JPS6139376A - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery

Info

Publication number
JPS6139376A
JPS6139376A JP59159793A JP15979384A JPS6139376A JP S6139376 A JPS6139376 A JP S6139376A JP 59159793 A JP59159793 A JP 59159793A JP 15979384 A JP15979384 A JP 15979384A JP S6139376 A JPS6139376 A JP S6139376A
Authority
JP
Japan
Prior art keywords
discharge
battery
plate
negative plate
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59159793A
Other languages
Japanese (ja)
Other versions
JPH0624146B2 (en
Inventor
Makoto Konishi
真 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP59159793A priority Critical patent/JPH0624146B2/en
Publication of JPS6139376A publication Critical patent/JPS6139376A/en
Publication of JPH0624146B2 publication Critical patent/JPH0624146B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the life characteristic and the high-rate discharge characteristic of a sealed alkaline storage battery by using an aqueous solution principally composed of potassium hydroxide having high discharge efficiency as the electrolyte. CONSTITUTION:A negative plate prepared by packing cadmium used as the active material has a width of 33mm., a length of 260mm. and a thickness of 0.60mm.. After the negative plate is charged in 20% aqueous sodium-hydroxide solution at 20 deg.C with a current of 0.4A for 15hr by using a nickel plate as the counter plate, the charged negative plate is washed in flowing water before being dried. A battery is constituted by combining the thus treated negative plate with a completely discharged positive plate with 1.2A capacity and adding 3.8ml of 30% aqueous potassium-hydroxide solution as the electrolyte. By the means mentioned above, a great discharge reserve can be secured while minimizing the variation of the plates. Accordingly, it is possible to improve the life characteristic and the high-rate discharge-characteristic of the battery.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、密閉形アルカリ蓄電池に関する。[Detailed description of the invention] Industrial applications The present invention relates to a sealed alkaline storage battery.

従来の技術 一般に密閉形ニッケルカドミウム蓄電池(以下「ニカド
電池」という)では、寿命特性あるいは高率放電特性を
維持する目的と過充電時に電池の密閉化を計る目的から
陽極板容量に比べ陰極板容量が大きくされる。前者は放
電リヂーブと呼ばれ、電池において陽極板が完全放電に
達した状態で、陰極板が如何はどの容量を有しているか
を表わすものである。また後者は充電リザーブを呼ばれ
、陽極板が完全充電に達した状態から如何はど充電でき
るかを表わしている。
Conventional technology In general, sealed nickel-cadmium storage batteries (hereinafter referred to as ``Ni-Cad batteries'') have a negative plate capacity that is smaller than the positive plate capacity in order to maintain life characteristics or high-rate discharge characteristics and to ensure that the battery is sealed during overcharging. is made larger. The former is called discharge reserve, and indicates what capacity the cathode plate has in a battery when the anode plate has reached full discharge. The latter is also called the charge reserve, and indicates how long the anode plate can be charged from a fully charged state.

前述の放電リザーブは従来化成時に水酸化カリウム等の
水溶液中で充電した後、その一部を放電するという方法
で確保されていた。
The above-mentioned discharge reserve has conventionally been secured by charging in an aqueous solution of potassium hydroxide or the like during chemical formation, and then discharging a portion thereof.

発明が解決しようとする問題点 しかしこの方法では極板の端部分が放電されやLいため
に充電部分が不均一になる等の問題点があった。これら
問題点を解決するために、充放電した後極板寸法よりも
小さい絶縁板によって極板表面を被い、露出部分にのみ
充電するという方法が提案されている。(以下「マスク
方式」という)。しかしこの方法は放電の際過放電され
るため、一部活物質が不活性化(0゜(OH)、の生成
)し陰極板容量の低下を引き起す等の欠点があった。一
方陰極板では、放電電流が大きくなると深放電が不可能
となるために放電リザーブが多くなるという性質を利用
して、実際の電池としての使用電流に比べ大電流で化成
時の放電を行い放電リザーブは確保するという方法も考
えられるが、この方法は、(1)大電流放電のため大容
量の整流器が必要である。
Problems to be Solved by the Invention However, this method has problems such as the end portions of the electrode plates being easily discharged and the charged portions becoming uneven. In order to solve these problems, a method has been proposed in which the surface of the electrode plate is covered with an insulating plate smaller than the size of the electrode plate after charging and discharging, and only the exposed portion is charged. (hereinafter referred to as the "mask method"). However, this method has drawbacks such as overdischarging during discharge, which inactivates a portion of the active material (generates 0° (OH)) and causes a decrease in cathode plate capacity. On the other hand, in the cathode plate, taking advantage of the property that when the discharge current becomes large, deep discharge becomes impossible and the discharge reserve increases, discharge during formation is performed at a larger current than the current used in the actual battery. A method of securing a reserve is also considered, but this method requires (1) a large capacity rectifier due to large current discharge;

(2) 10 cmk放電等の要求される急速放電形電
池には応用できない等の不具合があった。
(2) There were drawbacks such as the inability to apply it to rapid discharge batteries that require a 10 cmk discharge.

問題点を解決するための手段 本発明はかかる欠点を解決する目的でなされたもので、
水酸化す)IJウム水溶液中の放電で生成する水酸化カ
ドミウム(γ−Od (OH)、)と水酸化カリウム中
の放電で生成される水酸化カドミウム(β−Cd (O
H)、)の性質の差を利用するものである。すなわち、
陰極板の化成時の充放電を放電効率の低い水酸化す) 
IJウム水溶液中で行なった後、陽極板と合わせて電池
となすことを特徴とするものである。
Means for Solving the Problems The present invention was made for the purpose of solving such drawbacks.
Cadmium hydroxide (γ-Od (OH), ) generated by discharge in an aqueous solution of cadmium hydroxide (β-Cd (OH), ) generated by discharge in potassium hydroxide
It utilizes the difference in the properties of H) and ). That is,
When charging and discharging during formation of the cathode plate, hydroxide with low discharge efficiency is used)
It is characterized in that it is carried out in an IJum aqueous solution and then combined with an anode plate to form a battery.

作用 電池電解液としてより放電効率の高い水酸化カリウムを
主体とした水溶液を用いることによつて電池の寿命特性
、高率放電特性を改善することができる。
By using an aqueous solution mainly composed of potassium hydroxide, which has higher discharge efficiency, as a working battery electrolyte, the life characteristics and high rate discharge characteristics of the battery can be improved.

実施例 次に本発明の一実施例を説明する。Example Next, one embodiment of the present invention will be described.

巾3311Il11長さ260簡、厚さ0.60瓢で活
物質としてカドミウムを充填した陰極板をニッケル板を
相手板として20°C,2([、水酸ナトリウム水溶液
中での0.4A15hr充電した0゜ 後、1,2Aで終止電圧−L8Vまで放電した。
A cathode plate having a width of 3311Il11 and a length of 260cm and a thickness of 0.60mm and filled with cadmium as an active material was charged at 20°C for 15 hours at 20°C in an aqueous solution of sodium hydroxide using a nickel plate as a mating plate. After 0°, the battery was discharged at 1.2 A to a final voltage of -L8V.

その後流水中で水洗し、乾燥した。このようにして得た
陰極板を容量1.2人の完全放電状態の陽極板と組み合
わせ、電池電解液として30%水酸化カリウム水溶液3
.8mAを加え電池とした。このようにして作った電池
の充放電サイクル寿命特性を第1図に、過放電した時の
放電リザーブ量を第2図にそれぞれマスク方式によって
得られた従来の電池と比較して示した。本発明の電池で
は放電リザーブの確保が容易であるため、寿命特性が向
上することがわかった。
Thereafter, it was washed under running water and dried. The cathode plate obtained in this way was combined with a fully discharged anode plate with a capacity of 1.2 people, and a 30% potassium hydroxide aqueous solution was used as the battery electrolyte.
.. 8 mA was added to form a battery. FIG. 1 shows the charge/discharge cycle life characteristics of the battery thus produced, and FIG. 2 shows the discharge reserve amount when overdischarged, in comparison with a conventional battery obtained by the mask method. It was found that the battery of the present invention has improved life characteristics because it is easy to secure a discharge reserve.

発明の効果 上述のように、本発明によれば、大電流を流す設備を必
要ともせず、極板内バラツキの少ない、大きな放電リザ
ーブが確保できるので、電池の高率放電特性、寿命特性
等を向上した均一な特性の電池を得ることができる等の
優れた効果がある。
Effects of the Invention As described above, according to the present invention, it is possible to secure a large discharge reserve with little variation within the electrode plates without requiring equipment for passing large currents, thereby improving the high rate discharge characteristics, life characteristics, etc. of the battery. It has excellent effects such as being able to obtain a battery with improved uniform characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる密閉形アルカリ蓄電池と従来の密
閉形アルカリ蓄電池の充放電サイクル寿命特性を示す曲
線図、第2図は同じく1mlの放電曲線図である。
FIG. 1 is a curve diagram showing the charge/discharge cycle life characteristics of a sealed alkaline storage battery according to the present invention and a conventional sealed alkaline storage battery, and FIG. 2 is a discharge curve diagram of 1 ml as well.

Claims (1)

【特許請求の範囲】[Claims] 水酸化ナトリウムを主体とした水溶液中で充放電するこ
とにより化成した陰極板を備え、水酸化カリウムを主体
とする電池電解液を用いたことを特徴とする密閉形アル
カリ蓄電池。
A sealed alkaline storage battery characterized by having a cathode plate chemically formed by charging and discharging in an aqueous solution mainly composed of sodium hydroxide, and using a battery electrolyte mainly composed of potassium hydroxide.
JP59159793A 1984-07-30 1984-07-30 Sealed alkaline storage battery manufacturing method Expired - Lifetime JPH0624146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59159793A JPH0624146B2 (en) 1984-07-30 1984-07-30 Sealed alkaline storage battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59159793A JPH0624146B2 (en) 1984-07-30 1984-07-30 Sealed alkaline storage battery manufacturing method

Publications (2)

Publication Number Publication Date
JPS6139376A true JPS6139376A (en) 1986-02-25
JPH0624146B2 JPH0624146B2 (en) 1994-03-30

Family

ID=15701386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59159793A Expired - Lifetime JPH0624146B2 (en) 1984-07-30 1984-07-30 Sealed alkaline storage battery manufacturing method

Country Status (1)

Country Link
JP (1) JPH0624146B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136646A (en) * 1974-04-19 1975-10-30
JPS5297127A (en) * 1976-02-10 1977-08-15 Japan Storage Battery Co Ltd Method of manufacturing positive electrode plate for alkaline storage battery
JPS5339980A (en) * 1976-09-24 1978-04-12 Bayer Ag Polyamide semipermeable membrane
JPS5569961A (en) * 1978-11-21 1980-05-27 Matsushita Electric Ind Co Ltd Manufacturing method for cadmium plate for cell
JPS55102175A (en) * 1979-01-29 1980-08-05 Japan Storage Battery Co Ltd Manufacturing method of negative plate for alkaline battery
JPS5626364A (en) * 1979-08-09 1981-03-13 Yuasa Battery Co Ltd Manufacture of cadmium electrode for nickel-cadmium cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136646A (en) * 1974-04-19 1975-10-30
JPS5297127A (en) * 1976-02-10 1977-08-15 Japan Storage Battery Co Ltd Method of manufacturing positive electrode plate for alkaline storage battery
JPS5339980A (en) * 1976-09-24 1978-04-12 Bayer Ag Polyamide semipermeable membrane
JPS5569961A (en) * 1978-11-21 1980-05-27 Matsushita Electric Ind Co Ltd Manufacturing method for cadmium plate for cell
JPS55102175A (en) * 1979-01-29 1980-08-05 Japan Storage Battery Co Ltd Manufacturing method of negative plate for alkaline battery
JPS5626364A (en) * 1979-08-09 1981-03-13 Yuasa Battery Co Ltd Manufacture of cadmium electrode for nickel-cadmium cell

Also Published As

Publication number Publication date
JPH0624146B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
JPS638588B2 (en)
JPS62291871A (en) Enclosed type nickel-cadmium storage battery
JPS6139376A (en) Sealed alkaline storage battery
JP3500030B2 (en) Method for producing non-sintered cadmium negative electrode and method for producing nickel-cadmium storage battery
JPH0750616B2 (en) Lead acid battery
JPH09147871A (en) Negative electrode plate for lead-acid battery
JPS6081777A (en) Nickel-zinc battery
JP2762730B2 (en) Nickel-cadmium storage battery
JPH0437544B2 (en)
JP2975673B2 (en) Method for producing cadmium negative electrode plate
JPH079806B2 (en) Zinc electrode for alkaline storage battery
JPH1064531A (en) Cadmium negative electrode for alkaline storage battery and manufacture thereof
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JPH0690926B2 (en) Alkaline zinc secondary battery
JPH0724216B2 (en) Non-sintered cadmium cathode for alkaline storage batteries
JPS58209063A (en) Manufacture of plate for lead-acid battery
JPH01143147A (en) Lead storage battery
JPS5998474A (en) Enclosed type lead storage battery
JPH05159797A (en) Sealed lead-acid battery
JPH0675397B2 (en) Method for producing paste type cadmium negative electrode
JPS58131671A (en) Charging method of lead-acid battery
JPH071695B2 (en) Alkaline zinc storage battery
JPS58137964A (en) Alkaline zinc storage battery
JPS58137963A (en) Alkaline zinc storage battery
JPH01117273A (en) Lead-acid battery