JP2002299618A - Semiconductor device and method for manufacturing it - Google Patents

Semiconductor device and method for manufacturing it

Info

Publication number
JP2002299618A
JP2002299618A JP2001208540A JP2001208540A JP2002299618A JP 2002299618 A JP2002299618 A JP 2002299618A JP 2001208540 A JP2001208540 A JP 2001208540A JP 2001208540 A JP2001208540 A JP 2001208540A JP 2002299618 A JP2002299618 A JP 2002299618A
Authority
JP
Japan
Prior art keywords
semiconductor region
semiconductor
region
semiconductor device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001208540A
Other languages
Japanese (ja)
Other versions
JP3709814B2 (en
Inventor
Masahito Kigami
雅人 樹神
Tsutomu Uesugi
勉 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2001208540A priority Critical patent/JP3709814B2/en
Publication of JP2002299618A publication Critical patent/JP2002299618A/en
Application granted granted Critical
Publication of JP3709814B2 publication Critical patent/JP3709814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7834Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Abstract

PROBLEM TO BE SOLVED: To lower the ON resistance of a vertical semiconductor device, to improve breakdown voltage and to lower the temperature dependency of ON resistance in addition. SOLUTION: This vertical semiconductor device 2 is obtained by laminating a first semiconductor region 10, a second semiconductor area 12, a third semiconductor region 16 and a fourth semiconductor region 18 from the side of the front surface of the device 2. The first semiconductor region 10 and the third semiconductor region 16 are the same conductive type. The second semiconductor region 12 is an opposite conductive type. At least a pair of trenches reaching the depth of the third semiconductor region 16 or the fourth semiconductor region 18 from the surface of the device 2 are formed. A conductor 20 is formed within the trenches. The impurity concentration of at least a part of the third semiconductor region 16 is higher than that of the second semiconductor region 12. Since the impurity concentration of the third semiconductor region 16 is high, the temperature dependency of ON resistance is suppressed sufficiently.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は半導体装置に関す
る。特に、耐圧が高く、ON抵抗(半導体装置がONし
た状態での抵抗をいう)が低い半導体装置を実現する技
術に関する。本発明はまたON抵抗の温度依存性が低い
半導体装置を実現する技術にも関する。
[0001] The present invention relates to a semiconductor device. In particular, the present invention relates to a technique for realizing a semiconductor device having a high withstand voltage and a low ON resistance (meaning a resistance when the semiconductor device is ON). The present invention also relates to a technology for realizing a semiconductor device in which the ON resistance has low temperature dependency.

【0002】[0002]

【従来の技術】 特開平7−7149号公報に縦型半導
体装置の原型が記載されている。この縦型半導体装置
は、半導体装置の表面側から、第1半導体領域(具体的
にはソース領域)、第2半導体領域(具体的にはボディ
領域またはベース領域)、第3半導体領域(具体的には
ドリフト領域)、第4半導体領域(具体的にはドレイン
領域)の順に積層されている。第1と第3半導体領域は
同じ導電型であり、第2半導体領域は反対の導電型であ
る。この結果縦方向にトランジスタが形成される。ま
た、半導体装置の表面から、第1半導体領域と第2半導
体領域を貫いて、第3半導体領域の深部または第4半導
体領域に達する少なくとも一対のトレンチが形成されて
いる。そのトレンチ内には導体が形成されている。その
導体がゲート電極となる。トレンチ内の導体(ゲート電
極)と、第1から第4半導体領域のそれぞれは絶縁層
(具体的には酸化層)で絶縁されている。この縦型半導
体装置は、トレンチ内導体(ゲート電極)に電圧が印加
されたときに第2半導体領域(ボディ領域)のうちのゲ
ート電極に向い合う部分にチャネルが形成されてONす
る。
2. Description of the Related Art Japanese Patent Application Laid-Open No. 7-7149 discloses a prototype of a vertical semiconductor device. This vertical semiconductor device includes a first semiconductor region (specifically, a source region), a second semiconductor region (specifically, a body region or a base region), and a third semiconductor region (specifically, from the surface side of the semiconductor device). , A drift region) and a fourth semiconductor region (specifically, a drain region). The first and third semiconductor regions are of the same conductivity type, and the second semiconductor region is of the opposite conductivity type. As a result, a transistor is formed in the vertical direction. At least one pair of trenches is formed from the surface of the semiconductor device, penetrating the first semiconductor region and the second semiconductor region, and reaching the deep portion of the third semiconductor region or the fourth semiconductor region. A conductor is formed in the trench. The conductor becomes a gate electrode. The conductor (gate electrode) in the trench and each of the first to fourth semiconductor regions are insulated by an insulating layer (specifically, an oxide layer). In this vertical semiconductor device, when a voltage is applied to the conductor in the trench (gate electrode), a channel is formed in a portion of the second semiconductor region (body region) facing the gate electrode, and the channel is turned on.

【0003】[0003]

【この発明の原点技術】 上記の縦型半導体装置は、耐
圧が高く、ON抵抗が低いという特性を備えている。本
発明者は、この特性をさらに改善するために、特願20
00―037590号に記載の縦型半導体装置を開発し
た。但し、この出願はまだ公開されていない。この縦型
半導体装置は本出願の半導体装置の原型となったもので
あり、一対のトレンチ間の第1半導体領域(ソース領域
あるいはエミッタ領域)の幅よりも第3半導体領域(ド
リフト領域)の幅を狭くすることを特徴とする。第1半
導体領域(ソース領域あるいはエミッタ領域)の幅を広
くすることによって電極との接触面積を確保してON抵
抗を下げることができ、しかも、第3半導体領域(ドリ
フト領域)の幅を狭くすることによって、一対のトレン
チから側方に伸びる空乏層同士がつながって第3半導体
領域(ドリフト領域)が空乏化され、高い耐圧を確保す
ることができる。
[Original Technology of the Invention] The above-described vertical semiconductor device has characteristics of high withstand voltage and low ON resistance. The present inventor has proposed in Japanese Patent Application No.
A vertical semiconductor device described in 00-037590 has been developed. However, this application has not been published yet. This vertical semiconductor device is a prototype of the semiconductor device of the present application, and the width of the third semiconductor region (drift region) is larger than the width of the first semiconductor region (source region or emitter region) between the pair of trenches. Is narrowed. By increasing the width of the first semiconductor region (source region or emitter region), a contact area with the electrode can be secured and the ON resistance can be reduced, and the width of the third semiconductor region (drift region) is reduced. Thereby, the depletion layers extending laterally from the pair of trenches are connected to each other, so that the third semiconductor region (drift region) is depleted, and a high breakdown voltage can be secured.

【0004】[0004]

【発明が解決しようとする課題】 特願2000−03
7590号に記載の縦型半導体装置によって、ON抵抗
をさらに下げ、耐圧電圧をさらに高くすることができ
る。しかしながら、ON抵抗が温度に依存して大きく変
動するという問題がなおも残っている。本発明の一つの
目的は、ON抵抗を下げ、耐圧電圧を高くし、さらにそ
の上にON抵抗の温度依存性を低く抑えられる半導体装
置を実現することである。ON抵抗の温度依存性が低く
抑えられれば、即ち、ON抵抗が温度変化に抗してほぼ
一定に維持されれば、半導体装置を用いて制御する各種
電力制御の信頼性が大きく向上する。本発明の他の一つ
の目的は、特願2000−037590号に記載された
縦型半導体装置によって実現された「ON抵抗が低くて
耐圧電圧が高い」という特性を横型半導体装置で実現す
ることである。これが成功すれば、半導体装置の片面に
配線するだけで各種の電力制御装置が構成できる。
[Problems to be Solved by the Invention] Japanese Patent Application No. 2000-03
With the vertical semiconductor device described in No. 7590, the ON resistance can be further reduced and the withstand voltage can be further increased. However, there still remains a problem that the ON resistance greatly varies depending on the temperature. An object of the present invention is to realize a semiconductor device in which the ON resistance can be reduced, the withstand voltage can be increased, and the temperature dependency of the ON resistance can be suppressed low. If the temperature dependence of the ON resistance is kept low, that is, if the ON resistance is maintained substantially constant against a temperature change, the reliability of various power controls performed using the semiconductor device is greatly improved. Another object of the present invention is to realize, in a horizontal semiconductor device, the characteristic of “low ON resistance and high withstand voltage” realized by a vertical semiconductor device described in Japanese Patent Application No. 2000-037590. is there. If this is successful, various power control devices can be configured simply by wiring on one side of the semiconductor device.

【0005】[0005]

【課題を解決するための手段および作用と効果】 本発
明の一つの半導体装置は、特開平7−7149号公報に
縦型半導体装置と特願2000−037590号の縦型
半導体装置をさらに改良したものであって、その特徴を
箇条書きすると下記のものとなる。 (1)第1半導体領域、第2半導体領域、第3半導体領
域、第4半導体領域を順に備えている。縦方向に順に積
層されていても、あるいは横方向に順に配列されていて
もよい。 (2)第1と第3半導体領域は同じ導電型であり、それ
に対して、第2半導体領域は反対の導電型である。 (3)第3半導体領域は少なくとも一対の電極間に形成
されている。 (4)その電極と、第1から第4半導体領域のそれぞれ
は絶縁層で絶縁されている。 (5)一対の電極間に存在する第3半導体領域は、半導
体装置のオフ時に一対の電極から第3半導体領域内に伸
びる空乏層同士がつながる厚み以下に形成されている。 (6)第3半導体領域の少なくとも一部の不純物濃度
は、第2半導体領域の不純物濃度よりも高い。
Means for Solving the Problems, Functions and Effects According to one aspect of the present invention, a vertical semiconductor device disclosed in Japanese Patent Application Laid-Open No. 7-7149 and a vertical semiconductor device disclosed in Japanese Patent Application No. 2000-037590 are further improved. The following is a summary of the features. (1) A first semiconductor region, a second semiconductor region, a third semiconductor region, and a fourth semiconductor region are sequentially provided. They may be sequentially stacked in the vertical direction or may be sequentially arranged in the horizontal direction. (2) The first and third semiconductor regions are of the same conductivity type, whereas the second semiconductor region is of the opposite conductivity type. (3) The third semiconductor region is formed between at least a pair of electrodes. (4) The electrode and each of the first to fourth semiconductor regions are insulated by an insulating layer. (5) The third semiconductor region existing between the pair of electrodes is formed to have a thickness equal to or less than a thickness at which a depletion layer extending from the pair of electrodes into the third semiconductor region when the semiconductor device is off is connected. (6) The impurity concentration of at least a part of the third semiconductor region is higher than the impurity concentration of the second semiconductor region.

【0006】ON抵抗の温度依存性は、第3半導体領域
(ドリフト領域)の不純物濃度を高くすることによっ
て、低く抑えられることが知られている。また、第3半
導体領域の不純物濃度を高くすれば、ON抵抗自体を低
く抑えられることも知られている。しかしながら、第3
半導体領域の不純物濃度を高くすれば、耐圧が低下して
しまう。従来の技術では、必要な耐圧を確保するために
必要な不純物濃度の範囲内でしか不純物濃度を選定でき
ず、おのずと、ON抵抗を充分に下げることができず、
また、ON抵抗の温度依存性を充分に抑えることができ
なかった。この発明の半導体装置の場合、一対の電極間
の第3半導体領域は、半導体装置のオフ時に一対の電極
から第3半導体領域内に伸びる空乏層同士がつながって
第3半導体領域が空乏化する厚み以下に形成されてい
る。このために、この発明の半導体装置では、耐圧を下
げないようにしながら第3半導体領域の不純物濃度を高
めることに成功しており、この結果、ON抵抗を充分に
下げ、さらに、ON抵抗の温度依存性を充分に抑えるこ
とに成功したものである。この発明の半導体装置は、耐
圧が高く、ON抵抗が低く、しかも、ON抵抗の温度依
存性が低いという特性を実現する。
It is known that the temperature dependence of the ON resistance can be suppressed low by increasing the impurity concentration of the third semiconductor region (drift region). It is also known that the ON resistance itself can be suppressed low by increasing the impurity concentration of the third semiconductor region. However, the third
If the impurity concentration in the semiconductor region is increased, the breakdown voltage is reduced. With the conventional technology, the impurity concentration can be selected only within the range of the impurity concentration necessary to secure the required breakdown voltage, and naturally the ON resistance cannot be sufficiently reduced.
Further, the temperature dependency of the ON resistance could not be sufficiently suppressed. In the case of the semiconductor device of the present invention, the thickness of the third semiconductor region between the pair of electrodes is such that when the semiconductor device is turned off, depletion layers extending from the pair of electrodes into the third semiconductor region are connected to each other to deplete the third semiconductor region. It is formed as follows. For this reason, the semiconductor device of the present invention succeeds in increasing the impurity concentration of the third semiconductor region while keeping the withstand voltage from lowering. As a result, the ON resistance is sufficiently reduced, and the temperature of the ON resistance is further reduced. It has succeeded in suppressing dependence sufficiently. ADVANTAGE OF THE INVENTION The semiconductor device of this invention implement | achieves the characteristic that withstand voltage is high, ON resistance is low, and the temperature dependency of ON resistance is low.

【0007】本発明は縦型半導体にも横型半導体にも具
現化することができるが、縦型半導体装置に具現化する
場合には、下記の構成を有することもできる。 (1)半導体装置の表面側から、第1半導体領域、第2
半導体領域、第3半導体領域、第4半導体領域の順に積
層されている。 (2)第1と第3半導体領域は同じ導電型であり、それ
に対して、第2半導体領域は反対の導電型である。 (3)半導体装置の表面から第3半導体領域の深部また
は第4半導体領域に達する少なくとも一対のトレンチが
形成されている。 (4)そのトレンチ内には導体が形成されている。 (5)そのトレンチ内の導体と、第1から第4半導体領
域のそれぞれとは、絶縁層で絶縁されている。 (6)一対のトレンチ間の第1半導体領域の幅よりも第
3半導体領域の幅は狭い。 (7)第2半導体領域の不純物濃度よりも、第3半導体
領域の少なくとも一部の不純物濃度の方が高い。
The present invention can be embodied in either a vertical semiconductor or a horizontal semiconductor. However, when it is embodied in a vertical semiconductor device, it can have the following configuration. (1) The first semiconductor region and the second semiconductor region
The semiconductor region, the third semiconductor region, and the fourth semiconductor region are stacked in this order. (2) The first and third semiconductor regions are of the same conductivity type, whereas the second semiconductor region is of the opposite conductivity type. (3) At least one pair of trenches is formed from the surface of the semiconductor device to the deep portion of the third semiconductor region or the fourth semiconductor region. (4) A conductor is formed in the trench. (5) The conductor in the trench and each of the first to fourth semiconductor regions are insulated by the insulating layer. (6) The width of the third semiconductor region is smaller than the width of the first semiconductor region between the pair of trenches. (7) The impurity concentration of at least part of the third semiconductor region is higher than the impurity concentration of the second semiconductor region.

【0008】この発明の半導体装置の場合、一対のトレ
ンチ間の第3半導体領域の幅を第1半導体領域の幅より
も狭くしたために、第3半導体領域の不純物濃度を高く
しても、一対のトレンチから側方に伸びる空乏層同士が
つながってドリフト領域が空乏化される現象が利用でき
る。このために、この縦型半導体装置では、耐圧を下げ
ないようにしながら第3半導体領域の不純物濃度を高め
ることに成功しており、ON抵抗を充分に下げ、さら
に、ON抵抗の温度依存性を充分に抑えることに成功し
ている。
In the case of the semiconductor device of the present invention, the width of the third semiconductor region between the pair of trenches is made smaller than the width of the first semiconductor region. A phenomenon in which depletion layers extending laterally from the trench are connected to each other to deplete the drift region can be used. For this reason, in this vertical semiconductor device, it has succeeded in increasing the impurity concentration of the third semiconductor region while keeping the withstand voltage from lowering. Thus, the ON resistance is sufficiently reduced, and the temperature dependence of the ON resistance is further reduced. We have succeeded in suppressing it sufficiently.

【0009】第3半導体領域の全体において第2半導体
領域よりも不純物濃度が高いことが望ましい。しかしな
がら、必ずしも第3半導体領域の全領域で高い必要はな
く、第3半導体領域の中に第2半導体領域よりも不純物
濃度が低い領域が部分的に存在していても、耐圧が高
く、ON抵抗が低く、しかも、ON抵抗の温度依存性が
低いという特性が相当程度に実現される。この場合、第
3半導体領域の全体厚みの半分以上の厚みで、第3半導
体領域の不純物濃度が第2半導体領域の不純物濃度より
も高いことが好ましい。
It is desirable that the impurity concentration in the entire third semiconductor region is higher than that in the second semiconductor region. However, the third semiconductor region is not necessarily required to be high in the entire region. Even if a region having a lower impurity concentration than the second semiconductor region partially exists in the third semiconductor region, the withstand voltage is high and the ON resistance is high. , And the temperature dependence of the ON resistance is low. In this case, it is preferable that the impurity concentration of the third semiconductor region is higher than the impurity concentration of the second semiconductor region at a thickness equal to or more than half of the entire thickness of the third semiconductor region.

【0010】第3半導体領域の全体厚みの半分以上の厚
みで、第3半導体領域の不純物濃度が第2半導体領域の
不純物濃度よりも高いと、耐圧が高く、ON抵抗が低
く、しかも、ON抵抗の温度依存性が低いという特性が
顕著に表れる。
When the impurity concentration of the third semiconductor region is higher than the impurity concentration of the second semiconductor region at a thickness of half or more of the entire thickness of the third semiconductor region, the withstand voltage is high, the ON resistance is low, and the ON resistance is low. Has a low temperature dependency.

【0011】この発明の縦型半導体装置では、一対のト
レンチ間の第1半導体領域の幅よりも第3半導体領域の
幅が狭いというだけでなく、半導体装置の内側に位置す
るトレンチ内導体(これはゲート電極として機能する)
と第2半導体領域(即ちボディ領域)は薄い絶縁層で絶
縁されている一方、半導体装置の外郭に位置するトレン
チ内導体(これは素子分離用に機能する)と第2半導体
領域は厚い絶縁層で絶縁されている必要がある。前者の
絶縁層は薄くなければボディ領域にチャネルを形成する
のに必要なゲート電圧が高くなり、後者の絶縁膜が厚く
なければ耐圧を確保できない。
In the vertical semiconductor device according to the present invention, not only is the width of the third semiconductor region narrower than the width of the first semiconductor region between the pair of trenches, but also the inner conductor of the trench located inside the semiconductor device (this Functions as a gate electrode)
And the second semiconductor region (that is, the body region) are insulated by a thin insulating layer, while the conductor in the trench located outside the semiconductor device (which functions for element isolation) and the second semiconductor region are formed by a thick insulating layer. Must be insulated by If the former insulating layer is not thin, the gate voltage required to form a channel in the body region increases, and if the latter insulating film is not thick, the breakdown voltage cannot be ensured.

【0012】絶縁層を形成するために、トレンチの壁面
を酸化させる。このとき、半導体装置の内側に位置する
トレンチの第2半導体領域に接する面では酸化が進行せ
ず、同じトレンチの第3半導体領域に接する面では深く
酸化が進行する一方、半導体装置の外郭に位置するトレ
ンチでは、第2半導体領域に接する面と第3半導体領域
に接する面でともに深く酸化が進むことが好ましい。こ
のような酸化深さのコントロールが得られれば、一対の
トレンチ間の第1半導体領域の幅よりも第3半導体領域
の幅は狭く、ゲート電極として機能する半導体装置の内
側に位置するトレンチ内導体と第2半導体領域は薄い絶
縁層で絶縁され、素子分離用に機能する半導体装置の外
郭に位置するトレンチ内導体と第2半導体領域は厚い絶
縁層で絶縁されている構造を容易に得ることができる。
In order to form an insulating layer, the walls of the trench are oxidized. At this time, oxidation does not progress on the surface of the trench located inside the semiconductor device that is in contact with the second semiconductor region, and oxidation progresses deeply on the surface of the same trench that is in contact with the third semiconductor region. In the trench to be oxidized, it is preferable that oxidation proceeds deeply both on the surface in contact with the second semiconductor region and on the surface in contact with the third semiconductor region. If such control of the oxidation depth is obtained, the width of the third semiconductor region is narrower than the width of the first semiconductor region between the pair of trenches, and the conductor in the trench located inside the semiconductor device functioning as the gate electrode The second semiconductor region and the second semiconductor region are insulated by a thin insulating layer, and a structure in which the conductor in the trench located outside the semiconductor device functioning for element isolation and the second semiconductor region are insulated by the thick insulating layer can be easily obtained. it can.

【0013】本発明の製造方法は、このために開発され
たものであり、半導体装置の内側に位置するトレンチに
第2半導体領域が露出する壁面に耐酸化性の保護膜を形
成し、ついで半導体装置の外郭に位置するトレンチと半
導体装置の内側に位置するトレンチの双方の壁面を同時
に酸化することによって縦型半導体装置を製造する。こ
の製造方法によると、ゲート電極に対向する薄い絶縁膜
と、素子分離用導体に対向する厚い絶縁膜を同一工程で
作成でき、半導体装置の製造に要するステップ数を減少
させることができる。
A manufacturing method according to the present invention has been developed for this purpose. An oxidation-resistant protective film is formed on a wall surface where a second semiconductor region is exposed in a trench located inside a semiconductor device. A vertical semiconductor device is manufactured by simultaneously oxidizing the wall surfaces of both the trench located outside the device and the trench located inside the semiconductor device. According to this manufacturing method, a thin insulating film facing the gate electrode and a thick insulating film facing the element isolation conductor can be formed in the same process, and the number of steps required for manufacturing a semiconductor device can be reduced.

【0014】本発明の他の一つの半導体装置は特願20
00−037590号の縦型半導体装置を横型にしたも
のであり、その特徴とを箇条書きすると下記のものとな
る。 (1)第1半導体領域、第2半導体領域、第3半導体領
域、第4半導体領域を横方向に順に備えている。 (2)第1と第3半導体領域は同じ導電型であり、第2
半導体領域は反対の導電型である。 (3)第3半導体領域は少なくとも一対の電極間に形成
されている。 (4)その電極と、第1から第4半導体領域のそれぞれ
は絶縁層で絶縁されている。 (5)一対の電極間に存在する第3半導体領域は、半導
体装置のオフ時に一対の電極から第3半導体領域内に伸
びる空乏層同士がつながる厚み以下に形成されている。
Another semiconductor device of the present invention is disclosed in Japanese Patent Application No.
The vertical type semiconductor device of No. 00-037590 is a horizontal type. The features of the vertical type semiconductor device are as follows. (1) A first semiconductor region, a second semiconductor region, a third semiconductor region, and a fourth semiconductor region are sequentially provided in a lateral direction. (2) the first and third semiconductor regions are of the same conductivity type,
The semiconductor region is of the opposite conductivity type. (3) The third semiconductor region is formed between at least a pair of electrodes. (4) The electrode and each of the first to fourth semiconductor regions are insulated by an insulating layer. (5) The third semiconductor region existing between the pair of electrodes is formed to have a thickness equal to or less than a thickness at which a depletion layer extending from the pair of electrodes into the third semiconductor region when the semiconductor device is off is connected.

【0015】この横型半導体装置の場合、一対の電極間
に存在する第3半導体領域は、半導体装置のオフ時に一
対の電極から第3半導体領域内に伸びる空乏層同士がつ
ながって第3半導体領域が空乏化する厚み以下に形成さ
れている。このために、この発明の半導体装置では耐圧
が高い。また、第1半導体領域に電極に対する充分な接
触面積を確保することができ、ON抵抗を下げることが
できる。また、第3半導体領域が空乏化するために、耐
圧を下げることなく第3半導体領域の不純物濃度を高め
ることができ、不純物濃度を高めると、ON抵抗さらに
下げ、さらに、ON抵抗の温度依存性を充分に抑えるこ
とができる。
In the case of this lateral semiconductor device, the third semiconductor region existing between the pair of electrodes is connected to a depletion layer extending from the pair of electrodes into the third semiconductor region when the semiconductor device is turned off. The thickness is set to be equal to or less than the depletion thickness. Therefore, the semiconductor device of the present invention has a high breakdown voltage. Further, a sufficient contact area with the electrode can be ensured in the first semiconductor region, and the ON resistance can be reduced. Further, since the third semiconductor region is depleted, the impurity concentration of the third semiconductor region can be increased without lowering the breakdown voltage. When the impurity concentration is increased, the ON resistance is further reduced, and the temperature dependence of the ON resistance is further reduced. Can be sufficiently suppressed.

【0016】[0016]

【実施の形態】 下記に説明する実施例の特徴を先に整
理しておく。 (形態1) 請求項2に記載の縦型半導体装置の第3半
導体領域は、第3半導体領域上層と第3半導体領域下層
を有し、第3半導体領域下層の不純物濃度が第2半導体
領域の不純物濃度よりも高い。 (形態2) 形態1において、第3半導体領域上層の不
純物濃度は第2半導体領域の不純物濃度よりも低い。こ
の場合、第2半導体領域の下面から第3半導体領域上層
のなかに空乏層が伸びるために、高い耐圧を確保するこ
とができる。 (形態3) ON抵抗の温度係数が0.08mΩmm
℃以下の半導体装置。これ程に低い温度係数をもつ半導
体装置は、本発明ではじめて実現される。 (形態4) 第3半導体領域の不純物濃度が1017cm
−3以上である半導体装置。この濃度は従来の半導体装
置の10倍以上の濃度であり、従来の半導体装置でこの
ような高濃度とすると耐圧が確保されない。本発明では
じめて実現された高濃度である。 (形態5) 縦型半導体装置では、縦型半導体装置の内
側に位置するトレンチ形成部にまず第2半導体領域を貫
通する浅いトレンチを形成し、その壁面に窒化膜を形成
し、その後に、半導体装置の外郭と内側の双方において
第3半導体領域の深部または第4半導体領域に達するト
レンチを形成する。 (形態6) 形態5の後で、トレンチの壁面を酸化処理
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The features of the embodiment described below will be first summarized. (Mode 1) The third semiconductor region of the vertical semiconductor device according to claim 2 has an upper layer of the third semiconductor region and a lower layer of the third semiconductor region, and an impurity concentration of the lower layer of the third semiconductor region is lower than that of the second semiconductor region. Higher than the impurity concentration. (Embodiment 2) In Embodiment 1, the impurity concentration of the upper layer of the third semiconductor region is lower than the impurity concentration of the second semiconductor region. In this case, a high breakdown voltage can be ensured because the depletion layer extends from the lower surface of the second semiconductor region into the upper layer of the third semiconductor region. (Mode 3) The temperature coefficient of the ON resistance is 0.08 mΩmm 2 /
A semiconductor device of less than or equal to ° C. A semiconductor device having such a low temperature coefficient is realized for the first time by the present invention. (Mode 4) The impurity concentration of the third semiconductor region is 10 17 cm.
-3 or more semiconductor devices. This concentration is ten times or more that of the conventional semiconductor device. If such a high concentration is used in the conventional semiconductor device, the withstand voltage cannot be ensured. It is a high concentration realized for the first time in the present invention. (Mode 5) In the vertical semiconductor device, a shallow trench penetrating the second semiconductor region is first formed in a trench forming portion located inside the vertical semiconductor device, a nitride film is formed on a wall surface thereof, and then the semiconductor is formed. A trench is formed to reach the deep portion of the third semiconductor region or the fourth semiconductor region both on the outer and inner sides of the device. (Embodiment 6) After Embodiment 5, the wall surface of the trench is oxidized.

【0017】[0017]

【実施例】(第1実施例) 第1実施例の縦型半導体装
置を図1を参照して説明する。図1は縦型半導体装置2
のソース電極4が第1半導体領域(以下ソース領域とい
う)10に接触する部位での断面を示す。参照番号18
はシリコン基板であり、第4半導体領域(以下ドレイン
領域という)として機能する。ドレイン領域18はn
型で、不純物濃度は1018/cm 〜1021/cm
ある。参照番号16は第2エピタキシャル層であり、第
3半導体領域下層(以下ドリフト領域下層という)とし
て機能する。ドリフト領域下層16はn型で、不純物
濃度は2×1017/cmある。参照番号14は第1エ
ピタキシャル層であり、第3半導体領域上層(以下ドリ
フト領域上層という)として機能する。ドリフト領域上
層14はn型で、不純物濃度は1×1016/cm
る。参照番号12はpドープ層であり、第2半導体領域
(以下ボディ領域という)として機能する。ボディ領域
12はp型で、不純物濃度は1×1017/cmある。
参照番号10はnドープ層であり、第1半導体領域(以
下ソース領域という)として機能する。ソース領域10
はn型で、不純物濃度は1018/cm〜1021
cmである。参照番号6と8は絶縁層である。参照番号
20はゲート電極である。参照番号22は素子分離用の
導体である。
Embodiment 1 (First Embodiment) A vertical semiconductor device according to a first embodiment is described.
The arrangement will be described with reference to FIG. FIG. 1 shows a vertical semiconductor device 2
Of the first semiconductor region (hereinafter referred to as a source region).
3) shows a cross-section at a portion contacting 10). Reference number 18
Is a silicon substrate, and a fourth semiconductor region (hereinafter referred to as a drain)
Function). The drain region 18 is n+
Type, impurity concentration is 1018/cm 3-1021/cm3so
is there. Reference numeral 16 denotes a second epitaxial layer,
3 Lower layer of semiconductor region (hereinafter referred to as lower layer of drift region)
Function. The drift region lower layer 16 is nType, impurities
The concentration is 2 × 1017/cm3is there. Reference numeral 14 indicates the first d.
A layer formed on the third semiconductor region (hereinafter referred to as a “driving layer”).
(Referred to as the upper layer of the shift region). On the drift region
Layer 14 is nType, impurity concentration is 1 × 1016/cm3Ah
You. Reference numeral 12 denotes a p-doped layer, which is a second semiconductor region.
(Hereinafter referred to as a body region). Body area
12 is a p-type and has an impurity concentration of 1 × 1017/cm3is there.
Reference numeral 10 denotes an n-doped layer, which is a first semiconductor region (hereinafter referred to as a first semiconductor region).
Function as a lower source region). Source area 10
Is n+Type, impurity concentration is 1018/cm3-1021/
cm3It is. Reference numerals 6 and 8 are insulating layers. reference number
20 is a gate electrode. Reference numeral 22 is for device isolation.
Conductor.

【0018】図1の断面構造中、ソース領域10、ボデ
ィ領域12、ドリフト領域上層14、ドリフト領域下層
16、ドレイン領域18の積層構造、ならびにゲート電
極20の基本構造は紙面垂直方向に連続している。図1
と異なる断面では、ゲート電極20群にゲート信号線が
接続されている。図1の断面図ではドレイン電極の図示
が省略されており、ドレイン領域18の下面にドレイン
電極が固定されている。ドレイン電極には直流100ボ
ルトが印加される。図1の断面は、半導体装置2の周縁
部での断面を示し、実際には、ソース領域10とボディ
領域12とドリフト領域上層14とドリフト領域下層1
6とドレイン領域18の積層構造と、ゲート電極20の
水平方向の互層構造が図示右側に連続している。半導体
装置2の右側周縁での断面は図1をミラー反転したもの
となる。素子分離用の導体22は、半導体装置2を平面
視したときに、外郭を一巡しており、その内部に多数の
ゲート電極20群が平行に配置されている。
In the sectional structure of FIG. 1, the stacked structure of the source region 10, the body region 12, the drift region upper layer 14, the drift region lower layer 16, and the drain region 18, and the basic structure of the gate electrode 20 are continuous in the direction perpendicular to the paper. I have. FIG.
In a cross section different from the above, a gate signal line is connected to the gate electrode 20 group. The illustration of the drain electrode is omitted in the cross-sectional view of FIG. 1, and the drain electrode is fixed to the lower surface of the drain region 18. 100 VDC is applied to the drain electrode. The cross section of FIG. 1 shows a cross section at the peripheral portion of the semiconductor device 2, and in fact, the source region 10, the body region 12, the drift region upper layer 14 and the drift region lower layer 1
The layered structure of the gate electrode 6 and the drain region 18 and the horizontal alternate layer structure of the gate electrode 20 are continuous on the right side in the figure. The cross section at the right peripheral edge of the semiconductor device 2 is obtained by mirror-inverting FIG. The element isolation conductor 22 loops around the outline when the semiconductor device 2 is viewed in a plan view, and a large number of gate electrodes 20 are arranged in parallel inside the outline.

【0019】一対のゲート電極20、20間に位置する
ソース領域10の幅W3は、一対のゲート電極20、2
0間に位置するドリフト領域下層16の幅W4よりも広
い。また、ゲート電極20とボディ領域12間の絶縁層
8aの厚みW2は薄く、ゲート電極20とドリフト領域
下層16間の絶縁層8bの厚みW5は厚く、素子分離用
導体22とボディ領域12間の絶縁層8cの厚みW1は
厚い。
The width W3 of the source region 10 located between the pair of gate electrodes 20, 20 is
It is wider than the width W4 of the drift region lower layer 16 located between zero. Further, the thickness W2 of the insulating layer 8a between the gate electrode 20 and the body region 12 is thin, and the thickness W5 of the insulating layer 8b between the gate electrode 20 and the drift region lower layer 16 is large. The thickness W1 of the insulating layer 8c is large.

【0020】一対のゲート電極20、20間に位置する
ドリフト領域下層16の幅W4は0.4μm以下であ
り、上記不純物濃度の条件下で空乏層となっている。即
ち、一対のゲート電極20、20からドリフト領域下層
16内に側方に伸びる空乏層同士がつながる厚さとなっ
ている。
The width W4 of the drift region lower layer 16 located between the pair of gate electrodes 20, 20 is 0.4 μm or less, and serves as a depletion layer under the above-described impurity concentration conditions. That is, the thickness is such that depletion layers extending laterally from the pair of gate electrodes 20 and 20 into the drift region lower layer 16 are connected to each other.

【0021】この半導体装置は、ソース領域10が幅広
であり、ソース電極4との接触面積が広く確保でき、O
N抵抗が低い。また、一対のゲート電極20、20間に
位置するドリフト領域下層16の幅W4が狭く、ゲート
電極20から側方に伸びる空乏層が繋がってドリフト領
域下層16が空乏層となり、耐圧が高い。ゲート電極2
0とボディ領域12間の絶縁層8aの厚みW2が薄いた
めに、ON動作に必要なゲート電圧が低い。ゲート電極
20とドリフト領域下層16間の絶縁層8bの厚みW5
は厚く、素子分離用導体22とボディ領域12間の絶縁
層8cの厚みW1も厚いために耐圧が高い。
In this semiconductor device, the source region 10 is wide and a large contact area with the source electrode 4 can be secured.
N resistance is low. Also, the width W4 of the drift region lower layer 16 located between the pair of gate electrodes 20, 20 is narrow, and the depletion layer extending laterally from the gate electrode 20 is connected, so that the drift region lower layer 16 becomes a depletion layer, and the breakdown voltage is high. Gate electrode 2
Since the thickness W2 of the insulating layer 8a between the 0 and the body region 12 is small, the gate voltage required for the ON operation is low. Thickness W5 of insulating layer 8b between gate electrode 20 and drift region lower layer 16
And the withstand voltage is high because the thickness W1 of the insulating layer 8c between the element separating conductor 22 and the body region 12 is also large.

【0022】さらに、ドリフト領域下層16の不純物濃
度(2×1017/cm)が、ボディ領域12の不純
物濃度(1×1017/cm)よりも高いために、O
N抵抗が低い上に、ON抵抗の温度依存性も低い。ON
抵抗の温度係数は、0.076mΩmm/℃であり、従
来の同種半導体装置の温度係数が0.67mΩmm
℃であったのに対し、一桁小さな値に抑えられている。
ドリフト領域上層14の不純物濃度(1×1016/c
)は、ボディ領域12の不純物濃度(1×1017
/cm)よりも低いが、その厚みはドリフト領域下層
16の厚さよりも薄く、ドリフト領域下層16の不純物
濃度が高いために、ON抵抗が低く、ON抵抗の温度依
存性も低いという特性は失われない。ボディ領域12の
不純物濃度よりも不純物濃度の高い層がドリフト領域の
全体厚みの半分以上に及んでいれば、ドリフト領域の一
部にボディ領域12の不純物濃度よりも不純物濃度の低
い層が含まれていても、ON抵抗が低く、ON抵抗の温
度依存性も低いという特性は失われない。なお、ドリフ
ト領域上層14の幅広部はボディ領域12から伸びる空
乏層となり、耐圧を損ねることもない。
Further, since the impurity concentration of the drift region lower layer 16 (2 × 10 17 / cm 3 ) is higher than the impurity concentration of the body region 12 (1 × 10 17 / cm 3 ), O
In addition to the low N resistance, the temperature dependence of the ON resistance is low. ON
Temperature coefficient of resistance is 0.076mΩmm 2 / ℃, the temperature coefficient of the conventional same type semiconductor device 0.67mΩmm 2 /
It was suppressed to an order of magnitude smaller than in ° C.
The impurity concentration of the drift region upper layer 14 (1 × 10 16 / c
m 3 ) is the impurity concentration of the body region 12 (1 × 10 17
/ Cm 3 ), but the thickness is smaller than the thickness of the drift region lower layer 16 and the impurity concentration of the drift region lower layer 16 is high, so that the ON resistance is low and the temperature dependence of the ON resistance is low. Not lost. If a layer having an impurity concentration higher than the impurity concentration of body region 12 extends over half of the entire thickness of drift region, a portion of the drift region includes a layer having an impurity concentration lower than the impurity concentration of body region 12. However, the characteristics that the ON resistance is low and the temperature dependence of the ON resistance is low are not lost. Note that the wide portion of the drift region upper layer 14 becomes a depletion layer extending from the body region 12, and does not impair the breakdown voltage.

【0023】次に図2以降を参照しながら製造プロセス
を説明する。図2に示すように、n型のシリコン基板3
0(不純物濃度1018/cm〜1021/cm)の上
に、n型の第2エピタキシャル層32とn型の第1エピ
タキシャル層34を結晶成長させたシリコンウエハ28
を準備する。第2エピタキシャル層32の不純物濃度を
2×1017/cmとし、第1エピタキシャル層34
の不純物濃度を1×1016/cmとする。用意され
たシリコンウエハ28をアニール処理して、完成後にn
型ドリフト領域14,16となる層の不純物濃度プロフ
ァイルを調整する。
Next, the manufacturing process will be described with reference to FIGS. As shown in FIG. 2, an n-type silicon substrate 3
0 (impurity concentration 10 18 / cm 3 to 10 21 / cm 3 ), a silicon wafer 28 in which an n-type second epitaxial layer 32 and an n-type first epitaxial layer 34 are crystal-grown.
Prepare The impurity concentration of the second epitaxial layer 32 is set to 2 × 10 17 / cm 3 ,
Is 1 × 10 16 / cm 3 . The prepared silicon wafer 28 is annealed, and after completion, n
The impurity concentration profiles of the layers that become the mold drift regions 14 and 16 are adjusted.

【0024】次に、図3に示すように、シリコンウエハ
28の表面に酸化シリコンの絶縁層38を形成し、絶縁
層38を介してp型のイオンを第1エピタキシャル層3
4の略上半分にイオン注入し、加熱処理して注入された
イオンを拡散させる。拡散後の不純物濃度が、1×10
17/cm3となるようイオン注入する。このp型イオ
ンのpドープ層36が完成後にはボディ領域12とな
る。次に、図4に示すように、シリコンウエハ28の表
面に、窒化膜40をCVD法によって形成する。
Next, as shown in FIG. 3, an insulating layer 38 of silicon oxide is formed on the surface of the silicon wafer 28, and p-type ions are injected through the insulating layer 38 into the first epitaxial layer 3.
Ions are implanted into approximately the upper half of 4 and heat treatment is performed to diffuse the implanted ions. The impurity concentration after diffusion is 1 × 10
Ion implantation is performed so as to be 17 / cm3. After the completion of the p-type ion p-doped layer 36, the body region 12 is formed. Next, as shown in FIG. 4, a nitride film 40 is formed on the surface of the silicon wafer 28 by a CVD method.

【0025】次に、図5に示すように、シリコンウエハ
28を平面視したときの外郭部42で、酸化膜38と窒
化膜40を除去する。酸化膜38と窒化膜40を局所的
に除去するためにホトレジストと異方性エッチング(具
体的にはリアクティブイオンエッチング)技術を利用す
る。ホトレジスト層の形成工程と除去工程は図示省略さ
れている。図5はシリンコンウエハの外郭近傍での断面
を示し、実際には右側に伸びている。右端では、図5の
左右反転させた断面が現れる。次に、図6に示すよう
に、シリコンウエハ28の表面に、アンドープトガラス
層44をCVD法で成形する。シリコンウエハ28を平
面視したときの外郭部42では、pドープ層36の表面
にアンドープトガラス層44が形成される。
Next, as shown in FIG. 5, the oxide film 38 and the nitride film 40 are removed from the outer portion 42 when the silicon wafer 28 is viewed in plan. In order to locally remove the oxide film 38 and the nitride film 40, a photoresist and an anisotropic etching (specifically, reactive ion etching) technique are used. The steps of forming and removing the photoresist layer are not shown. FIG. 5 shows a cross section in the vicinity of the outer periphery of the silicon wafer, and actually extends rightward. At the right end, the cross section of FIG. Next, as shown in FIG. 6, an undoped glass layer 44 is formed on the surface of the silicon wafer 28 by a CVD method. An undoped glass layer 44 is formed on the surface of the p-doped layer 36 in the outer portion 42 when the silicon wafer 28 is viewed in plan.

【0026】次に、図7に示すように、ゲート電極形成
部48で、絶縁膜38,40,44を除去する。実際に
は、アンドープトガラス層44の表面にホトレジスト層
を形成し(ただし、ゲート電極形成部48ではアンドー
プトガラス層44を露出させておく)、ホトレジスト層
で被覆されていないアンドープトガラス層44と窒化膜
40と酸化層38を異方性エッチング(具体的にはリア
クティブイオンエッチング)して除去する。このとき、
シリコンウエハ28を平面視したときの外郭部42(素
子分離用導体22を形成する部分)ではアンドープトガ
ラス層44等を除去しない。次に、図8に示すように、
アンドープトガラス層44等をマスクとして異方性エッ
チング(具体的にはリアクティブイオンエッチング)し
てpドープ層36を貫通する浅いトレンチ52を作成す
る。このトレンチ52は、ゲート電極20の形成部に形
成され、素子分離用導体22の形成部には形成されな
い。次に、図9に示すように、浅いトレンチ52の側面
と底面にバッファ酸化層54を形成する。さらにその上
にCVD法によって窒化層56を積層する。バッファ酸
化層54と窒化層56は、後記する図13の酸化工程に
おいて、酸化から保護する層として機能する。
Next, as shown in FIG. 7, in the gate electrode forming portion 48, the insulating films 38, 40, and 44 are removed. Actually, a photoresist layer is formed on the surface of the undoped glass layer 44 (however, the undoped glass layer 44 is exposed in the gate electrode forming portion 48), and the undoped glass layer 44 not covered with the photoresist layer and the nitride film are formed. 40 and the oxide layer 38 are removed by anisotropic etching (specifically, reactive ion etching). At this time,
The undoped glass layer 44 and the like are not removed from the outer portion 42 (the portion where the element separating conductor 22 is formed) when the silicon wafer 28 is viewed in a plan view. Next, as shown in FIG.
Anisotropic etching (specifically, reactive ion etching) is performed using the undoped glass layer 44 as a mask to form a shallow trench 52 penetrating the p-doped layer 36. The trench 52 is formed in the portion where the gate electrode 20 is formed, and is not formed in the portion where the element isolation conductor 22 is formed. Next, as shown in FIG. 9, a buffer oxide layer 54 is formed on the side and bottom surfaces of the shallow trench 52. Further, a nitride layer 56 is stacked thereon by the CVD method. The buffer oxide layer 54 and the nitride layer 56 function as layers that protect against oxidation in the oxidation step of FIG. 13 described later.

【0027】次に、図10に示すように、シリコンウエ
ハ28を平面視したときの外郭部42の素子分離用導体
22を形成する部分で、アンドープトガラス層44と窒
化層56を異方性エッチング(具体的にはリアクティブ
イオンエッチング)して除去する。次に、図11に示す
ように、アンドープトガラス層44をマスクとして異方
性エッチング(具体的にはリアクティブイオンエッチン
グ)してシリコン基板30に達するトレンチを形成す
る。ゲート電極形成用のトレンチ62は深く、素子分離
用導体形成用のトレンチ60は浅い。第2半導体領域と
なるpドープ層36のゲート電極形成用のトレンチ62
に露出する壁面はバッファ酸化層54と窒化層56に覆
われていている。それに対して、第2半導体領域となる
pドープ層36の素子分離用導体形成用のトレンチ60
に露出する壁面は被覆されておらず、直接に露出してい
る。次に、図12に示すように、アンドープトガラス層
44を湿式のエッチング法で除去する。次に、図13に
示すように、シリコンウエハ28の表面を、まず犠牲酸
化し、次に犠牲酸化膜を湿式のエッチング法で除去し、
最後に、V−LOCOS酸化する。これによって、トレ
ンチ60、62の底面と側面、pドープ層36の表面と
側面に酸化層64が形成される。ここで、バッファ酸化
層54と窒化層56からなる耐酸化層で被覆されていた
部分では浅く酸化される。このために、第2半導体領域
となるpドープ層36がゲート電極形成用のトレンチ6
2に露出する壁面には薄い絶縁層(酸化層64a)が形
成される。一方、バッファ酸化層54と窒化層56から
なる耐酸化層で被覆されていない部分では深く酸化され
る。このために第2半導体領域となるpドープ層36が
素子分離用導体形成用のトレンチ60に露出する壁面に
は厚い酸化層64cが形成される。バッファ酸化層54
と窒化層56からなる耐酸化層で被覆されていなかった
シリコン基板30と第1エピタキシャル層32と第2エ
ピタキシャル層34の壁面には、ゲート電極形成用のト
レンチ62と素子分離用導体形成用のトレンチ60の双
方において厚い酸化層64bが形成される。
Next, as shown in FIG. 10, the undoped glass layer 44 and the nitride layer 56 are anisotropically etched in the portion of the outer portion 42 where the element isolation conductor 22 is to be formed when the silicon wafer 28 is viewed in plan. (Specifically, reactive ion etching) is removed. Next, as shown in FIG. 11, anisotropic etching (specifically, reactive ion etching) is performed using the undoped glass layer 44 as a mask to form a trench reaching the silicon substrate 30. The trench 62 for forming a gate electrode is deep, and the trench 60 for forming a conductor for element isolation is shallow. Trench 62 for forming gate electrode of p-doped layer 36 serving as a second semiconductor region
Is covered with a buffer oxide layer 54 and a nitride layer 56. On the other hand, the trench 60 for forming the element isolation conductor of the p-doped layer 36 to be the second semiconductor region is formed.
The wall surface exposed to is not covered and is directly exposed. Next, as shown in FIG. 12, the undoped glass layer 44 is removed by a wet etching method. Next, as shown in FIG. 13, the surface of the silicon wafer 28 is subjected to sacrificial oxidation first, and then the sacrificial oxide film is removed by a wet etching method.
Finally, V-LOCOS oxidation is performed. Thus, an oxide layer 64 is formed on the bottom and side surfaces of the trenches 60 and 62 and on the surface and side surface of the p-doped layer 36. Here, the portion covered with the oxidation resistant layer including the buffer oxide layer 54 and the nitride layer 56 is oxidized shallowly. Therefore, the p-doped layer 36 serving as the second semiconductor region is formed in the trench 6 for forming the gate electrode.
A thin insulating layer (oxide layer 64a) is formed on the wall surface exposed to 2. On the other hand, portions not covered with the oxidation resistant layer including the buffer oxide layer 54 and the nitride layer 56 are deeply oxidized. For this reason, a thick oxide layer 64c is formed on the wall surface where the p-doped layer 36 serving as the second semiconductor region is exposed to the trench 60 for forming the isolation conductor. Buffer oxide layer 54
On the wall surfaces of the silicon substrate 30, the first epitaxial layer 32, and the second epitaxial layer 34, which were not covered with the oxidation-resistant layer composed of the nitride layer 56, a trench 62 for forming a gate electrode and a trench for forming a conductor for element isolation are formed. Thick oxide layer 64b is formed in both trenches 60.

【0028】次に、図14に示すように、トレンチ62
とトレンチ60の双方に、ドープされた多結晶シリコン
をCVD法によって充填する。酸化絶縁層64の表面に
堆積した多結晶シリコンはエッチングによって除去され
る。ドープされた多結晶シリコンは導電性であり、ゲー
ト電極形成用のトレンチ62に充填された導体66がゲ
ート電極20となり、素子分離用導体形成用のトレンチ
60に充填された導体68が素子分離用導体22とな
る。
Next, as shown in FIG.
And trench 60 are filled with doped polysilicon by CVD. Polycrystalline silicon deposited on the surface of the oxide insulating layer 64 is removed by etching. The doped polycrystalline silicon is conductive, and the conductor 66 filled in the trench 62 for forming the gate electrode becomes the gate electrode 20, and the conductor 68 filled in the trench 60 for forming the conductor for element isolation is used for the element isolation. It becomes the conductor 22.

【0029】次に、図15に示すように、表面を酸化す
る。次に、図16に示すように、酸化絶縁層70を介し
て、n型のイオンをpドープ層36の上面に注入する。
次に、図17に示すように、CVD法によって表面をア
ンドープトガラス層74で被覆する。
Next, as shown in FIG. 15, the surface is oxidized. Next, as shown in FIG. 16, n-type ions are implanted into the upper surface of the p-doped layer 36 via the oxide insulating layer 70.
Next, as shown in FIG. 17, the surface is covered with an undoped glass layer 74 by a CVD method.

【0030】次に、図18に示すように、ゲート電極2
0となるトレンチ内導体66間であって、pドープ層3
6が存在する部位において、アンドープトガラス層74
と酸化層70とn型のイオン注入層72を貫いてpドー
プ層36に達する浅い溝76を形成する。実際には、ア
ンドープトガラス層74の表面にコンタクトフォト層を
形成し、それをマスクとして異方性エッチング(具体的
にはリアクティブイオンエッチング)し、最後にコンタ
クトフォト層を除去する。次に、図19に示すように、
溝76の底面にp型のイオン(具体的にはボロン)を注
入する。その後に熱処理して、先に注入されたn型のイ
オン72と、今回注入されたp型のイオンを拡散する。
この結果、nドープ層80と、pドープ層78が形成さ
れる。nドープ層80は完成後にソース領域となる。
Next, as shown in FIG.
0 between the in-trench conductors 66 and the p-doped layer 3
6 is present in the undoped glass layer 74
Then, a shallow groove 76 that reaches the p-doped layer 36 through the oxide layer 70 and the n-type ion implantation layer 72 is formed. Actually, a contact photo layer is formed on the surface of the undoped glass layer 74, anisotropic etching (specifically, reactive ion etching) is performed using the contact photo layer as a mask, and finally, the contact photo layer is removed. Next, as shown in FIG.
P-type ions (specifically, boron) are implanted into the bottom of the groove 76. Thereafter, heat treatment is performed to diffuse the n-type ions 72 implanted earlier and the p-type ions implanted this time.
As a result, an n-doped layer 80 and a p-doped layer 78 are formed. The n-doped layer 80 becomes a source region after completion.

【0031】次に、図20に示すように、絶縁層74、
70を湿式エッチングして溝幅を広げる。この結果、n
ドープ層80の表面が露出する。次に、図21に示すよ
うに、表面にアルミ層84をスパッタする。このアルミ
層84は、nドープ層80に接触している。
Next, as shown in FIG.
70 is wet-etched to increase the groove width. As a result, n
The surface of the doped layer 80 is exposed. Next, as shown in FIG. 21, an aluminum layer 84 is sputtered on the surface. This aluminum layer 84 is in contact with n-doped layer 80.

【0032】トレンチ内導体66は、図示されない断面
において、アルミ層84から絶縁された別の導体層に接
続されてゲート電極20となる。また、シリコン基板3
0の裏面には図示されないドレイン電極が形成される。
素子分離用導体68(22)は接地しても良いし、ゲー
ト電極に接続しておいても良い。以上のプロセスを経
て、図1の半導体装置2が完成する。
The in-trench conductor 66 is connected to another conductor layer insulated from the aluminum layer 84 to form the gate electrode 20 in a cross section (not shown). In addition, the silicon substrate 3
A drain electrode (not shown) is formed on the back surface of 0.
The element isolation conductor 68 (22) may be grounded or may be connected to a gate electrode. Through the above process, the semiconductor device 2 of FIG. 1 is completed.

【0033】上記の製造プロセスでは、図12に明瞭に
示されるように、第2半導体領域となるpドープ層36
が半導体装置の内側に位置するトレンチ62に露出する
壁面に耐酸化性の保護膜54,56を形成し、ついで、
図13に示されるように、半導体装置の外郭に位置する
トレンチ60と半導体装置の内側に位置するトレンチ6
2の双方の壁面を同時に酸化する。そのことによって、
半導体装置の外郭に位置するトレンチ60内の導体68
と第2半導体領域36は厚い絶縁層64cで絶縁され、
半導体装置の内側に位置するトレンチ62内の導体66
と第2半導体領域36は薄い絶縁層64aで絶縁されて
いる半導体装置が得られる。従来は、ゲート電極形成用
のトレンチ62と、素子分離導体用のトレンチ60を全
く別の工程で酸化していた。本発明の製造方法による
と、製造過程が大幅に減少する。
In the above manufacturing process, as clearly shown in FIG. 12, the p-doped layer 36 serving as the second semiconductor region is formed.
Form oxidation-resistant protective films 54 and 56 on the wall surface exposed to the trench 62 located inside the semiconductor device.
As shown in FIG. 13, the trench 60 located outside the semiconductor device and the trench 6 located inside the semiconductor device
The two walls are simultaneously oxidized. By that,
Conductor 68 in trench 60 located outside the semiconductor device
And the second semiconductor region 36 are insulated by a thick insulating layer 64c,
Conductor 66 in trench 62 located inside semiconductor device
And a semiconductor device in which the second semiconductor region 36 is insulated by the thin insulating layer 64a. Conventionally, the trench 62 for forming the gate electrode and the trench 60 for the element isolation conductor have been oxidized in completely different steps. According to the manufacturing method of the present invention, the manufacturing process is greatly reduced.

【0034】(第2実施例) 次に、第2実施例の横型
半導体装置を図22から図27を参照して説明する。図
22は第2実施例の横型半導体装置の一部を破断して示
す斜視図を示し、図23は平面図を示す。図24は図2
3のA−A線の断面図、図25はB−B線の断面図、図
26はC−C線の断面図、図27はD−D線の断面図を
示す。図22に示す参照番号118はn+ドープ層であ
り、第4半導体領域(以下、ドレイン領域という)とし
て機能する。ドレイン領域118の不純物濃度は1×1
18/cm〜1021/cmである。参照番号116
はnドープ層であり、第3半導体領域(以下、ドリフ
ト領域という)として機能する。ドリフト領域116の
不純物濃度は2×1017/cm である。参照番号11
2はpドープ層であり、第2半導体領域(以下、ボディ
領域という)として機能する。ボディ領域12の不純物
濃度は1×1017/cmある。ドリフト領域116の
不純物濃度は2×1017/cmであり、ボディ領域1
2の不純物濃度よりも高濃度である。参照番号110は
ドープ層であり、第1半導体領域(以下、ソース領
域という)として機能する。ソース領域110の不純物
濃度は1018/cm〜10 21/cmである。参照番
号130はn型のシリコン基板である。参照番号108
は絶縁層である。参照番号120はゲート電極であり、
参照番号121はゲート電極120に電圧を供給するゲ
ート電極である。参照番号122は素子分離用の導体で
あり、平面視(図23参照)したときに、シリコン基板
130の外周に沿って伸び、素子形成領域を取り囲んで
いる。参照番号109はソースコンタクトである。
(Second Embodiment) Next, the horizontal type of the second embodiment
The semiconductor device will be described with reference to FIGS. Figure
Reference numeral 22 denotes a part of the horizontal semiconductor device of the second embodiment, which is cut away.
FIG. 23 shows a perspective view, and FIG. 23 shows a plan view. FIG. 24 shows FIG.
3 is a sectional view taken along line AA, FIG. 25 is a sectional view taken along line BB,
26 is a sectional view taken along line CC, and FIG. 27 is a sectional view taken along line DD.
Show. Reference numeral 118 shown in FIG.+Dope layer
As a fourth semiconductor region (hereinafter, referred to as a drain region).
Function. The impurity concentration of the drain region 118 is 1 × 1
018/cm3-1021/cm3It is. Reference 116
Is nA third semiconductor region (hereinafter referred to as a drift layer)
Function area). Of the drift region 116
The impurity concentration is 2 × 1017/cm 3It is. Reference number 11
Reference numeral 2 denotes a p-doped layer, which is a second semiconductor region (hereinafter referred to as a body).
Function). Impurities in body region 12
The concentration is 1 × 1017/cm3is there. Of the drift region 116
The impurity concentration is 2 × 1017/cm3And body region 1
2 is higher than the impurity concentration. Reference number 110 is
n+A first semiconductor region (hereinafter referred to as a source region);
Function). Impurity of source region 110
The concentration is 1018/cm3-10 21/cm3It is. Reference number
Reference numeral 130 denotes an n-type silicon substrate. Reference number 108
Is an insulating layer. Reference numeral 120 is a gate electrode,
Reference numeral 121 denotes a gate for supplying a voltage to the gate electrode 120.
This is a gate electrode. Reference numeral 122 denotes a conductor for element isolation.
Yes, when viewed in plan (see FIG. 23), the silicon substrate
Extending along the outer periphery of 130 and surrounding the element formation region
I have. Reference numeral 109 is a source contact.

【0035】図22と図24に示すように、ソース領域
110、ボディ領域112、ドリフト領域116、ドレ
イン領域118は図示横方向に連続して配置されてい
る。ソース領域110とボディ領域112は図22のX
方向に連続的に伸び、ドリフト領域116は、ゲート電
極120と絶縁層108によって、X方向に分断されて
いる。その様子が、図23のD−D線断面を示す図27
に明瞭に示されている。図23のA−A線断面を示す図
24には、ドリフト領域116の断面が現れ、図23の
B−B線断面図である図25には、絶縁体108の断面
が現れ、図23のC−C線断面図である図26には、ゲ
ート電極120の断面が現れている。図22と図24に
示すように、ボディ領域112とドリフト領域116上
には、絶縁層108を介して、図22のX方向に伸びる
平板状のゲート電極用ゲート電極121が配置されてい
る。図示の明瞭化のために、ソース電極とドレイン電極
の図示が省略されている。図24に示すように、平板状
のゲート電極121の左側でソース領域110が露出し
ており、実際にはそのソース領域110上にソース電極
が配置される。また平板状のゲート電極121の右側で
ドレイン領域118が露出しており、実際にはそのドレ
イン領域118上にドレイン電極が配置される。なお、
ドレイン電極には直流100ボルトが印加される。図2
2と図23に示すように、素子分離用の導体122は、
横型半導体装置102を平面視したときに外郭を一巡し
ており、図22の縦方向に伸びている。
As shown in FIGS. 22 and 24, the source region 110, the body region 112, the drift region 116 and the drain region 118 are arranged continuously in the horizontal direction in the drawing. The source region 110 and the body region 112 correspond to X in FIG.
The drift region 116 continuously extends in the direction, and is separated in the X direction by the gate electrode 120 and the insulating layer 108. FIG. 27 shows a cross section taken along line DD in FIG.
Are clearly shown. FIG. 24 showing a cross section taken along line AA of FIG. 23 shows a cross section of the drift region 116, and FIG. 25 which is a cross section taken along line BB of FIG. FIG. 26, which is a cross-sectional view taken along the line CC, shows a cross section of the gate electrode 120. As shown in FIGS. 22 and 24, on the body region 112 and the drift region 116, a flat gate electrode 121 for a gate electrode extending in the X direction of FIG. For clarity of illustration, illustration of a source electrode and a drain electrode is omitted. As shown in FIG. 24, the source region 110 is exposed on the left side of the flat gate electrode 121, and the source electrode is actually arranged on the source region 110. The drain region 118 is exposed on the right side of the flat gate electrode 121, and the drain electrode is actually arranged on the drain region 118. In addition,
100 VDC is applied to the drain electrode. FIG.
2 and FIG. 23, the conductor 122 for element isolation
When the horizontal semiconductor device 102 is viewed in a plan view, the horizontal semiconductor device 102 makes a circuit around the outer contour and extends in the vertical direction in FIG.

【0036】図24に示すように、平板状のゲート電極
121とボディ領域112間の絶縁層108aの厚みW
8は薄く、平板状のゲート電極121とドリフト領域1
16間の絶縁層108bの厚みW9は厚く、素子分離用
導体122とボディ領域112間の絶縁層108cの厚
みW10は厚い。
As shown in FIG. 24, the thickness W of the insulating layer 108a between the flat gate electrode 121 and the body region 112 is increased.
8 is a thin, flat gate electrode 121 and drift region 1
The thickness W9 of the insulating layer 108b between the layers 16 is large, and the thickness W10 of the insulating layer 108c between the element separating conductor 122 and the body region 112 is large.

【0037】図22に示す一対のゲート電極120、1
20間に位置するドリフト領域116の幅W6は0.4
μm以下であり、一対のゲート電極120、120にオ
フ電圧が掛けられている間は空乏層となる。即ち、オフ
電圧が掛けられている一対のゲート電極120、120
からドリフト領域116内に側方に伸びる空乏層同士が
つながる厚さとなっている。
A pair of gate electrodes 120, 1 shown in FIG.
The width W6 of the drift region 116 located between 20 is 0.4
μm or less, and serves as a depletion layer while an off-voltage is applied to the pair of gate electrodes 120. That is, the pair of gate electrodes 120, 120 to which the off-voltage is applied
And a thickness at which the depletion layers extending laterally into the drift region 116 are connected to each other.

【0038】図22に示すように、この横型半導体装置
102は、一対のゲート電極120、120間に位置す
るドリフト領域116の幅W6が狭く、ゲート電極12
0から側方に伸びる空乏層がつながってドリフト領域1
16が空乏層となるために、耐圧が高い。また、ゲート
電極120とドリフト領域116間の絶縁層108の厚
みW7が厚いために、耐圧が高い。また、図24に示す
ように、平板状のゲート電極121とドリフト領域11
6間の絶縁層108bの厚みW9が厚く、素子分離用導
体122とボディ領域112間の絶縁層108cの厚み
W10も厚いために、耐圧が高い。一方、平板状のゲー
ト電極121とボディ領域112間の絶縁層108aの
厚みW8が薄いために、ON動作に必要なゲート電圧が
低い。
As shown in FIG. 22, in the lateral semiconductor device 102, the width W6 of the drift region 116 located between the pair of gate electrodes 120, 120 is small, and the width of the gate electrode 12 is small.
The depletion layer extending laterally from 0 connects to the drift region 1
Since 16 is a depletion layer, the breakdown voltage is high. In addition, since the thickness W7 of the insulating layer 108 between the gate electrode 120 and the drift region 116 is large, the withstand voltage is high. Further, as shown in FIG. 24, a flat gate electrode 121 and a drift region 11 are formed.
6, the thickness W9 of the insulating layer 108b is large, and the thickness of the insulating layer 108c between the element separating conductor 122 and the body region 112 is large.
Since W10 is also thick, the withstand voltage is high. On the other hand, since the thickness W8 of the insulating layer 108a between the flat gate electrode 121 and the body region 112 is small, the gate voltage required for the ON operation is low.

【0039】さらに、ドリフト領域116の不純物濃度
(2×1017/cm)が、ボディ領域112の不純
物濃度(1×1017/cm)よりも高いために、O
N抵抗が低い上に、ON抵抗の温度依存性も低い。ON
抵抗の温度係数は、0.076mΩmm/℃であり、従
来の同種半導体装置の温度係数が0.67mΩmm
℃であったのに対し、一桁小さな値に抑えられている。
なお、ON抵抗の温度依存性が高くても良い場合には、
ドリフト領域116の不純物濃度をボディ領域112の
不純物濃度よりも低濃度とすることができる。また、O
N抵抗の温度依存性を低く抑える必要がある場合にも、
ドリフト領域(第3半導体領域)の全領域でボディ領域
(第2半導体領域)の不純物濃度よりも高濃度である必
要はなく、第3半導体領域の中に第2半導体領域よりも
不純物濃度の低い領域が部分的に存在していてもい。
Further, since the impurity concentration of drift region 116 (2 × 10 17 / cm 3 ) is higher than the impurity concentration of body region 112 (1 × 10 17 / cm 3 ), O
In addition to the low N resistance, the temperature dependence of the ON resistance is low. ON
Temperature coefficient of resistance is 0.076mΩmm 2 / ℃, the temperature coefficient of the conventional same type semiconductor device 0.67mΩmm 2 /
It was suppressed to an order of magnitude smaller than in ° C.
If the temperature dependency of the ON resistance may be high,
The impurity concentration of drift region 116 can be lower than the impurity concentration of body region 112. Also, O
When it is necessary to keep the temperature dependence of the N resistance low,
It is not necessary that the impurity concentration in the entire drift region (third semiconductor region) is higher than the impurity concentration in the body region (second semiconductor region), and the impurity concentration in the third semiconductor region is lower than that in the second semiconductor region. The region may partially exist.

【0040】第2実施例では、ゲート電極120が、ド
レイン領域116を分離するように半導体装置102の
表面から縦方向に伸びている。これに代えて、図28に
示す埋め込み式のゲート電極220を利用しても良い。
図28において、ゲート電極220は図示されない断面
で平板上のゲート電極221に接続され、絶縁体208
で覆われている。平板上のゲート電極221と埋め込み
式のゲート電極220の間のドレイン領域216の厚み
W11は十分に薄く、ゲート電極220、221にオフ
電圧が掛けられている間はドレイン領域216は空乏層
となる。即ち、オフ電圧が掛けられている一対のゲート
電極220、221からドリフト領域216内に上下方
向に伸びる空乏層同士がつながる厚さとなっている。
In the second embodiment, the gate electrode 120 extends vertically from the surface of the semiconductor device 102 so as to separate the drain region 116. Instead, an embedded gate electrode 220 shown in FIG. 28 may be used.
In FIG. 28, a gate electrode 220 is connected to a gate electrode 221 on a flat plate at a cross section (not shown),
Covered with. The thickness W11 of the drain region 216 between the gate electrode 221 on the flat plate and the buried type gate electrode 220 is sufficiently thin, and the drain region 216 becomes a depletion layer while an off-voltage is applied to the gate electrodes 220 and 221. . In other words, the thickness is such that depletion layers extending vertically in the drift region 216 from the pair of gate electrodes 220 and 221 to which the off voltage is applied are connected.

【0041】上記の実施例では、電界効果型トランジス
タに本発明を適用している。しかしながら本発明は、電
界効果型トランジスタに限られるものでなく、バイポー
ラ型のトランジスタやIGBTにも適用することができ
る。また、当業者は実施例の技術から様々に変形するこ
とが可能であり、例えば、pとnの関係を逆転するこ
と、製造方法のステップ順を適宜変更すること、トレン
チ60,62の深さを第3半導体領域の深部に留めるこ
となど、当業者は通常の知識によって自在に変形するこ
とができる。
In the above embodiment, the present invention is applied to a field effect transistor. However, the present invention is not limited to a field effect transistor, but can be applied to a bipolar transistor and an IGBT. Further, those skilled in the art can make various modifications from the technique of the embodiment, for example, reversing the relationship between p and n, appropriately changing the step order of the manufacturing method, and changing the depth of the trenches 60 and 62. Those skilled in the art can freely modify the structure with ordinary knowledge, such as keeping the depth in the third semiconductor region.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 第1実施例の縦型半導体装置の断面図。FIG. 1 is a sectional view of a vertical semiconductor device according to a first embodiment.

【図2】 図1の半導体装置を製造する第1段階での断
面図。
FIG. 2 is a sectional view at a first stage of manufacturing the semiconductor device of FIG. 1;

【図3】 図1の半導体装置を製造する第2段階での断
面図。
FIG. 3 is a sectional view in a second stage of manufacturing the semiconductor device of FIG. 1;

【図4】 図1の半導体装置を製造する第3段階での断
面図。
FIG. 4 is a sectional view at a third stage of manufacturing the semiconductor device of FIG. 1;

【図5】 図1の半導体装置を製造する第4段階での断
面図。
FIG. 5 is a sectional view at a fourth stage of manufacturing the semiconductor device of FIG. 1;

【図6】 図1の半導体装置を製造する第5段階での断
面図。
FIG. 6 is a sectional view of a fifth step of manufacturing the semiconductor device of FIG. 1;

【図7】 図1の半導体装置を製造する第6段階での断
面図。
FIG. 7 is a sectional view of a sixth step of manufacturing the semiconductor device of FIG. 1;

【図8】 図1の半導体装置を製造する第7段階での断
面図。
FIG. 8 is a sectional view at a seventh stage of manufacturing the semiconductor device of FIG. 1;

【図9】 図1の半導体装置を製造する第8段階での断
面図。
FIG. 9 is a sectional view of an eighth step of manufacturing the semiconductor device of FIG. 1;

【図10】 図1の半導体装置を製造する第9段階での
断面図。
FIG. 10 is a sectional view of a ninth step of manufacturing the semiconductor device of FIG. 1;

【図11】 図1の半導体装置を製造する第10段階で
の断面図。
FIG. 11 is a sectional view at a tenth stage of manufacturing the semiconductor device of FIG. 1;

【図12】 図1の半導体装置を製造する第11段階で
の断面図。
FIG. 12 is a sectional view of an eleventh stage of manufacturing the semiconductor device of FIG. 1;

【図13】 図1の半導体装置を製造する第12段階で
の断面図。
FIG. 13 is a sectional view showing a twelfth step of manufacturing the semiconductor device of FIG. 1;

【図14】 図1の半導体装置を製造する第13段階で
の断面図。
FIG. 14 is a sectional view showing a thirteenth stage of manufacturing the semiconductor device of FIG. 1;

【図15】 図1の半導体装置を製造する第14段階で
の断面図。
FIG. 15 is a sectional view of a semiconductor device in FIG. 1 in a fourteenth step of manufacturing the semiconductor device;

【図16】 図1の半導体装置を製造する第15段階で
の断面図。
FIG. 16 is a sectional view showing a fifteenth stage of manufacturing the semiconductor device of FIG. 1;

【図17】 図1の半導体装置を製造する第16段階で
の断面図。
FIG. 17 is a sectional view of a semiconductor device in FIG. 1 at a sixteenth stage of manufacturing the device;

【図18】 図1の半導体装置を製造する第17段階で
の断面図。
FIG. 18 is a sectional view of a semiconductor device in FIG. 1 at a seventeenth stage of manufacturing the semiconductor device;

【図19】 図1の半導体装置を製造する第18段階で
の断面図。
FIG. 19 is a sectional view at an 18th stage of manufacturing the semiconductor device of FIG. 1;

【図20】 図1の半導体装置を製造する第19段階で
の断面図。
FIG. 20 is a sectional view at a 19th stage of manufacturing the semiconductor device of FIG. 1;

【図21】 図1の半導体装置を製造する第20段階で
の断面図。
FIG. 21 is a sectional view of a twentieth step of manufacturing the semiconductor device of FIG. 1;

【図22】 第2実施例の横型半導体装置の斜視図。FIG. 22 is a perspective view of a lateral semiconductor device of a second embodiment.

【図23】 図22の横型半導体装置の平面図。FIG. 23 is a plan view of the horizontal semiconductor device of FIG. 22;

【図24】 図23の横型半導体装置のI−I線断面
図。
24 is a cross-sectional view of the horizontal semiconductor device of FIG. 23 taken along the line II.

【図25】 図23の横型半導体装置のII−II線断面
図。
25 is a cross-sectional view of the horizontal semiconductor device of FIG. 23, taken along the line II-II.

【図26】 図23の横型半導体装置のIII−III線断面
図。
26 is a cross-sectional view of the horizontal semiconductor device of FIG. 23, taken along the line III-III.

【図27】 図23の横型半導体装置のIV−IV線断面
図。
FIG. 27 is a cross-sectional view of the horizontal semiconductor device of FIG. 23 taken along line IV-IV.

【図28】 第2実施例の横型半導体装置の他の変形例
を示した図。
FIG. 28 is a view showing another modification of the lateral semiconductor device of the second embodiment.

【符号の説明】[Explanation of symbols]

2、102:半導体装置 10、110:第1半導体領域:ソース領域 12、112:第2半導体領域:ボディ領域 16、116:第3半導体領域:ドリフト領域 18、118:第4半導体領域:ドレイン領域 2, 102: semiconductor device 10, 110: first semiconductor region: source region 12, 112: second semiconductor region: body region 16, 116: third semiconductor region: drift region 18, 118: fourth semiconductor region: drain region

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F032 AA35 AA45 AA47 AA84 CA17 CA24 DA25 5F140 AA07 AA30 AC21 BA01 BD18 BD19 BF42 BF43 BF44 BF45 BH02 BH13 BH17 BH30 BH49 BH50 BK32 CB04  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F032 AA35 AA45 AA47 AA84 CA17 CA24 DA25 5F140 AA07 AA30 AC21 BA01 BD18 BD19 BF42 BF43 BF44 BF45 BH02 BH13 BH17 BH30 BH49 BH50 BK32 CB04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第1半導体領域、第2半導体領域、第3
半導体領域、第4半導体領域を順に備えた半導体装置で
あって、 第1と第3半導体領域は同じ導電型であり、第2半導体
領域は反対の導電型であり、 第3半導体領域は少なくとも一対の電極間に形成されて
おり、 その電極と、第1から第4半導体領域のそれぞれは絶縁
層で絶縁されており、 一対の電極間に存在する第3半導体領域は、半導体装置
のオフ時に一対の電極から第3半導体領域内に伸びる空
乏層同士がつながる厚み以下に形成され、 第3半導体領域の少なくとも一部の不純物濃度は、第2
半導体領域の不純物濃度よりも高いことを特徴とする半
導体装置。
A first semiconductor region, a second semiconductor region, and a third semiconductor region;
A semiconductor device comprising a semiconductor region and a fourth semiconductor region in order, wherein the first and third semiconductor regions have the same conductivity type, the second semiconductor region has an opposite conductivity type, and the third semiconductor region has at least one pair. And the first to fourth semiconductor regions are insulated by an insulating layer, and the third semiconductor region present between the pair of electrodes is paired when the semiconductor device is turned off. The thickness of the third semiconductor region is equal to or smaller than the thickness of the second semiconductor region.
A semiconductor device having a higher impurity concentration than a semiconductor region.
【請求項2】 半導体装置の表面側から、第1半導体領
域、第2半導体領域、第3半導体領域、第4半導体領域
の順に積層されており、 第1と第3半導体領域は同じ導電型であり、第2半導体
領域は反対の導電型であり、 表面から第3半導体領域の深部または第4半導体領域に
達する少なくとも一対のトレンチが形成されており、 そのトレンチ内には導体が形成されており、 そのトレンチ内の導体と、第1から第4半導体領域のそ
れぞれが絶縁層で絶縁されており、 一対のトレンチ間の第1半導体領域の幅よりも第3半導
体領域の幅は狭く、かつ、第2半導体領域の不純物濃度
よりも第3半導体領域の少なくとも一部の不純物濃度の
方が高いことを特徴とする縦型半導体装置。
2. A semiconductor device comprising: a first semiconductor region, a second semiconductor region, a third semiconductor region, and a fourth semiconductor region, which are stacked in this order from the front side of the semiconductor device, wherein the first and third semiconductor regions have the same conductivity type. The second semiconductor region is of the opposite conductivity type, at least one pair of trenches extending from the surface to the deep portion of the third semiconductor region or the fourth semiconductor region is formed, and a conductor is formed in the trench. A conductor in the trench and each of the first to fourth semiconductor regions are insulated by an insulating layer; a width of the third semiconductor region is smaller than a width of the first semiconductor region between the pair of trenches; A vertical semiconductor device, wherein the impurity concentration of at least a part of the third semiconductor region is higher than the impurity concentration of the second semiconductor region.
【請求項3】 第2半導体領域の不純物濃度よりも不純
物濃度が高い第3半導体領域の厚みが、第3半導体領域
の全体厚みの半分以上であることを特徴とする請求項1
または2に記載の縦型半導体装置。
3. The semiconductor device according to claim 1, wherein the thickness of the third semiconductor region having an impurity concentration higher than the impurity concentration of the second semiconductor region is at least half of the total thickness of the third semiconductor region.
Or the vertical semiconductor device according to 2.
【請求項4】 半導体装置の表面側から、第1半導体領
域、第2半導体領域、第3半導体領域、第4半導体領域
の順に積層されており、表面から第3半導体領域の深部
または第4半導体領域に達する複数のトレンチが形成さ
れており、各トレンチ内には導体が形成されており、半
導体装置の外郭に位置するトレンチ内導体と第2半導体
領域は厚い絶縁層で絶縁され、半導体装置の内側に位置
するトレンチ内導体と第2半導体領域は薄い絶縁層で絶
縁されている縦型半導体装置の製造方法であり、 半導体装置の内側に位置するトレンチに第2半導体領域
が露出する壁面に耐酸化性の保護膜を形成し、ついで半
導体装置の外郭に位置するトレンチと半導体装置の内側
に位置するトレンチの双方の壁面を同時に酸化して、上
記の縦型半導体装置を製造する方法。
4. A first semiconductor region, a second semiconductor region, a third semiconductor region, and a fourth semiconductor region are stacked in this order from the surface side of the semiconductor device, and a deep portion of the third semiconductor region or a fourth semiconductor region from the surface. A plurality of trenches reaching the region are formed, a conductor is formed in each trench, a conductor in the trench located at the outer periphery of the semiconductor device and the second semiconductor region are insulated by a thick insulating layer, and A method for manufacturing a vertical semiconductor device in which a conductor in a trench located inside and a second semiconductor region are insulated by a thin insulating layer, wherein an acid-resistant surface is provided on a wall where the second semiconductor region is exposed in a trench located inside the semiconductor device. Forming a protective film, and then simultaneously oxidizing both wall surfaces of the trench located on the outer side of the semiconductor device and the trench located on the inside of the semiconductor device to manufacture the above-described vertical semiconductor device. How to.
【請求項5】 第1半導体領域、第2半導体領域、第3
半導体領域、第4半導体領域を横方向に順に備えた半導
体装置であって、 第1と第3半導体領域は同じ導電型であり、第2半導体
領域は反対の導電型であり、 第3半導体領域は少なくとも一対の電極間に形成されて
おり、 その電極と、第1から第4半導体領域のそれぞれは絶縁
層で絶縁されており、 一対の電極間に存在する第3半導体領域は、半導体装置
のオフ時に一対の電極から第3半導体領域内に伸びる空
乏層同士がつながる厚み以下に形成されていることを特
徴とする半導体装置。
5. The first semiconductor region, the second semiconductor region, and the third semiconductor region.
A semiconductor device comprising a semiconductor region and a fourth semiconductor region in a lateral direction, wherein the first and third semiconductor regions have the same conductivity type, the second semiconductor region has an opposite conductivity type, and a third semiconductor region. Is formed between at least a pair of electrodes, the electrode and each of the first to fourth semiconductor regions are insulated by an insulating layer, and the third semiconductor region existing between the pair of electrodes is formed of a semiconductor device. A semiconductor device, wherein a thickness of a depletion layer extending from a pair of electrodes into a third semiconductor region when turned off is formed to be equal to or less than a thickness at which the depletion layers are connected.
JP2001208540A 2001-01-24 2001-07-09 Semiconductor device and manufacturing method thereof Expired - Fee Related JP3709814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001208540A JP3709814B2 (en) 2001-01-24 2001-07-09 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001015624 2001-01-24
JP2001-15624 2001-01-24
JP2001208540A JP3709814B2 (en) 2001-01-24 2001-07-09 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002299618A true JP2002299618A (en) 2002-10-11
JP3709814B2 JP3709814B2 (en) 2005-10-26

Family

ID=26608204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001208540A Expired - Fee Related JP3709814B2 (en) 2001-01-24 2001-07-09 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3709814B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005020075A1 (en) * 2005-04-29 2006-11-09 Infineon Technologies Ag Manufacturing method for ditch structure semiconductor device involves forming neighboring ditch structures simultaneously in common process block
JP2008504697A (en) * 2004-06-25 2008-02-14 インターナショナル レクティファイアー コーポレイション Power semiconductor device provided with a MOS gate having a source field electrode
JP2009043990A (en) * 2007-08-09 2009-02-26 Elpida Memory Inc Method for manufacturing vertical mos transistor
US7557395B2 (en) 2002-09-30 2009-07-07 International Rectifier Corporation Trench MOSFET technology for DC-DC converter applications
US9196720B2 (en) 2013-01-31 2015-11-24 Renesas Electronics Corporation Semiconductor device and method of manufacturing semiconductor device
JP2016039320A (en) * 2014-08-08 2016-03-22 ルネサスエレクトロニクス株式会社 Semiconductor device and method of manufacturing the same
DE102004063946B4 (en) 2004-05-19 2018-03-22 Infineon Technologies Ag Transistor arrangements with an electrode arranged in a separation trench
JP2019186535A (en) * 2018-04-02 2019-10-24 株式会社豊田中央研究所 Semiconductor device
WO2021103125A1 (en) * 2019-11-28 2021-06-03 苏州东微半导体有限公司 Manufacturing method for semiconductor power device, and semiconductor power device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7557395B2 (en) 2002-09-30 2009-07-07 International Rectifier Corporation Trench MOSFET technology for DC-DC converter applications
DE112004000218B4 (en) * 2003-01-29 2016-09-22 International Rectifier Corp. Trench MOSFET technology for DC / DC converter applications
DE102004063946B4 (en) 2004-05-19 2018-03-22 Infineon Technologies Ag Transistor arrangements with an electrode arranged in a separation trench
JP2008504697A (en) * 2004-06-25 2008-02-14 インターナショナル レクティファイアー コーポレイション Power semiconductor device provided with a MOS gate having a source field electrode
DE102005020075A1 (en) * 2005-04-29 2006-11-09 Infineon Technologies Ag Manufacturing method for ditch structure semiconductor device involves forming neighboring ditch structures simultaneously in common process block
JP2009043990A (en) * 2007-08-09 2009-02-26 Elpida Memory Inc Method for manufacturing vertical mos transistor
US9196720B2 (en) 2013-01-31 2015-11-24 Renesas Electronics Corporation Semiconductor device and method of manufacturing semiconductor device
JP2016039320A (en) * 2014-08-08 2016-03-22 ルネサスエレクトロニクス株式会社 Semiconductor device and method of manufacturing the same
JP2019186535A (en) * 2018-04-02 2019-10-24 株式会社豊田中央研究所 Semiconductor device
JP6992781B2 (en) 2018-04-02 2022-01-13 株式会社豊田中央研究所 Semiconductor device
WO2021103125A1 (en) * 2019-11-28 2021-06-03 苏州东微半导体有限公司 Manufacturing method for semiconductor power device, and semiconductor power device

Also Published As

Publication number Publication date
JP3709814B2 (en) 2005-10-26

Similar Documents

Publication Publication Date Title
US6700175B1 (en) Vertical semiconductor device having alternating conductivity semiconductor regions
KR100471173B1 (en) Transistor having multi channel and method of fabricating the same
KR100400079B1 (en) Method for fabricating trench-gated power semiconductor device
US6495883B2 (en) Trench gate type semiconductor device and method of manufacturing
JP3157357B2 (en) Semiconductor device
US6770539B2 (en) Vertical type MOSFET and manufacturing method thereof
JP4204389B2 (en) High voltage vertical DMOS transistor and manufacturing method thereof
US20160380096A1 (en) Semiconductor device and method of manufacturing semiconductor device
JP5298565B2 (en) Semiconductor device and manufacturing method thereof
JP2004128508A (en) Mos transistor including multi-channel and its manufacturing method
JP2009060104A (en) Finfet and manufacturing method thereof
JPH1174514A (en) Manufacture of semiconductor device
KR100598098B1 (en) Metal-Oxide-Semiconductor Having Buried Insulation Region And Methods Of Fabricating The Same
TW591752B (en) Symmetric trench MOSFET device and method of making same
JP2009141005A (en) Semiconductor device, and method for manufacturing the same
JPH0658912B2 (en) Bipolar transistor manufacturing method
JP2008084901A (en) Semiconductor device, and its fabrication process
US7391077B2 (en) Vertical type semiconductor device
JP3709814B2 (en) Semiconductor device and manufacturing method thereof
US7368353B2 (en) Trench power MOSFET with reduced gate resistance
US6977203B2 (en) Method of forming narrow trenches in semiconductor substrates
JPH0945904A (en) Semiconductor device and its manufacture
JP2006332232A (en) Semiconductor device and manufacturing method thereof
KR100467024B1 (en) Semiconductor device having diffusion barrier layer at source/drain regions and method of forming the same
JP3602242B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

LAPS Cancellation because of no payment of annual fees