JP3500030B2 - Method for producing non-sintered cadmium negative electrode and method for producing nickel-cadmium storage battery - Google Patents

Method for producing non-sintered cadmium negative electrode and method for producing nickel-cadmium storage battery

Info

Publication number
JP3500030B2
JP3500030B2 JP04373497A JP4373497A JP3500030B2 JP 3500030 B2 JP3500030 B2 JP 3500030B2 JP 04373497 A JP04373497 A JP 04373497A JP 4373497 A JP4373497 A JP 4373497A JP 3500030 B2 JP3500030 B2 JP 3500030B2
Authority
JP
Japan
Prior art keywords
cadmium
negative electrode
discharge
battery
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04373497A
Other languages
Japanese (ja)
Other versions
JPH10241724A (en
Inventor
彰 平川
正弘 細田
淳 大原
誠 神林
雅浩 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP04373497A priority Critical patent/JP3500030B2/en
Publication of JPH10241724A publication Critical patent/JPH10241724A/en
Application granted granted Critical
Publication of JP3500030B2 publication Critical patent/JP3500030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非焼結式カドミウ
ム負極の製造方法及びこの製造方法により作製された負
極を用いるニッケル−カドミウム蓄電池の製造方法に関
する。
TECHNICAL FIELD The present invention relates to a method for producing a non-sintered cadmium negative electrode and a method for producing a nickel-cadmium storage battery using the negative electrode produced by this method.

【0002】[0002]

【従来の技術】ニッケル−カドミウム蓄電池に用いられ
るカドミウム負極には、ニッケル粉末を焼結して作製し
た多孔質の基体に活物質を保持させる焼結式と、活物質
を合成繊維、糊料等と共に混練してペースト或いはスラ
リー状とし、これをパンチングメタル等の導電性芯体に
塗着させる方法に代表される非焼結式とがあるが、低コ
ストで且つ高エネルギー密度を有するといった点で優れ
るペースト式が、広く使用されている。
2. Description of the Related Art A cadmium negative electrode used in a nickel-cadmium storage battery has a sintering type in which a porous base material made by sintering nickel powder holds an active material, and a synthetic material, a paste, etc. There is a non-sintering method typified by a method of kneading together to form a paste or slurry, and applying this to a conductive core body such as punching metal, but it is low cost and has a high energy density. Good paste formulas are widely used.

【0003】しかしながら、上記非焼結式カドミウム負
極は、焼結式のような導電性の基体を有していないた
め、活物質相互間の導電性は極めて低いという課題があ
る。そこで、この課題を解決すべく、電気化学的に化成
を行うことにより、活物質中に導電性マトリクスを形成
する方法が知られている。この際、上記マトリクスを均
一に形成するには、完全充放電を行う化成方法が望まし
い。
However, since the non-sintered cadmium negative electrode does not have a conductive base such as that of the sintered type, there is a problem that the conductivity between the active materials is extremely low. Therefore, in order to solve this problem, a method of forming a conductive matrix in the active material by performing electrochemical formation is known. At this time, in order to uniformly form the matrix, a chemical conversion method of performing complete charge / discharge is desirable.

【0004】一方、非焼結式カドミウム負極には、予備
充電生成物として金属カドミウムを添加することが知ら
れている。この金属カドミウムは、それ自体が導電剤と
しての役割を果たす他、金属カドミウムが添加された状
態で化成を行えば、電池性能を一層向上させうることが
特開平4−355054号公報に記載されている。
On the other hand, it is known to add metal cadmium as a precharge product to a non-sintered cadmium negative electrode. This metal cadmium plays a role as a conductive agent by itself, and it is described in JP-A-4-355054 that the battery performance can be further improved by performing chemical conversion in a state where the metal cadmium is added. There is.

【0005】ここで、上記化成の方法としては、以下に
示すような方法が提案されている。 多数の充電、放電用ローラを備えた装置を用いて連続
的に処理する方法。 対極及びセパレータを用い、これらと負極とを積層状
態で通電する方法。 シート状の負極板とセパレータと対極とを渦巻き状に
巻回して通電する方法。 上記3つの方法のうち、の方法が比較的小規模な設備
で大量生産が可能なため、完全充放電を行う化成方法と
して優れる。
Here, as the above-mentioned chemical conversion method, the following method has been proposed. A method of continuous processing using an apparatus equipped with a large number of charging and discharging rollers. A method of energizing the negative electrode and the negative electrode in a laminated state by using a counter electrode and a separator. A method of energizing a sheet-shaped negative electrode plate, a separator, and a counter electrode by spirally winding them. Among the above three methods, the method (1) is excellent as a chemical conversion method for performing complete charging / discharging because mass production is possible with a relatively small facility.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記
の方法では、通電中の電流分布のばらつきが生じ易いた
め、特に放電を終了した時点において、残存する充電状
態の金属カドミウム量が多い所と少ないとが生じる。こ
のような非焼結式カドミウム負極を電池に組み込んだ場
合には、金属カドミウムが多い所では充電リザーブが少
なくなって、容易に水素ガスを発生し、この結果電池の
密閉系を崩すおそれが生じる。
However, in the above method, the distribution of the current distribution during energization is likely to occur, so that the amount of remaining metal cadmium in the charged state is large and small, especially at the end of discharging. Occurs. When such a non-sintered cadmium negative electrode is incorporated into a battery, the charging reserve is reduced in places where there is a large amount of metallic cadmium, and hydrogen gas is easily generated, which may result in disruption of the battery closed system. .

【0007】本発明は上記従来の課題を考慮してなされ
たものであって、電池の密閉系を崩すことなく、電池や
電極の性能及び信頼性を向上させることができる非焼結
式カドミウム負極の製造方法及びニッケル−カドミウム
蓄電池の製造方法の提供を目的としている。
The present invention has been made in consideration of the above-mentioned conventional problems, and is a non-sintered cadmium negative electrode capable of improving the performance and reliability of a battery or an electrode without breaking the closed system of the battery. And a method for manufacturing a nickel-cadmium storage battery.

【0008】[0008]

【課題を解決するための手段】前述した目的を達成する
ために、本発明のうちで請求項1記載の発明は、酸化カ
ドミウムまたは水酸化カドミウムと金属カドミウムとを
含む負極前駆体を、対極板及びセパレータと共に渦巻き
状に巻回した後、水酸化ナトリウム中で完全充放電を行
う充放電工程を経ることにより作製される非焼結式カド
ミウム負極の製造方法において、上記充放電工程におけ
る放電工程が終了して転極した後、更に所定時間過放電
を行い、次いでプリチャージすることを特徴とする。
In order to achieve the above-mentioned object, the invention according to claim 1 of the present invention provides a negative electrode precursor containing cadmium oxide or cadmium hydroxide and metal cadmium as a counter electrode plate. And, after being spirally wound with the separator, in the method for producing a non-sintered cadmium negative electrode prepared by undergoing a charge / discharge step of performing complete charge / discharge in sodium hydroxide, the discharge step in the charge / discharge step is After the completion and the reversal, the over-discharge is further performed for a predetermined time, and then the pre-charge is performed.

【0009】負極を、対極及びセパレータと共に渦巻き
状に巻回して行う化成では、通常、過放電しないよう、
対極に対して1.5〜2.0Vの終止電圧で放電を終了
する。ところが、これでは、前記従来の技術で説明した
とおり電流分布が均一になり難く、シート状の負極板の
長さ方向および幅方向で金属カドミウム量のばらつきが
生じやすい。このばらつきのなかで問題となるのは、放
電終了後に、部分的に十分に放電されていない部分が残
る場合であり、この部分は必然的に充電リザーブが不足
した状態となるので、電池にした場合に水素ガス発生が
起こり、密閉系を崩す恐れがある。
In the chemical formation in which the negative electrode is spirally wound with the counter electrode and the separator, usually, in order to prevent over discharge,
Discharge is terminated at a final voltage of 1.5 to 2.0 V with respect to the counter electrode. However, in this case, it is difficult to make the current distribution uniform as described in the related art, and the amount of metal cadmium tends to vary in the length direction and the width direction of the sheet-shaped negative electrode plate. One of the problems in this variation is the case where a part that is not fully discharged remains after the end of discharge, and this part inevitably has a state where the charge reserve is insufficient. In this case, hydrogen gas may be generated and the closed system may be broken.

【0010】この問題に対し、本発明では化成時の放電
において過放電を行っているので、未放電部分も強制的
に放電を行うことができ、充電リザーブが不足した状態
となるのを回避できる。したがって、電池にした場合に
水素ガスの発生を抑制することができ、電池の密閉系が
保たれることになる。
In contrast to this problem, in the present invention, since over-discharging is performed in the discharge during formation, it is possible to forcibly discharge the undischarged portion, and it is possible to avoid a state in which the charge reserve is insufficient. . Therefore, when the battery is used, generation of hydrogen gas can be suppressed, and the closed system of the battery can be maintained.

【0011】また、上記方法では、化成時の電解液とし
て水酸化ナトリウムを用いているので、放電後の活物質
の形態が活性度の高いγ−Cd(OH)2 となり、過放
電による活物質の不活性化、すなわち充電受け入れ性の
悪化を抑制することができる。尚、化成時の電解液とし
て水酸化カリウムを用いた場合には、放電後の活物質の
形態が活性度の低いβ−Cd(OH)2 となるため、充
電受け入れ性が悪化する。
Further, in the above method, since sodium hydroxide is used as the electrolytic solution at the time of chemical conversion, the form of the active material after discharge becomes γ-Cd (OH) 2 having high activity, and the active material caused by over-discharge is formed. Can be suppressed, that is, deterioration of charge acceptability can be suppressed. When potassium hydroxide is used as the electrolytic solution at the time of chemical conversion, the form of the active material after discharging is β-Cd (OH) 2 having a low activity, so that the charge acceptability deteriorates.

【0012】更に、残留した金属カドミウム粉末が予備
充電活物質として利用できることから、プリチャージに
おける電気量を減らすことができると共に、プリチャー
ジを行う上で導電剤として作用するため、プリチャージ
におけるばらつき抑制に効果を発揮する。
Furthermore, since the residual metal cadmium powder can be used as a precharge active material, the amount of electricity in precharging can be reduced, and since it acts as a conductive agent in precharging, variations in precharging can be suppressed. Exert an effect on.

【0013】また請求項2記載の発明は、請求項1記載
の発明において、過放電における電流値を、転極するま
での平均放電電流値より小さくなるように規制すること
を特徴とする。過放電を行う際の電流値が過放電を行う
前の電流値より高いと、金属カドミウムが十分放電でき
ずに残留し易くなるが、過放電を行う際の電流値が過放
電を行う前の電流値より低ければ、金属カドミウムが良
好に放電され、ばらつきを抑制することが可能である。
したがって、過放電を行う際の電流値としては過放電前
の電流値より低く設定する必要がある。但し、余りに電
流値が低いと、化成処理に長時間を要することになるの
で、通常は理論容量の0.01C以上であることが好適
である。
The invention according to claim 2 is characterized in that, in the invention according to claim 1, the current value in over-discharging is regulated to be smaller than the average discharge current value until the polarity is changed. If the current value when performing over-discharge is higher than the current value before performing over-discharge, metal cadmium cannot be sufficiently discharged and is likely to remain, but the current value when performing over-discharge is higher than that before performing over-discharge. If the current value is lower than the current value, the metal cadmium is satisfactorily discharged and the variation can be suppressed.
Therefore, it is necessary to set the current value for overdischarging to be lower than the current value before overdischarging. However, if the current value is too low, the chemical conversion treatment will take a long time. Therefore, it is usually preferable that the theoretical capacity is 0.01 C or more.

