JP3490857B2 - Semiconductor device and method of manufacturing semiconductor device - Google Patents

Semiconductor device and method of manufacturing semiconductor device

Info

Publication number
JP3490857B2
JP3490857B2 JP31385196A JP31385196A JP3490857B2 JP 3490857 B2 JP3490857 B2 JP 3490857B2 JP 31385196 A JP31385196 A JP 31385196A JP 31385196 A JP31385196 A JP 31385196A JP 3490857 B2 JP3490857 B2 JP 3490857B2
Authority
JP
Japan
Prior art keywords
layer
groove
semiconductor substrate
trench
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31385196A
Other languages
Japanese (ja)
Other versions
JPH10154809A (en
Inventor
博稔 久保
栄一郎 桑子
正直 北川
潤一郎 東條
洋明 斎藤
計 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP31385196A priority Critical patent/JP3490857B2/en
Publication of JPH10154809A publication Critical patent/JPH10154809A/en
Application granted granted Critical
Publication of JP3490857B2 publication Critical patent/JP3490857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の製造方
法に関し、さらに詳しくいえば、トレンチ型の縦型パワ
ー半導体装置の製造方法の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to improvement of a method of manufacturing a trench type vertical power semiconductor device.

【0002】[0002]

【従来の技術】以下で従来例に係る半導体装置について
図面を参照しながら説明する。この半導体装置は、図7
に示すようなトレンチ型のパワーMOSFETである。
これを形成するには、図6に示すようなウエハ、すなわ
ち基板1の面方位が(100)であって、オリエンテー
ション・フラット面2の面方位が(110)であるよう
なウエハを用いる。
2. Description of the Related Art A semiconductor device according to a conventional example will be described below with reference to the drawings. This semiconductor device is shown in FIG.
It is a trench type power MOSFET as shown in FIG.
To form this, a wafer as shown in FIG. 6, that is, a wafer in which the plane orientation of the substrate 1 is (100) and the orientation flat surface 2 is (110) is used.

【0003】図7のパワーMOSFETにおいては、N
+ 型の半導体基板1の表層にN- 型の共通ドレイン層2
がエピタキシャル成長法によって形成され、この共通ド
レイン層2の表層に、P+ 型の不純物が拡散されること
でチャネル層3が形成されている。またチャネル層3の
表層の一部には、N+ 型の不純物が拡散されることによ
りソース領域4が形成されており、これらを貫通するよ
うに溝(トレンチ)が設けられている。
In the power MOSFET of FIG. 7, N
The N-type common drain layer 2 is formed on the surface layer of the + type semiconductor substrate 1.
Are formed by an epitaxial growth method, and the channel layer 3 is formed by diffusing P + type impurities in the surface layer of the common drain layer 2. A source region 4 is formed in a part of the surface layer of the channel layer 3 by diffusing N + type impurities, and a trench is provided so as to penetrate these.

【0004】このトレンチは、側壁がオリエンテーショ
ン・フラット面2の面方位と一致するように形成されて
いるので、トレンチの側壁の面方位が(110)とな
り、トレンチの底面及び基板表面の面方位が(100)
となっている。このトレンチの表層にはゲート絶縁膜5
が形成され、ゲート絶縁膜5上にはこのトレンチを充填
するようにポリシリコンゲート6が形成されている。
Since the side wall of this trench is formed so as to coincide with the plane orientation of the orientation flat surface 2, the plane orientation of the side wall of the trench becomes (110), and the plane orientation of the bottom surface of the trench and the surface orientation of the substrate surface. (100)
Has become. A gate insulating film 5 is formed on the surface of this trench.
And a polysilicon gate 6 is formed on the gate insulating film 5 so as to fill this trench.

【0005】上記のパワーMOSFETを製造するにお
いては、トレンチを形成した後に熱酸化などで内壁及び
底面に酸化膜を成長させる事によってゲート絶縁膜5を
形成していた。
In manufacturing the above-described power MOSFET, the gate insulating film 5 is formed by growing an oxide film on the inner wall and the bottom surface by thermal oxidation after forming the trench.

【0006】[0006]

【発明が解決しようとする課題】上記の半導体装置によ
れば、図7に示すようにトレンチの側壁の面方位が(1
10)となり、トレンチの底面及び基板表面の面方位が
(100)となる。ゲート絶縁膜5を形成するには、上
述のようにトレンチを形成した後に、熱酸化によって酸
化膜をトレンチ内で成長させているが、酸化膜の形成工
程においては、面方位が(100)の場合が成長速度が
最も遅く、次いで(111),(110)の順に速くな
るので、面方位が(110)であるトレンチの側壁での
酸化膜が、面方位が(100)であるトレンチの底面及
び基板表面での酸化膜よりも速く成長して、トレンチ側
壁でのゲート絶縁膜の膜厚が厚くなる。
According to the above semiconductor device, as shown in FIG. 7, the plane orientation of the side wall of the trench is (1
10), and the plane orientations of the bottom surface of the trench and the substrate surface are (100). To form the gate insulating film 5, after forming the trench as described above, an oxide film is grown in the trench by thermal oxidation. In the oxide film forming step, the plane orientation is (100). In this case, the growth rate is the slowest, and then increases in the order of (111) and (110). Therefore, the oxide film on the side wall of the trench whose plane orientation is (110) is the bottom surface of the trench whose plane orientation is (100). Also, the gate insulating film grows faster than the oxide film on the substrate surface and becomes thicker on the side wall of the trench.

【0007】従って、トレンチ側壁の酸化膜を閾値電圧
コントロールのために、所定の膜厚に設定すると、トレ
ンチ底部の膜厚が薄くなり、絶縁耐量の低下が生じる。
また、トレンチの開口側の角部KBに電界が集中するこ
とにより、この角部KBにおいてゲート絶縁膜が破壊し
てしまうなどという問題が生じる。このような問題を改
善するために、基板面の面方位とトレンチ側壁の面方位
とを同じ(100)にして、側壁と底面での成長速度を
同じにして、トレンチ溝内に均一な酸化膜を形成すると
いう試みがなされていた(特開平2−46716)。こ
の方法によると、トレンチの側壁で成長する酸化膜と、
底面で成長する酸化膜の膜厚を均一にすることで、トレ
ンチ底部での絶縁耐量低下を防止できるが、トレンチ開
口側の角部での絶縁破壊を防止するという点では、まだ
十分ではなかった。
Therefore, if the oxide film on the side wall of the trench is set to have a predetermined film thickness for controlling the threshold voltage, the film thickness at the bottom of the trench becomes thin and the dielectric strength is lowered.
Further, the electric field is concentrated on the corner portion KB on the opening side of the trench, which causes a problem that the gate insulating film is broken at the corner portion KB. In order to improve such a problem, the plane orientation of the substrate surface and the plane orientation of the trench side wall are set to the same (100), the growth rates on the side wall and the bottom surface are made the same, and a uniform oxide film is formed in the trench groove. Attempts have been made to form a film (Japanese Patent Laid-Open No. 2-46716). According to this method, an oxide film grown on the sidewall of the trench,
By making the thickness of the oxide film that grows on the bottom uniform, it is possible to prevent a decrease in the dielectric strength at the bottom of the trench, but it was still insufficient in terms of preventing dielectric breakdown at the corner on the trench opening side. .

【0008】[0008]

【課題を解決するための手段】本発明は上記従来の欠点
に鑑み成されたもので、図1に示すように、基板面及び
オリエンテーション・フラット面の面方位がともに(1
00)である一導電型の半導体基板と、前記半導体基板
の表層に形成された一導電型のドレイン領域と、前記ド
レイン領域の表層に設けられた逆導電型のチャネル領域
と、前記チャネル領域と前記ドレイン領域とを貫通する
ように設けられ、側壁の面方位が前記オリエンテーショ
ン・フラット面と一致し、かつ角部が切除され、切除後
に露出する面の面方位が(110)となる溝と、前記溝
の内壁及び前記角部を被覆するように設けられたゲート
絶縁膜と、前記ゲート絶縁膜上に設けられ、前記溝を充
填するように形成されたゲート電極と、前記溝の近傍に
設けられ、一導電型の不純物拡散層よりなるソース領域
とを有する事を特徴とする半導体装置や、基板表面の面
方位とオリエンテーション・フラット面の面方位とがと
もに(100)面である一導電型の半導体基板の表層に
一導電型のドレイン領域層を形成し、前記ドレイン領域
層の表層に逆導電型のチャネル領域層を形成する工程
と、前記半導体基板の表面に第1の絶縁膜を形成し、前
記チャネル領域層に一導電型の不純物を注入・拡散して
ソース領域を形成する工程と、前記ソース領域近傍の領
域の前記第1の絶縁膜及び前記半導体基板を選択的にエ
ッチングして、側壁の面方位が前記オリエンテーション
・フラット面と一致するような溝を形成する工程と、前
記溝の開口の角部を選択的に除去し、除去された後に現
れる面の面方位を(110)とする工程と、前記溝の内
壁及び前記角部を酸化して、第2の絶縁膜を形成する工
程と、前記溝を充填し、かつ前記半導体基板全面を被覆
する導電体層を形成する工程と、前記導電体層をエッチ
ングにより除去し、前記溝内に残存させてゲート電極を
形成する工程とを有する事を特徴とする半導体装置の製
造方法により、上記課題を解決するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks of the prior art. As shown in FIG. 1, the plane orientations of the substrate surface and the orientation flat surface are both (1
00), a semiconductor substrate of one conductivity type, a drain region of one conductivity type formed in a surface layer of the semiconductor substrate, a channel region of an opposite conductivity type provided in a surface layer of the drain region, and the channel region. A groove which is provided so as to penetrate the drain region, has a side wall whose surface orientation matches that of the orientation flat surface, and whose corners are cut off, and whose surface orientation exposed after cutting is (110). A gate insulating film provided so as to cover the inner wall and the corner of the groove, a gate electrode provided on the gate insulating film so as to fill the groove, and provided in the vicinity of the groove And a semiconductor device characterized by having a source region formed of an impurity diffusion layer of one conductivity type, and a plane orientation of a substrate surface and a plane orientation of an orientation flat surface are both (100) planes. Forming a drain region layer of one conductivity type on the surface layer of a semiconductor substrate of one conductivity type, and forming a channel region layer of the opposite conductivity type on the surface layer of the drain region layer; and forming a first region on the surface of the semiconductor substrate. Forming an insulating film, implanting and diffusing one conductivity type impurity in the channel region layer to form a source region, and selectively forming the first insulating film and the semiconductor substrate in a region near the source region. Etching to form a groove in which the plane orientation of the side wall coincides with the orientation flat surface, and the corner portion of the opening of the groove is selectively removed, and the plane orientation of the surface that appears after the removal (110), a step of oxidizing the inner wall and the corner of the groove to form a second insulating film, and a conductor layer filling the groove and covering the entire surface of the semiconductor substrate. And a step of forming Collector layer is removed by etching, by the method of manufacturing a semiconductor device, characterized in that a step of forming a gate electrode is left in the groove, it is to solve the above problems.

【0009】[0009]

【発明の実施の形態】以下で、本発明の実施形態に係る
トレンチ構造のパワーMOSFETについて図面を参照
しながら説明する。しかしながら本発明は以下の実施形
態に限るものではない。図1は本実施形態に係るパワー
MOSFETの構造を説明する断面図であり、図2は本
実施形態に係るパワーMOSFETの製造に用いるウエ
ハを説明する図である。
BEST MODE FOR CARRYING OUT THE INVENTION A power MOSFET having a trench structure according to an embodiment of the present invention will be described below with reference to the drawings. However, the present invention is not limited to the following embodiments. FIG. 1 is a cross-sectional view illustrating the structure of the power MOSFET according to this embodiment, and FIG. 2 is a view illustrating a wafer used for manufacturing the power MOSFET according to this embodiment.

【0010】この半導体装置は、図2に示すようなウエ
ハ、すなわち基板11の面方位が(100)であって、
オリエンテーション・フラット面10の面方位が(10
0)であるようなウエハを用いて形成されている。この
パワーMOSFETにおいては、図1に示すようにN+
型の半導体基板11の表層にN- 型の共通ドレイン層1
2がエピタキシャル成長法によって形成され、この共通
ドレイン層12の表層に、P+ 型の不純物が拡散される
ことでチャネル層13が形成されている。
In this semiconductor device, the wafer as shown in FIG. 2, that is, the substrate 11 has a plane orientation of (100),
The orientation of the orientation flat surface 10 is (10
0) is used to form the wafer. In this power MOSFET, as shown in FIG.
-Type common drain layer 1 on the surface layer of the n-type semiconductor substrate 11
2 is formed by an epitaxial growth method, and a channel layer 13 is formed in the surface layer of the common drain layer 12 by diffusing P + type impurities.

【0011】またチャネル層13の表層の一部には、N
+ 型の不純物が拡散されることによりソース領域14が
形成されており、これらを貫通するようにトレンチ
(溝)が設けられている。トレンチの側壁の面方位は図
1に示すようにオリエンテーション・フラット面10の
面方位と同じ(100)である。さらに、トレンチの角
部KBは切除されており、切除された後に現れる角部の
面(後述の切除面)の面方位は(110)になるように
設定されている。
Further, N is formed on a part of the surface layer of the channel layer 13.
The source region 14 is formed by diffusing + type impurities, and a trench is provided so as to penetrate these. The plane orientation of the side wall of the trench is the same as that of the orientation flat surface 10 (100) as shown in FIG. Further, the corner portion KB of the trench is cut off, and the plane orientation of the surface of the corner portion (cutting surface described later) that appears after cutting is set to (110).

【0012】そして、トレンチの表層にはゲート絶縁膜
15が形成され、ゲート絶縁膜15上にはこのトレンチ
を充填するようにポリシリコンゲート16が形成されて
いる。ゲート絶縁膜15は、図1に示すようにトレンチ
の側壁の膜厚と、底面の膜厚とがほぼ同じであって、ま
た、角部KBでの膜厚はトレンチ及び底面の膜厚よりも
厚くなっている。どのようにしてこのようなゲート絶縁
膜が形成されるかについては後述の製造方法で詳述す
る。
A gate insulating film 15 is formed on the surface layer of the trench, and a polysilicon gate 16 is formed on the gate insulating film 15 so as to fill the trench. As shown in FIG. 1, the gate insulating film 15 has substantially the same film thickness on the side wall of the trench and the film thickness on the bottom surface, and the film thickness at the corner portion KB is smaller than the film thickness on the trench and the bottom surface. It's getting thicker. How to form such a gate insulating film will be described in detail later in the manufacturing method.

【0013】本実施形態に係る半導体装置によれば、図
1に示すように、トレンチの側壁の膜厚と、底面の膜厚
とがほぼ同じであるため、トレンチ底面の絶縁耐量低下
という問題を抑止する事が可能になる。また、角部が切
除されてなだらかになっているためこの部分で電界が集
中しにくくなっており、しかも角部でのゲート絶縁膜1
5の膜厚が他の領域よりも厚くなっているので、トレン
チの開口側の角部KBに電界が集中することにより、こ
の角部KBにおいてゲート絶縁膜が破壊してしまうなど
という問題を抑止する事が可能になる。
According to the semiconductor device of this embodiment, as shown in FIG. 1, since the film thickness of the side wall of the trench and the film thickness of the bottom surface are almost the same, there is a problem that the dielectric strength of the bottom surface of the trench is lowered. It becomes possible to deter. Further, since the corners are cut off and are gentle, it is difficult for the electric field to concentrate in these parts, and the gate insulating film 1 at the corners is also formed.
Since the film thickness of 5 is thicker than other regions, it is possible to prevent the problem that the gate insulating film is broken at the corner portion KB of the opening side of the trench due to the concentration of the electric field. It becomes possible to do.

【0014】以下で、上記半導体装置の製造方法につい
て図面を参照しながら説明する。図3〜図5は、本実施
形態に係るパワーMOSFETの製造方法を説明する断
面図である。まず、基板として図2に示すように、基板
面の面方位とオリエンテーション・フラット面の面方位
がともに(100)である半導体基板11を用意する。
A method of manufacturing the above semiconductor device will be described below with reference to the drawings. 3 to 5 are cross-sectional views illustrating the method for manufacturing the power MOSFET according to this embodiment. First, as shown in FIG. 2, as a substrate, a semiconductor substrate 11 in which the plane orientation of the substrate surface and the orientation of the orientation flat surface are both (100) is prepared.

【0015】そして、図3に示すようにn+ 型のシリコ
ンからなるこの半導体基板11の表層にn- 型のドレイ
ン層12をエピタキシャル成長法で形成し、その表層に
p+型のチャネル層13を形成する。さらにそのチャネ
ル層13上にシリコン酸化膜16を形成し、N+ 型不純
物である例えば、砒素(As)をドーズ量1×1016c
m-2の条件でチャネル層の表層に選択的に注入・拡散し
て、ソース領域14を形成する。その後、ソース領域1
4近傍のシリコン酸化膜16及び半導体基板11を選択
的にドライエッチングして幅1μm、深さ1.5〜3μ
m、好ましくは2μm程度のトレンチ17を形成する。
Then, as shown in FIG. 3, an n-type drain layer 12 is formed on the surface layer of this semiconductor substrate 11 made of n + type silicon by an epitaxial growth method, and a p + type channel layer 13 is formed on the surface layer. Form. Further, a silicon oxide film 16 is formed on the channel layer 13 and an N + type impurity such as arsenic (As) is dosed at 1 × 10 16 c.
Source region 14 is formed by selectively injecting and diffusing into the surface layer of the channel layer under the condition of m-2. Then source area 1
The silicon oxide film 16 and the semiconductor substrate 11 near 4 are selectively dry-etched to have a width of 1 μm and a depth of 1.5-3 μm.
A trench 17 having a thickness of m, preferably about 2 μm is formed.

【0016】次に、図4に示すようにトレンチ17の開
口側の角部18を、基板面と45°の傾斜をなすように
エッチングして除去する。この除去された後の角部の面
(以下でこれを切除面18と称する)の面方位は(11
0)となる。その後図5に示すように全面を熱酸化し
て、トレンチ17の内壁に膜厚500Å程度のシリコン
酸化膜からなるゲート絶縁膜15を形成する。
Next, as shown in FIG. 4, the corner portion 18 on the opening side of the trench 17 is removed by etching so as to form an inclination of 45 ° with the substrate surface. The surface orientation of the corner surface (hereinafter referred to as the cut surface 18) after the removal is (11
0). Thereafter, as shown in FIG. 5, the entire surface is thermally oxidized to form a gate insulating film 15 made of a silicon oxide film with a film thickness of about 500 Å on the inner wall of the trench 17.

【0017】この成長工程において、トレンチ17の底
面の面方位と側壁の面方位は共に(100)であるた
め、酸化膜の成長速度は等しくなり、トレンチ17の底
面の膜厚と側壁の膜厚とは等しくなる。さらに、切除面
18の面方位は上述の通り(110)となる。この面に
おける酸化膜の成長速度は、トレンチ17の底面及び側
壁の酸化膜の成長速度よりも速いので、図5に示すよう
に切除面18上で成長する酸化膜の膜厚をトレンチの底
面及び側壁の酸化膜の膜厚よりも厚くすることができ、
トレンチ17の底面の膜厚と側壁の膜厚とが等しく、か
つ切除面18での膜厚がこれらの膜厚よりも厚いゲート
絶縁膜15を形成する事が可能になる。
In this growth step, since the plane orientation of the bottom surface and the plane orientation of the side wall of the trench 17 are both (100), the growth rate of the oxide film becomes equal, and the film thickness of the bottom surface and the film thickness of the side wall of the trench 17 are equal. Is equal to. Further, the plane orientation of the cut surface 18 is (110) as described above. Since the growth rate of the oxide film on this surface is faster than the growth rate of the oxide film on the bottom surface and the side wall of the trench 17, the thickness of the oxide film grown on the cut surface 18 is set to the bottom surface of the trench and the trench film as shown in FIG. Can be made thicker than the thickness of the oxide film on the side wall,
It is possible to form the gate insulating film 15 in which the film thickness of the bottom surface and the film thickness of the side wall of the trench 17 are equal and the film thickness of the cut surface 18 is larger than these film thicknesses.

【0018】その後、全面にポリシリコンを堆積してト
レンチ内を充填した後に、これをパターニングすること
により、図1に示すようなトレンチ型のパワーMOSF
ETを製造する事ができる。以上説明したように、本実
施形態に係る半導体装置の製造方法によれば、基板面の
面方位とオリエンテーション・フラット面10の面方位
がともに(100)である半導体基板11を用意し、オ
リエンテーション・フラット面10の面方位とトレンチ
17の側壁の面方位をともに(100)にしたのちに、
トレンチ17の角部を除去して面方位が(110)とな
る切除面18を形成し、酸化することでゲート絶縁膜1
5を形成しているので、トレンチ17の底面の膜厚と側
壁の膜厚とが等しく、かつ切除面18での膜厚がこれら
の膜厚よりも厚いゲート絶縁膜15を形成する事がで
き、図1に示すような本実施形態に係る半導体装置を製
造することが可能になる。
After that, polysilicon is deposited on the entire surface to fill the inside of the trench, and this is patterned to obtain a trench type power MOSF as shown in FIG.
Can manufacture ET. As described above, according to the method for manufacturing a semiconductor device of this embodiment, the semiconductor substrate 11 in which both the plane orientation of the substrate surface and the orientation flat surface 10 are (100) is prepared, and the orientation After setting both the plane orientation of the flat surface 10 and the plane orientation of the sidewall of the trench 17 to (100),
The gate insulating film 1 is formed by removing a corner portion of the trench 17 to form a cut surface 18 having a plane orientation of (110) and oxidizing the cut surface 18.
5 is formed, it is possible to form the gate insulating film 15 in which the film thickness of the bottom surface of the trench 17 is equal to the film thickness of the side wall and the film thickness of the cut surface 18 is larger than these film thicknesses. It becomes possible to manufacture the semiconductor device according to the present embodiment as shown in FIG.

【0019】[0019]

【発明の効果】以上説明したように、本発明に係る半導
体装置によれば、トレンチの側壁の膜厚と、底面の膜厚
とがほぼ同じであるため、トレンチ底面の絶縁耐量低下
を抑止する事が可能になる。また、角部が切除されてな
だらかになっているためこの部分で電界が集中しにくく
なっており、しかも角部でのゲート絶縁膜の膜厚が他の
領域よりも厚くなっているので、トレンチの開口側の角
部に電界が集中することにより、ゲート絶縁膜が破壊し
てしまうなどという問題も抑止する事が可能になる。
As described above, according to the semiconductor device of the present invention, since the film thickness of the side wall of the trench and the film thickness of the bottom surface are substantially the same, it is possible to suppress the decrease in the dielectric strength of the bottom surface of the trench. Things will be possible. Also, since the corners are cut off and are gentle, it is difficult for the electric field to concentrate in this part, and the gate insulating film at the corners is thicker than other regions, so the trench It is possible to prevent the problem that the gate insulating film is destroyed due to the concentration of the electric field in the corners on the opening side.

【0020】また、本発明に係る半導体装置の製造方法
によれば、基板面の面方位とオリエンテーション・フラ
ット面の面方位がともに(100)である半導体基板を
用意し、オリエンテーション・フラット面の面方位とト
レンチの側壁の面方位をともに(100)にしたのち
に、トレンチの角部を除去して面方位が(110)とな
る切除面を形成し、酸化することでゲート絶縁膜を形成
しているので、トレンチの底面の膜厚と側壁の膜厚とが
等しく、かつ角部での膜厚がこれらの膜厚よりも厚いゲ
ート絶縁膜を形成する事ができ、上述の作用効果を奏す
る本発明に係る半導体装置を製造する事が可能になる。
Further, according to the method of manufacturing a semiconductor device of the present invention, a semiconductor substrate having both the plane orientation of the substrate surface and the orientation flat surface of the orientation flat surface is prepared, and the orientation flat surface is prepared. After setting both the orientation and the plane orientation of the side wall of the trench to (100), the corner portion of the trench is removed to form a cut surface having a plane orientation of (110), and the gate insulating film is formed by oxidation. Therefore, it is possible to form a gate insulating film in which the film thickness of the bottom surface and the film thickness of the side wall of the trench are equal and the film thickness at the corners is thicker than these film thicknesses, and the above-mentioned effects are obtained. It is possible to manufacture the semiconductor device according to the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係る半導体装置の構造を説
明する断面図である。
FIG. 1 is a sectional view illustrating a structure of a semiconductor device according to an embodiment of the present invention.

【図2】本発明の実施形態に係る半導体装置の製造に用
いる半導体基板を説明する図である。
FIG. 2 is a diagram illustrating a semiconductor substrate used for manufacturing a semiconductor device according to an embodiment of the present invention.

【図3】本発明の実施形態に係る半導体装置の製造方法
を説明する第1の断面図である。
FIG. 3 is a first cross-sectional view illustrating the method for manufacturing the semiconductor device according to the embodiment of the invention.

【図4】本発明の実施形態に係る半導体装置の製造方法
を説明する第2の断面図である。
FIG. 4 is a second sectional view illustrating the method for manufacturing the semiconductor device according to the embodiment of the invention.

【図5】本発明の実施形態に係る半導体装置の製造方法
を説明する第3の断面図である。
FIG. 5 is a third cross-sectional view illustrating the method for manufacturing the semiconductor device according to the embodiment of the invention.

【図6】従来例に係る半導体装置の製造に用いる半導体
基板を説明する図である。
FIG. 6 is a diagram illustrating a semiconductor substrate used for manufacturing a semiconductor device according to a conventional example.

【図7】従来例に係る半導体装置の構造を説明する断面
図である。
FIG. 7 is a cross-sectional view illustrating a structure of a semiconductor device according to a conventional example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 東條 潤一郎 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 斎藤 洋明 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 福井 計 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平7−263692(JP,A) 特開 平2−46716(JP,A) 特開 平7−249769(JP,A) 特開 昭59−8375(JP,A) 特開 平5−109984(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 29/78 652 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junichiro Tojo 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Inventor Hiroaki Saito 2-5 Keihan Hondori, Moriguchi City, Osaka Prefecture No. 5 Sanyo Electric Co., Ltd. (72) Inventor Kei Fukui 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (56) Reference JP-A-7-263692 (JP, A) Japanese Patent Application Laid-Open No. 2-46716 (JP, A) Japanese Patent Application Laid-Open No. 7-249769 (JP, A) Japanese Patent Application Laid-Open No. 59-8375 (JP, A) Japanese Patent Application Laid-Open No. 5-109984 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) H01L 29/78 652

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板面及びオリエンテーション・フラッ
ト面の面方位がともに(100)である一導電型の半導
体基板と、 前記半導体基板の表層に形成された一導電型のドレイン
領域と、 前記ドレイン領域の表層に設けられた逆導電型のチャネ
ル領域と、 前記チャネル領域と前記ドレイン領域とを貫通するよう
に設けられ、側壁の面方位が前記オリエンテーション・
フラット面と一致し、かつ角部が切除され、切除後に露
出する面の面方位が(110)となる溝と、 前記溝の内壁及び前記角部を被覆するように設けられた
ゲート絶縁膜と、 前記ゲート絶縁膜上に設けられ、前記溝を充填するよう
に形成されたゲート電極と、 前記溝の近傍に設けられ、一導電型の不純物拡散層より
なるソース領域とを有する事を特徴とする半導体装置。
1. A semiconductor substrate of one conductivity type in which the plane orientations of the substrate surface and the orientation flat surface are both (100), a drain region of one conductivity type formed in a surface layer of the semiconductor substrate, and the drain region. A channel region of the opposite conductivity type provided in the surface layer of, and a surface orientation of the side wall that is provided so as to penetrate the channel region and the drain region.
A groove that coincides with a flat surface and has a corner cut off, and a surface exposed after cutting has a plane orientation of (110); and a gate insulating film provided so as to cover the inner wall of the groove and the corner. A gate electrode formed on the gate insulating film so as to fill the groove, and a source region formed in the vicinity of the groove and formed of an impurity diffusion layer of one conductivity type, Semiconductor device.
【請求項2】 前記半導体基板は、シリコン基板からな
り、 前記ゲート絶縁膜は、前記トレンチの内壁及び角部を酸
化して得られるシリコン酸化膜であることを特徴とする
請求項1記載の半導体装置。
2. The semiconductor substrate according to claim 1, wherein the semiconductor substrate is a silicon substrate, and the gate insulating film is a silicon oxide film obtained by oxidizing an inner wall and a corner of the trench. apparatus.
【請求項3】 基板表面の面方位とオリエンテーション
・フラット面の面方位とがともに(100)面である一
導電型の半導体基板の表層に一導電型のドレイン領域層
を形成し、前記ドレイン領域層の表層に逆導電型のチャ
ネル領域層を形成する工程と、 前記半導体基板の表面に第1の絶縁膜を形成し、前記チ
ャネル領域層に一導電型の不純物を注入・拡散してソー
ス領域を形成する工程と、 前記ソース領域近傍の領域の前記第1の絶縁膜及び前記
半導体基板を選択的にエッチングして、側壁の面方位が
前記オリエンテーション・フラット面と一致するような
溝を形成する工程と、 前記溝の開口の角部を選択的に除去し、除去された後に
現れる面の面方位を(110)とする工程と、 前記溝の内壁及び前記角部を酸化して、第2の絶縁膜を
形成する工程と、 前記溝を充填し、かつ前記半導体基板全面を被覆する導
電体層を形成する工程と、 前記導電体層をエッチングにより除去し、前記溝内に残
存させてゲート電極を形成する工程とを有する事を特徴
とする半導体装置の製造方法。
3. A one-conductivity-type drain region layer is formed on a surface layer of a one-conductivity-type semiconductor substrate in which the plane direction of the substrate surface and the plane direction of the orientation flat surface are both (100) planes. Forming a channel region layer of opposite conductivity type on the surface layer of the layer; forming a first insulating film on the surface of the semiconductor substrate; and implanting and diffusing one conductivity type impurity into the channel region layer to form a source region. And a step of forming a groove in which the plane orientation of the side wall coincides with the orientation flat surface by selectively etching the first insulating film and the semiconductor substrate in a region near the source region. A step of selectively removing a corner portion of the opening of the groove and setting a plane orientation of a surface that appears after the removal to (110); oxidizing an inner wall of the groove and the corner portion; Insulation film And a step of forming a conductor layer that fills the groove and covers the entire surface of the semiconductor substrate, and removes the conductor layer by etching and leaves the groove in the groove to form a gate electrode. A method of manufacturing a semiconductor device, comprising:
JP31385196A 1996-11-25 1996-11-25 Semiconductor device and method of manufacturing semiconductor device Expired - Fee Related JP3490857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31385196A JP3490857B2 (en) 1996-11-25 1996-11-25 Semiconductor device and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31385196A JP3490857B2 (en) 1996-11-25 1996-11-25 Semiconductor device and method of manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH10154809A JPH10154809A (en) 1998-06-09
JP3490857B2 true JP3490857B2 (en) 2004-01-26

Family

ID=18046277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31385196A Expired - Fee Related JP3490857B2 (en) 1996-11-25 1996-11-25 Semiconductor device and method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3490857B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3715971B2 (en) 2003-04-02 2005-11-16 ローム株式会社 Semiconductor device
JP5123622B2 (en) * 2007-09-13 2013-01-23 株式会社日立製作所 Semiconductor device and manufacturing method thereof
JP5879732B2 (en) * 2011-04-18 2016-03-08 富士電機株式会社 Trench insulated gate type semiconductor device
JP5806600B2 (en) 2011-11-21 2015-11-10 住友電気工業株式会社 Method for manufacturing silicon carbide semiconductor device
JP6235298B2 (en) * 2013-10-21 2017-11-22 新日本無線株式会社 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH10154809A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
JP3544833B2 (en) Semiconductor device and manufacturing method thereof
US4830975A (en) Method of manufacture a primos device
JP2539777B2 (en) Method of forming semiconductor element
US5723376A (en) Method of manufacturing SiC semiconductor device having double oxide film formation to reduce film defects
JP3395603B2 (en) Semiconductor device including lateral MOS element
US8487368B2 (en) Low voltage power MOSFET device and process for its manufacture
JPH0560649B2 (en)
JP3667906B2 (en) Semiconductor device and manufacturing method of semiconductor device
JPH11111710A (en) Semiconductor device and its manufacture
JPH0658912B2 (en) Bipolar transistor manufacturing method
JP2585329B2 (en) Collector contact of integrated bipolar transistor
JPH1168102A (en) Production of semiconductor device
JPH06318634A (en) Isolating method for element in semiconductor device
JP3373618B2 (en) Element isolation method for semiconductor device
JP3490857B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP3022714B2 (en) Semiconductor device and manufacturing method thereof
JP2002299618A (en) Semiconductor device and method for manufacturing it
KR100762523B1 (en) Method of Fabricating Improved Semiconductor Trench MOS Device
JP2519215B2 (en) Method for manufacturing semiconductor memory device
JPH10335660A (en) Semiconductor device and manufacture thereof
JPH06302826A (en) Insulated gate field-effect transistor and preparation thereof
JPH0583196B2 (en)
JPH07273183A (en) Semiconductor device and its fabrication
KR0155512B1 (en) Method of forming collector sinker of bipolar transistor
JP2550457B2 (en) Method for manufacturing SOI semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees