コーポレイション Method of increasing energy density and achievable power output of energy storage device
CN112185715B (en) * 2020-10-12 2021-10-26 广西大学 Zinc-cobalt bimetal oxide sandwich structure flexible thin film electrode and preparation method thereof

Also Published As

Publication number Publication date
JPH0917426A (en) 1997-01-17

Similar Documents

Publication Publication Date Title
EP0284333B1 (en) Sealed type nickel-hydride battery and production process thereof
US4792505A (en) Electrodes made from mixed silver-silver oxides
JPH079811B2 (en) Battery manufacturing method
JP3505269B2 (en) Non-sintered positive electrode for alkaline storage battery and method for manufacturing alkaline storage battery
EP1222702B1 (en) Layered metal hydride electrode providing reduced cell pressure
EP1073134B1 (en) Hydrogen absorbing alloy compact for use as the negative electrode of an alkaline rechargeable battery and method of making same
JP4772185B2 (en) Positive electrode plate for alkaline storage battery, method for producing the same, and alkaline storage battery using the same
US4000005A (en) Method for making a nickel positive electrode for an alkaline battery
JP3209071B2 (en) Alkaline storage battery
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP2537128B2 (en) Method for producing hydrogen storage alloy powder for negative electrode of nickel-hydrogen secondary battery and method for producing negative electrode for nickel-hydrogen secondary battery
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2629258B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3156485B2 (en) Nickel electrode for alkaline storage battery
JP2629807B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JPH1021950A (en) Battery having non-sintered type electrode plate
JP3519836B2 (en) Hydrogen storage alloy electrode
JPH1186897A (en) Sealed nickel hydrogen battery
JP3432865B2 (en) Method for producing sintered substrate for alkaline storage battery
JP2572337B2 (en) Nickel-hydrogen secondary battery
JP3150546B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2981537B2 (en) Negative electrode for alkaline batteries
JPH04284369A (en) Nickel-metal hydride storage battery
JP2854920B2 (en) Nickel-metal hydride battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term