【0014】また請求項3記載の発明は、請求項1記載
の発明において、金属カドミウムの平均粒子径が0.8
〜2.0μmであることを特徴とする。このように規定
すれば、化成処理における充放電を行う場合に、金属カ
ドミウムが導電剤として十分に作用することができるの
で、負極の導電性が十分に確保され、電池に組み込んだ
場合に負極の劣化を抑制し得る。
The invention according to claim 3 is the same as the invention according to claim 1, wherein the average particle size of the metal cadmium is 0.8.
It is characterized in that it is ˜2.0 μm. According to this definition, when charging / discharging in chemical conversion treatment, metal cadmium can sufficiently act as a conductive agent, so that the conductivity of the negative electrode is sufficiently ensured, and the negative electrode of the negative electrode when incorporated in a battery is ensured. Deterioration can be suppressed.

【0015】また請求項4記載の発明は、酸化カドミウ
ムまたは水酸化カドミウムと金属カドミウムとを含む極
板を、対極板及びセパレータと共に渦巻き状に巻回した
後、水酸化ナトリウム中で完全充放電を行う充放電工程
を経て非焼結式カドミウム負極を製造する第1ステップ
と、上記非焼結式カドミウム負極を正極及びセパレータ
と共に巻回して発電要素を作製した後、これを電池缶内
に挿入し、更に電池缶内に電解液を注入した後、電池缶
を封口する第2ステップとを有するニッケル−カドミウ
ム蓄電池の製造方法において、上記第1ステップにおい
て、放電工程が終了して転極した後、更に所定時間過放
電を行い、次いでプリチャージすると共に、上記第2ス
テップで用いられる電解液として、水酸化カリウムを用
いることを特徴とする。
In the invention according to claim 4, a pole plate containing cadmium oxide or cadmium hydroxide and metal cadmium is spirally wound together with a counter electrode plate and a separator and then completely charged and discharged in sodium hydroxide. The first step of producing a non-sintered cadmium negative electrode through a charging / discharging process to be performed, and the non-sintered cadmium negative electrode is wound with a positive electrode and a separator to produce a power generating element, which is then inserted into a battery can. In a method for manufacturing a nickel-cadmium storage battery, which further comprises a second step of sealing the battery can after injecting an electrolytic solution into the battery can, in the first step, after the discharging process is completed and the polarity is changed, Further, the battery is over-discharged for a predetermined time and then pre-charged, and potassium hydroxide is used as an electrolyte used in the second step. That.

【0016】上記の如く、化成液として、放電性が水酸
化カリウムよりやや劣る水酸化ナトリウムを使用すれ
ば、金属カドミウムの大半が水酸化カドミウムにならず
残留し、過放電にもほとんど影響されない。したがっ
て、金属カドミウムは過放電後も導電剤として充電受け
入れ性を維持しつつ、しかも水酸化カリウム中であれば
充放電反応に関与する程度の活性度がある。この結果、
電池の電解液として水酸化カリウム主体とするものを使
用すれば、予備充電活物質として利用されることにな
り、上記のγ−Cd(OH)2 形成と同様、過放電によ
る不活性化を抑制できる。尚、この金属カドミウムは予
め均一に混合されていたものであるため、化成時に残留
してもばらつきの要因にはならない。
As described above, when sodium hydroxide having a discharge property slightly inferior to that of potassium hydroxide is used as the chemical conversion liquid, most of the metal cadmium does not become cadmium hydroxide and remains, and it is hardly affected by overdischarge. Therefore, metal cadmium maintains the charge acceptability as a conductive agent even after over-discharging, and has a degree of activity that is involved in the charge-discharge reaction in potassium hydroxide. As a result,
If a battery electrolyte containing mainly potassium hydroxide is used, it will be used as a pre-charging active material, and like the above-mentioned γ-Cd (OH) 2 formation, suppression of inactivation due to over-discharge will be suppressed. it can. Since this cadmium metal has been uniformly mixed in advance, even if it remains during chemical formation, it does not cause variation.

【0017】また請求項5記載の発明は、請求項4記載
の発明において、過放電における電流値を、転極するま
での平均放電電流値より小さくなるように規制すること
を特徴とする。このような方法であれば、前記請求項2
記載の発明と同様の効果がある。
The invention according to claim 5 is characterized in that, in the invention according to claim 4, the current value in over-discharging is regulated so as to be smaller than the average discharge current value until the polarity is changed. With such a method, the above-mentioned claim 2
The same effect as the described invention is obtained.

【0018】また請求項6記載の発明は、請求項4記載
の発明において、金属カドミウムの平均粒子径が0.8
〜2.0μmであることを特徴とする。このように規定
するのは、金属カドミウムの平均粒径が0.8μm未満
では、水酸化ナトリウム中であっても水酸化カドミウム
に変化し、金属カドミウムが残留しにくくなる一方、
2.0μmを越えると、水酸化カリウム中でも十分な反
応性が得られなくなって、上記金属カドミウムの存在に
よる効果が失われる共に、電池のエネルギー密度が低下
するからである。
The invention according to claim 6 is the same as the invention according to claim 4, wherein the average particle diameter of the metal cadmium is 0.8.
It is characterized in that it is ˜2.0 μm. In this way, if the average particle size of metal cadmium is less than 0.8 μm, it changes to cadmium hydroxide even in sodium hydroxide, and while the metal cadmium is less likely to remain,
When it exceeds 2.0 μm, sufficient reactivity cannot be obtained even in potassium hydroxide, the effect due to the presence of the metal cadmium is lost, and the energy density of the battery decreases.

【0019】[0019]

【発明の実施の形態】本発明の実施の形態を、以下に説
明する。先ず、酸化カドミウム80重量部と金属カドミ
ウム20重量部とに、ナイロン繊維と水和防止剤として
のリン酸水素ナトリウムが溶解された糊料溶液とを加え
て、これらを混練することにより活物質ペーストを作製
した。次に、この活物質ペーストを導電芯体(厚み:
0.08mm)の両面に塗布して、シート状の負極前駆
体を作製した。尚、上記金属カドミウムの平均粒子径
(フィッシャーサブシーブサイザー)は、1.5μmの
ものを用いた。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. First, an active material paste was prepared by adding 80 parts by weight of cadmium oxide and 20 parts by weight of metallic cadmium to a nylon fiber and a paste solution in which sodium hydrogen phosphate as a hydration inhibitor was dissolved, and kneading these. Was produced. Next, this active material paste is used as a conductive core (thickness:
0.08 mm) on both surfaces to prepare a sheet-shaped negative electrode precursor. The metal cadmium used had an average particle size (Fisher subsieve sizer) of 1.5 μm.

【0020】次いで、上記シート状の負極前駆体(長
さ:300m)を、ポリプロピレン織布から成るセパレ
ータを介して、ニッケル板から成る対極と共に巻回し、
これを化成液である20重量%の水酸化ナトリウム水溶
液中で、理論容量の0.2Cの電流で理論容量の150
%まで充電した後、上記と同一の電流で対極に対して
1.6Vとなるまで放電した。この後、理論容量の0.
05Cの電流で完全に転極するまで放電し、更に同一電
流で1時間放電するという過放電工程を経て負極を作製
した。
Then, the sheet-shaped negative electrode precursor (length: 300 m) was wound with a counter electrode made of a nickel plate through a separator made of polypropylene woven fabric,
In a 20% by weight aqueous solution of sodium hydroxide, which is a chemical solution, this was heated at a theoretical capacity of 0.2 C at a theoretical capacity of 150
%, And then discharged with the same current as above to 1.6 V against the counter electrode. After this, the theoretical capacity of 0.
A negative electrode was manufactured through an over-discharging step of discharging at a current of 05 C until completely polarized and further discharging at the same current for 1 hour.

【0021】この後、理論容量に対し5%プリチャージ
した後、水洗、乾燥し、更に、所定の長さに切断した。
しかる後、セパレータを介して公知のニッケル正極と共
に巻回して発電要素を作製した後、この発電要素を電池
缶内に挿入した。次いで、電解液である30重量%の水
酸化カリウムを電池缶内に注入した後、封口板により電
池を封口することによりニッケル−カドミウム電池(公
称容量1100mAh)を作製した。
Then, after precharging to 5% of the theoretical capacity, it was washed with water, dried, and cut into a predetermined length.
Then, after winding with a known nickel positive electrode through a separator to produce a power generation element, the power generation element was inserted into a battery can. Next, after injecting 30 wt% potassium hydroxide as an electrolytic solution into the battery can, the battery was sealed with a sealing plate to prepare a nickel-cadmium battery (nominal capacity 1100 mAh).

【0022】尚、上記発明の実施の形態では、電解液と
して、純粋の水酸化カリウムを用いているが、これに限
定するものではなく、主成分が水酸化カリウムでこれに
水酸化ナトリウムが混合されているようなものを用いる
こともできる。また、転極するまでの間に行われる放電
の電流値が一定でない場合(例えば、段階的に電流値を
変更して放電する場合)には、これらの平均電流値(平
均電流値とは、通電した電気量の合計を通電した合計時
間で除した値をいう)よりも小さな電流値で放電すれ
ば、本発明の効果を得ることを実験により確認してい
る。更に、活物質としては酸化カドミウムに限定するも
のではなく、水酸化カドミウムを用いることもできる。
In the embodiment of the invention described above, pure potassium hydroxide is used as the electrolytic solution. However, the electrolytic solution is not limited to this, and the main component is potassium hydroxide, which is mixed with sodium hydroxide. It is also possible to use the one as described above. Further, when the current value of the discharge that is performed until the polarity is changed is not constant (for example, when the current value is changed stepwise to perform discharge), these average current values (the average current value is It has been confirmed by experiments that the effect of the present invention can be obtained by discharging at a current value smaller than a value obtained by dividing the total amount of electricity supplied by the total amount of time supplied. Furthermore, the active material is not limited to cadmium oxide, but cadmium hydroxide can be used.

【0023】[0023]

【実施例】【Example】

〔第1実施例〕 (実施例)上記発明の実施の形態と同様にして負極を作
製した。このようにして作製した負極を、以下、本発明
負極Aと称する。
[First Example] (Example) A negative electrode was produced in the same manner as in the embodiment of the present invention. The negative electrode manufactured in this manner is hereinafter referred to as a negative electrode A of the present invention.

【0024】(比較例1)過放電を行わなかった他は、
上記実施例と同様にして負極を作製した。このようにし
て作製した負極を、以下、比較負極B1と称する。
(Comparative Example 1) Except that over-discharge was not performed,
A negative electrode was produced in the same manner as in the above example. The negative electrode thus manufactured is hereinafter referred to as comparative negative electrode B1.

【0025】(比較例2)化成液として20%の水酸化
ナトリウム水溶液の代わりに20%の水酸化カリウム水
溶液を用いた他は、上記実施例と同様にして負極を作製
した。このようにして作製した負極を、以下、比較負極
B2と称する。
(Comparative Example 2) A negative electrode was produced in the same manner as in the above-mentioned example except that 20% aqueous potassium hydroxide solution was used as the chemical conversion solution instead of 20% aqueous sodium hydroxide solution. The negative electrode thus manufactured is hereinafter referred to as comparative negative electrode B2.

【0026】(比較例3)化成液として20%の水酸化
ナトリウム水溶液の代わりに20%の水酸化カリウム水
溶液を用いた他は、上記比較例2と同様にして負極を作
製した。このようにして作製した負極を、以下、比較負
極B3と称する。尚、下記表1に上記各負極の製造方法
の異なる点を示す。
Comparative Example 3 A negative electrode was prepared in the same manner as in Comparative Example 2 except that 20% potassium hydroxide aqueous solution was used as the chemical conversion liquid instead of 20% sodium hydroxide aqueous solution. The negative electrode thus manufactured is hereinafter referred to as comparative negative electrode B3. Table 1 below shows the difference in the manufacturing method of each of the negative electrodes.

【0027】[0027]

【表1】 [Table 1]

【0028】(実験1)上記本発明負極A及び比較負極
B1〜3において、極板の長さ方向においてランダムに
サンプルを抜き取り、各部位における未放電の金属カド
ミウム含有量を調べたので、その結果を図1に示す。
尚、全ての負極は、いずれもプリチャージしていない状
態で測定した。
(Experiment 1) With respect to the above-mentioned negative electrode A of the present invention and comparative negative electrodes B1 to B3, samples were randomly drawn in the length direction of the electrode plate, and the undischarged metal cadmium content at each site was examined. Is shown in FIG.
In addition, all the negative electrodes were measured in a state where they were not precharged.

【0029】図1から明らかなように、過放電工程を経
た本発明負極A及び比較負極B2は、過放電工程を経て
いない比較負極B1及び比較負極B3と比べて、未放電
の金属カドミウム含有量のバラツキが少なくなっている
ことが認められる。したがって、未放電の金属カドミウ
ム含有量のバラツキを少なくする上では、通常の放電工
程を経た後に過放電を行うのが望ましい。
As is clear from FIG. 1, the negative electrode A of the present invention and the comparative negative electrode B2 which have undergone the over-discharging step have an undischarged metal cadmium content as compared with the comparative negative electrodes B1 and B3 which have not undergone the over-discharging step. It can be seen that the variation of is small. Therefore, in order to reduce the variation in the undischarged metal cadmium content, it is desirable to perform over-discharge after passing through a normal discharge process.

【0030】(実験2)上記本発明負極A及び比較負極
B1〜3における充放電効率を調べたので、その結果を
表2に示す。尚、実験は、対極としてニッケル極を用
い、20重量%の水酸化カリウム溶液中で行った。ま
た、充放電条件は、各負極を理論容量の0.15Cで
2.4時間充電し、同一電流値でニッケル極に対して
1.5Vとなるまで放電するという条件である。
(Experiment 2) The charge and discharge efficiencies of the present invention negative electrode A and comparative negative electrodes B1 to B3 were examined, and the results are shown in Table 2. The experiment was conducted in a 20 wt% potassium hydroxide solution using a nickel electrode as the counter electrode. The charging / discharging conditions are such that each negative electrode is charged at a theoretical capacity of 0.15 C for 2.4 hours and discharged at the same current value to 1.5 V with respect to the nickel electrode.

【0031】[0031]

【表2】 [Table 2]

【0032】上記表2から明らかなように、水酸化ナト
リウム水溶液で化成処理を行った本発明負極A及び比較
負極B1は、水酸化カリウム水溶液で化成処理を行った
比較負極B2及び比較負極B3と比べて、充放電効率が
高くなっていることが認められる。したがって、充放電
効率を向上させる上では、水酸化ナトリウム水溶液で化
成処理を行うのが望ましい。
As is clear from Table 2 above, the negative electrode A of the present invention and the comparative negative electrode B1 which were subjected to the chemical conversion treatment with the sodium hydroxide aqueous solution were the same as the comparative negative electrode B2 and the comparative negative electrode B3 which were subjected to the chemical conversion treatment with the aqueous potassium hydroxide solution. In comparison, it can be seen that the charge / discharge efficiency is higher. Therefore, in order to improve the charge / discharge efficiency, it is desirable to perform the chemical conversion treatment with an aqueous sodium hydroxide solution.

【0033】また、上記実験1及び2から、未放電の金
属カドミウム含有量のバラツキを少なくすると共に充放
電効率を向上させるには、水酸化ナトリウム水溶液で化
成処理を行い、且つ通常の放電工程を経た後に過放電を
行うのが望ましいことが理解できる。
From Experiments 1 and 2 described above, in order to reduce the variation in the undischarged metal cadmium content and improve the charge / discharge efficiency, a chemical conversion treatment with an aqueous sodium hydroxide solution was carried out, and the usual discharge step was performed. It can be understood that it is desirable to perform over-discharge after a certain period.

【0034】(実験3)過放電時の電流値を変化させる
(0.05〜0.4C)他は、上記本発明負極Aと同様
にして負極を作製し、上記実験1と同様の方法で、これ
ら負極における未放電の金属カドミウム含有量を調べた
ので、その結果を表3に示す。尚、全ての負極は、いず
れもプリチャージしていない状態で測定し、また参考の
ために全く過放電しないものについても同様に調べた。
(Experiment 3) A negative electrode was prepared in the same manner as in the negative electrode A of the present invention except that the current value during overdischarge was changed (0.05 to 0.4 C). The content of undischarged metal cadmium in these negative electrodes was examined, and the results are shown in Table 3. In addition, all the negative electrodes were measured in a state where they were not precharged, and for reference, those having no overdischarge were similarly examined.

【0035】[0035]

【表3】 [Table 3]

【0036】表3から明らかなように、過放電時の電流
値が通常放電時の電流値(本例では0.2C)より小さ
い場合には、未放電の金属カドミウム含有量のばらつき
(最大値から最小値を減じた値)が小さくなっている一
方、過放電時の電流値が通常放電時の電流値と同等かそ
れより大きい場合には、未放電の金属カドミウム含有量
のばらつきが大きくなることが認められる。したがっ
て、未放電の金属カドミウム含有量のばらつきを小さく
するには、過放電時の電流値を通常放電時の電流値より
小さく設定する必要がある。尚、全く過放電しないもの
については、未放電の金属カドミウム含有量のばらつき
が非常に大きくなることが認められる。
As is clear from Table 3, when the current value during over-discharge is smaller than the current value during normal discharge (0.2 C in this example), the variation of the undischarged metal cadmium content (maximum value) However, if the current value during overdischarge is equal to or greater than the current value during normal discharge, the variation in the undischarged cadmium metal content will increase. Is recognized. Therefore, in order to reduce the variation in the undischarged metal cadmium content, it is necessary to set the current value during overdischarge to be smaller than the current value during normal discharge. It should be noted that, in the case of no over-discharge at all, it is recognized that the variation of the undischarged metal cadmium content becomes very large.

【0037】(実験4)添加する金属カドミウムの平均
粒子径(フィッシャーサブシーブサイザー)を変化させ
る(0.8〜2.4μm)他は、上記本発明負極Aと同
様にして負極を作製し、上記実験1及び2と同様の方法
で、これら負極における未放電の金属カドミウム含有量
と充放電効率とを調べたので、その結果を表4に示す。
尚、いずれの負極においてもプリチャージしていない状
態で未放電の金属カドミウム含有量を測定した。
(Experiment 4) A negative electrode was prepared in the same manner as the negative electrode A of the present invention, except that the average particle diameter (Fisher subsieve sizer) of the metal cadmium to be added was changed (0.8 to 2.4 μm). The undischarged metal cadmium content and charge / discharge efficiency of these negative electrodes were examined by the same method as in Experiments 1 and 2 above, and the results are shown in Table 4.
In addition, the content of undischarged metal cadmium was measured in a state where it was not precharged in any of the negative electrodes.

【0038】[0038]

【数1】 [Equation 1]

【0039】[0039]

【表4】 [Table 4]

【0040】表4から明らかなように、金属カドミウム
の粒子径が大きくなるにつれ、残留する金属カドミウム
量は減少する。これは、粒子径が小さい程反応性が高
く、化成処理で放電されやすくなるためである。また、
充放電効率は、金属カドミウムの粒子径が小さい過ぎて
も、また大き過ぎても低くなることが認められる。これ
は以下に示す理由によるものと考えられる。
As is clear from Table 4, the amount of metal cadmium remaining decreases as the particle size of metal cadmium increases. This is because the smaller the particle size, the higher the reactivity and the easier the discharge is during the chemical conversion treatment. Also,
It is recognized that the charging / discharging efficiency becomes low when the particle size of metal cadmium is too small or too large. It is considered that this is due to the following reasons.

【0041】即ち、金属カドミウムの粒子径が小さくな
ると、殆どの金属カドミウムが化成時に放電されてしま
うため、電池を構成した場合に、水酸化カリウム中で充
放電に寄与する金属カドミウムが殆ど残留せず、この結
果充放電効率が低下する。
That is, when the particle size of the metal cadmium becomes small, most of the metal cadmium is discharged during the chemical conversion. Therefore, when a battery is constructed, most of the metal cadmium that contributes to charge and discharge remains in potassium hydroxide. As a result, the charge / discharge efficiency is reduced.

【0042】尚、この際、必要量の予備充電活物質を得
るため、プリチャージの電力量を多くするということが
考えられるが、この方法ではプリチャージの電力量が増
えるため、生産効率が低下して電池の製造コストが高騰
し、しかも導電剤として作用する金属カドミウムが少な
いことから、プリチャージを行うときの反応性が低く、
プリチャージにおけるばらつき発生の要因となるといっ
た課題が新たに生じる。
At this time, it is possible to increase the amount of precharge power in order to obtain the required amount of precharge active material. However, in this method, the amount of precharge power is increased, so that the production efficiency is reduced. Then, the manufacturing cost of the battery rises, and since the amount of metal cadmium acting as a conductive agent is small, the reactivity at the time of precharging is low,
A new problem arises that causes variation in precharge.

【0043】一方、金属カドミウムの粒子径が大きくな
ると、化成処理後も多量の金属カドミウムが残存する
が、金属カドミウムの粒子径が大きくなり過ぎると反応
性が低くなるため、やはり充放電効率が低下する。
On the other hand, when the particle size of the metal cadmium becomes large, a large amount of the metal cadmium remains after the chemical conversion treatment, but when the particle size of the metal cadmium becomes too large, the reactivity becomes low, so that the charge / discharge efficiency also decreases. To do.

【0044】尚、この際、必要量の予備充電活物質を得
るため、上記と同様に、プリチャージの電力量を多くす
るということが考えられる。この場合は、導電剤として
作用する金属カドミウムは多量に存在することから、プ
リチャージにおけるばらつきは減少する。しかし、この
方法でも、プリチャージの電力量が増えて、生産効率が
低下して電池の製造コストが高騰するという課題があ
り、しかも充放電反応に寄与しない活物質が増加するこ
とから、電池のエネルギー密度が低下するという問題が
生じる。これらのことを考慮すると、金属カドミウムの
粒子径は0.8〜2.0μmの範囲にあることが望まし
い。
At this time, in order to obtain a necessary amount of the precharge active material, it is conceivable to increase the amount of power for precharge as in the above case. In this case, since a large amount of metal cadmium acting as a conductive agent is present, variations in precharge are reduced. However, even with this method, there is a problem in that the amount of power for precharge increases, the production efficiency decreases, and the manufacturing cost of the battery rises, and moreover, the active material that does not contribute to the charge / discharge reaction increases, so that the battery The problem arises that the energy density decreases. Considering these things, it is desirable that the particle diameter of the metal cadmium be in the range of 0.8 to 2.0 μm.

【0045】〔第2実施例〕 (実施例)上記発明の実施の形態と同様にして電池を作
製した。このようにして作製した電池を、以下、本発明
電池aと称する。
Second Example (Example) A battery was manufactured in the same manner as in the above-described embodiment of the present invention. The battery thus manufactured is hereinafter referred to as a battery a of the invention.

【0046】(比較例1)電解液として、30%の水酸
化ナトリウムを用いる他は、上記実施例と同様にして電
池を作製した。このようにして作製した電池を、以下、
比較電池b1と称する。
(Comparative Example 1) A battery was prepared in the same manner as in the above-mentioned example except that 30% sodium hydroxide was used as the electrolytic solution. The battery thus produced is
It is referred to as comparative battery b1.

【0047】(比較例2)負極として、前記第1実施例
の比較例2の方法で作製した負極を用いる他は、上記実
施例と同様にして電池を作製した。このようにして作製
した電池を、以下、比較電池b2と称する。
(Comparative Example 2) A battery was produced in the same manner as in the above-mentioned Example except that the negative electrode produced by the method of Comparative Example 2 of the first example was used as the negative electrode. The battery thus manufactured is hereinafter referred to as comparative battery b2.

【0048】(比較例3)電解液として、30%の水酸
化ナトリウムを用いる他は、上記比較例2と同様にして
電池を作製した。このようにして作製した電池を、以
下、比較電池b3と称する。尚、下記表5に上記各電池
の製造方法の異なる点を示す。
Comparative Example 3 A battery was prepared in the same manner as in Comparative Example 2 except that 30% sodium hydroxide was used as the electrolytic solution. The battery thus manufactured is hereinafter referred to as comparative battery b3. The following Table 5 shows the difference in the manufacturing method of each of the above batteries.

【0049】[0049]

【表5】 [Table 5]

【0050】(実験)上記本発明電池a及び比較電池b
1〜3におけるサイクル特性を調べたので、その結果を
図2に示す。尚、実験条件は、理論容量の0.1Cの電
流で16時間充電した後、1時間休止し、更に理論容量
の1Cの電流で放電した後、1時間休止するというサイ
クルを繰り返し行うという条件である。図2から明らか
なように、本発明電池aは比較電池b1〜3に比べてサ
イクル特性が向上していることが認められる。
(Experiment) The above battery a of the present invention and comparative battery b
The cycle characteristics in 1 to 3 were examined, and the results are shown in FIG. The experimental condition is that the cycle of charging for 16 hours at a current of 0.1 C of theoretical capacity, resting for 1 hour, discharging for a current of 1 C of theoretical capacity, and resting for 1 hour is repeated. is there. As is apparent from FIG. 2, the battery a of the present invention has improved cycle characteristics as compared with the comparative batteries b1 to b3.

【0051】[0051]

【発明の効果】以上説明したように本発明の製造方法で
作製した負極は、充電リザーブが不足した状態になるの
を回避できるので、この負極を用いて電池を作製した場
合に水素ガスの発生を抑制することができ、電池の密閉
系が保たれることになる。また、放電後の活物質の形態
が活性度の高いγ−Cd(OH)2 となるため、充電受
け入れ性の悪化を抑制することができる。更に、本発明
の製造方法で作製した負極を用いた電池では、金属カド
ミウムは予備充電活物質として利用されるので、過放電
による不活性化を抑制できる。これらのことから、電池
の密閉系を崩すことなく、サイクル特性等の電池や電極
の性能及び信頼性を向上させることができるといった優
れた効果を奏する。
As described above, the negative electrode produced by the production method of the present invention can avoid a state in which the charge reserve is insufficient. Therefore, when a battery is produced using this negative electrode, hydrogen gas is generated. Can be suppressed and the closed system of the battery can be maintained. Further, since the form of the active material after discharging is γ-Cd (OH) 2 having high activity, deterioration of charge acceptability can be suppressed. Further, in the battery using the negative electrode manufactured by the manufacturing method of the present invention, since metal cadmium is used as a precharge active material, inactivation due to overdischarge can be suppressed. From these facts, there is an excellent effect that the performance and reliability of the battery and the electrode such as cycle characteristics can be improved without breaking the closed system of the battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明負極A及び比較負極B1〜3における、
長さ方向の各点と未放電の金属カドミウム含有量との関
係を示すグラフである。
FIG. 1 shows the negative electrodes A of the present invention and comparative negative electrodes B1 to B3.
It is a graph which shows the relationship between each point of the length direction, and the content of undischarged metal cadmium.

【図2】本発明電池a及び比較電池b1〜3におけるサ
イクル特性を示すグラフである。
FIG. 2 is a graph showing cycle characteristics of the battery a of the present invention and the comparative batteries b1 to b3.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神林 誠 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 大久保 雅浩 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 昭54−53232(JP,A) 特開 平4−355054(JP,A) 特開 昭60−250556(JP,A) 特開 昭61−7565(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/28 H01M 4/26 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Kambayashi 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Masahiro Okubo 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture No. 5 within Sanyo Electric Co., Ltd. (56) Reference JP-A-54-53232 (JP, A) JP-A-4-355054 (JP, A) JP-A 60-250556 (JP, A) JP-A 61- 7565 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 10/28 H01M 4/26

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化カドミウムまたは水酸化カドミウム
と金属カドミウムとを含む負極前駆体を、対極板及びセ
パレータと共に渦巻き状に巻回した後、水酸化ナトリウ
ム中で完全充放電を行う充放電工程を経ることにより作
製される非焼結式カドミウム負極の製造方法において、 上記充放電工程における放電工程が終了して転極した
後、更に所定時間過放電を行い、次いでプリチャージす
ることを特徴とする非焼結式カドミウム負極の製造方
法。
1. A negative electrode precursor containing cadmium oxide or cadmium hydroxide and metal cadmium is spirally wound together with a counter electrode plate and a separator and then subjected to a charging / discharging step of performing complete charging / discharging in sodium hydroxide. In the method for producing a non-sintered cadmium negative electrode manufactured by the above, after the discharge step in the charge / discharge step is completed and the polarity is changed, over-discharge is further performed for a predetermined time, and then precharge is performed. A method for producing a sintered cadmium negative electrode.
【請求項2】 前記過放電における電流値を、転極する
までの平均放電電流値より小さくなるように規制する請
求項1記載の非焼結式カドミウム負極の製造方法。
2. The method for producing a non-sintered cadmium negative electrode according to claim 1, wherein the current value in the over-discharging is regulated to be smaller than the average discharge current value until the polarity is changed.
【請求項3】 前記金属カドミウムの平均粒子径が0.
8〜2.0μmである請求項1記載の非焼結式カドミウ
ム負極の製造方法。
3. The average particle size of the metal cadmium is 0.
The method for producing a non-sintered cadmium negative electrode according to claim 1, which has a thickness of 8 to 2.0 μm.
【請求項4】 酸化カドミウムまたは水酸化カドミウム
と金属カドミウムとを含む極板を、対極板及びセパレー
タと共に渦巻き状に巻回した後、水酸化ナトリウム中で
完全充放電を行う充放電工程を経て非焼結式カドミウム
負極を製造する第1ステップと、 上記非焼結式カドミウム負極を正極及びセパレータと共
に巻回して発電要素を作製した後、これを電池缶内に挿
入し、更に電池缶内に電解液を注入した後、電池缶を封
口する第2ステップと、 を有するニッケル−カドミウム蓄電池の製造方法におい
て、 上記第1ステップにおいて、放電工程が終了して転極し
た後、更に所定時間過放電を行い、次いでプリチャージ
すると共に、上記第2ステップで用いられる電解液とし
て、水酸化カリウムを用いることを特徴とするニッケル
−カドミウム蓄電池の製造方法。
4. An electrode plate containing cadmium oxide or cadmium hydroxide and metal cadmium is spirally wound together with a counter electrode plate and a separator and then subjected to a charging / discharging step of performing complete charging / discharging in sodium hydroxide. The first step of producing a sintered cadmium negative electrode, and by winding the non-sintered cadmium negative electrode together with a positive electrode and a separator to produce a power generating element, insert this into a battery can, and further electrolyze into the battery can. A second step of sealing the battery can after injecting the liquid, and a method for manufacturing a nickel-cadmium storage battery comprising: Nickel-cadmium characterized by carrying out and then precharging and using potassium hydroxide as the electrolyte used in the second step. Method for manufacturing a storage battery.
【請求項5】 前記過放電における電流値を、転極する
までの平均放電電流値より小さくなるように規制する請
求項4記載のニッケル−カドミウム蓄電池の製造方法。
5. The method for manufacturing a nickel-cadmium storage battery according to claim 4, wherein the current value in the over-discharge is regulated to be smaller than the average discharge current value until the polarity is changed.
【請求項6】 前記金属カドミウムの平均粒子径が0.
8〜2.0μmである請求項4記載のニッケル−カドミ
ウム蓄電池の製造方法。
6. The average particle diameter of the metal cadmium is 0.
The method for producing a nickel-cadmium storage battery according to claim 4, which has a thickness of 8 to 2.0 μm.
JP04373497A 1997-02-27 1997-02-27 Method for producing non-sintered cadmium negative electrode and method for producing nickel-cadmium storage battery Expired - Fee Related JP3500030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04373497A JP3500030B2 (en) 1997-02-27 1997-02-27 Method for producing non-sintered cadmium negative electrode and method for producing nickel-cadmium storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04373497A JP3500030B2 (en) 1997-02-27 1997-02-27 Method for producing non-sintered cadmium negative electrode and method for producing nickel-cadmium storage battery

Publications (2)

Publication Number Publication Date
JPH10241724A JPH10241724A (en) 1998-09-11
JP3500030B2 true JP3500030B2 (en) 2004-02-23

Family

ID=12672022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04373497A Expired - Fee Related JP3500030B2 (en) 1997-02-27 1997-02-27 Method for producing non-sintered cadmium negative electrode and method for producing nickel-cadmium storage battery

Country Status (1)

Country Link
JP (1) JP3500030B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3696086B2 (en) * 2000-12-28 2005-09-14 三洋電機株式会社 Cadmium negative electrode for alkaline storage battery and method for producing the same
KR100804522B1 (en) * 2001-11-29 2008-02-20 삼성에스디아이 주식회사 Method for manufacturing secondary battery

Also Published As

Publication number Publication date
JPH10241724A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
US6632568B1 (en) Non-sintered nickel electrode with excellent over-discharge characteristics, an alkaline storage cell having the non-sintered nickel electrode, and a manufacturing method of the non-sintered nickel electrode
JP2925604B2 (en) Processing method of hydrogen storage alloy for alkaline secondary battery
JP3500030B2 (en) Method for producing non-sintered cadmium negative electrode and method for producing nickel-cadmium storage battery
JP3109559B2 (en) Chemical formation of sealed alkaline storage batteries.
JP3478030B2 (en) Alkaline storage battery
JP2003257425A (en) Nickel hydrogen storage battery and manufacturing method thereof
JP2001102085A (en) Formation method of airtight type nickel-hydrogen storage battery
JP2858862B2 (en) Metal-hydrogen alkaline storage battery
JP3185244B2 (en) Zinc negative electrode plate for alkaline batteries
JP4400113B2 (en) Nickel-hydrogen battery manufacturing method
JP3225608B2 (en) Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same
JP4626130B2 (en) Nickel-hydrogen storage battery
JP2003068291A (en) Formation method for gas tight nickel - hydrogen storage battery
JP3501382B2 (en) Hydrogen storage alloy negative electrode and method for producing the same
JP2975673B2 (en) Method for producing cadmium negative electrode plate
JPH01134862A (en) Alkaline zinc storage battery
WO2001075993A1 (en) Nickel positive electrode plate and alkaline storage battery
JPH04328252A (en) Hydrogen storage alloy electrode
JP2983668B2 (en) Method for producing paste-type cadmium negative electrode for alkaline storage battery
JP2000268852A (en) Active method for sealed nickel-hydrogen secondary battery
JP2002075318A (en) Secondary battery
JP4556250B2 (en) Lead acid battery
JP3267156B2 (en) Nickel hydride rechargeable battery
JPS6139376A (en) Sealed alkaline storage battery
JP2002075434A (en) Secondary cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees