JP3490125B2 - 巨核球増幅因子をコードする遺伝子 - Google Patents

巨核球増幅因子をコードする遺伝子

Info

Publication number
JP3490125B2
JP3490125B2 JP28861793A JP28861793A JP3490125B2 JP 3490125 B2 JP3490125 B2 JP 3490125B2 JP 28861793 A JP28861793 A JP 28861793A JP 28861793 A JP28861793 A JP 28861793A JP 3490125 B2 JP3490125 B2 JP 3490125B2
Authority
JP
Japan
Prior art keywords
leu
protein
ala
amino acid
amplification factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28861793A
Other languages
English (en)
Other versions
JPH06225767A (ja
Inventor
希 山口
哲郎 小嶋
匡義 大枝
有宏 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Pharmaceutical Co Ltd
Original Assignee
Chugai Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Pharmaceutical Co Ltd filed Critical Chugai Pharmaceutical Co Ltd
Priority to JP28861793A priority Critical patent/JP3490125B2/ja
Publication of JPH06225767A publication Critical patent/JPH06225767A/ja
Application granted granted Critical
Publication of JP3490125B2 publication Critical patent/JP3490125B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は遺伝子に関し、さらに詳
しくは、多能性血液幹細胞より分化した巨核球コロニー
形成細胞 (Megakaryocyte Colony-Forming Unit.) に作
用しインターロイキン−3(IL−3)等の巨核球コロ
ニー刺激因子 (Megakaryocyte Colony-Stimulating Fac
tor : Meg−CSFと略記する)活性を有する物質の
存在下に巨核球の成熟を促進するヒト由来の巨核球増幅
因子 (Megakaryocyte Potentiator 〔以下Meg−PO
Tと略記することあり〕)活性を有するポリペプチドを
コードする遺伝子、該遺伝子を含有する組換ベクター、
該ベクターによる形質転換体、及び該遺伝子を用いた巨
核球増幅因子の製造方法に関する。
【0002】本発明の遺伝子は、in vitroにおいてIL
−3存在下、用量依存的に巨核球コロニーを増幅させる
作用を有する巨核球増幅因子をコードする。本発明の遺
伝子を、適当なベクターに挿入した後、常用の宿主細胞
を形質転換することにより大量に均一な巨核球増幅因子
を製造することが可能となる。このことから、本発明
は、例えば血小板減少あるいは血小板の機能低下を伴う
疾患に対して臨床上の有用性が期待される治療剤の提供
が可能となる。
【0003】
【従来の技術】血小板は、生体の止血、血栓形成に重要
な意義を持つ血液有形成分の一つである。血小板は、骨
髄中の造血幹細胞から巨核球系前駆細胞を経て巨核芽球
となり、さらに成熟した巨核球から血液中に放出され
る。
【0004】骨髄細胞から巨核球コロニーを形成させる
には、2種類の異なった作用を持つ因子が必要であると
考えられている(Williams,N et al.「J.Cell Physiol.
110 . 101 (1982)) 。すなわち、それを加えるだけ
で巨核球コロニーが形成されるMeg−CSFと、それ
だけでは巨核球コロニーを形成させる活性はないが、M
eg−CSFとともに加えると巨核球コロニー数を増や
したり、その成熟を促進する作用を示すMeg−POT
である。
【0005】ヒトではMeg−CSF活性を有するもの
としてIL−3(Teramura,M et al.「Exp.Hematol.」1
6, 843 (1988)) や顆粒球・マクロファージコロニー刺
激因子(Teramura,M et al.「Exp.Hematol.」17, 1011
(1989))等が知られている。また、ヒトでMeg−PO
T活性を有するものとしては、インターロイキン6(Ter
amura,M and Mizoguchi,H 「Int.J.Cell Cloning」8, 2
45 (1990))、インターロイキン11(Teramura,M et al.
「Blood 」79, 327 (1992)) 、エリスロポエチン(Brun
o,E et al. 「Blood 」73, 671 (1989)) 等が知られて
いる。
【0006】しかし、これらのものは巨核球・血小板系
に特異的な因子ではなく、むしろ他の血球系や血球系以
外の細胞にも作用を有していることが知られている。従
って、これらのものを医薬品として巨核球・血小板系へ
の作用を期待して投与した場合、それとは別の作用をも
発現してしまうことが危惧される。このようなことか
ら、巨核球・血小板系に特異的に作用し、医薬品として
の有用性の高い生理活性物質が望まれている。
【0007】
【発明が解決しようとする課題】そこで巨核球・血小板
系に作用する新規な巨核球増殖因子を見出すと同時に、
該巨核球増幅因子を医薬用途に用いるために、それを大
量に得る必要があった。巨核球増幅因子を産生細胞の培
養上清から単離する方法では、培養上清中の巨核球増幅
因子濃度が低く、均一な巨核球増幅因子を得るには複雑
な精製工程を必要とし、かつ微量にしか得られない等の
難点があった。従って上記利用目的のため、組換えDN
A技術を用いて、巨核球・血小板系に作用する新規な巨
核球増幅因子を大量に製造することが望まれていた。
【0008】
【課題を解決するための手段】かかる状況において、本
発明者らは、ヒト膵臓癌細胞由来の株化細胞「HPC−
Y5」の培養上清中に巨核球増幅活性を見い出し、該培
養上清中から巨核球増幅活性を指標として目的とする新
規な巨核球増幅因子を精製し、その性状を明らかにした
(国際出願番号:PCT/JP92/01689、国際
公開番号:WO93/13132)。
【0009】さらに、そのアミノ酸配列の情報をもとに
オリゴヌクレオチドプライマーを合成し、「HPC−Y
5」より調製したmRNAから作製したcDNAライブ
ラリーから、上記合成プライマーを用いて、ポリメラー
ゼ連鎖反応(以下PCRと略記する)により、巨核球増
幅因子をコードするDNA断片を得た。次いで、このD
NA断片をプローブとして、cDNAライブラリーをス
クリーニングにかけ、目的とする新規な巨核球増幅因子
をコードする遺伝子を単離することに成功し、その全塩
基配列を明らかにした。
【0010】また、この遺伝子を適当なベクターに挿入
した後、この発現ベクターにより形質転換された形質転
換体を培養し、次に、産生された目的蛋白質を分離・精
製することにより新規な巨核球増幅因子を大量に製造す
ることができることも明らかにした。
【0011】従って、本発明は、ヒト巨核球増幅因子活
性を有するポリペプチドをコードする遺伝子を提供す
る。
【0012】本発明はさらに、ヒト巨核球増幅因子活性
を有するポリペプチドをコードする遺伝子を含む組換え
ベクターを提供する。
【0013】本発明はまた、ヒト巨核球増幅因子活性を
有するポリペプチドをコードする遺伝子を含む組換えベ
クターによって形質転換された原核もしくは真核宿主細
胞を提供する。
【0014】本発明はさらに、ヒト巨核球増幅因子活性
を有するポリペプチドをコードする遺伝子を含む組換え
ベクターによって形質転換して得られた形質転換株を培
養し、産生された目的蛋白質、好ましくはヒト巨核球増
幅因子活性を有する蛋白質の製造方法を提供する。
【0015】
【具体的な説明】巨核球増幅因子の遺伝子は、例えば巨
核球増幅因子を産生する細胞等からmRNAを調製した
後、既知の方法により二本鎖cDNAに変換することに
より得られる。このmRNAの供給源となる細胞は、本
発明においてはヒト膵臓癌腫瘍細胞由来の株化細胞「H
PC−Y5」 (Nozomi Yamaguchi et al. CANCER RESEA
RCH 50 7008 1990) 〔1991年12月27日 工業技
術院微生物工業技術研究所に微工研条寄第3703号
(FERM BP−3703)としてブタペスト条約に
基づき国際寄託〕を用いたが、腫瘍細胞株に限らず、哺
乳動物から分離できる細胞、あるいは樹立した他の細胞
株でもよい。
【0016】また、mRNAの調製は本発明においては
グアニジンチオシアネート処理後、塩化セシウム密度勾
配遠心を行い(Chirgwin et al. Biochemistry 18 5294
1979)全RNAを得たが、すでに他の生理活性蛋白の遺
伝子をクローン化する際に用いられた方法、例えばバナ
ジウム複合体等のリボヌクレアーゼインヒビター存在下
に界面活性剤処理、フェノール処理を行う (Berger & B
irkenmeier, Biochemistry, 18 5143 1979) 方法を用い
ることができる。
【0017】全RNAからのpoly(A) +RNAの調製
はオリゴ(dT)を結合した担体、例えばセファロース
やセルロース等を用いたアフィニティーカラムクロマト
グラフィーかバッチ法により行うことができる。また、
ショ糖密度勾配遠心法等によりpoly(A) +RNAをさ
らに精製することもできる。その他、いったんRNAを
調製せずに直接poly(A) +RNAを得る方法もある。
【0018】上記の如くして得たmRNAから二本鎖c
DNAを得るには、例えばmRNAを鋳型にして、3′
端にあるpolyA−鎖に相補的なオリゴ(dT)またはラ
ンダムプライマー或いは巨核球増幅因子のアミノ酸配列
の一部に相応する合成オリゴヌクレオチドをプライマー
として逆転写酵素で処理してmRNAに相補的なDNA
(cDNA)を合成する。
【0019】mRNAをアルカリ処理により分解・除去
した後、得られた一本鎖cDNAを鋳型にして逆転写酵
素あるいはDNAポリメラーゼ(例えばKlenow断片等)
処理後、S1ヌクレアーゼなどで処理するか、直接RN
ase HおよびDNAポリメラーゼ等で処理すること
によっても二本鎖cDNAを得ることができる(Maniati
s et al. Molecular Cloning, Cold Spring Harbor Lab
oratory 1982およびGubler & Hoffman, Gene 25 263 1
983)。
【0020】巨核球増幅因子をコードするcDNAを単
離するには、例えば巨核球増幅活性を指標とするか抗体
を用いて直接発現クローニング等の方法で行うことがで
きる。
【0021】巨核球増幅活性の測定は、IL−3存在下
で骨髄細胞を用いた軟寒天培養法を適用して実施でき
る。
【0022】即ち、ウマ血清(56℃ 30分処理、 B
iocell社製)0.2ml、マウス(C57BL/6N系雄
性、6〜12週齢)大腿骨骨髄細胞浮遊液0.1ml(2
×105 有核細胞)、組換え型マウスIL−3を5ng/
ml含むIscove's Modified Dulbecco's培養液(IMD
M)0.2ml、寒天を0.75%含む改変McCoy's 5A
培養液0.4ml、および被検検体(10%ウマ血清を含
むIMDMで希釈したもの)0.1mlを混合して、直径
35mmの組織培養プラスチックディッシュに入れて固ま
らせたのち、37℃,5%炭酸ガス/95%空気、10
0%湿度の条件で培養を行う。
【0023】培養6日目に寒天層ごとスライドガラス上
に取出し乾燥させ、フィルム状標本としたものを5%グ
ルタルアルデヒドで固定し、Nakeffらの方法 (Proc.So
c.Exp.Biol.Med. 151 587 1976)に従って、アセチルコ
リンエステラーゼ染色し、巨核球コロニー数の算定を行
う。この際、アセチルコリンエステラーゼ染色陽性細胞
を4個以上含む集塊を巨核球コロニーとする。検鏡の倍
率は40倍である。なお、Meg−POT活性は、被検
検体を添加して生じた巨核球コロニー数と被検検体を添
加せずに(10%ウマ血清を含むIMDMのみ添加)組
換え型IL−3単独で生じた巨核球コロニー数との差を
指標とする。
【0024】本発明者らは、巨核球増幅因子を産生する
株化細胞の培養上清から巨核球増幅因子を単離精製し、
そのアミノ酸配列の情報をもとにプライマーを合成し、
PCRを用いて、ヒト由来巨核球増幅活性を有するポリ
ペプチドをコードする遺伝子断片をクローニングした。
そのDNAをプローブとして既知の方法によりcDNA
ライブラリーから目的とする新規な巨核球増幅因子をコ
ードする完全長cDNAを含むクローンをスクリーニン
グした。
【0025】なお、これらのcDNAをpBlue script S
K(-)のEcoRI, XhoI 切断部位間に挿入したpKPO27
を含有する大腸菌(E. coli) JM109株、およびpK
PO21を含有する大腸菌(E. coli)JM109株は、
工業技術院微生物工業技術研究所に、各々、平成4年1
0月12日に微工研条寄第4029号(FERM BP
−4029)、平成4年11月10日に微工研条寄第4
071号(FERMBP−4071)としてブタペスト
条約に基づき国際寄託されている。
【0026】また、本発明で用いたPCRを繰り返し行
うことで、完全長のcDNAを得ることもできる。ま
た、PCRによらずアミノ酸配列の情報からプローブを
合成し、直接cDNAライブラリーをスクリーニング
し、目的とするcDNAを得ることもできる。
【0027】このようにして、クローン化された巨核球
増幅因子をコードする遺伝子は適当なベクターDNAに
組み込むことにより、他の原核細胞または真核細胞の宿
主細胞を形質転換させることができる。
【0028】さらに、これらのベクターに適当なプロモ
ーターおよび形質発現に係る配列を導入することによ
り、それぞれの宿主細胞において遺伝子を発現すること
が可能である。また、目的とする遺伝子に他のポリペプ
チドをコードする遺伝子を連結して、融合蛋白質として
発現させ、精製を容易にしたり、発現量を上げ、精製工
程中で適当な処理をほどこすことにより、目的とする蛋
白質を切り出すことも可能である。また、連結する遺伝
子を他の生理活性因子のものを用い融合蛋白質のまま、
巨核球増幅活性を増強するような試みも可能である。
【0029】一般に、真核生物の遺伝子はヒトインター
フェロン遺伝子等で知られているように、多形現象を示
すと考えられ(例えば、 Nishi等、 J.Biochem. 97 153
1985)、この多形現象によって1個またはそれ以上のア
ミノ酸が置換される場合もあれば、塩基配列の変化はあ
ってもアミノ酸は全く変わらない場合もある。
【0030】また、配列番号12もしくは13のアミノ
酸配列の中の1個またはそれ以上のアミノ酸を欠くかま
たは付加したポリペプチドあるいはアミノ酸が1個もし
くはそれ以上のアミノ酸で置換されたポリペプチドでも
巨核球増幅活性を有することがある。例えば、ヒトイン
ターロイキン2(IL−2)遺伝子のシステインに相当
する塩基配列をセリンに相当する配列に変換して得られ
たポリペプチドがIL−2活性を保持することも既に公
知となっている (Wang等、Science, 224 14311984)。
【0031】また、真核細胞で発現させた場合その多く
は糖鎖が付加されるが、アミノ酸を1ないしそれ以上変
換することにより糖鎖付加を調節することができるがこ
の場合も、巨核球増幅活性を有することがある。それゆ
え、本発明における巨核球増幅因子の遺伝子を人工的に
改変したものを用いて得られたポリペプチドをコードす
る遺伝子は全て本発明に含まれる。その際、無作為にア
ミノ酸を変換したポリペプチドをコードする遺伝子を作
製することもできるが、例えば、ヒト以外の動物種(マ
ウス、ラット、サル等)の巨核球増幅因子活性を有する
タンパク質のアミノ酸配列を参考にして塩基配列を置
換、欠除して種々の修飾体をコードする遺伝子を作製す
ることも可能である。
【0032】さらに、得られたポリペプチドが巨核球増
殖活性を有し、配列番号12もしくは13に示されたア
ミノ酸配列を含むポリペプチドをコードする遺伝子とハ
イブリダイズする遺伝子も本発明に含まれる。なお、ハ
イブリダイゼーション条件は、通常行われているプロー
ブハイブリダイゼーションの条件を適用することもでき
る(例えばMolecular Cloning : A Laboratory Manual,
Sambrook ら、Cold spring Habor Laboratory Press,
1989) 。
【0033】本発明の発現ベクターは、複製起源、選択
マーカー、発現させようとする遺伝子の前に位置するプ
ロモーター、RNAスプライス部位、ポリアデニル化シ
グナルなどを含んでいる。
【0034】哺乳動物細胞における遺伝子発現のプロモ
ーターとしてはレトロウイルス、ポリオーマウイルス、
アデノウイルス、シミアンウイルス40(SV40)な
どのウイルスプロモーターやヒト・ポリペプチド・チェ
ーン・エロンゲーション・ファクター1α(HEF−1
α)などの細胞由来のプロモーターを用いればよい。例
えばSV40のプロモーターを使用する場合は、Mullig
anなどの方法(Nature277 108 (1979)) に従えば容易に
実施することができる。
【0035】複製起源としては、SV40、ポリオーマ
ウイルス、アデノウイルス、牛パピローマウイルス(B
PV)等の由来のものを用いることができ、選択マーカ
ーとしては、ホスホトランスフェラーゼAPH(3′)
IIあるいはI(neo) 遺伝子、チミジンキナーゼ(TK)
遺伝子、大腸菌キサンチン−グアニンホスホリボシルト
ランスフェラーゼ(Ecogpt) 遺伝子、ジヒドロ葉酸還元
酵素(DHFR)遺伝子等を用いることができる。
【0036】また、原核宿主細胞、例えば大腸菌の場合
には、それを宿主とするベクターであるpBR322を
用いて形質転換することができる(Boliver等 : Gene
95(1975)) 。pBR322はアンピシリンおよびテト
ラサイクリン耐性の遺伝子を含んでおり、どちらかの耐
性を利用することによって形質転換細胞を同定すること
ができる。原核生物宿主の遺伝子発現に必要なプロモー
ターとしては、β−ラクタマーゼ遺伝子のプロモーター
(Chang等:Nature 275 615 (1978))、やラクトースプロ
モーター(Goeddel等 : Nature 281 544 (1979)) および
トリプトファンプロモーター(Goeddel等 : Nucleic Aci
d Res. 4057 (1980)) ,tacプロモーター等があげ
られ、どのプロモーターも本発明のヒト巨核球増幅因子
の発現に使用できる。
【0037】本発明の発現系に用いる宿主のうち原核生
物宿主細胞としては、例えば、大腸菌 (Escherichia
coli) 、バシルス・ズブチリス (Bacillus subtilis)
、バシルス・サーモフィルス(Bacillus thermophilu
s) 等が挙げられる。また真核生物のうち、真核微生物
の宿主細胞としては、例えばサッカロミセス・セレビシ
エー(Saccharomyces cerevisiae)等が挙げられ、哺
乳動物由来の宿主細胞としては、例えばCOS細胞、チ
ャイニーズ ハムスター卵巣(CHO)細胞、C127
細胞、3T3細胞、Hela細胞、BHK細胞、ナバル
バ細胞などが挙げられる。なお、本発明の形質転換体の
培養は、宿主細胞に適した培養条件を適宜選択して行え
ばよい。
【0038】以上のようにして目的とする巨核球増幅因
子をコードする遺伝子で形質転換した形質転換体を培養
し、産生した巨核球増幅因子は、細胞内または細胞外か
ら分離し均一にまで精製することができる。
【0039】なお、本発明の目的蛋白質であるヒト巨核
球増幅因子の分離・精製は、通常の蛋白質で用いられる
分離・精製方法を使用すればよく、何ら限定されるもの
ではない。例えば各種クロマトグラフィー、限外濾過、
塩折、透析等を適宜選択、組合せれば、ヒト巨核球増幅
因子は分離・精製することができる。
【0040】
【実施例】本発明の巨核球増幅因子をコードする遺伝子
を得る方法、該遺伝子を有する組換えベクター及びこれ
を含有する形質転換体並びにこの形質転換体を培養し取
得した目的の蛋白質、並びに夫々の製造方法について、
以下の実施例によって詳細に説明するが、この実施例に
よって本発明が限定されるものではない。
【0041】実施例1Meg−POT産生細胞株HP
C−Y5の樹立 膵臓癌患者のリンパ節より得られた腫瘍を10%ウシ胎
児血清(FBS)を含むRPMI1640培地を用い、
炭酸ガスインキュベーター(炭酸ガス濃度5%、湿度1
00%)中にて培養することにより樹立した。この細胞
株を1%FBS含有Ham's F10培地に順化させ、さら
にFBS濃度を徐々に低下させ、最終的に蛋白不含のHa
m's F10培地中にて増殖し得るまで順化させた。本細
胞株はプラスチックディッシュ上で単層状に増殖し、倍
化時間は約33時間であった (Nozomi Yamaguchi et a
l. CANCER RESEARCH 50 7008 1990)。この細胞株をH
PC−Y5細胞と称する。
【0042】実施例2HPC−Y5の継代培養および
ローラーボトルによる大量培養 実施例1で述べたHPC−Y5細胞の継代培養は以下に
示す如く行った。プラスチック培養フラスコ(150cm
2, Corning社製)を用い、10-8M亜セレンナトリウ
ム、100U/mlペニシリンGカリウムおよび100μ
g/ml)硫酸カナマイシンを含む Ham's Nutrient Mixt
ure F12培地50ml中でHPC−Y5細胞を培養し、
4日毎に培養液を交換した。
【0043】細胞継代時に培養液を除去し、あらかじめ
37℃に加温した0.125%トリプシン(GIBCO
社製)、0.01%エチレンジアミン四酢酸(EDT
A)(和光純薬社製)を含むカルシウム,マグネシウム
不含Dulbecco's Phosphate-buffered saline(PBS)
溶液を加え37℃で5分間加温した。ピペッティング操
作により細胞を剥離し、15ml容量のプラスチック製遠
心管に細胞を移し、1500回転/分、5分間の遠心に
より細胞を回収した。細胞を上記培地に懸濁し、新しい
フラスコ4〜5本に継代した。一晩静置後、培養液を非
付着性細胞と共に除去し、新たに上記培地を加えて培養
を継続した。以後4日毎に培養液を交換した。
【0044】また、実施例3で述べるMeg−POTの
精製に供するためのHPC−Y5細胞のローラーボトル
による大量培養を以下の如く実施した。
【0045】上記の如く継代されたHPC−Y5細胞が
完全に密に増殖した150cm2 のプラスチック培養フラ
スコより上記の如くトリプシン−EDTAを用いて細胞
を回収し、これを0.2%ウシ胎児血清(Hyclone社製)
を含有する上記培地250mlに浮遊させ、1700cm2
のプラスチック製ローラーボトル(Corning社製)に移
し、0.5回転/分の速度で回転培養を行った。7日後
に培養液を血清を含まない上記培地に交換し、以後4日
毎に上記無血清培地の交換を行うことにより、精製用無
血清培養上清を回収した。
【0046】実施例3HPC−Y5株培養上清からの
Meg−POTの精製 実施例2で述べた方法に従って得たHPC−Y5細胞の
培養上清(27.3リットル)にTween 20を終濃度
0.01%となるように加えた後、人工腎臓PAN12
00(旭メディカ)を用いて、約200倍に濃縮した。
濃縮液を0.01%Tween 20を含む10mM酢酸緩衝液
(pH5.0)に対し、4℃で一晩透析した。透析内液に
遠心操作(10000×g,60分)を施し不溶物を除
去し上清を以下の精製に用いた。
【0047】(ステップ−1) S−Sepharose イオン
交換クロマトグラフィー 上述の遠心上清を0.01%Tween 20を含む20mM酢
酸緩衝液(pH5.0)で平衡化したS−Sepharose Fast
Flow (Pharmacia社製)カラム(5×10cm)に添加し
た。同緩衝液でカラムを洗浄した後、同緩衝液中、Na
Clの濃度を0.15M,0.5M及び1.0Mと順次
上げて吸着蛋白質を溶出した。素通り画分、洗浄画分お
よび各塩濃度における溶出画分について前述の方法に従
って活性を測定した結果、0.15M−NaCl溶出画
分にMeg−POT活性が認められた。
【0048】(ステップ−2) DEAE−Sepharose
イオン交換クロマトグラフィー ステップ−1で得た活性画分を0.01%Tween 20を
含む10mMトリス−塩酸緩衝液(pH7.4)に対し4℃
で一晩透析した。透析内液を同緩衝液で平衡化したDE
AE−Sepharose Fast Flow (Pharmacia社製)カラム
(2.2×13cm)に添加し、同緩衝液でカラムを洗浄
した。同緩衝液中NaClの濃度を0.15M,0.5
Mおよび1.0Mと順次上げて吸着蛋白質を溶出した。
素通り画分、洗浄画分および各塩濃度における溶出画分
について前述の方法に従って活性を測定した結果、0.
15M−NaCl溶出画分にMeg−POT活性が認め
られた。
【0049】(ステップ−3) 逆相HPLC(I) ステップ−2で得た活性画分に5%トリフルオロ酢酸
(TFA)を加えてpHを約2に調整し、0.1%TFA
を含む5%アセトニトリルで平衡化した逆相HPLCカ
ラム (Protein C4,10×250mm, Vydac社製)に
流速1.0ml/分で添加した。吸着蛋白質はアセトニト
リルの直線濃度勾配(5%→65%、120分、0.5
%アセトニトリル/分)により流速1.0ml/分で溶出
した。溶出蛋白質の検出は220nmおよび280nmにお
ける吸光度を追跡することにより行い、1mlずつ分画し
た。各画分について活性測定を行った結果、アセトニト
リル濃度40−45%の画分にMeg−POT活性が認
められた。
【0050】(ステップ−4) 逆相HPLC(II) ステップ−3で得た活性画分を0.1%TFAで2倍希
釈し、0.1%TFAを含む35%アセトニトリルで平
衡化した逆相HPLCカラム (Protein C4,4.6×
250mm, Vydac社製)に流速1.0ml/分で添加し
た。吸着蛋白質はアセトニトリルの直線濃度勾配(35
%→50%、75分、0.2%アセトニトリル/分)に
より流速1.0ml/分で溶出した。溶出蛋白質の検出は
220nmおよび280nmの吸光度を追跡することにより
行い、1mlずつ分画した。各画分について活性測定を行
った結果、アセトニトリル濃度40−45%の画分にM
eg−POT活性が認められた。
【0051】 (ステップ−5) DEAE・イオン交換HPLC ステップ−4で得た活性画分を凍結乾燥した後、0.0
1%Tween 20を含む10mMトリス−塩酸緩衝液(pH
8.0)に溶解し、同緩衝液で平衡化したProtein Pak
G−DEAEカラム (Waters社製、8.2×75mm)に
流速0.7ml/分で添加した。吸着蛋白質はNaClの
直線濃度勾配(0.0M→0.2M、40分、5mM N
aCl/分)により流速0.7ml/分で溶出した。溶出
蛋白質は220nmで検出し、0.7mlずつ分画した。各
画分について活性を測定した結果、NaCl濃度75mM
以下の画分にMeg−POT活性が認められた。
【0052】(ステップ−6) TSKgel G30
00SWゲル濾過 ステップ−5で得た活性画分を、0.01%Tween 20
及び0.15M NaClを含む50mlトリス−塩酸緩
衝液(pH7.4)で平衡化したTSKgelG3000
SWカラム(東ソー社製 21.5×600nm、ガード
カラム21.5×75nm)に流速3ml/分でカラムに流
し、溶出蛋白質は220nmで検出した。3mlずつ分画し
た各画分について、活性測定した結果、Meg−POT
活性は溶出時間49〜54分の画分に認められたので、
その画分を回収した。
【0053】(ステップ−7) 逆相HPLC(III) ステップ−6で得た活性画分を5%TFAを加えてpHを
約2に調整し、ステップ−4の逆相HPLC(II)と同
一条件下にクロマトグラフィーを行った。各画分につい
て活性を測定した結果、主ピーク(アセトニトリル濃度
40%−45%)にMeg−POT活性が認められた。
この結果を図1に示す。図1において横棒で示す画分を
精製Meg−POTとして回収した。
【0054】実施例4巨核球増幅因子(Meg−PO
T)のアミノ酸配列 (i)N末端アミノ酸配列の決定 実施例3で得た精製Meg−POT試料を気相式プロテ
インシークエンサー470A型(Applied Biosystems社
製)を用いてエドマン分解を行い、得られたフェニルチ
オヒダントイン(PTH)−アミノ酸をPTHアナライ
ザー120型(Applied Biosystems社製)を用いて同定
した。その結果、N末端近傍のアミノ酸配列(配列−1
〜3)は以下に示す3種が認められた。
【0055】
【表1】 配列−1 (配列番号:1) Leu Ala Gly Glu Xaa Gly Gln Glu Ala Ala Pro Leu Asp Gly Val Leu 1 5 10 15 (なお、Xaaは未同定のアミノ酸を示す。以下同じ。) 配列−2 (配列番号:2) Ala Gly Glu Thr Gly Gln Glu Ala Ala Pro Leu Asp Gly Val Leu Ala 1 5 10 15 配列−3 (配列番号:3) Gly Glu Thr Gly Gln Glu Ala Ala Pro Leu Asp Gly Val Leu Ala Asn 1 5 10 15 (配列の下に示す数字はエドマン分解時のサイクル数である) 上記配列−1〜配列−3のアミノ酸配列において以下の
アミノ酸配列が共通していることが認められた。
【0056】Gly Glu Thr Gly Gln Glu Ala Ala Pro Le
u Asp Gly Val Leu (配列番号:4)。
【0057】 (ii)エンドプロテイナーゼGlu−C消化 試料を0.1M炭酸水素アンモニウム緩衝液(pH7.
8)に溶解し、尿素およびジチオスライトール(DT
T)をそれぞれ終濃度が、7.8Mおよび50mMとなる
ように加え、37℃で2時間インキュベートした。そこ
に、 Endo Glu−C(Boehringer-Mannheim社製) を
0.5μg加え、37℃で2時間反応させた後、さらに
同量の酵素を加え、再度37℃で18時間反応させた。
反応液に10%トリフルオロ酢酸(TFA)を加えてpH
を2とした後、0.1%TFAで平衡化したC18カラ
ム(4.6×25cm, Vydac社製)にかけた。
【0058】ペプチドの溶出は0.1%TFA中、アセ
トニトリルの濃度を128分間に0から64%まで、そ
の後16分間に80%まで直線的に上げて行った。ペプ
チドは220nmおよび280nmの二波長で検出した。得
られた部分消化ペプチド断片について順次、気相式プロ
テインシークエンサー473A型 (Applied Biosystems
社製) を用いてアミノ酸配列を分析した。
【0059】その結果、部分消化断片のうちのひとつは
以下に示す配列を有することがわかった。
【0060】Leu-Ala-Val-Ala-Leu-Ala-Gln-Lys-Asn-Va
l-Lys-Leu-Ser-Thr-Glu-Gln-Leu-Arg-Xaa-Leu-Ala-His-
Arg-Leu-Ser-Glu-Pro-Pro-Glu-Asp-Leu-Asp-Ala-Leu-Pr
o- - -(配列番号5)。
【0061】実施例5HPC−Y5細胞からのpoly
(A) +RNAの調製 HPC−Y5細胞からChirgwin等 (Biochemistry, 18 5
294 (1979)) により記載されている方法に従って全RN
Aを調製した。すなわち、約1×109 個のHPC−Y
5細胞を49mlの31.25mMクエン酸ナトリウム及び
0.625%ラウリルサルコシンナトリウムを含む5M
グアニジンチオシアネート(Fulka社製)溶液中で完全に
ホモジナイズした。ホモジネートを遠心管中の0.1M
EDTAを含む5.3M塩化セシウム溶液層上に重層
し、次にこれをSW40ローター(Beckman社製) で3
1,000rpm にて20℃で17時間遠心分離すること
によりRNAを沈澱させた。
【0062】RNA沈澱物を80%エタノールにて洗浄
し、1mM EDTA及び0.5%ドデシル硫酸ナトリウ
ム(SDS)を含有する10mMトリス塩酸緩衝液(pH
7.5)2.4ml中に溶解し、プロナーゼ(Boehringer
Mannheim社製) を0.5mg/mlとなるように添加した
後、37℃にて20分間保温した。RNA溶液をフェノ
ール処理することにより蛋白質を除いた。溶液中の残存
フェノールをクロロホルムで抽出した後、RNAをエタ
ノールで沈澱させた。
【0063】全RNAからpoly(A) +RNAをoligo
(dT) cellulose spun columnからなるmRNA Separat
or(Clontech laboratories社製)を用いて精製した。キ
ット添付の処方に従って、二度精製を繰り返すことによ
り精製度を高めた。
【0064】上記操作を2回行い、それぞれ37μg及
び190μgのpoly(A) +RNAを得た。
【0065】実施例6PCR用cDNAライブラリーの構築 上記poly(A) +RNA 10μgを材料としてcDN
A合成キットc−CLONE (Clontech laboratories社製)
を用いて二本鎖cDNAを合成し末端にはEcoRIリ
ンカーを付着した。遊離のEcoRIリンカーはアガロ
ースゲル電気泳動にて分離した後、600塩基対以上の
長さを持つcDNAはGeneluter(Invitrogen社製) を用
いた電気溶出により回収した。このリンカー付加二本鎖
cDNAと予めEcoRI及びアルカリフォスファター
ゼ(宝酒造社製)処理したλZAPIIベクター (Strata
gene社製) とを、7mM塩化マグネシウム、1mM DT
T,1mM ATP及び2単位のT4 DNAリガーゼ
(宝酒造社製)を含む50mMトリス塩酸緩衝液(pH7.
5)中で4℃にて24時間保温して連結した。
【0066】これをGigapack Gold II packaging extra
ct (Stratagene社製) を用いてパッケージングし、HP
C−Y5細胞のcDNAライブラリーを構築した。さら
にこのライブラリーを7つのプール(A−G)に分け、
増幅し、5.8g/l塩化ナトリウム、2g/l硫酸マ
グネシウム・7水和物および0.01%ゼラチンを含む
50mMトリス塩酸緩衝液(pH7.5)中に回収した。
【0067】実施例7PCRによるクローニング λZAPIIのEcoRIサイト近傍のT7プロモーター
配列のプライマーT7,T3プロモーター近傍配列のプ
ライマーT3−2及び本因子のN末端近傍の部分アミノ
酸配列 Gly-Glu-Thr-Gly-Gln-Glu-Alaをコードする遺伝
子として可能性のある全てのコドンを含むミックスプラ
イマーN1を381A DNA Synthesizer(Applied
Biosystems社製) 用いて合成した。
【0068】さらに実施例4(ii)に示したように、本
因子の Endo Glu−C断片(配列番号5)中に Ala-G
ln-Lys-Asn-Val-Lys-Leu-Ser-Thr-Glu-Gln-Leu-Arg-Xaa
-Leu-Ala-His-Arg-Leu-Ser- Glu-Pro-Pro-Glu-Asp-Leu-
Asp-Ala という比較的コドンusage の低い配列(下線
部)が見いだされたため、このアミノ酸配列をもとにこ
れらをコードする遺伝子として可能性のある全ての塩基
配列を含むミックスプライマーK4S及びK4−2Aも
同様に合成した。これらプライマーの塩基配列を以下に
示す。
【0069】T7:5′−TAATACGACTCACTATAGGG−3′ T3−2:5′−CATGATTACGCCAAGCTCGAA −3′ N1:5′−GG(GATC)GA(GA)AC(GATC)GG(GATC)CA(GA)GA
(GA)GC−3′(センス) K4S:5′−GC(GATC)CA(AG)AA(AG)AA(TC)GT(GATC)AA
(AG)(TC)T −3′(センス) K4−2A:5′−GC(GA)TC〔(GATC)AG or (TC)AA〕(A
G)TC(TC)TC(GATC)GG(GATC)GG(TC)TC−3′(アンチセン
ス) 増幅したcDNAライブラリーの7つのプールのファー
ジ懸濁液に、プロナーゼ、EDTA、およびSDSを、
それぞれ終濃度が0.5mg/ml,20mM,0.5%とな
るように加え、37℃で1時間保温した。この溶液から
フェノール処理により蛋白質を除き、続いてクロロホル
ムでフェノールを抽出した後、DNAをエタノールで沈
澱させた。このようにして精製したDNAを鋳型として
DNA Thermal Cycler(Perkin Elmer Cetus社製) を用
いて一段階目のPCRを行った。
【0070】ライブラリーDNA 500ngを10mMト
リス塩酸緩衝液(pH8.3)、50mM塩化カリウム、
1.5mM塩化マグネシウム、0.01%ゼラチン、10
0μMデオキシヌクレオチド三リン酸(dNTP)及び
プライマーT7とN1それぞれ1μMを含む50μlの
PCR反応溶液中で増幅した。まず95℃で7分間変性
後、85℃に冷却し1.25単位のAmpliTaq DNAポリメ
ラーゼ(Perkin Elmer Cetus社製) を加えた。その後、
変性94℃ 1分間、アニール60℃ 1分間、伸長7
2℃ 2分間の40サイクルのPCRを行なった。さら
にこれらのPCR反応液の1/20量に対してプライマ
ーK4S及びK4−2Aを用いて上記と同様の条件で二
段階目のPCRを行なった。
【0071】二段階目のPCR反応液を12%ポリアク
リルアミドゲル電気泳動で分析し、増幅された84bpの
DNA断片を含むゲル部分を切出し0.1%SDS,1
0mM酢酸マグネシウム、0.1mM EDTAを含む50
0mM酢酸ナトリウム中で破砕し、37℃で16時間保温
してDNAを抽出した。エタノールで沈殿させたDNA
を1mMスベルミジン、0.1mM EDTAを含む20mM
トリス塩酸緩衝液(pH9.5)75μlに溶解し90℃
で2分間加熱後、急冷し100mM 2−メルカプトエタ
ノール、100mM塩化マグネシウムを含む500mMトリ
ス塩酸緩衝液(pH9.5)を10μl、10mM ATP
を13μl、ポリヌクレオチド キナーゼ (東洋紡社
製)を20単位添加後37℃ 1時間反応させて5′端
をリン酸化した。
【0072】DNA溶液をフェノール処理することによ
り蛋白質を除いた。溶液中の残存フェノールをクロロホ
ルムで抽出した後、DNAをエタノールで沈澱させた。
制限酵素SmaI(宝酒造社製)及びアルカリフォスフ
ァターゼ(宝酒造社製)で処理したベクターpSP73
(Promega社製)とこのDNA試料を7mM塩化マグネシウ
ム、1mM DTT,1mM ATP及び2単位のT4 D
NAリガーゼ(宝酒造社製)を含む50mMトリス塩酸緩
衝液(pH7.5)20μl中で16℃にて16時間保温
して連結した。
【0073】次に上記連結混合物のうち10μlを大腸
菌JM109のコンピテント細胞100μlに加え、氷
上で30分間、42℃にて1分間そして再び氷上で1分
間静置した。次いで400μlのSOC培地 (Molecula
r Cloning: A Laboratory Manual, Sambrookら、Cold S
pring Harbor Laboratory Press, 1989)を加え、37℃
にて30分間保温した後50μg/mlのアンピシリンを
含むLB寒天培地 (Molecular Cloning: A Laboratory
Manual, Sambrookら、Cold Spring Harbor Laboratory
Press, 1989)上にこの大腸菌を広げ、37℃にて16時
間保温して大腸菌形質転換体を得た。
【0074】現われた形質転換体のうち5クローンにつ
いてそれぞれを50μg/mlのアンピシリンを含むLB
培地5ml中で37℃にて16時間培養し、その培養物か
らアルカリ法 (Molecular Cloning: A Laboratory Manu
al, Sambrookら、Cold Spring Harbor Laboratory Pres
s, 1989)にてプラスミドDNAを調製した。それぞれの
挿入塩基配列をSequenase Version 2.0 (United States
Biochemical社製) を用いてジデオキシ・シーケンシン
グ法にて決定したところ、配列番号6に示したようにプ
ライマーK4S及びK4−2Aに挟まれた40塩基対の
配列が明らかとなった。
【0075】この塩基配列をもとにセンス・プライマー
7D−1S:5′−CTCTCAACAGAGCAGCTGCG−3′及び7
D−3S:5′−CTGGCTCACCGGCTCTCTGA−3′とアンチ
センス・プライマー7D−1A:5′−AGAGCCGGTGAGCC
AGACAG−3′及び7D−2A:5′−GCGCAGCTGCTCTGTT
GAGA−3′を合成した。上記と同様の条件でライブラリ
ーDNAを鋳型にT7と7D−1S及びT3−2と7D
−1Aの組合せで一段階目のPCRを行なった。さらに
二段階目のPCRをそれぞれプライマーT7と7D−3
S及びT3−2と7D−2Aの組合せで行なった。
【0076】PCR産物を1%アガロースゲル電気泳動
で分析し、増幅されたDNA断片を含むゲル部分を切出
し、Sephaglas BandPrep Kit(Pharmacia社製) を用いて
DNAを抽出した。これらのDNAについてfmol DNA S
equencing System(Promega社製) を用いて直接塩基配列
を決定したところ、配列番号7及び8に示したように本
因子をコードする遺伝子の一部が確認された。
【0077】この塩基配列をもとにセンス・プライマー
3AS1:5′−AACTCCTTGGCTTCCCGTGTG −3′とアン
チセンス・プライマー7SA1−5′−CGCATCTGGGTTGA
GGAATAG −3′を合成し、上記の条件でプールDについ
てPCRを行なったところ197塩基対(配列番号9)
のDNA断片の増幅が確認され、このDNA断片がコー
ドするアミノ酸配列は実施例3で得た精製Meg−PO
Tを用いて決定したアミノ酸配列と一致した。このDN
A断片(Q197A)を以下のスクリーニングにプロー
ブとして用いた。
【0078】実施例8cDNAライブラリーのプロー
ブQ197Aによるスクリーニング 実施例5で得られたpoly(A) +RNA 5μgを材料
としてZAP−cDNA SYNTHESIS KIT (Stratagene社
製) を用いて二本鎖cDNAを合成し、λZAPIIベク
ター (Stratagene社製) のアームに連結した。これをGi
gapack Gold IIpackaging extract (Stratagene社製)
を用いてパッケージングし、新たにHPC−Y5細胞の
cDNAライブラリーを構築した。
【0079】実施例7のPCRで増幅された197bpの
DNAをアクリルアミドゲル電気泳動後ゲルから回収
し、このDNA断片Q197AをランダムプライマーD
NAラベリングキット (宝酒造社製) を用いて32Pで標
識した。但し、添付のランダムプライマーの代りにプラ
イマー3AS1及び7SA1を400nMの濃度で用い標
識した。遊離のdNTPはNICK−Column(Pharmacia
社製) に通搭して除いた。次に、Bentonと Davisの方法
(Science 196, 180, 1977)に準じてプラークハイブリダ
イゼーションを行なった。
【0080】ファージプラークの生じた寒天培地上にHy
bond−N+フィルター (Amersham社製)をのせてファー
ジを移し、以下の順序でフィルターを処理した。1.5
M塩化ナトリウムを含む0.5N水酸化ナトリウム水溶
液にて5分間DNAを変性させ、1.5M塩化ナトリウ
ムを含む0.1N水酸化ナトリウム水溶液で1分間続い
て1.5M塩化ナトリウムを含む0.5Mトリス塩酸緩
衝液(pH7.4)で1分間2回、最後に2×SSCP
(240mM NaCl,30mM Na3 citrate,26mM
KH2 PO4,2mM EDTA)で1分間処理した。
【0081】次いでフィルターを乾燥し、0.4N水酸
化ナトリウム水溶液で20分間、5×SSPE(Molecu
lar Cloning: A Laboratory Manual, Sambrookら、Cold
Spring Harbor Laboratory Press, 1989)で1分間2回
処理した。50%ホルムアミド,5×SSPE,5×De
nhardt's Solution(Molecular Cloning: A Laboratory
Manual, Sambrookら、Cold Spring Harbor Laboratory
Press, 1989),0.1%SDS及び0.1mg/ml変性D
NA(鮭精巣DNA, Boehringer Mannheim 社製)を含
むプレハイブリダイゼーション溶液中で42℃,4時間
保温した。
【0082】上記の様にして標識したQ197Aプロー
ブを含むハイブリダイゼーション溶液(50%ホルムア
ミド, 5×SSPE,5×Denhardt's Solution, 0.
1mg/ml変性DNA(鮭精巣DNA),0.1%SD
S)中で42℃にて16時間ハイブリダイゼーションを
行なった。フィルターを室温下に0.05%SDSを含
む2×SSCで1時間2回洗浄し、次いで68℃で0.
1%SDSを含む1×SSCで1時間2回、さらに68
℃で0.1%SDSを含む0.2×SSCで1時間洗浄
した後、オートラジオグラフィーで検出した。
【0083】その結果、23個の陽性ファージクローン
が得られた。得られたファージクローンのうち完全長c
DNAを含むと思われるクローンについてヘルパーファ
ージR408を用いてプラスミドへの切出しをZAP−
cDNA SYNTHESIS KIT (Stratagene社製) 添付の処方
に従って行なった。得られたプラスミドpKPO27
(図2)についてクローン化DNAの塩基配列をSequen
ase Version 2.0 (United States Biochemical社製) を
用いてジデオキシ・シーケンシング法にて調べたとこ
ろ、配列番号10に示す塩基配列が得られた。また、他
のプラスミドpKPO21についてクローン化DNAの
塩基配列を同様の方法で調べたところ、配列番号10に
示す塩基配列の内、1873番目のG(グアニン)がA
(アデニン)に変化しており(従って593番目のVa
l(バリン)がMet(メチオニン)に変化してい
る)、配列の他の部分はpKPO27のそれと同一であ
った。
【0084】これらの塩基配列およびそれらによりコー
ドされているアミノ酸配列をGen Bank Re 1.71により調
査したところ、塩基配列及びアミノ酸配列はいずれも新
規であることが確認された。
【0085】なお、前記プラスミドpKPO27を含有
する大腸菌はEscherichia coli JM109 (pKPO27) 、およ
びプラスミドpKPO21を含有する大腸菌はEscheric
hiacoli JM109 (pKPO21) として工業技術院微生物工業
技術研究所(茨城県つくば市東1丁目1番3号)に、各
々、平成4年10月12日に微工研条寄第4029号
(FERM BP−4029)、および平成4年11月
10日に微工研条寄第4071号(FERM BP−4
071)としてブダペスト条約に基き国際寄託された。
【0086】実施例9pRVHKPO27ベクターの
構築(動物細胞用) 実施例8で得られたpKPO27を10mM MgCl
2 ,1mM DTT,100mM NaClを含む20mMト
リス塩酸緩衝液(pH7.5)中37℃にて制限酵素Ec
oRI(宝酒造社製)で2時間処理しエタノール沈殿と
してDNAを回収し、さらに10mM MgCl2 ,1mM
DTT,100mM KClを含む20mMトリス塩酸緩
衝液(pH8.5)中37℃にて制限酵素BamHI(宝
酒造社製)で2時間処理した後、アガロースゲル電気泳
動を行ない1.8kbp のDNA断片を回収した。
【0087】ベクターHEF−12h−gγ1を上記と
同様に制限酵素EcoRI及びBamHIにて処理した
後アルカリフォスファターゼ(宝酒造社製)を加えて6
5℃にて2時間保温することにより脱リン酸してアガロ
ースゲル電気泳動を行ない回収した8.7kbp DNAを
先の1.8kbp のDNA断片と混合後6.6mM MgC
2 ,5mM DTT,1mM ATPを含む66mMトリス
塩酸緩衝液(pH7.5)中16℃にてT4 DNAリガ
ーゼを一晩反応させ、これを大腸菌JM109株に導入
してpRVHKPO27を得た(図3)。
【0088】図3に示されるごとくこのプラスミドはE
F1αプロモーター、ヒトイムノグロブリンH鎖定常領
域遺伝子、SV40エンハンサープロモーター、pBR
322由来の複製開始領域およびβ−ラクタマーゼ遺伝
子(Ampr ) を含みEF1αプロモーターとヒトイム
ノグロブリンH鎖定常領域遺伝子の間にヒトMeg−P
OT cDNAの一部が接続されている。
【0089】なお、前記ベクターHEF−12h−gγ
lは次の様にして作製した。
【0090】ベクターHEF−12h−gγlの構成要
素である2.5kbpのHEF−1αプロモーター−エン
ハンサー領域は、該遺伝子の5′−末端に接する約1.
5kbpのDNA、第一エクソン中の33bp、第一イント
ロン中の943bp、及び第二エクソンの最初の部分の1
0bpから成る。この2.5kbpのHindIII −Eco
RI断片をプラスミドpEF321−CAT(D.W.Kim
ら、Gene 91, 217 (1990);及びT. Uetsukiら、J. Bio
l. Chem. 264, 5791 (1989))から切り出し、そしてpd
KCRベクター(M. Tsuchiyaら、Embo J. , 611 (198
7)), K. O' Haraら、Proc. Natl, Acad. Sci. USA 78,
1527 (1981), (R. Fukunaga ら、Proc.Natl. Acad. Sc
i. USA. 81, 5086 (1984))にクローニングして、SV4
0前期プロモーター−エンハンサーを含有する約300
bpのHindIII −EcoRI断片と置き換えてpTE
F−1を得た。
【0091】pTEF−1をEcoRIで消化し、Kl
enowポリメラーゼでフィルーインし、そしてHin
dIII リンカーに連結した。次に、この修飾されたpT
EF−1ベクターDNAから約1.6kbpのHindIII
−SmaI断片を切り出した。
【0092】HCMV−12h−gγ1(Maedaら、Huma
n Antibodies and Hybridomas ,124 (1991) ; C. A.
Kettleboroughら、Protein Engeneering , 773 (199
1))をEcoRIにより部分消化し、Klenowポリ
メラーゼによりフィルーインし、そして自己連結するこ
とにより、HCMV−12h−gγ1からプラスミドH
CMV−12h−gγ1(ΔE2)を作製した。
【0093】プラスミドHCMV−12h−gγ1(Δ
E2)をEcoRIで消化し、Klenowポリメラー
ゼでフィルーインし、そしてHindIII で消化した。
ヒトα−IC領域をコードするDNA配列を含有する約
7kbpの断片を、HEF−1αプロモーター−エンハン
サーを含有する前記の1.6kbp HindIII −Sm
aI断片に連結してHEF−12h−gγ1を得た。こ
のベクター中のHEF−1αプロモーター・エンハンサ
ー領域は、5′−領域に接する380bpのDNAを除
き、pTEF−1中のそれと同一であった。
【0094】実施例10COS細胞での巨核球増幅因
子(Meg−POT)遺伝子の発現I COS細胞を1×107 個/mlになるようにPBSに懸
濁し、この細胞浮遊液0.8mlにpRVHKPO27
10μgを加えた。1900V、25μF、0.4msec
の条件でGenePulsar (BioRad社製) を用いて電気穿孔法
(electroporation) によりプラスミドをCOS細胞に導
入した。室温にて10分間の回復期間の後、エレクトロ
ポレーションした細胞を1%ウシ胎児血清を含むDulbec
co's Minimum Essential Medium(DMEM)(GIBC
O社製)25mlに加えた。72時間培養後、培養上清を
集めた。
【0095】こうして得られたCOS細胞の培養上清の
一部をセントリプレップー10 (Amicon社製) で約10
倍に濃縮し、SDS/PAGEにて分析した。コントロ
ールとして同様に無処理のCOS細胞およびベクターの
み導入したCOS細胞の培養上清も同様にそれぞれ約1
0倍に濃縮したものについても並べて泳動した。ゲル濃
度は12%で、 Laemmliの方法Nature, 227 , 680 (197
0)に従って泳動し、一枚は2D−銀染色試薬・II「第
一」(第一化学薬品製)を用いて蛋白質を染色した。
【0096】なお分子量マーカーはバイオラッド社製低
分子量マーカー〔ホスホリラーゼB(92.5kd)、ウ
シ血清アルブミン(66.2kd)、オボアルブミン(4
5.0kd)、炭酸脱水素酵素(31.0kd)、大豆トリ
プシンインヒビター(21.5kd)、リゾチーム(1
4.4kd)〕を用いた。
【0097】もう一枚はウエスタンブロット法により巨
核球増幅因子を検出した。
【0098】このときの分子量マーカーは、バイオラッ
ド社製プレステインド分子量マーカー〔ホスホリラーゼ
B(106.0kd)、ウシ血清アルブミン(80.0k
d)、オボアルブミン(49.5kd)、炭酸脱水素酵素
(32.5kd)、大豆トリプシンインヒビター(27.
5kd)、リゾチーム(18.5kd)〕を用いた。一次抗
体は、HPC−Y5の培養上清より精製した巨核球増幅
因子のN末端配列分析より得られた配列をもとに合成し
た18残基のペプチドを抗原として家兎に免疫して得た
ポリクローナル抗体を用いた。
【0099】その結果、銀染色法により染色されたバン
ドを3者で比較したところ、分子量約33,000にみ
られたバンドは巨核球増幅因子の遺伝子を導入したCO
S細胞の培養上清にのみ認められた。さらに、ウエスタ
ンブロット法でもこの分子量約33,000のバンドの
み強く発色したことから、このバンドが組換え型巨核球
増幅因子であると考えられた。
【0100】実施例11COS細胞の培養上清中の巨
核球増幅因子(Meg−POT)活性測定I 実施例10で得られたCOS細胞の培養上清の巨核球増
幅因子活性を前述した方法に従って測定した。但し、C
OS細胞への遺伝子の導入刺激で、その培養上清中にI
L−6が誘導されることが知られているので、測定はマ
ウスIL−6受容体に対する抗体を添加した系で行っ
た。
【0101】その結果、表2に示したように、遺伝子を
導入しなかった無処理のCOS細胞の培養上清もMeg
−POTのcDNAを含まないベクターを導入した対照
COS細胞の培養上清も巨核球増幅因子活性を示さなか
ったが、Meg−POTのcDNAを含むベクターを導
入したCOS細胞の培養上清は明らかに巨核球増幅因子
活性を示した。
【0102】
【表2】 COS細胞の培養上清中の巨核球増幅因子活性 COS細胞 巨核球増幅因子活性 a) 培養上清濃度(%) 50 0.5 0.005 無処理COS 1.5 3 ND b) 対照COS 0 2.5 ND Meg−POT cDNA 導入COS 8.5 7 3.5 a) 形成されたコロニー数からIL−3単独で形成さ
れたコロニー数 (26.5個)を引いた値。
【0103】b) 測定せず。
【0104】実施例12COS細胞の培養上清からの
組換え型巨核球増幅因子(Meg−POT)の精製I 実施例10で得られたCOS細胞の培養上清350mlに
Tween 20を終濃度が0.01%になるように加え、 A
micon PM−10 (Amicon社製)を用いた限外濾過法に
より約10倍濃縮した。この濃縮液から以下の手順で組
換え型巨核球増幅因子(Meg−POT)を精製した。
【0105】(i)0.01%Tween 20を含む10mM
トリス塩酸緩衝液(pH8.4)、10lに対し前記濃縮
液を一晩4℃にて透析した後、同緩衝液にて平衡化した
DEAE−Sepharose fast flow カラム(2.2×18
cm, Pharmacia 社製)に添加した。カラムを同緩衝液で
洗浄後、同緩衝液中、NaCl濃度を段階的に0,0.
1,0.15,0.2,0.5Mと上げてカラムに吸着
した蛋白質を溶出させた。得られた画分をSDS/PA
GEで分析した結果、実施例10で認めた分子量約3
3,000のバンドはNaCl濃度が0.1Mの画分の
前半部分にのみ検出された。この画分を集め、次の逆相
HPLCでの精製にかけた。
【0106】(ii)上記画分に10%TFAを加えpHを
3以下とした後、0.1%TFAを含む24%アセトニ
トリルで平衡化したVydac C4カラム(4.6×250
mm)に添加し、同溶離液にてカラムを洗浄後、0.1%
TFA中アセトニトリル濃度を80分間に24〜64
%、さらに10分間に80%まで直線的に上げてカラム
に吸着した蛋白質を溶出させた。流速は約1ml/min
で、蛋白質の検出は220nmおよび280nmの二波長で
行った。得られたピークについてSDS/PAGEで分
析した結果、アセトニトリルの濃度で約41%に分子量
約33,000のバンドが認められた。この画分を0.
1%TFAで希釈した後、再び同条件で逆相HPLCを
行い、メインピークを回収した。
【0107】実施例13組換え型巨核球増幅因子(M
eg−POT)のアミノ酸配列分析 実施例12で得られた組換え型Meg−POTについ
て、気相式プロテインシークエンサー473A型(Appl
ied Biosystems社製)を用いてN末端アミノ酸配列分析
を行った。その結果、以下に示す(a)〜(c)の3種
類のN末端アミノ酸配列が認められ実施例10で認めた
分子量約33,000のバンドが組換え型巨核球増幅因
子であることが確認された。
【0108】(a)Ser-Arg-Thr-Leu-Ala-Gly-Glu-Thr-
Gly-Gln-Glu-Ala-Ala-Pro-Leu-Asp-………(配列番号1
1) (b)Leu-Ala-Gly-Glu-Thr-Gly-Gln-Glu-Ala-Ala-Pro-
Leu-Asp-Gly-Val-Leu-Ala-Asn-Pro-Pro-Xaa-Ile-Ser-Xa
a-Leu-Xaa-Pro-Arg-……… (c)Gly-Glu-Thr-Gly-Gln-Glu-Ala-Ala-Pro-Leu-Asp-
Gly-Val-Leu-Ala-Asn-Pro-Pro-Xaa-Ile-Ser-Xaa-Leu-Xa
a-Pro-Arg-Gln-Leu-……… これらの内、(b)および(c)は実施例4(i)にお
ける、HPC−Y5細胞の培養上清からのポリペプチド
の配列−1(配列番号:1)および配列−3(配列番
号:3)にそれぞれ対応する。
【0109】また、組換え型Meg−POTに10mg/
mlの臭化シアンを含む70%ギ酸溶液100μlを加
え、室温にて24時間臭化シアン分解した後、遠心濃縮
機にて過剰の試薬を除いた。その残渣を0.1%TFA
1mlに溶解し、0.1% TFAで平衡化したVydac C
4カラム(4.6×250mm)に添加し、0.1%TF
A中、アセトニトリル濃度を40分間に80%まで直線
的に上げ、カラムに吸着した臭化シアン断片を溶出させ
た。得られた断片のうちC末側の断片について気相式プ
ロテインシーケンサー473A型を用いてアミノ酸配列
分析を行ったところ、以下に示す配列が得られた。この
配列は、HPC−Y5の培養上清から得られた巨核球増
幅因子(Meg−POT)を同様に臭化シアン分解して
得られた臭化シアン断片の部分配列と、次記に示すごと
く一致した。
【0110】
【表3】
【0111】上表の「cDNA」表記のアミノ酸配列は
Meg−POTをコードするcDNAの塩基配列から演
えきされるアミノ酸配列であり、また「COS」表記の
アミノ酸配列はMeg−POTをコードするcDNAを
COS細胞で発現させた蛋白質を、アミノ酸配列分析で
得られた部分配列であり、さらに「HPC−Y5」表記
のアミノ酸配列は、ヒト膵臓癌細胞由来の株化細胞「H
PC−Y5」の培養上清から得られたMeg−POTの
アミノ酸配列分析で得られた部分配列である。
【0112】実施例14pRVHKPO27fベクタ
ーの構築(動物細胞用) 実施例8で得られたpKPO27を10mM MgCl
2 ,1mM DTTおよび100mM NaClを含む50
mMトリス塩酸緩衝液(pH7.5)中37℃にて制限酵素
XhoI (東洋紡社製)で2時間処理しエタノール沈殿
としてDNAを回収した。次に5mM MgCl2 ,10
mM DTT,1mMのdATP,dCTP,dGTP,d
TTPを含む20mMトリス塩酸緩衝液(pH7.4)中1
0℃にてDNAポリメラーゼのKlenow断片で1時間処理
し末端を平滑化した。エタノール沈殿としてこのDNA
を回収し、次いで10mM MgCl2 ,1mM DTT,
100mM NaClを含む50mMトリス塩酸緩衝液(pH
7.5)中37℃にて制限酵素SalI (東洋紡社製)
で2時間処理しアガロースゲル電気泳動を行ない、1.
3Kbp のDNA断片を回収した。
【0113】実施例9で得られたpRVHKPO27を
10mM MgCl2 ,1mM DTT,100mM KCl
を含む20mMトリス塩酸緩衝液(pH8.5)中37℃に
て制限酵素BamHI (宝酒造社製)で2時間処理した
後エタノール沈殿としてDNAを回収した。次に5mM
MgCl2 ,10mM DTT,1mMのdATP,dCT
P,dGTP,dTTPを含む20mMトリス塩酸緩衝液
(pH7.4)中10℃にてDNAポリメラーゼのKlenow
断片で1時間処理し末端を平滑化した。
【0114】エタノール沈殿としてこのDNAを回収
し、次いで10mM MgCl2 ,1mMDTT,100mM
NaClを含む50mMトリス塩酸緩衝液(pH7.5)
中37℃にて制限酵素SalI (東洋紡社製)で2時間
処理し、アルカリフォスファターゼ(宝酒造社製)を加
えて65℃にて2時間保温することにより脱リン酸して
アガロースゲル電気泳動を行ない8.5Kbp のDNA断
片を回収した。この8.5Kbp のDNA断片と先の1.
3Kbp のDNA断片とを混合した後、6.6mMMgCl
2 ,5mM DTT,1mM ATPを含む66mMトリス塩
酸緩衝液(pH7.5)中16℃にてT4DNAリガーゼ
を一晩反応させ、これを大腸菌JM109株に導入して
pRVHKPO27fを得た(図4)。
【0115】なおpRVHKPO27fは、図4に示さ
れるごとく、EF1αプロモーター、ヒトイムノグロブ
リンH鎖定常領域遺伝子、SV40エンハンサープロモ
ーター、pBR322由来の複製開始領域およびβ−ラ
クタマーゼ遺伝子(Ampr)を含み、ヒトMeg−P
OTcDNAはEF1αプロモーターとヒトイムノグロ
ブリンH鎖定常領域遺伝子の間に接続されている。
【0116】実施例15COS細胞での巨核球増幅遺
伝子(Meg−POT)遺伝子の発現II COS細胞を1×107 個/mlになるようにPBSに懸
濁し、この細胞浮遊液0.8mlにpRVHKPO27f
10μgを加えた。1900V,25uFD 0.4msec
の条件でGenePulsar(BioRad社製)を用いて電気穿孔法
(electroporation)によりプラスミドをCOS細胞に導
入した。室温にて10分間の回復期間の後、エレクトロ
ポレーションした細胞を1%ウシ胎児血清を含むDulbec
co's Minimum Essential Medium(DMEM) (GIBCO社製)2
5mlに加えた。72時間培養後、培養上清を集めた。
【0117】こうして得られたCOS細胞の培養上清の
一部をセントリプレップ−10(Amicon社製)で約10
倍に濃縮し、SDS/PAGEにて分析した。コントロ
ールとしてベクターのみ導入したCOS細胞の培養上清
も同様にそれぞれ約10倍に濃縮したものについて並べ
て泳動した。ゲル濃度は12%で、Laemmli の方法Natu
re, 227 , 680(1970) に従って泳動し、一枚は2D−銀
染色試薬・II「第1」(第1化学薬品製)を用いて蛋白
質を染色した。
【0118】なお分子量マーカーはバイオラッド社製低
分子量マーカー〔ホスホリラーゼB(92.5kd) 、ウ
シ血清アルブミン(66.2kd)、オボアルブミン(4
5.0kd)、炭酸脱水素酵素(31.0kd)、大豆トリ
プシンインヒビター(21.5kd)、リゾチーム(1
4.4kd)〕を用いた。
【0119】もう一枚はウエスタンブロット法により巨
核球増幅因子を検出した。
【0120】このときの分子量マーカーは、バイオラッ
ド社製プレステインド分子量マーカー〔ホスホリラーゼ
B(106.0kd)、ウシ血清アルブミン(80.0k
d)、オボアルブミン(49.5kd)、炭酸脱水素酵素
(32.5kd)、大豆トリプシンインヒビター(27.
5kd)、リゾチーム(18.5kd)〕を用いた。一次抗
体は、HPC−Y5の培養上清より精製した巨核球増幅
因子のN末端配列分析より得られた配列をもとに合成し
た18残基のペプチドを抗原として家兎に免疫して得た
ポリクローナル抗体を用いた。
【0121】その結果、銀染色法により染色されたバン
ドを両者で比較したところ、分子量約33,000にみ
られたバンドは巨核球増幅因子の遺伝子を導入したCO
S細胞の培養上清にのみ認められた。さらに、ウエスタ
ンブロット法でもこの分子量約33,000のバンドの
み強く発色したことから、このバンドが組換え型巨核球
増幅因子であると考えられた。
【0122】実施例16COS細胞の培養上清中の巨
核球増幅因子(Meg−POT)活性測定II 実施例15で得られたCOS細胞の培養上清の巨核球増
幅因子活性を前述した方法に従って測定した。但し、C
OS細胞への遺伝子の導入刺激で、その培養上清中にI
L−6が誘導されることが知られているので、測定はマ
ウスIL−6受容体に対する抗体を添加した系で行っ
た。
【0123】その結果、表4に示したように、遺伝子を
導入しなかった無処理のCOS細胞の培養上清もMeg
−POTのcDNAを含まないベクターを導入した対照
COS細胞の培養上清も巨核球増幅因子活性を示さなか
ったが、Meg−POTのcDNAを含むベクターを導
入したCOS細胞の培養上清は明らかに巨核球増幅因子
活性を示した。
【0124】
【表4】 COS細胞の培養上清中の巨核球増幅因子活性 COS細胞 巨核球増幅因子活性 a) 培養上清濃度(%) 2 0.2 0.02 0.002 無処理COS 0 ND b) ND ND 対照COS 2 ND ND ND Meg−POT cDNA 導入COS 7 4 7 1 a) 形成されたコロニー数からIL−3単独で形成さ
れたコロニー数 (10個)を引いた値。
【0125】b) 測定せず。
【0126】実施例17COS細胞の培養上清からの
組換え型巨核球増幅因子(Meg−POT)の精製II 実施例15で得られたCOS細胞の培養上清350mlに
Tween 20を終濃度が0.01%になるように加え、 A
micon PM−10 (Amicon社製)を用いた限外濾過法に
より約10倍濃縮した。この濃縮液から以下の手順で組
換え型巨核球増幅因子(Meg−POT)を精製した。
【0127】(i)0.01%Tween 20を含む10mM
トリス塩酸緩衝液(pH8.4)、10lに対し前記濃縮
液を一晩4℃にて透析した後、同緩衝液にて平衡化した
DEAE−Sepharose fast flow カラム(2.2×18
cm, Pharmacia 社製)に添加した。カラムを同緩衝液で
洗浄後、同緩衝液中、NaCl濃度を段階的に0,0.
1,0.15,0.2,0.5Mと上げてカラムに吸着
した蛋白質を溶出させた。得られた画分をSDS/PA
GEで分析した結果、実施例15で認めた分子量約3
3,000のバンドはNaCl濃度が0.1Mの画分に
検出され、この画分を次の逆相HPLCでの精製にかけ
た。
【0128】(ii)上記画分に10%TFAを加えpHを
3以下とした後、0.1%TFAを含む24%アセトニ
トリルで平衡化したVydac C4カラム(4.6×250
mm)に添加し、同溶離液にてカラムを洗浄後、0.1%
TFA中アセトニトリル濃度を80分間に24〜64
%、さらに10分間に80%まで直線的に上げてカラム
に吸着した蛋白質を溶出させた。流速は約1ml/min
で、蛋白質の検出は220nmおよび280nmの二波長で
行った。得られたピークについてSDS/PAGEで分
析した結果、アセトニトリルの濃度で約41%に分子量
約33,000のバンドが認められた。この画分を0.
1%TFAで希釈した後、再び同条件で逆相HPLCを
行い、メインピークを回収した。
【0129】実施例18精製組換え型Meg−POT
の巨核球増幅因子活性測定 実施例17で精製された組換え型巨核球増幅因子(Me
g−POT)を10%ウマ血清を含むIscove's Modifie
d Dulbecco's培養液(IMDM)で所定濃度(50.
1,3.1,0.2ng/ml)に希釈した被検検体0.1
ml,ウマ血清(56℃ 30分処理、Biocell 社製)
0.2ml、マウス(C57BL/6N系雄性、6〜12
週齢)大腿骨骨髄細胞浮遊液0.1ml(2×105 有核
細胞)、組換え型マウスIL−3を5ng/mlを含むIM
DM 0.2ml、および寒天を0.75%含む改変McCo
y's 5A培養液0.4mlを混合した。次いで、これらを
直径35mmの組織培養プラスチックディッシュに入れて
固まらせたのち、37℃、5%炭酸ガス/95%空気、
100%湿度の条件で培養を行った。
【0130】培養6日目に寒天層ごとスライドガラス上
に取出し乾燥させ、フィルム状標本としたものを5%グ
ルタルアルデヒドで固定し、Nakeffらの方法(Proc. So
c. Exp. Biol. Med. 151 587 1976)にしたがって、アセ
チルコリンエステラーゼで染色し、巨核球コロニー数の
算定を行った。この際、アセチルコリンエステラーゼ染
色陽性細胞を4個以上含む集塊を巨核球コロニーとした
(コロニーの検鏡は40倍の倍率で行なった)。
【0131】なお、巨核球増幅因子活性は、組換え型M
eg−POTを添加して生じた巨核球コロニー数と組換
え型Meg−POT無添加(10%ウマ血清を含むIM
DMのみ添加)で組換え型IL−3単独で生じた巨核球
コロニー数との差を指標とした。
【0132】その結果、表5に示したように、精製組換
え型Meg−POTは巨核球増幅因子活性を示した。
【0133】
【表5】 精製組換え型Meg−POTの巨核球増幅因子活性 Meg−POT濃度 巨核球増幅因子活性 b) (ng/ml)a) 50.1 9.5 3.1 8.5 0.2 3 a)アミノ酸分析法により測定。
【0134】b)形成されたコロニー数からIL−3単
独で形成されたコロニー数(19.5)を引いた値。
【0135】実施例19巨核球増幅因子(Meg−P
OT)をコードする遺伝子の試験管内転写翻訳 実施例8で得られたpKPO27を10mM MgCl
2 ,1mM DTT,100mM KClを含む20mMトリ
ス塩酸緩衝液(pH8.5)中37℃にて制限酵素Xho
I (東洋紡社製)で2時間処理し、次いでアガロースゲ
ル電気泳動を行ない、1.9Kbp のDNA断片を回収し
た。ベクターpCITE−2c(Novagen社製) を10m
M MgCl2 ,1mM DTT,100mM KClを含
む20mMトリス塩酸緩衝液(pH8.5)中37℃にて制
限酵素XhoI (東洋紡社製)で2時間処理した後アル
カリフォスファターゼ(宝酒造社製)を加えて65℃に
て2時間保温することにより脱リン酸して得られたDN
Aをフェノール処理を行なうことにより精製した。これ
と先の1.9Kbp のDNA断片と混合後、6.6mMMg
Cl2 ,5mM DTT,1mM ATPを含む66mMトリ
ス塩酸緩衝液(pH7.5)中16℃にてT4DNAリガ
ーゼを一晩反応させ、大腸菌JM109株に導入してp
CITE・KPO27を得た(図5)。
【0136】pCITE・KPO27を10mM MgC
2 ,1mM DTTを含む10mMTris−HCl(pH
7.5)中37℃にて制限酵素NaeI(東洋紡社製)
で2時間処理した後、DNAをフェノール処理を行なう
ことにより精製した。この鋳型DNAに2mM spermidi
ne, 6mM MgCl2 ,10mM NaCl,1単位/μ
l RNasin ribonuclease inhibitor(Promega社製)、
0.5mMのATP,GTP,CTP,UTPを含む40
mMトリス塩酸緩衝液(pH7.5)中37℃にてT7 R
NA Polymeraseを反応させて転写を行なっ
た。これをフェノール処理を行なうことにより精製し、
エタノール沈殿としてRNAを回収した。つづいてRed
Nova Lysate (Novagen社製)を用いて35S−メチオニン
を含む標識体としてRNAを翻訳させた。この反応物を
SDSポリアクリルアミドゲル電気泳動にかけ、オート
ラジオグラフィーをとったところ約70,000の分子
量のバンドが認められた。
【0137】実施例20pMBPKPO27ベクター
の構築(大腸菌用) 実施例8で得られたpKPO27を10mM MgCl
2 ,1mM DTT,100mM KClを含む20mMトリ
ス塩酸緩衝液(pH8.5)中37℃にて制限酵素Xho
I (東洋紡社製)で2時間処理しエタノール沈殿として
DNAを回収し、5mM MgCl2 ,10mM DTT,
1mMのdATP,dCTP,dGTP,dTTPを含む
20mMトリス塩酸緩衝液(pH7.4)中10℃にてDN
AポリメラーゼのKlenow断片で1時間処理し末端を平滑
化した。次いでアガロースゲル電気泳動を行ない、1.
9Kbp のDNA断片を回収した。
【0138】ベクターpMAL−c(New England BioLa
bs社製)を10mM MgCl2 ,1mM DTT,50mM
NaClを含む20mMトリス塩酸緩衝液(pH7.5)
中37℃にて制限酵素StuIで2時間処理した後アル
カリフォスファターゼ(宝酒造社製)を加えて65℃に
て2時間保温することにより脱リン酸した。DNAをフ
ェノール処理を行なうことにより除蛋白し、エタノール
沈澱として回収した。
【0139】これと先の1.9Kbp のDNA断片と混合
後6.6mM MgCl2 ,5mM DTT,1mM ATP
を含む66mMトリス塩酸緩衝液(pH7.5)中16℃に
てT4 DNAリガーゼを一晩反応させ、これを大腸菌
JM109株に導入してpMBPKPO27を得た(図
6)。図6に示されるごとくこのプラスミドは発現ユニ
ットとしてtacプロモーターの下流にマルトース結合
蛋白質(MBP)遺伝子(malEΔ2−26)、 Fac
tor Xaの認識配列およびMeg−POTの34番めの
アミノ酸Ser以降のcDNAがフレームが一致するよ
うに接続されている。
【0140】実施例21大腸菌JM109株での融合蛋白質の発現 実施例20においてpMBPKPO27で形質転換した
大腸菌を50ug/mlのアンピシリンおよび0.2%グル
コースを含むLB培地5ml中で37℃にて16時間培養
し、この培養液4mlを50ug/mlのアンピシリンおよび
0.2%グルコースを含むLB培地400mlに加えた。
37℃にて約2時間培養後、0.3mMになるようにイソ
プロピル−β−D−チオガラクトシドを加えさらに3時
間培養を続けた。この培養菌体を実施例10と同様にS
DSポリアクリルアミド電気泳動にかけ、上記抗Meg
−POTペプチド血清または抗MBP血清によるウエス
タンブロッティングをおこなったところMBPとMeg
−POTの融合蛋白質の発現が確認された。
【0141】発現された組換え型巨核球増幅因子(Me
g−POT)を菌体より下記のとおり精製した。
【0142】10mM EDTAを含む20mM トリス塩酸緩
衝液(pH 7.5)中、超音波処理(20分間)により破砕し
た懸濁液を遠心操作(10,000rpm x 30min, 4゜C, SA 60
0ローター、Sorvall社製)にかけ、集めた沈澱を蒸留水
に懸濁した。懸濁液を再び遠心操作(10,000g x 90mi
n)にかけ、集めた沈澱を1% 2−メルカプトエタノー
ル(2-ME)及び8M尿素を含む25mM トリス塩酸緩衝液(p
H 8.0)に溶解し、再び遠心操作(35,000rpm x 60min)を
行い不溶物を除去した後、10mM 2-ME, 10mM EDTA, 200m
M NaClを含む10mM トリス塩酸緩衝液(pH 8.0)で2倍希
釈した。この溶液を同緩衝液にて平衡化したアミロース
カラム(75ml,BioLabs社製)に添加し、同緩衝液にてカ
ラムを洗浄した。10mM マルトースを含む同緩衝液にて
カラムに結合している蛋白を溶出させた。この画分をFa
ctor Xa の消化緩衝液である2mMCaCl2及び150mM NaCl
を含む20mM トリス塩酸緩衝液(pH 7.4)に対して透析し
た。透析内液にFactor Xaを加え、37゜Cで16時間酵素消
化した。反応液を、メンブランフィルターPM−10
(アミコン社製)にて濃縮後、上記アミロースカラムの
平衡化緩衝液で平衡化したPD−10カラムに通した
後、再びアミロースカラムに添加し、同緩衝液にてカラ
ムを洗浄して、素通り画分及び洗浄画分を集めた。セン
トリプレップー10にて上記画分を濃縮した。
【0143】このようにして得た組換え型巨核球増幅因
子を、Freundの完全アジュバンドとともに家兎に
2週間ごとに5回感作した。最終感作後10日目に、け
い動脈より全採血し、抗巨核球増幅因子抗血清を得た。
【0144】実施例22. pEFDKPOfベクターの
構築(動物細胞用) pKPO27を10mM MgCl2 ,1mM DTT,1
00mM KClを含む20mMトリス塩酸緩衝液(pH8.
5)中37℃にて制限酵素EcoRI、BamHI (宝
酒造社製)で処理した後、アガロースゲル電気泳動を行
い1.8kbpのDNA断片を回収した。
【0145】ベクターDHFR-ΔE-RVhをEcoR
I、BamHIにて同様に処理した後、アルカリフォス
ファターゼ(宝酒造社製)で60℃、2時間処理するこ
とにより脱リン酸してアガロースゲル電気泳動を行ない
回収した7kbpDNAを先の1.8kbpのDNA断
片と連結させpEFDKPO5’を得た。
【0146】これを10mM MgCl2、1mM DT
T、100mM KClを含む20mMトリス塩酸緩衝液(p
H8.5)中37℃にて制限酵素BamHI処理した
後、6.7mM MgCl2、16.6mM(NH42
4、10mM 2−メルカプトエタノール、6.7mM
EDTA、330mM dNTPを含む67mMトリス緩衝
液中37℃、5分間T4DNAポリメラーゼで処理し末
端を平滑化した。さらにKpnIリンカー(Amers
ham社製)と連結しpEFDKPO5’Kを得た。新
たにpKPO27を10mM MgCl2、1mM DT
T、100mM KClを含む20mMトリス塩酸緩衝液
(pH8.5)中37℃にて制限酵素XhoIで切断
後、6.7mM MgCl2、16.6mM(NH42
4、10mM 2−メルカプトエタノール、6.7mM
EDTA、330mM dNTPを含む67mMトリス緩衝
液中37℃、5分間T4DNAポリメラーゼで処理し末
端を平滑化した。これをさらに10mM MgCl2、1m
M DTT、100mM NaClを含む50mMトリス塩
酸緩衝液(pH7.5)中37℃にて制限酵素SalI
で処理しアガロースゲル電気泳動を行い1.3kbpの
DNA断片を回収した。ベクターpCDM8(Invi
trogen社製)を10mM MgCl2、1mM DT
T、100mM KClを含む20mMトリス塩酸緩衝液
(pH8.5)中37℃にて制限酵素XhoIで処理し
た後さらに10mM MgCl2、1mM DTT、100m
M KClを含む20mMトリス塩酸緩衝液(pH8.5)
中37℃にて制限酵素HpaIで切断後、アガロースゲ
ル電気泳動を行ない回収した3.3kbpDNAを先の
1.3kbpのDNA断片と連結しpCDMKPO3’
を得た。pEFDKPO5’KとpCDMKPO3’を
10mM MgCl2、1mM DTTを含む10mMトリス
塩酸緩衝液(pH7.5)中37℃にて制限酵素Kpn
Iで処理しアガロースゲル電気泳動を行ない、それぞれ
10kbp、0.9kbpの断片を回収して、これらを
連結しpEFDKPOfを得た(図7)。図に示される
ごとくこのプラスミドはジヒドロ葉酸還元酵素遺伝子
(dhfr)を含みEF1αプロモーターとSV40p
olyAシグナルの間にヒトMeg−POT cDNA
が接続されている。
【0147】なお、前記ベクターDHFR−ΔE−RV
hは国際公開WO92/19759号公報に記載のDH
FR−ΔE−PMh−gγ1及びRVh−PM1f−4
を用いて次の様に作製した。
【0148】DHFR−ΔE−PMh−gγl及びRV
h−PM1f−4を10mM MgCl2、1mM DT
T、100mM KCl、0.01%BSAを含む20mM
トリス塩酸緩衝液(pH8.5)中37℃にて制限酵素
PvuI,BamHI(宝酒造社製)で処理しアガロー
スゲル電気泳動を行い4kbp、3kbpの断片を回収
して、これらを連結することによりDHFR−ΔE−R
Vhを作製した。
【0149】実施例23. CHO細胞での巨核球増幅因
子(Meg−POT)遺伝子の発現 CHO細胞DXB−11を1×10個/mlになるよ
うにphosphate−buffered sali
ne(PBS)に懸濁し、この細胞浮遊液0.8mlに
pEFDKPOfを10μg加えた。1900V、25
μFの条件でGenePulsar(Bio Rad社
製)を用いて電気穿孔法(electroporati
on)によりプラスミドをCHO細胞に導入した。室温
にて10分間の回復期間の後、エレクトロポレーション
した細胞を10%ウシ胎児血清を含むα-MEM培地
(GIBCO社製)25mlに加えた。37℃, 24時
間培養後、トリプシン処理にて回収した細胞を100倍
に希釈し、10%ウシ胎児血清添加リボヌクレオシド及
びデオキシリボヌクレオシド非含有α-MEM培地(G
IBCO社製)で3週間培養した。この時3〜4日に一
度の割合で培地交換を行った。コロニーが肉眼で確認で
きるまでに成長したのでクローンを拾い、クローン毎に
培養を続けた。その後、先の培地にmethotrex
ate(MTX)(Sigma社製)を添加し、選択培
養を続けた。一次選択時のMTX濃度は10nMとし、
得られた耐性クローンに対してMTX濃度50nMの培
地で二次選択を行った。最終的に得られたクローンを5
0nM MTX及び2%FCSを含むIMDM培地(G
IBCO社製)にて大量培養し、その培養上清を精製に
供した。
【0150】培養上清をSDS/PAGEにて分析し、
N末近傍の合成ペプチドを抗原として作製した抗体を用
いたウエスタンブロッテイング法によりMeg−POT
を検出した。なお、分子量マーカーとしては、実施例1
5に示すバイオラッド社製プレステインド分子量マーカ
ーを使用した。図8に示すように、分子量約33kd、
30kd、27.5kdに3本のバンドが検出された。
【0151】実施例24. CHO細胞の培養上清からの
組換え型巨核球増幅因子(Meg−POTの精製I 実施例23で調製したCHO細胞の培養上清10lにTw
een20を、終濃度が0.01%になるように加え、5
μmのメンブランフィルター(富士フィルム社製)を通
して不溶物を除去した。この培養上清から以下の手順に
より組換え型巨核球増幅因子を精製した。
【0152】(i) 上記培養上清を0.01% Tween
20及び0.2M NaClを含む50mMトリス塩酸
緩衝液(pH 8)で平衡化したBlue−Sepha
rose fast flowカラム(5.0×20c
m、Pharmacia社製)に添加した。カラムを同
緩衝液で洗浄した後、0.01% Tween 20及び2M
KClを含む50mMトリス塩酸緩衝液(pH 9)で
カラムに吸着した蛋白を溶出させた。この画分を集め、
ミニタン(millipore社製)にて濃縮し、0.
01% Tween 20を含む20mM酢酸緩衝液(pH
5)を加えて希釈する操作を繰り返し脱塩した後、生じ
た不溶物を遠心操作(10,000rpm × 30mi
n)により除去した。上清を次のカチオン交換クロマト
グラフィーでの精製にかけた。
【0153】(ii) 0.01% Tween 20を含む2
0mM酢酸緩衝液(pH 5)で平衡化したS−Sep
harose fast flowカラム(5.0×1
2cm)に上記画分を添加し、同緩衝液にてカラムを洗
浄した後、同緩衝液中、NaCl濃度を0.1、0.
2、0.3、0.5Mと上げてカラムに吸着したタンパ
ク質を溶出させた。
【0154】(iii) 組換え型Meg−POTを含む
0.1M NaCl画分を、あらかじめ0.1%TFA
を含む24%アセトニトリルで平衡化したVydac
C4カラム(10×250mm)に添加し、同溶離液に
てカラムを洗浄した後、0.1%TFA中アセトニトリ
ル濃度を48分間に24〜48%まで直線的に上げてカ
ラムに吸着したタンパク質を溶出させた。流速は1ml
/minで、タンパク質の検出は220nm及び280
nmの二波長で行った。アセトニトリル濃度が40〜4
5%の組換え型Meg−POTを含む画分を集め、次の
Gel Permeation Chromatogr
aphyにかけた。
【0155】(iv) 組換え型Meg−POTを含む画
分を0.01%TFAを含む40%アセトニトリルで平
衡化したTSKgel G3000SWカラム(21.
5×60cm)に添加した。流速は3ml/minでタ
ンパク質の検出は280nmで行った。37〜44分に
溶出された主要ピークを集め、0.1%TFAにて希釈
後、(iii)と同条件にて逆相HPLCを行い主要ピー
クを回収した。
【0156】こうして得られた組換え型巨核球増幅因子
(Meg−POT)をSDS/PAGEにて分析した。
ゲル濃度は12%で、Laemmliの方法Natur
e,227,680(1970)に従って泳動し、2D
−銀染色試薬・「第一」(第一化学薬品製)を用いてタ
ンパク質を染色した。なお分子量マーカーはバイオラッ
ド社製低分子量マーカー[ホスホリラーゼB(92.5
kd)、ウシ血清アルブミン(66.2kd)、オボア
ルブミン(45.0kd)、炭酸脱水素酵素(31.0
kd)、大豆トリプシンインヒビター(21.5k
d)、リゾチーム(14.4kd)]を用いた。
【0157】その結果、精製された組換え型Meg−P
OTは分子量約33,000に単一バンドを与えた。
【0158】実施例25. 組換え型巨核球増幅因子(M
eg−POT)のN末端及びC末端 アミノ酸配列分析 (i) 実施例24で得られた組換え型Meg−POT
について、気相式プロテインシークエンサー476A型
(Applied Biosystems社製)を用い
てN末端アミノ酸配列分析を行った。その結果、以下に
示す(a)〜(c)の3種類のN末端アミノ酸配列が認
められた。
【0159】(a)Ser-Arg-Thr-Leu-Ala-Gly-Glu-Thr-
Gly-Gln-Glu-Ala-Ala-・・・・ (b)Leu-Ala-Gly-Glu-Thr-Gly-Gln-Glu-Ala-Ala-Pro-
Leu-Asp-・・・・ (c)Gly-Glu-Thr-Gly-Gln-Glu-Ala-Ala-Pro-Leu-Asp-
Gly-Val-・・・・ これらの配列は実施例13における、配列(a)〜
(c)に対応する。
【0160】(ii) 組換え型Meg−POTのC末端
アミノ酸配列分析を行った。
【0161】組換え型Meg−POTに10mg/ml
の臭化シアンを含む70%ギ酸溶液100μlを加え、
室温にて24時間臭化シアン分解した後、遠心濃縮機に
て過剰の試薬を除いた。その残渣を0.1%TFAに溶
解し、0.1%TFA中で平衡化したVydac C4
カラム(4.6×250mm)に添加し、0.1%TF
A中アセトニトリル濃度を40分間に80%まで直線的
に上げ、カラムに吸着した臭化シアン断片を溶出させ
た。得られた2本のピークのうち、C末ペプチド断片に
ついて更に Endo Asp−N消化した。C末ペプ
チドを50mMリン酸緩衝液(pH 8.0)に溶解
し、Endo Asp−N を加え、室温にて16時間
酵素消化した。反応液に10%TFAを加えpHを3と
した後、0.1%TFAで平衡化したVydac C1
8カラムに添加し、アセトニトリル濃度を48分間に0
〜48%に直線的に上げカラムに吸着したペプチドを溶
出させた。得られた断片を気相式プロテインシークエン
サー476A型にて分析した結果、C末断片のアミノ酸
配列は以下に示す如くであった。
【0162】Asp-Pro-Ser-Trp-Arg-Gln-Pro-Glu-Arg実施例26. CHO細胞の培養上清中の巨核球増幅因子
(Meg−POT) 活性の測定 実施例23で得られたCHO細胞の培養上清及び、実施
例24で精製した組換え型巨核球増幅因子の巨核球増幅
因子活性を前述した方法に従って測定した。
【0163】その結果表6に示したように、巨核球増幅
因子のcDNAを含むベクターを導入したCHO細胞の
培養上清は明らかに巨核球増幅因子活性を示し、それよ
り精製した組換え型巨核球増幅因子も巨核球増幅因子活
性を示した。
【0164】なお、精製品の蛋白量はアミノ酸分析法に
よりAla=28として算出した。
【0165】
【表6】 CHO細胞の培養上清中及び精製組換え型Meg−POT の巨核球増幅因子活性 被検々体終濃度 巨核球コロニ−数 CHO細胞培養上清 0.08% 4a) 0.31% 11a) 1.25% 10.5a) 5% 12a) 精製品 0.01ng/ml 0b) 0.1ng/ml 6b) 1ng/ml 8b) 10ng/ml 11b) a) 形成されたコロニー数からIL−3単独で形成さ
れたコロニー数(25個)を引いた値。
【0166】b) 形成されたコロニー数からIL−3
単独で形成されたコロニー数(20.5個)を引いた
値。
【0167】実施例27. CHO細胞の培養上清から
の組換え型巨核球増幅因子(Meg−POT)の精製II 実施例23で調製したCHO細胞の培養上清10l(1
0リットル)にTween 20を終濃度が0.01%
になるように加え、5μmのメンブランフィルター(富
士フィルム社製)を通して不溶物を除去した。この培養
上清から以下の手順により組換え型巨核球増幅因子を精
製した。
【0168】(i) 上記培養上清を、スパイラルカートリ
ッジ(アミコン社製)を用いて20倍に濃縮した。濃縮液
を4゜Cにて撹拌しながら硫安を最終的に50%飽和濃度に
なるように加え、析出した蛋白を遠心操作(10,000g x
30min)により沈澱として集め、10mM トリス塩酸緩衝液
(pH 7.4)に溶解した。その画分に、終濃度が1Mとなる
ように硫安を加え、次の疎水クロマトグラフィーにかけ
た。
【0169】(ii)1M 硫安を含む10mM トリス塩酸緩衝
液(pH 7.4)で平衡化したPhenyl-sepharose 6FFカラム
(5.0 x 15cm,Pharmacia 社製)に添加した。カラムを
同緩衝液で洗浄した後、硫安濃度を0.1M まで下げてカ
ラムを再び洗浄後、0.1% Tween 20を含む10mM トリス塩
酸緩衝液(pH 8.5)で組換え型Meg−POTを溶出させ
た。この画分をメンブランフィルターPM−10(アミ
コン社製)にて濃縮後、0.01% Tween 20を含む10mM ト
リス塩酸緩衝液(pH 8.5)で10倍希釈し、アニオン交換ク
ロマトグラフィーにかけた。
【0170】(iii)上記画分を希釈に用いた緩衝液にて
平衡化したDEAE-sepharose fast flowカラム(5 x 13c
m)に添加し、同緩衝液にてカラムを洗浄後、同緩衝液
中NaCl濃度を0.1Mに上げてカラムに吸着した蛋白を溶出
した。組換え型Meg−POTを含むこの画分を10% TF
Aを加えてpHを3とし、次に、下記に示す条件で逆相
HPLCにかけた。
【0171】(iv)0.1% TFAを含む32%アセトニトリルで
平衡化したVydac C4カラム(10 x 250mm)に上記画分を添
加し、同溶離液にてカラムを洗浄後、0.1% TFA中アセト
ニトリル濃度を64分間に32〜48%まで直線的に上げ、カ
ラムに吸着した蛋白を溶出した。流速は1.0 ml/minで、
蛋白の検出は220nm及び280nmの2波長で行った。40-45%
のアセトニトリル濃度で溶出される画分を集め、0.1% T
FAで2倍に希釈した。この溶液を同条件で逆相HPLC
を行い、40-45%のアセトニトリル濃度に溶出する主要ピ
ークを集め、次のGel Permeation Chromatographyにか
けた。
【0172】(v)0.1% TFA を含む40% アセトニトリルで
平衡化したTSK G3000SWカラム(21.5 x60cm)に上記画分
を添加した。流速3ml/minで蛋白の検出は280nmで行っ
た。42-47分間に溶出された主要ピークを集め、0.1% TF
Aで希釈した。
【0173】(vi)上記画分を(iv)と同条件にて逆相HP
LCを行い、主要画分を回収した。
【0174】必要に応じて、この画分をカチオン交換ク
ロマトグラフィーにかけ、有機溶媒及びTFAを除いた。
上記画分を0.01% Tween 20 を含む20mM 酢酸緩衝液(pH
5.0)で10倍希釈し、同緩衝液にて平衡化したS-sepharos
e fast flowカラムに添加し、同緩衝液でカラムを洗浄
後、0.3M NaClを含む同緩衝液にて組換え型Meg−P
OTを溶出させた。
【0175】こうして得られた組換え型巨核球増幅因子
(Meg−POT)をSDS/PAGEにて分析した。
ゲル濃度は12%で、Laemmliの方法 Nature, 227, 680
(1970)に従って泳動し、2D−銀染色試薬・「第一」
(第一化学薬品製)を用いてタンパク質を染色した。な
お分子量マーカーは実施例15で使用したバイオラッド
社製低分子量マーカーを用いた。
【0176】その結果、精製された組換え型Meg−P
OTは分子量約30,000に単一バンドを与えた。
【0177】このものの巨核球増幅因子活性を前述した
方法に従って測定し、実施例24で得た分子量約33,
000のものと比較した。その結果、表7に示したよう
に、分子量約30,000のものは測定したいずれの濃
度においても活性を示さなかった。
【0178】
【表7】 精製された巨核球増幅因子の巨核球増幅因子活性 分子量 巨核球増幅因子活性a) 終濃度(ng/ml) 40 10 2.5 0.625 約33,000 11 8.5 5 7 約30,000 1 0.5 0 1.5 a) 形成されたコロニー数からIL-3単独で形成されたコ
ロニー数(25)を引いた値。
【0179】実施例28組換え型巨核球増幅因子(M
eg−POT)のN末端及びC末端アミノ酸配列分析II (i)実施例27で得られた分子量約30,000の組換
え型Meg−POTについて、気相式プロテインシーク
エンサー476A型(Applied Biosystems社製)を用いてN
末端アミノ酸配列分析を行った。その結果、以下に示す
(a)〜(c)の3種類のN末端アミノ酸配列が認めら
れた。
【0180】(a)Ser-Arg-Thr-Leu-Ala-Gly-Glu-Thr-
Gly-Gln-Glu-Ala-Ala-・・・・ (b)Leu-Ala-Gly-Glu-Thr-Gly-Gln-Glu-Ala-Ala-Pro-
Leu-Asp-・・・・ (c)Gly-Glu-Thr-Gly-Gln-Glu-Ala-Ala-Pro-Leu-Asp-
Gly-Val-・・・・ これらの配列は、実施例25における、配列(a)〜
(c)に対応する。
【0181】(ii)組換え型Meg−POTのC末端アミ
ノ酸配列分析を行った。
【0182】分子量約30,000の組換え型Meg−
POTに10mg/mlの臭化シアンを含む70%ギ酸
溶液100μlを加え、室温にて24時間臭化シアン分解し
た後、遠心濃縮機にて過剰の試薬を除いた。その残渣を
0.1%TFAに溶解し、0.1%TFAで平衡化したVy
dac C4カラム(4.6 x 250mm)に添加し、0.1%TF
A中アセトニトリル濃度を40分間に80%まで直線的
に上げ、カラムに吸着した臭化シアン断片を溶出させ
た。流速は1ml/min、ペプチドの検出は220nm及び280nm
で行った。得られた2本のピークについて気相式プロテ
インシークエンサー476A型にて分析した結果、C末断片
のアミノ酸配列は以下に示す如くであった。
【0183】Asp-Ala-Leu-Arg-Gly-Leu-Leu-Pro-Val-Le
u-Gly-Gln-Pro-Ile-Ile-Arg 実施例25から実施例28より、分子量約33,000
と分子量約30,000のアミノ酸配列のN末端は同等
であるが、C末端のみが相違する。一方、巨核球増幅因
子活性については、分子量約33,000のものは活性
を示すが、分子量約30,000のものは活性を示さな
い。したがって、分子量約33,000と約30,00
0の間のC末端のアミノ酸配列中に巨核球増幅因子活性
に関与する重要な部位が存在することが考えられる。
【0184】実施例29組換え型巨核球増幅因子
(Meg−POT)の精製III (i)実施例24のBlue sepharose fast flow カラムから
2M KClにより溶出されたMeg−POT画分をミ
ニタン(millipore)にて脱塩後、4゜Cにて硫安を50%飽
和になるように加え30分撹拌し、生じた沈澱を遠心操
作(10,000g x30分間)により集め、蒸留水で溶解し
た。この溶液を4゜Cにて一晩、0.01% Tween 20 を含む1
0mM トリス塩酸緩衝液(pH 8.0)に対して透析し、同緩
衝液にて平衡化したQ-sepharose fast flow カラム(5
x 10cm、Pharmacia)に添加した。同緩衝液にてカラム
を洗浄後、同緩衝液中NaCl濃度を0.1, 0.2, 0.3, 0.5,
1.0M と段階的に上げてカラムに吸着した蛋白質を溶出
させた。各画分をSDS/PAGEにかけた後、実施例
23で作製したMeg−POTに対する抗体を用いてウ
エスタンブロッティング法でMeg−POTを検出し
た。この時の分子量マーカーは、バイオラッド社製プレ
ステインド分子量マーカー〔ホスフォリラーゼB(10
6kd)、ウシ血清アルブミン(80.0kd)、オボ
アルブミン(49.5kd)、炭酸脱水素酵素(32.5
kd)、大豆トリプシンインヒビター(27.5k
d)、リゾチーム(18.5kd)〕を用いた。その結
果、分子量約70,000にもバンドが染色された(図
9)。この分子種にもMeg−POT活性が認められる
か否か確認するため、分子量約33,000の分子種と
分離すべく以下に示す如く精製を行った。
【0185】(ii)分子量約70,000の分子種が含ま
れる0.2M NaCl画分に酢酸を加えpHを5とした後、0.1
% TFA を含む32% アセトニトリルで平衡化したVydac C4
カラムに添加した。同溶離液にてカラムを洗浄後、0.1%
TFA 中アセトニトリル濃度を32-48% まで40分間に直線
的に上げ、カラムに吸着した蛋白を溶出させた。アセト
ニトリルの濃度が39-41%の画分を集め、次のゲル濾過に
かけた。
【0186】(iii)上記画分を0.01% Tween 20 を含むPB
Sで希釈し、セントリプレップ−10で濃縮し、同緩衝
液にて平衡化したTSK G3000SWカラムに添加した。流速
は3ml/minで、蛋白の検出は220nm及び280nmの2波長で
行った。1mlずつ分画し、一部をコロニー形成法によ
りMeg-POT活性を測定し、またSDS/PAGE後ウエスタンブ
ロティング法により、Meg−POTの検出を行った。
その結果、分子量約70,000の分子種は、42〜4
6分に溶出され、その画分には分子量約33,000の
分子種は検出されなかった(図10)。なお、分子量マ
ーカーは前述のバイオラッド社製分子量マーカーを用い
た。
【0187】実施例26と同様に42〜46分の画分の
Meg−POT活性を測定したところ、表8に示すごと
く、この42〜46分の画分にもMeg−POT活性が
認められたことから、分子量約70,000の分子種に
もMeg−POT活性があると推定された。
【0188】
【表8】 CHO細胞の培養上清の各精製画分の巨核球増幅因子活性 TSK G3000SW画分(分) 42-43 43-44 44-45 45-46 巨核球増幅因子活性a) 12 9 10.5 5.5 a):形成されたコロニー数から、IL−3単独で形成
されたコロニー数(19.5)を引いた値。
【0189】実施例30修飾体の発現ベクターの構
築及びCOS細胞での発現 (1)pEFNKPOSベクターの構築 修飾体のMeg-POT遺伝子を得るためにPCRを用いた。PCR
に用いるプライマーとして次に示すオリゴヌクレオチド
を配列番号10に示した遺伝子の塩基配列をもとに381A
DNA Synthesizer(Applied Biosystems社製)を用いて合
成した。
【0190】 プライマ−3S :5'-CTGGCTCACCGGCTCTCTGA-3' 組換えCHO細胞の培養上精から精製されたMeg-POTのC末
端付近に存在する動物細胞内プロセシング酵素Furinの
認識配列Arg-x-Arg-Arg295までをコ−ドするMeg-POT遺
伝子を作製し、これを用いてその発現ベクターを構築し
た。
【0191】pKPO27を鋳型としてDNA Thermal Cycler(P
erkin Elmer Cetus社製)を用いてPCRを行なった。pKPO2
7 1μgを20mM Tris-HCl(pH8.8),10mM KCl,6mM (NH4)2SO
4,2mM MgCl2,0.1% Triton X-100,0.1mg/ml BSA,100mM d
eoxynucleotide triphosphate(dNTP),プライマ−3S及び
G982Aそれぞれ100pmolを含む100μlのPCR反応溶液中で
増幅した。まず95℃で6分間変性後、85℃に冷却し2.5単
位のPfu DNA Polymerase(Stratagene社製)を加えた。そ
の後、変性94℃ 1分間、アニ−ル60℃ 30秒間、伸長72
℃、2分間のサイクルを30回繰返してPCRを行なった(図
11)。サンプルはアガロ−スゲル電気泳動し、増幅さ
れた590bpDNA断片を抽出した。Polynucleotide kinase
を用いてDNAの5'端をリン酸化し、予め制限酵素SmaIと
アルカリフォスファタ−ゼで処理したベクタ−pSP73と
連結し、pSP982Aを得た。この挿入塩基配列をDideoxy s
equencing法にて決定し、982番目のGがTに置換されその
3'側にBamHIサイトがあり、その他に変異がないことを
確認した。
【0192】pSP982AとpRVHKPO27を制限酵素SalI、BamH
I処理した後、アガロ−スゲル電気泳動を行ないそれぞ
れより190bp、9.5kbpのDNA断片を回収し、これらを連結
させpEFNKPOSを得た(図12)。
【0193】(2)COS細胞での発現 COS細胞を1×107個/mlになるようにPBSに懸濁し、この
細胞浮遊液0.8mlにpEFNKPOSを20μg加えた。1500V、25
μFDの条件でGenePulsar(BioRad社製)を用いて電気穿孔
法(electroporation)によりプラスミドをCOS細胞に導
入した。エレクトロポレ−ションした細胞を1%ウシ胎
児血清を含むDMEM培地(GIBCO社製)に加え、72時間培
養後培養上清を集めた。それぞれの培養上清をセントリ
プレップ−10で約10倍に濃縮し、SDSポリアクリルアミ
ドゲル電気泳動にかけた。実施例21で得られた大腸菌
にて発現させ精製したMeg-POT蛋白質を抗原として家兎
に免疫して得た抗巨核球増幅因子抗血清を用いて、ウエ
スタンブロッティングを行ない、培養上清中にMeg-POT
修飾体の蓄積を確認した。
【0194】この培養上清の巨核球増幅因子活性を前述
した方法に従って測定した。その結果を表9に示した。
【0195】
【表9】 COS細胞の培養上清中の巨核球増幅因子活性 COS細胞 巨核球増幅因子活性a) 培養上清濃度(%) 10 5 2.5 1.25 0.625 対照COS 1 0 0 1 1 pRVHKPO27f導入COS 9.5 9.5 6.5 12 0 pEFNKPOS導入COS 9.5 0.5 1 0 0 a) 形成されたコロニー数からIL-3単独で形成されたコ
ロニー数(40.5)を引いた値。
【0196】(3)アミノ酸置換Meg-POT発現ベクター
の構築 PCRに用いるプライマーとして次に示すオリゴヌクレオ
チドを配列番号10に示した遺伝子の塩基配列をもとに
381A DNA Synthesizer(Applied Biosystems社製)を用い
て合成した。
【0197】 プライマ−T3-2 :5'-CATGATTACGCCAAGCTCGAA-3' プライマ−754GA :5'-GCTGCCTCCTCCTGGTCCTGGTCCAGG
GGTCC-3' プライマ−754GS :5'-CCAGGACCAGGAGGAGGCAGCCAGGGC
GGC-3' プライマー850GA :5'-AGCACGGGCACCAGGCCCCGCAGAGCG
TCC-3' プライマー850GS :5'-CTGCGGGGCCTGGTGCCCGTGCTGGGC
CAGCCC-3' pEFNKPOSの252番目のLeuをValに置換したMeg-POT修飾体
発現ベクタ−pEFNKPOL252Vを構築した。上記と同様の条
件でpKPO27 をプライマ−T3-2と850GAの組み合わせと85
0GSとG982Aの組み合わせでそれぞれPCRを行なった。サ
ンプルはゲル電気泳動を行い、それぞれ0.9kbp、150bpD
NAを抽出した。これらDNA断片を混合後、プライマーT3-
2とG982Aを用いて再度PCRを行なった(図11)。アガ
ロ−スゲル電気泳動を行い、増幅された1kbpDNAを抽出
した。Polynucleotide kinaseを用いてDNAの5'端をリン
酸化し、予め制限酵素SmaIとアルカリフォスファタ−ゼ
で処理したベクタ−pSP73と連結しpSP850Gを得た。この
挿入塩基配列をDideoxy sequencing法にて決定し、850
番目のCがGに、982番目のGがTに置換されその3'側にBam
HIサイトがあり、その他に変異がないことを確認した。
pSP850GとpRVHKPO27を制限酵素SalI、BamHI処理した
後、アガロ−スゲル電気泳動を行ないそれぞれより190b
p、9.5kbpのDNA断片を回収し、これらを連結させpEFNKP
OL252Vを得た(図12)。
【0198】またpEFNKPOSの220番目のGlnをGluに置換
したMeg-POT修飾体発現ベクタ−pEFNKPOQ220Eを構築し
た。上記と同様の条件でpKPO27 をプライマ−T3-2と754
GAの組み合わせと754GSとG982Aの組み合わせでそれぞれ
PCRを行なった。サンプルはゲル電気泳動を行い、それ
ぞれ0.9kbp、150bpDNAを抽出した。これらDNA断片を混
合後、プライマーT3-2とG982Aを用いて再度PCRを行なっ
た。アガロ−スゲル電気泳動を行い、増幅された1kbpDN
Aを抽出した。Polynucleotide kinaseを用いてDNAの5'
端をリン酸化し、予め制限酵素SmaIとアルカリフォスフ
ァタ−ゼで処理したベクタ−pSP73と連結しpSP754Gを得
た。この挿入塩基配列をDideoxy sequencing法にて決定
し、754番目のCがGに、982番目のGがTに置換されその3'
側にBamHIサイトがあり、その他に変異がないことを確
認した。pSP754GとpRVHKPO27を制限酵素EcoRI、BamHI処
理した後、アガロ−スゲル電気泳動を行ないそれぞれよ
り1kbp、8.7kbpのDNA断片を回収し、これらを連結させp
EFNKPOQ220Eを得た(図12)。
【0199】 (4)アミノ酸置換Meg-POTのCOS細胞での発現 上記と同様にして電気穿孔法(electroporation)によ
りpEFNKPOL252V、pEFNKPOQ220E をCOS細胞に導入した。
それぞれの72時間培養上清をセントリプレップ−10で約
10倍に濃縮し、SDSポリアクリルアミドゲル電気泳動に
かけた。同様に実施例21で得られた大腸菌にて発現さ
せ精製したMeg-POT蛋白質を抗原として家兎に免疫して
得た抗巨核球増幅因子抗血清を用いてウエスタンブロッ
ティングを行ない、培養上清中にMeg-POT修飾体の蓄積
を確認した。
【0200】
【配列表】
配列番号:1 配列の長さ:16 配列の型:アミノ酸 トポロジー:直線状 配列の種類:ペプチド 配列: Leu Ala Gly Glu Xaa Gly Gln Glu Ala Ala Pro Leu Asp Gly Val Leu 1 5 10 15 配列番号:2 配列の長さ:16 配列の型:アミノ酸 トポロジー:直線状 配列の種類:ペプチド 配列: Ala Gly Glu Thr Gly Gln Glu Ala Ala Pro Leu Asp Gly Val Leu Ala 1 5 10 15 配列番号:3 配列の長さ:16 配列の型:アミノ酸 トポロジー:直線状 配列の種類:ペプチド 配列: Gly Glu Thr Gly Gln Glu Ala Ala Pro Leu Asp Gly Val Leu Ala Asn 1 5 10 15 配列番号:4 配列の長さ:14 配列の型:アミノ酸 トポロジー:直線状 配列の種類:ペプチド 配列: Gly Glu Thr Gly Gln Glu Ala Ala Pro Leu Asp Gly Val Leu 1 5 10 配列番号:5 配列の長さ:35 配列の型:アミノ酸 トポロジー:直線状 配列の種類:ペプチド 配列: Leu Ala Val Ala Leu Ala Gln Lys Asn Val Lys Leu Ser Thr Glu 1 5 10 15 Gln Leu Arg Xaa Leu Ala His Arg Leu Ser Glu Pro Pro Glu Asp 20 25 30 Leu Asp Ala Leu Pro 35 配列番号:6 配列の長さ:40 配列の型:核酸 鎖の数:二本鎖 トポロジー:直線状 配列の種類:DNA 配列: CTCAACAGAG CAGCTGCGCT GTCTGGCTCA CCGGCTCTCT 40 配列番号:7 配列の長さ:69 配列の型:核酸 鎖の数:二本鎖 トポロジー:直線状 配列の種類:cDNA 配列: CGC CAA CTC CTT GGC TTC CCG TGT GCG GAG GTG TCC GGC CTG AGC 45 Arg Gln Leu Leu Gly Phe Pro Cys Ala Glu Val Ser Gly Leu Ser 1 5 10 15 ACG GAG CGT GTC CGG GAG CTG GCT 69 Thr Glu Arg Val Arg Glu Leu Ala 20 配列番号:8 配列の長さ:75 配列の型:核酸 鎖の数:二本鎖 トポロジー:直線状 配列の種類:cDNA 配列: CTC TCT GAG CCC CCC GAG GAC CTG GAC GCC CTC CCA TTG GAC CTG 45 Leu Ser Glu Pro Pro Glu Asp Leu Asp Ala Leu Pro Leu Asp Leu 1 5 10 15 CTG CTA TTC CTC AAC CCA GAT GCG TTC TCG 75 Leu Leu Phe Leu Asn Pro Asp Ala Phe Ser 20 25 配列番号:9 配列の長さ:197 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA 起源 生物名:ヒト 特徴:ヒト膵臓癌患者のリンパ節から得られた培養細胞
に由来し、ヒト巨核球増幅因子活性を有するポリペプチ
ドの一部分をコードするcDNA。
【0201】 配列: AA CTC CTT GGC TTC CCG TGT GCG GAG GTG TCC GGC CTG AGC ACG 44 Leu Leu Gly Phe Pro Cys Ala Glu Val Ser Gly Leu Ser Thr 1 5 10 GAG CGT GTC CGG GAG CTG GCT GTG GCC TTG GCA CAG AAG AAT GTC 89 Glu Arg Val Arg Glu Leu Ala Val Ala Leu Ala Gln Lys Asn Val 15 20 25 AAG CTC TCA ACA GAG CAG CTG CGC TGT CTG GCT CAC CGG CTC TCT 134 Lys Leu Ser Thr Glu Gln Leu Arg Cys Leu Ala His Arg Leu Ser 30 35 40 GAG CCC CCC GAG GAC CTG GAC GCC CTC CCA TTG GAC CTG CTG CTA 179 Glu Pro Pro Glu Asp Leu Asp Ala Leu Pro Leu Asp Leu Leu Leu 45 50 55 TTC CTC AAC CCA GAT GCG 197 Phe Leu Asn Pro Asp Ala 60 65 配列番号:10 配列の長さ:2129 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA 起源 生物名:ヒト 直接の起源:プラスミドpKPO27 特徴:ヒト膵臓癌患者のリンパ節から得られた培養細胞
に由来し、ヒト巨核球増幅因子活性を有するポリペプチ
ドをコードするcDNA。
【0202】 配列: GAATTCGGCA CGAGGCCACT CCCGTCTGCT GTGACGCGCG GACAGAGAGC 50 TACCGGTGGA CCCACGGTGC CTCCCTCCCT GGGATCTACA CAGACC ATG GCC 102 Met Ala 1 TTG CCA ACG GCT CGA CCC CTG TTG GGG TCC TGT GGG ACC CCC GCC 147 Leu Pro Thr Ala Arg Pro Leu Leu Gly Ser Cys Gly Thr Pro Ala 5 10 15 CTC GGC AGC CTC CTG TTC CTG CTC TTC AGC CTC GGA TGG GTG CAG 192 Leu Gly Ser Leu Leu Phe Leu Leu Phe Ser Leu Gly Trp Val Gln 20 25 30 CCC TCG AGG ACC CTG GCT GGA GAG ACA GGG CAG GAG GCT GCA CCC 237 Pro Ser Arg Thr Leu Ala Gly Glu Thr Gly Gln Glu Ala Ala Pro 35 40 45 CTG GAC GGA GTC CTG GCC AAC CCA CCT AAC ATT TCC AGC CTC TCC 282 Leu Asp Gly Val Leu Ala Asn Pro Pro Asn Ile Ser Ser Leu Ser 50 55 60 CCT CGC CAA CTC CTT GGC TTC CCG TGT GCG GAG GTG TCC GGC CTG 327 Pro Arg Gln Leu Leu Gly Phe Pro Cys Ala Glu Val Ser Gly Leu 65 70 75 AGC ACG GAG CGT GTC CGG GAG CTG GCT GTG GCC TTG GCA CAG AAG 372 Ser Thr Glu Arg Val Arg Glu Leu Ala Val Ala Leu Ala Gln Lys 80 85 90 AAT GTC AAG CTC TCA ACA GAG CAG CTG CGC TGT CTG GCT CAC CGG 417 Asn Val Lys Leu Ser Thr Glu Gln Leu Arg Cys Leu Ala His Arg 95 100 105 CTC TCT GAG CCC CCC GAG GAC CTG GAC GCC CTC CCA TTG GAC CTG 462 Leu Ser Glu Pro Pro Glu Asp Leu Asp Ala Leu Pro Leu Asp Leu 110 115 120 CTG CTA TTC CTC AAC CCA GAT GCG TTC TCG GGG CCC CAG GCC TGC 507 Leu Leu Phe Leu Asn Pro Asp Ala Phe Ser Gly Pro Gln Ala Cys 125 130 135 ACC CGT TTC TTC TCC CGC ATC ACG AAG GCC AAT GTG GAC CTG CTC 552 Thr Arg Phe Phe Ser Arg Ile Thr Lys Ala Asn Val Asp Leu Leu 140 145 150 CCG AGG GGG GCT CCC GAG CGA CAG CGG CTG CTG CCT GCG GCT CTG 597 Pro Arg Gly Ala Pro Glu Arg Gln Arg Leu Leu Pro Ala Ala Leu 155 160 165 GCC TGC TGG GGT GTG CGG GGG TCT CTG CTG AGC GAG GCT GAT GTG 642 Ala Cys Trp Gly Val Arg Gly Ser Leu Leu Ser Glu Ala Asp Val 170 175 180 CGG GCT CTG GGA GGC CTG GCT TGC GAC CTG CCT GGG CGC TTT GTG 687 Arg Ala Leu Gly Gly Leu Ala Cys Asp Leu Pro Gly Arg Phe Val 185 190 195 GCC GAG TCG GCC GAA GTG CTG CTA CCC CGG CTG GTG AGC TGC CCG 732 Ala Glu Ser Ala Glu Val Leu Leu Pro Arg Leu Val Ser Cys Pro 200 205 210 GGA CCC CTG GAC CAG GAC CAG CAG GAG GCA GCC AGG GCG GCT CTG 777 Gly Pro Leu Asp Gln Asp Gln Gln Glu Ala Ala Arg Ala Ala Leu 215 220 225 CAG GGC GGG GGA CCC CCC TAC GGC CCC CCG TCG ACA TGG TCT GTC 822 Gln Gly Gly Gly Pro Pro Tyr Gly Pro Pro Ser Thr Trp Ser Val 230 235 240 TCC ACG ATG GAC GCT CTG CGG GGC CTG CTG CCC GTG CTG GGC CAG 867 Ser Thr Met Asp Ala Leu Arg Gly Leu Leu Pro Val Leu Gly Gln 245 250 255 CCC ATC ATC CGC AGC ATC CCG CAG GGC ATC GTG GCC GCG TGG CGG 912 Pro Ile Ile Arg Ser Ile Pro Gln Gly Ile Val Ala Ala Trp Arg 260 265 270 CAA CGC TCC TCT CGG GAC CCA TCC TGG CGG CAG CCT GAA CGG ACC 957 Gln Arg Ser Ser Arg Asp Pro Ser Trp Arg Gln Pro Glu Arg Thr 275 280 285 ATC CTC CGG CCG CGG TTC CGG CGG GAA GTG GAG AAG ACA GCC TGT 1002 Ile Leu Arg Pro Arg Phe Arg Arg Glu Val Glu Lys Thr Ala Cys 290 295 300 CCT TCA GGC AAG AAG GCC CGC GAG ATA GAC GAG AGC CTC ATC TTC 1047 Pro Ser Gly Lys Lys Ala Arg Glu Ile Asp Glu Ser Leu Ile Phe 305 310 315 TAC AAG AAG TGG GAG CTG GAA GCC TGC GTG GAT GCG GCC CTG CTG 1092 Tyr Lys Lys Trp Glu Leu Glu Ala Cys Val Asp Ala Ala Leu Leu 320 325 330 GCC ACC CAG ATG GAC CGC GTG AAC GCC ATC CCC TTC ACC TAC GAG 1137 Ala Thr Gln Met Asp Arg Val Asn Ala Ile Pro Phe Thr Tyr Glu 335 340 345 CAG CTG GAC GTC CTA AAG CAT AAA CTG GAT GAG CTC TAC CCA CAA 1182 Gln Leu Asp Val Leu Lys His Lys Leu Asp Glu Leu Tyr Pro Gln 350 355 360 GGT TAC CCC GAG TCT GTG ATC CAG CAC CTG GGC TAC CTC TTC CTC 1227 Gly Tyr Pro Glu Ser Val Ile Gln His Leu Gly Tyr Leu Phe Leu 365 370 375 AAG ATG AGC CCT GAG GAC ATT CGC AAG TGG AAT GTG ACG TCC CTG 1272 Lys Met Ser Pro Glu Asp Ile Arg Lys Trp Asn Val Thr Ser Leu 380 385 390 GAG ACC CTG AAG GCT TTG CTT GAA GTC AAC AAA GGG CAC GAA ATG 1317 Glu Thr Leu Lys Ala Leu Leu Glu Val Asn Lys Gly His Glu Met 395 400 405 AGT CCT CAG GTG GCC ACC CTG ATC GAC CGC TTT GTG AAG GGA AGG 1362 Ser Pro Gln Val Ala Thr Leu Ile Asp Arg Phe Val Lys Gly Arg 410 415 420 GGC CAG CTA GAC AAA GAC ACC CTA GAC ACC CTG ACC GCC TTC TAC 1407 Gly Gln Leu Asp Lys Asp Thr Leu Asp Thr Leu Thr Ala Phe Tyr 425 430 435 CCT GGG TAC CTG TGC TCC CTC AGC CCC GAG GAG CTG AGC TCC GTG 1452 Pro Gly Tyr Leu Cys Ser Leu Ser Pro Glu Glu Leu Ser Ser Val 440 445 450 CCC CCC AGC AGC ATC TGG GCG GTC AGG CCC CAG GAC CTG GAC ACG 1497 Pro Pro Ser Ser Ile Trp Ala Val Arg Pro Gln Asp Leu Asp Thr 455 460 465 TGT GAC CCA AGG CAG CTG GAC GTC CTC TAT CCC AAG GCC CGC CTT 1542 Cys Asp Pro Arg Gln Leu Asp Val Leu Tyr Pro Lys Ala Arg Leu 470 475 480 GCT TTC CAG AAC ATG AAC GGG TCC GAA TAC TTC GTG AAG ATC CAG 1587 Ala Phe Gln Asn Met Asn Gly Ser Glu Tyr Phe Val Lys Ile Gln 485 490 495 TCC TTC CTG GGT GGG GCC CCC ACG GAG GAT TTG AAG GCG CTC AGT 1632 Ser Phe Leu Gly Gly Ala Pro Thr Glu Asp Leu Lys Ala Leu Ser 500 505 510 CAG CAG AAT GTG AGC ATG GAC TTG GCC ACG TTC ATG AAG CTG CGG 1677 Gln Gln Asn Val Ser Met Asp Leu Ala Thr Phe Met Lys Leu Arg 515 520 525 ACG GAT GCG GTG CTG CCG TTG ACT GTG GCT GAG GTG CAG AAA CTT 1722 Thr Asp Ala Val Leu Pro Leu Thr Val Ala Glu Val Gln Lys Leu 530 535 540 CTG GGA CCC CAC GTG GAG GGC CTG AAG GCG GAG GAG CGG CAC CGC 1767 Leu Gly Pro His Val Glu Gly Leu Lys Ala Glu Glu Arg His Arg 545 550 555 CCG GTG CGG GAC TGG ATC CTA CGG CAG CGG CAG GAC GAC CTG GAC 1812 Pro Val Arg Asp Trp Ile Leu Arg Gln Arg Gln Asp Asp Leu Asp 560 565 570 ACG CTG GGG CTG GGG CTA CAG GGC GGC ATC CCC AAC GGC TAC CTG 1857 Thr Leu Gly Leu Gly Leu Gln Gly Gly Ile Pro Asn Gly Tyr Leu 575 580 585 GTC CTA GAC CTC AGC GTG CAA GAG GCC CTC TCG GGG ACG CCC TGC 1902 Val Leu Asp Leu Ser Val Gln Glu Ala Leu Ser Gly Thr Pro Cys 590 595 600 CTC CTA GGA CCT GGA CCT GTT CTC ACC GTC CTG GCA CTG CTC CTA 1947 Leu Leu Gly Pro Gly Pro Val Leu Thr Val Leu Ala Leu Leu Leu 605 610 615 GCC TCC ACC CTG GCC TGA 1965 Ala Ser Thr Leu Ala 620 GGGCCCCACT CCCTTGCTGG CCCCAGCCCT GCTGGGGATC CCCGCCTGGC 2015 CAGGAGCAGG CACGGGTGAT CCCCGTTCCA CCCCAAGAGA ACTCGCGCTC 2065 AGTAAACGGG AACATGCCCC CTGCAGACAC GTAAAAAAAA AAAAAAAAAA 2115 AAAAAAAACT CGAG 2129 配列番号:11 配列の長さ:17 配列の型:アミノ酸 トポロジー:直線状 配列の種類:ペプチド 配列: Ser Arg Thr Leu Ala Gly Glu Thr Gly Gln Glu Ala Ala Pro Leu 1 5 10 15 Asp Gly 配列番号:12 配列の長さ:584 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 Gly Glu Thr Gly Gln Glu Ala Ala Pro 1 5 Leu Asp Gly Val Leu Ala Asn Pro Pro Asn Ile Ser Ser Leu Ser 10 15 20 Pro Arg Gln Leu Leu Gly Phe Pro Cys Ala Glu Val Ser Gly Leu 25 30 35 Ser Thr Glu Arg Val Arg Glu Leu Ala Val Ala Leu Ala Gln Lys 40 45 50 Asn Val Lys Leu Ser Thr Glu Gln Leu Arg Cys Leu Ala His Arg 55 60 65 Leu Ser Glu Pro Pro Glu Asp Leu Asp Ala Leu Pro Leu Asp Leu 70 75 80 Leu Leu Phe Leu Asn Pro Asp Ala Phe Ser Gly Pro Gln Ala Cys 85 90 95 Thr Arg Phe Phe Ser Arg Ile Thr Lys Ala Asn Val Asp Leu Leu 100 105 110 Pro Arg Gly Ala Pro Glu Arg Gln Arg Leu Leu Pro Ala Ala Leu 115 120 125 Ala Cys Trp Gly Val Arg Gly Ser Leu Leu Ser Glu Ala Asp Val 130 135 140 Arg Ala Leu Gly Gly Leu Ala Cys Asp Leu Pro Gly Arg Phe Val 145 150 155 Ala Glu Ser Ala Glu Val Leu Leu Pro Arg Leu Val Ser Cys Pro 160 165 170 Gly Pro Leu Asp Gln Asp Gln Gln Glu Ala Ala Arg Ala Ala Leu 175 180 185 Gln Gly Gly Gly Pro Pro Tyr Gly Pro Pro Ser Thr Trp Ser Val 190 195 200 Ser Thr Met Asp Ala Leu Arg Gly Leu Leu Pro Val Leu Gly Gln 205 210 215 Pro Ile Ile Arg Ser Ile Pro Gln Gly Ile Val Ala Ala Trp Arg 220 225 230 Gln Arg Ser Ser Arg Asp Pro Ser Trp Arg Gln Pro Glu Arg Thr 235 240 245 Ile Leu Arg Pro Arg Phe Arg Arg Glu Val Glu Lys Thr Ala Cys 250 255 260 Pro Ser Gly Lys Lys Ala Arg Glu Ile Asp Glu Ser Leu Ile Phe 265 270 275 Tyr Lys Lys Trp Glu Leu Glu Ala Cys Val Asp Ala Ala Leu Leu 280 285 290 Ala Thr Gln Met Asp Arg Val Asn Ala Ile Pro Phe Thr Tyr Glu 295 300 305 Gln Leu Asp Val Leu Lys His Lys Leu Asp Glu Leu Tyr Pro Gln 310 315 320 Gly Tyr Pro Glu Ser Val Ile Gln His Leu Gly Tyr Leu Phe Leu 325 330 335 Lys Met Ser Pro Glu Asp Ile Arg Lys Trp Asn Val Thr Ser Leu 340 345 350 Glu Thr Leu Lys Ala Leu Leu Glu Val Asn Lys Gly His Glu Met 355 360 365 Ser Pro Gln Val Ala Thr Leu Ile Asp Arg Phe Val Lys Gly Arg 370 375 380 Gly Gln Leu Asp Lys Asp Thr Leu Asp Thr Leu Thr Ala Phe Tyr 385 390 395 Pro Gly Tyr Leu Cys Ser Leu Ser Pro Glu Glu Leu Ser Ser Val 400 405 410 Pro Pro Ser Ser Ile Trp Ala Val Arg Pro Gln Asp Leu Asp Thr 415 420 425 Cys Asp Pro Arg Gln Leu Asp Val Leu Tyr Pro Lys Ala Arg Leu 430 435 440 Ala Phe Gln Asn Met Asn Gly Ser Glu Tyr Phe Val Lys Ile Gln 445 450 455 Ser Phe Leu Gly Gly Ala Pro Thr Glu Asp Leu Lys Ala Leu Ser 460 465 470 Gln Gln Asn Val Ser Met Asp Leu Ala Thr Phe Met Lys Leu Arg 475 480 485 Thr Asp Ala Val Leu Pro Leu Thr Val Ala Glu Val Gln Lys Leu 490 495 500 Leu Gly Pro His Val Glu Gly Leu Lys Ala Glu Glu Arg His Arg 505 510 515 Pro Val Arg Asp Trp Ile Leu Arg Gln Arg Gln Asp Asp Leu Asp 520 525 530 Thr Leu Gly Leu Gly Leu Gln Gly Gly Ile Pro Asn Gly Tyr Leu 535 540 545 Val Leu Asp Leu Ser Val Gln Glu Ala Leu Ser Gly Thr Pro Cys 550 555 560 Leu Leu Gly Pro Gly Pro Val Leu Thr Val Leu Ala Leu Leu Leu 565 570 575 Ala Ser Thr Leu Ala 580 584 配列番号:13 配列の長さ:248 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 Gly Glu Thr Gly Gln Glu Ala Ala Pro 1 5 Leu Asp Gly Val Leu Ala Asn Pro Pro Asn Ile Ser Ser Leu Ser 10 15 20 Pro Arg Gln Leu Leu Gly Phe Pro Cys Ala Glu Val Ser Gly Leu 25 30 35 Ser Thr Glu Arg Val Arg Glu Leu Ala Val Ala Leu Ala Gln Lys 40 45 50 Asn Val Lys Leu Ser Thr Glu Gln Leu Arg Cys Leu Ala His Arg 55 60 65 Leu Ser Glu Pro Pro Glu Asp Leu Asp Ala Leu Pro Leu Asp Leu 70 75 80 Leu Leu Phe Leu Asn Pro Asp Ala Phe Ser Gly Pro Gln Ala Cys 85 90 95 Thr Arg Phe Phe Ser Arg Ile Thr Lys Ala Asn Val Asp Leu Leu 100 105 110 Pro Arg Gly Ala Pro Glu Arg Gln Arg Leu Leu Pro Ala Ala Leu 115 120 125 Ala Cys Trp Gly Val Arg Gly Ser Leu Leu Ser Glu Ala Asp Val 130 135 140 Arg Ala Leu Gly Gly Leu Ala Cys Asp Leu Pro Gly Arg Phe Val 145 150 155 Ala Glu Ser Ala Glu Val Leu Leu Pro Arg Leu Val Ser Cys Pro 160 165 170 Gly Pro Leu Asp Gln Asp Gln Gln Glu Ala Ala Arg Ala Ala Leu 175 180 185 Gln Gly Gly Gly Pro Pro Tyr Gly Pro Pro Ser Thr Trp Ser Val 190 195 200 Ser Thr Met Asp Ala Leu Arg Gly Leu Leu Pro Val Leu Gly Gln 205 210 215 Pro Ile Ile Arg Ser Ile Pro Gln Gly Ile Val Ala Ala Trp Arg 220 225 230 Gln Arg Ser Ser Arg Asp Pro Ser Trp Arg Gln Pro Glu Arg 235 240 245 248
【図面の簡単な説明】
【図1】図1は実施例3におけるステップ−7の逆相H
PLC(III)の結果を示す。
【図2】図2はプラスミドpKPO27の構造を示す。
【図3】図3はプラスミドpRVHKPO27の構造を
示す。
【図4】図4はプラスミドpRVHKPO27fの構造
を示す。
【図5】図5はプラスミドpCITE・KPO27の構
造を示す。
【図6】図6はプラスミドpMBPKPO27の構造を
示す。
【図7】図7はプラスミドpEFDKPOfの構造を示
す。
【図8】図8は、CHO細胞を用いて発現した培養上清
をSDS/PAGEにて分析して、N末近傍の合成ペプ
チドを抗原として作成した抗体を用いたウエスタンブロ
ットの図(電気泳動図)を示す。レーン1:分子量マー
カー、レーン2:サンプル。
【図9】図9は、CHO細胞を用いて発現した培養上清
の各精製画分(実施例29(i)参照)をSDS/PA
GEにて分析して、実施例24で作製するMeg−PO
Tに対する抗体を用いて行ったウエスタンブロットの図
(電気泳動図)を示す。レーン1:分子量マーカー、レ
ーン2:素通りおよび洗浄画分、レーン3:0.1M
NaCl画分、レーン4:0.2M NaCl画分、レ
ーン5:0.3MNaCl画分、レーン6:0.5M
NaCl画分、レーン7:1.0M NaCl画分。
【図10】図10は、CHO細胞を用いて発現した培養
上清の各精製画分(実施例29(iii)参照)をSDS
/PAGEにかけた後行ったウエスタンブロットの図
(電気泳動図)を示す。レーン1:溶出時間42〜43
分の画分、レーン2:溶出時間43〜44分の画分、レ
ーン3:溶出時間44〜45分の画分、レーン4:溶出
時間45〜46分の画分。
【図11】図11は、修飾体Meg−POT発現ベクタ
ー構築のために実施したPCRのプライマーの位置を示
す。
【図12】図12は、修飾体Meg−POT発現ベクタ
ーpEFNKPOS、pEFNKPOL252V、pE
FNKPOQ220Eの構造を示す。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C12P 21/02 C12N 15/00 ZNAA // A61K 38/00 5/00 B C12Q 1/68 A61K 37/02 (72)発明者 服部 有宏 静岡県御殿場市駒門1丁目135番地 中 外製薬株式会社内 (56)参考文献 特開 平6−92997(JP,A) 特開 平4−295500(JP,A) 特開 平5−247095(JP,A) 特開 平5−255396(JP,A) Exp Hematol.(1987), Vol.15,No.8,p.845−853 (58)調査した分野(Int.Cl.7,DB名) C12N 15/00 C07K 14/00 SwissProt/PIR/GeneS eq GenBank/EMBL/DDBJ/G eneSeq BIOSIS/WPI(DIALOG)

Claims (18)

    (57)【特許請求の範囲】
  1. 【請求項1】 以下の (a) 又は (b) のタンパク質をコード
    するDNA: (a) 配列番号12に示すアミノ酸配列を含むタンパク質 (b) アミノ酸配列 (a) において、1若しくは数個のアミノ
    酸が欠失、置換若しくは付加されたアミノ酸配列を含
    み、かつ巨核球増幅因子活性を有するタンパク質。
  2. 【請求項2】 配列番号12に示すアミノ酸配列からな
    るタンパク質をコードするDNAとストリンジェントな
    条件下でハイブリダイズし、かつ巨核球増幅因子活性を
    有するタンパク質をコードするDNA。
  3. 【請求項3】 請求項1又は2記載のDNAを含有する
    組換えベクター。
  4. 【請求項4】 請求項3記載の組換えベクターにより形
    質転換された原核または真核宿主細胞。
  5. 【請求項5】 請求項4記載の宿主細胞を培養し、産生
    されたタンパク質を分離することを特徴とする組換えタ
    ンパク質の製造方法。
  6. 【請求項6】 請求項5に記載の方法により製造された
    組換えタンパク質。
  7. 【請求項7】 以下の (a) 又は (b) の組換えタンパク質: (a) 配列番号12に示すアミノ酸配列を含むタンパク質 (b) アミノ酸配列 (a) において、1若しくは数個のアミノ
    酸が欠失、置換若しくは付加されたアミノ酸配列を含
    み、かつ巨核球増幅因子活性を有するタンパク質。
  8. 【請求項8】 請求項2に記載のDNAによりコードさ
    れ、かつ巨核球増幅因子活性を有する組換えタンパク
    質。
  9. 【請求項9】 以下の (a) 又は (b) のタンパク質をコード
    するDNA: (a) 配列番号13に示すアミノ酸配列を含むタンパク質 (b) アミノ酸配列 (a) において、1若しくは数個のアミノ
    酸が欠失、置換若しくは付加されたアミノ酸配列を含
    み、かつ巨核球増幅因子活性を有するタンパク質。
  10. 【請求項10】 配列番号13に示すアミノ酸配列から
    なるタンパク質をコードするDNAとストリンジェント
    な条件下でハイブリダイズし、かつ巨核球増幅因子活性
    を有するタンパク質をコードするDNA。
  11. 【請求項11】 請求項9又は10記載のDNAを含有
    する組換えベクター。
  12. 【請求項12】 請求項11記載の組換えベクターによ
    り形質転換された原核または真核宿主細胞。
  13. 【請求項13】 請求項12記載の宿主細胞を培養し、
    産生されたタンパク質を分離することを特徴とする組換
    えタンパク質の製造方法。
  14. 【請求項14】 請求項13に記載の方法により製造さ
    れた組換えタンパク質。
  15. 【請求項15】 以下の (a) 又は (b) の組換えタンパク
    質: (a) 配列番号13に示すアミノ酸配列を含むタンパク質 (b) アミノ酸配列 (a) において、1若しくは数個のアミノ
    酸が欠失、置換若しくは付加されたアミノ酸配列を含
    み、かつ巨核球増幅因子活性を有するタンパク質。
  16. 【請求項16】 請求項10に記載のDNAによりコー
    ドされ、かつ巨核球増幅因子活性を有する組換えタンパ
    ク質。
  17. 【請求項17】 配列番号12又は13に示すアミノ酸
    配列からなるタンパク質に結合する抗体。
  18. 【請求項18】 配列番号12又は13に示すアミノ酸
    配列において、1若しくは数個のアミノ酸が欠失、置換
    若しくは付加されたアミノ酸配列を含み、かつ巨核球増
    幅因子活性を有するタンパク質に結合する抗体。
JP28861793A 1992-10-23 1993-10-25 巨核球増幅因子をコードする遺伝子 Expired - Lifetime JP3490125B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28861793A JP3490125B2 (ja) 1992-10-23 1993-10-25 巨核球増幅因子をコードする遺伝子

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP4-286153 1992-10-23
JP28615392 1992-10-23
JP30138792 1992-11-11
JP4-301387 1992-11-11
JP32954692 1992-12-09
JP4-329546 1992-12-09
JP28861793A JP3490125B2 (ja) 1992-10-23 1993-10-25 巨核球増幅因子をコードする遺伝子

Publications (2)

Publication Number Publication Date
JPH06225767A JPH06225767A (ja) 1994-08-16
JP3490125B2 true JP3490125B2 (ja) 2004-01-26

Family

ID=27479397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28861793A Expired - Lifetime JP3490125B2 (ja) 1992-10-23 1993-10-25 巨核球増幅因子をコードする遺伝子

Country Status (1)

Country Link
JP (1) JP3490125B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997025068A2 (en) * 1996-01-05 1997-07-17 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Mesothelin antigen and methods and kits for targeting it
US8921518B2 (en) 2005-12-23 2014-12-30 Novo Nordisk A/S Purification of proteins using preparative reverse phase chromatography (RPC)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Exp Hematol.(1987),Vol.15,No.8,p.845−853

Also Published As

Publication number Publication date
JPH06225767A (ja) 1994-08-16

Similar Documents

Publication Publication Date Title
US5723318A (en) DNA coding for megakaryocyte potentiator
US5750654A (en) Leukaemia inhibitory factor
JP3045398B2 (ja) 蛋白質、dnaおよびその用途
CA2061148C (en) Glia activating factor and its production
US20200246420A1 (en) pHLIP® peptide-mediated epitope tethering at cell surfaces
JP2634323B2 (ja) Tcf‐▲ii▼のアミノ酸配列をコードするdnaを含むプラスミド,形質転換細胞及びこれを用いて生理活性物質を生産する方法
JPH08151398A (ja) ヒトエリスロポエチン類似体
JP2002526073A (ja) 新規のヒト生長分化因子のコード配列、そのdna配列によりコードされるポリペプチド、およびこれらの製造方法。
JP2003169671A (ja) エリスロポエチン生体内活性強化融合蛋白質
JP2010213699A (ja) 組換えヒトエリスロポイエチンを発現する宿主細胞
WO1993019085A1 (en) Novel antler-derived bone growth factors
US20040009950A1 (en) Secreted human proteins
JP3490125B2 (ja) 巨核球増幅因子をコードする遺伝子
JP2004521607A (ja) ケモカイン、神経ペプチド前駆体または少なくとも一つの神経ペプチドをコードする核酸配列を含んでなる核酸分子
CN116964213A (zh) 融合蛋白的制造方法
JP3287869B2 (ja) ヒト神経成長因子2の製造法
EP0261625A2 (en) Human B-cell differentiation factor and process of producing said factor
US6893844B1 (en) DNA encoding a new human hepatoma derived growth factor and producing method thereof
JP3318323B2 (ja) 組換肝実質細胞増殖因子
JP3292873B2 (ja) 組換肝実質細胞増殖因子
JP2816971B2 (ja) 組換肝実質細胞増殖因子
KR0121322B1 (ko) 백혈병 억제 인자 제조를 위한 재조합 dna 분자 및 숙주 세포
JP2763026B2 (ja) ヒトb細胞分化因子をコードする遺伝子系
US20030004098A1 (en) Leukaemia inhibitory factor
JP4042923B2 (ja) 免疫関連因子

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term