JP3489932B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP3489932B2
JP3489932B2 JP07548496A JP7548496A JP3489932B2 JP 3489932 B2 JP3489932 B2 JP 3489932B2 JP 07548496 A JP07548496 A JP 07548496A JP 7548496 A JP7548496 A JP 7548496A JP 3489932 B2 JP3489932 B2 JP 3489932B2
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
indoor heat
conditioning load
air conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07548496A
Other languages
Japanese (ja)
Other versions
JPH09264614A (en
Inventor
伸二 渡辺
成人 山口
義典 小林
雄一 薬丸
章 藤高
幸男 渡邊
完爾 羽根田
浩直 沼本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP07548496A priority Critical patent/JP3489932B2/en
Publication of JPH09264614A publication Critical patent/JPH09264614A/en
Application granted granted Critical
Publication of JP3489932B2 publication Critical patent/JP3489932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は空気調和機の冷媒流
路の切り換え制御に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to switching control of a refrigerant flow path of an air conditioner.

【0002】[0002]

【従来の技術】空気調和機は図7に示すように圧縮機
1,四方弁2,室外熱交換器3,減圧器4,室内熱交換
器5を配管で接続して冷媒が循環する冷凍サイクルを構
成している。
2. Description of the Related Art As shown in FIG. 7, an air conditioner is a refrigeration cycle in which a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a decompressor 4, and an indoor heat exchanger 5 are connected by piping to circulate a refrigerant. Are configured.

【0003】実開平7−32460号公報には次のよう
な空気調和機が開示されている。この空気調和機は、冷
房運転と暖房運転の切り換えのために四方弁2が切り換
えられて室内熱交換器5を流れる冷媒の向きが反転する
ことに伴って、暖房運転中には室内熱交換器5を1パス
で運転し、冷房運転中には室内熱交換器5を2パスで運
転して、冷房運転時と暖房運転時のどちらも効率よく運
転できるようにしている。
Japanese Utility Model Publication No. 7-32460 discloses the following air conditioner. In this air conditioner, the four-way valve 2 is switched for switching between the cooling operation and the heating operation and the direction of the refrigerant flowing through the indoor heat exchanger 5 is reversed, so that the indoor heat exchanger is operated during the heating operation. 5 is operated in one pass, and the indoor heat exchanger 5 is operated in two passes during the cooling operation so that both the cooling operation and the heating operation can be efficiently operated.

【0004】[0004]

【発明が解決しようとする課題】このように、運転モー
ドに応じて室内熱交換器5のパス数を切り換えることに
よって、定格条件における冷房運転時と暖房運転時の効
率を改善できるが、定格条件を外れた運転状態では効率
の改善を期待できないのが現状である。
As described above, by switching the number of paths of the indoor heat exchanger 5 according to the operation mode, the efficiency in the cooling operation and the heating operation in the rated condition can be improved. Under the current operating conditions, it is not possible to expect improvement in efficiency.

【0005】本発明は定格条件における冷房運転時と暖
房運転時の効率の改善だけでなく、定格条件を外れた運
転状態においても効率の改善を実現できる空気調和機を
提供することを目的とする。
An object of the present invention is to provide an air conditioner capable of not only improving the efficiency during cooling operation and heating operation under rated conditions but also improving the efficiency under operating conditions outside the rated conditions. .

【0006】[0006]

【課題を解決するための手段】本発明の請求項1記載の
空気調和機は、少なくとも室内熱交換器と室外熱交換器
を介装して冷凍サイクルを形成した空気調和機であっ
て、前記室内熱交換器と室外熱交換器のうちの少なくと
も一方の熱交換器のパス数を、空調負荷の大小に応じて
変更する冷媒流路切換制御手段を設け、冷房運転中の冷
媒流路切換制御手段は、空調負荷が定格出力の場合に室
内熱交換器を2パスで運転し、室外熱交換器を1パスで
運転し、空調負荷が小さくなると室内熱交換器と室外熱
交換器をともに1パスで運転し、空調負荷が大きくなる
と室内熱交換器と室外熱交換器をともに2パスで運転す
ことを特徴とする。
The air conditioner according to claim 1 of the present invention is an air conditioner in which at least an indoor heat exchanger and an outdoor heat exchanger are interposed to form a refrigeration cycle, Refrigerant flow path switching control means for changing the number of passes of at least one of the indoor heat exchanger and the outdoor heat exchanger according to the magnitude of the air-conditioning load is provided to cool the air conditioner during cooling operation.
The medium flow path switching control means is used when the air conditioning load is at the rated output.
Operate the internal heat exchanger with 2 passes and the outdoor heat exchanger with 1 pass
Indoor heat exchanger and outdoor heat when the air-conditioning load is reduced by operating
Both exchanges operate in one pass, increasing air conditioning load
Both the indoor heat exchanger and the outdoor heat exchanger are operated in two passes.
Characterized in that that.

【0007】[0007]

【0008】[0008]

【0009】[0009]

【0010】[0010]

【0011】本発明の請求項2記載の空気調和機は、
なくとも室内熱交換器と室外熱交換器を介装して冷凍サ
イクルを形成した空気調和機であって、前記室内熱交換
器と室外熱交換器のうちの少なくとも一方の熱交換器の
パス数を、空調負荷の大小に応じて変更する冷媒流路切
換制御手段を設け、暖房運転中の冷媒流路切換制御手段
は、空調負荷が定格出力の場合に室内熱交換器を1パス
で運転し、室外熱交換器を2パスで運転し、空調負荷が
小さくなると室内熱交換器と室外熱交換器をともに1パ
スで運転し、空調負荷が大きくなると室内熱交換器と室
外熱交換器をともに2パスで運転することを特徴とす
る。
[0011] The air conditioner according to claim 2 of the present invention, low
If you do not have an indoor heat exchanger and an outdoor heat exchanger,
An air conditioner that forms an icicle, wherein the indoor heat exchange is performed.
Of at least one of the heat exchanger and the outdoor heat exchanger
Refrigerant flow path cutoff that changes the number of passes according to the size of the air conditioning load
When the air conditioning load is at the rated output, the refrigerant flow path switching control unit provided with the exchange control means operates the indoor heat exchanger in one pass and the outdoor heat exchanger in two passes to control the air conditioning load. Is smaller, both the indoor heat exchanger and the outdoor heat exchanger are operated in one pass, and when the air conditioning load is larger, both the indoor heat exchanger and the outdoor heat exchanger are operated in two passes.

【0012】本発明の請求項3記載の空気調和機は、
なくとも室内熱交換器と室外熱交換器を介装して冷凍サ
イクルを形成した空気調和機であって、前記室内熱交換
器と室外熱交換器のうちの少なくとも一方の熱交換器の
パス数を、空調負荷の大小に応じて変更する冷媒流路切
換制御手段を設け、冷媒流路切換制御手段は、冷房運転
中には冷房運転と暖房運転の別を表す運転モードならび
に空調負荷の大小に応じて、空調負荷が定格出力の場合
に室内熱交換器を2パスで運転し、室外熱交換器を1パ
スで運転し、空調負荷が小さくなると室内熱交換器と室
外熱交換器をともに1パスで運転し、空調負荷が大きく
なると室内熱交換器と室外熱交換器をともに2パスで運
転し、暖房運転中には冷房運転と暖房運転の別を表す運
転モードならびに空調負荷の大小に応じて、空調負荷が
定格出力の場合に室内熱交換器を1パスで運転し、室外
熱交換器を2パスで運転し、空調負荷が小さくなると室
内熱交換器と室外熱交換器をともに1パスで運転し、空
調負荷が大きくなると室内熱交換器と室外熱交換器をと
もに2パスで運転することを特徴とする。
[0012] The air conditioner according to claim 3 of the present invention, low
If you do not have an indoor heat exchanger and an outdoor heat exchanger,
An air conditioner that forms an icicle, wherein the indoor heat exchange is performed.
Of at least one of the heat exchanger and the outdoor heat exchanger
Refrigerant flow path cutoff that changes the number of passes according to the size of the air conditioning load
The refrigerant flow path switching control means is provided with the refrigerant flow path switching control means when the air conditioning load is at the rated output according to the operation mode representing the distinction between the cooling operation and the heating operation during the cooling operation and the magnitude of the air conditioning load. When the air conditioner is operated in two passes, the outdoor heat exchanger is operated in one pass, both the indoor heat exchanger and the outdoor heat exchanger are operated in one pass when the air conditioning load decreases, and the indoor heat exchanger when the air conditioning load increases. Both the indoor heat exchanger and the outdoor heat exchanger are operated in two passes, and the indoor heat exchanger is operated when the air conditioning load is the rated output according to the operation mode that indicates the distinction between the cooling operation and the heating operation during heating operation and the magnitude of the air conditioning load. Is operated in one pass, the outdoor heat exchanger is operated in two passes, both the indoor heat exchanger and the outdoor heat exchanger are operated in one pass when the air conditioning load is small, and the indoor heat exchanger is operated when the air conditioning load is large. Operate both outdoor heat exchangers in 2 passes And wherein the Rukoto.

【0013】[0013]

【発明の実施の形態】以下、本発明の空気調和機の実施
の形態を図1〜図6に基づいて説明する。図1に示すよ
うに、圧縮機1,四方弁2,室外熱交換器3,減圧器
4,室内熱交換器5を配管で接続して冷媒が循環する冷
凍サイクルを構成している。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of an air conditioner according to the present invention will be described below with reference to FIGS. As shown in FIG. 1, a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a decompressor 4, and an indoor heat exchanger 5 are connected by piping to constitute a refrigeration cycle in which a refrigerant circulates.

【0014】室外熱交換器3は冷媒流路3a,3bを有
しており、三方弁6a,6bによって冷媒流路3a,3
bを1パス状態と2パス状態とに切り換えられるよう構
成されている。
The outdoor heat exchanger 3 has refrigerant flow paths 3a and 3b, and the three-way valves 6a and 6b allow the refrigerant flow paths 3a and 3b.
It is configured so that b can be switched between a one-pass state and a two-pass state.

【0015】室内熱交換器5も室外熱交換器3と同様に
冷媒流路5a,5bと三方弁7a,7bを有しており、
1パス状態と2パス状態とに切り換えられるよう構成さ
れている。
Like the outdoor heat exchanger 3, the indoor heat exchanger 5 also has refrigerant flow paths 5a and 5b and three-way valves 7a and 7b.
It is configured to switch between a one-pass state and a two-pass state.

【0016】三方弁6a,6b,7a,7bは制御部8
によって、運転モードと空調負荷の大小に応じて図2に
示すテーブルAに従って切り換えられる。この実施の形
態において請求の範囲の冷媒流路切換制御手段は、三方
弁6a,6b,7a,7bと制御部8によって構成され
ている。
The three-way valves 6a, 6b, 7a and 7b are control units 8
According to the operation mode and the magnitude of the air conditioning load, switching is performed according to the table A shown in FIG. In this embodiment, the refrigerant flow path switching control means in the claims is composed of three-way valves 6a, 6b, 7a, 7b and a control unit 8.

【0017】マイクロコンピュータで構成されている制
御部8は、運転モードが冷房運転中には図3に示すフロ
ーを実行し、運転モードが暖房運転中には図4に示すフ
ローを実行するように構成されている。なお、実行中の
運転モードは、利用者が設定スイッチで冷房運転または
暖房運転を設定した場合には、その設定スイッチから読
み取った内容に基づいて運転モードが決定され、利用者
が設定スイッチで自動運転を選択した場合には、室内側
の目標設定温度と室内吸い込み温度の温度差とから必要
な運転モードを自動判定して運転される。
The control unit 8 composed of a microcomputer executes the flow shown in FIG. 3 when the operation mode is the cooling operation, and executes the flow shown in FIG. 4 when the operation mode is the heating operation. It is configured. When the user sets the cooling operation or the heating operation with the setting switch, the operating mode being executed is determined based on the contents read from the setting switch, and the user automatically uses the setting switch. When the operation is selected, the necessary operation mode is automatically determined based on the temperature difference between the indoor target temperature and the indoor suction temperature.

【0018】まず、図3に示すフローに基づいて冷房運
転中に室外熱交換器3と室内熱交換器5のそれぞれのパ
ス数が、空調負荷の大小に応じて制御部8によってどの
ように切り換えられるのかを説明する。なお、圧縮機1
は各種のセンサ〔図示せず〕の検出値に基づいて室内温
度が目標温度に近づくようにその回転数が自動制御され
ている。
First, based on the flow shown in FIG. 3, how the number of paths of each of the outdoor heat exchanger 3 and the indoor heat exchanger 5 is switched by the control unit 8 in accordance with the magnitude of the air conditioning load during the cooling operation. Explain if it can be done. The compressor 1
Is automatically controlled in its rotation speed so that the room temperature approaches the target temperature based on the detection values of various sensors (not shown).

【0019】制御部8は図3に示す〔ステップ1〕(以
下、図では“ステップ”を#と表記する。)で、現在の
空調負荷の大小を判定するに必要な運転データを収集す
る。具体的には、圧縮機1の回転数をサンプル値として
読み込む。
The control unit 8 collects the operation data necessary for judging the present magnitude of the air conditioning load in [Step 1] shown in FIG. 3 (hereinafter, "Step" is represented by # in the drawing). Specifically, the rotation speed of the compressor 1 is read as a sample value.

【0020】〔ステップ2〕では、〔ステップ1〕で読
み込んだサンプル値を基準値と比較して現在の空調負荷
の大小を判定する。図2と図3に示す実施の形態では、
基準値と比較して定格条件である“定格能力”、定格能
力の1/2の“中間能力”、さらに空調負荷の小さな
“低能力”、定格能力よりも空調負荷の大きな“高能
力”の何れに属しているかを判定する。
In [Step 2], the sample value read in [Step 1] is compared with a reference value to determine the magnitude of the current air conditioning load. In the embodiment shown in FIGS. 2 and 3,
Compared to the standard value, the rated conditions are "rated capacity", "intermediate capacity" of 1/2 of rated capacity, "low capacity" with a small air conditioning load, and "high capacity" with a larger air conditioning load than the rated capacity. Which one it belongs to is determined.

【0021】なお、“定格能力”とはJIS条件“C9
612−19XX”で決定される能力区分であり、空気
調和機の構成とその冷却方式によって決定される能力ラ
ンクを云う。
The "rated capacity" means JIS condition "C9".
It is a capacity classification determined by “612-19XX” and refers to a capacity rank determined by the configuration of the air conditioner and its cooling system.

【0022】圧縮機1の回転数から現在の空調負荷が
“定格能力”であると〔ステップ2〕において判定され
た場合には、〔ステップ3〕を実行して図2に示したテ
ーブルAに従って、室外熱交換器3を1パス状態に切り
換え、室内熱交換器5を2パス状態に切り換えて運転す
る。この場合の三方弁6a,6b,7a,7bの切換状
態と冷媒の流れを図5の(a)に示す。矢印は冷媒の流
れ方向を示している。
If it is determined in step 2 that the current air conditioning load is "rated capacity" from the number of revolutions of the compressor 1, step 3 is executed and table A shown in FIG. The outdoor heat exchanger 3 is switched to the 1-pass state, and the indoor heat exchanger 5 is switched to the 2-pass state to operate. The switching state of the three-way valves 6a, 6b, 7a, 7b and the flow of the refrigerant in this case are shown in FIG. The arrow indicates the flow direction of the refrigerant.

【0023】図5の(a)では、圧縮機1から送り出さ
れた圧縮冷媒は三方弁6aから冷媒配管3cと三方弁6
bを介して室外熱交換器3の冷媒流路3aを流れ、再び
室外熱交換器3の冷媒流路3bを流れる。そして減圧弁
4を介して室内熱交換器5の冷媒流路5aと三方弁7a
と四方弁2を介して圧縮機1へ戻る。また、室内熱交換
器5において冷媒は三方弁7bを介して冷媒流路5bを
流れて三方弁7aと四方弁2を介して圧縮機1へ戻る。
In FIG. 5A, the compressed refrigerant sent from the compressor 1 is transferred from the three-way valve 6a to the refrigerant pipe 3c and the three-way valve 6.
It flows through the refrigerant flow path 3a of the outdoor heat exchanger 3 via b, and again flows through the refrigerant flow path 3b of the outdoor heat exchanger 3. Then, via the pressure reducing valve 4, the refrigerant flow path 5a of the indoor heat exchanger 5 and the three-way valve 7a
And returns to the compressor 1 via the four-way valve 2. In the indoor heat exchanger 5, the refrigerant flows through the refrigerant flow path 5b via the three-way valve 7b and returns to the compressor 1 via the three-way valve 7a and the four-way valve 2.

【0024】図3の〔ステップ1〕〜〔ステップ3〕を
繰り返し実行中に、〔ステップ2〕において空調負荷が
例えば“低能力”に変わったと判定した場合には、〔ス
テップ3〕を実行せずに〔ステップ4〕を実行して三方
弁7a,7bを切り換えて冷媒配管5c介して流れるよ
う室内熱交換器5を図5の(b)に示すように1パス状
態に切り換えてサイクル性能の向上を実現する。
When it is determined in [Step 2] that the air conditioning load has changed to, for example, "low capacity" while repeatedly executing [Step 1] to [Step 3] in FIG. 3, execute [Step 3]. Without executing [Step 4], the three-way valves 7a and 7b are switched to switch the indoor heat exchanger 5 to the one-pass state as shown in FIG. Realize improvement.

【0025】この室内熱交換器5のパス切り換えによる
サイクル性能の向上を図6の(a)(b)に示す特性図
に基づいて説明する。図6の(a)は熱交換器における
冷媒流量と管内熱伝導率の関係を示し、図6の(b)は
冷媒流量と圧力損失の関係を示す。ここで重要なことは
特性線の傾きの違いにある。冷媒流量が第1の流量9a
から第2の流量9bに増加変化した場合をみると、管内
熱伝達効率の変化Δαと圧力損失の変化Δβは、Δαよ
りもΔβの方が大きく変化している。
The improvement of cycle performance by switching the path of the indoor heat exchanger 5 will be described based on the characteristic diagrams shown in FIGS. 6 (a) and 6 (b). 6A shows the relationship between the refrigerant flow rate in the heat exchanger and the thermal conductivity in the tube, and FIG. 6B shows the relationship between the refrigerant flow rate and the pressure loss. What is important here is the difference in the slope of the characteristic line. Refrigerant flow rate is first flow rate 9a
From the above, when the increase is changed to the second flow rate 9b, the change Δα in the heat transfer efficiency in the pipe and the change Δβ in the pressure loss are larger in Δβ than in Δα.

【0026】室内熱交換器5と室外熱交換器3は、冷房
運転時には実際のp−h線図に基づいて室内熱交換器5
を2パス,室外熱交換器3を1パスで運転し、サイクル
性能が最適になるように設計されている。
During the cooling operation, the indoor heat exchanger 5 and the outdoor heat exchanger 3 are based on the actual ph diagram and the indoor heat exchanger 5 is used.
Is operated in two passes and the outdoor heat exchanger 3 is operated in one pass to optimize cycle performance.

【0027】定格能力で運転中に空調負荷が低負荷に変
化した場合には、圧縮機1の回転数が低下して冷媒流量
が低下し、それに伴う圧力損失も僅かになるため、管内
熱伝達率を優先させるように〔ステップ4〕を実行して
室内熱交換器5を1パス,室外熱交換器3を1パスで運
転してサイクル性能の悪化を低減する。〔ステップ2〕
で中間能力と判定された場合には〔ステップ5〕を実行
し、〔ステップ2〕で高能力と判定された場合には〔ス
テップ6〕を実行する。
When the air conditioning load changes to a low load during operation at the rated capacity, the rotational speed of the compressor 1 decreases, the refrigerant flow rate decreases, and the accompanying pressure loss also becomes small. [Step 4] is executed so as to prioritize the rate to operate the indoor heat exchanger 5 in one pass and the outdoor heat exchanger 3 in one pass to reduce deterioration of cycle performance. [Step 2]
When it is determined that the ability is intermediate, the step 5 is executed, and when it is determined that the ability is high, the step 6 is executed.

【0028】したがって、従来のように運転モードが暖
房運転では、室外熱交換器と室内熱交換器を共に1パス
状態で運転し、冷房運転では、室外熱交換器を1パス状
態、室内熱交換器を2パス状態で運転している空気調和
機に比べて、現行のシーズンエネルギ効率(SEER)
の評価基準において冷房SEERの向上を図ることがで
きる。
Therefore, when the operation mode is the heating operation as in the prior art, both the outdoor heat exchanger and the indoor heat exchanger are operated in the 1-pass state, and in the cooling operation, the outdoor heat exchanger is in the 1-pass state and the indoor heat exchange is performed. Current Season Energy Efficiency (SEER) compared to an air conditioner that operates a two-pass conditioner
It is possible to improve the cooling SEER based on the evaluation criteria.

【0029】なお、SEERは日本工業規格において、
冷房期間エネルギー消費効率(CSPF)と暖房期間エ
ネルギー消費効率(HSPF)で決定すると規定されて
いる。
SEER is a Japanese Industrial Standard,
It is stipulated that the energy consumption efficiency (CSPF) in the cooling period and the energy consumption efficiency (HSPF) in the heating period determine.

【0030】運転モードが暖房運転中(四方弁2が図1
に破線で示す位置に切り換わっている)には、制御部8
は図4に示す〔ステップ7〕で、現在の空調負荷の大小
を判定するに必要な運転データを収集する。具体的に
は、圧縮機1の回転数をサンプル値として読み込む。
The operation mode is the heating operation (the four-way valve 2 is shown in FIG.
Is switched to the position indicated by the broken line in FIG.
In [Step 7] shown in FIG. 4, the operation data necessary for judging the current air conditioning load is collected. Specifically, the rotation speed of the compressor 1 is read as a sample value.

【0031】〔ステップ8〕では、〔ステップ7〕で読
み込んだサンプル値を基準値と比較して現在の空調負荷
の大小を判定する。ここではでは、基準値と比較して定
格条件である“定格能力”、定格能力の1/2の“中間
能力”、さらに空調負荷の小さな“低能力”、定格能力
よりも空調負荷の大きな“高能力”の何れに属している
かを判定する。
In [Step 8], the sample value read in [Step 7] is compared with the reference value to determine the current air conditioning load. Here, compared to the standard value, the rated condition is "rated capacity", "intermediate capacity" of 1/2 of rated capacity, "low capacity" with small air conditioning load, and "large capacity" with air conditioning load larger than rated capacity. Which of the "high abilities" it belongs to is determined.

【0032】圧縮機1の回転数から現在の空調負荷が
“定格能力”であったと〔ステップ8〕において判定さ
れた場合には、〔ステップ9〕を実行して図2に示した
テーブルAに従って、室外熱交換器3を2パス状態に切
り換え、室内熱交換器5を1パス状態に切り換えて運転
する。
When it is determined in step 8 that the current air conditioning load is "rated capacity" from the number of revolutions of the compressor 1, step 9 is executed and table A shown in FIG. The outdoor heat exchanger 3 is switched to the 2-pass state, and the indoor heat exchanger 5 is switched to the 1-pass state to operate.

【0033】図4の〔ステップ7〕〜〔ステップ9〕を
繰り返し実行中に、〔ステップ8〕において空調負荷が
例えば“低能力”に変わったと判定した場合には、〔ス
テップ9〕を実行せずに〔ステップ10〕を実行して三
方弁6a,6bを切り換えて室内熱交換器3を1パス状
態に切り換えてサイクル性能の向上を実現する。〔ステ
ップ8〕で中間能力と判定された場合には〔ステップ1
1〕を実行し、〔ステップ8〕で高能力と判定された場
合には〔ステップ12〕を実行する。〔ステップ8〕で
暖房低温と判定された場合には〔ステップ13〕を実行
する。
If it is determined in step 8 that the air conditioning load has changed to, for example, "low capacity" while repeatedly executing [step 7] to [step 9] in FIG. 4, execute [step 9]. Instead, [Step 10] is executed to switch the three-way valves 6a and 6b to switch the indoor heat exchanger 3 to the one-pass state and improve the cycle performance. If it is judged that the intermediate ability is obtained in [Step 8], [Step 1
1] is executed, and if it is determined that the ability is high in [Step 8], [Step 12] is executed. When it is determined that the heating temperature is low in [Step 8], [Step 13] is executed.

【0034】したがって、従来のように運転モードが暖
房運転では、室外熱交換器と室内熱交換器を共に1パス
状態で運転し、冷房運転では、室外熱交換器を1パス状
態、室内熱交換器を2パス状態で運転している空気調和
機に比べて、現行のシーズンエネルギ効率(SEER)
の評価基準において暖房SEERの向上を図ることがで
きる。
Therefore, when the operation mode is the heating operation as in the prior art, both the outdoor heat exchanger and the indoor heat exchanger are operated in the 1-pass state, and in the cooling operation, the outdoor heat exchanger is in the 1-pass state and the indoor heat exchange is performed. Current Season Energy Efficiency (SEER) compared to an air conditioner that operates a two-pass conditioner
It is possible to improve the heating SEER based on the evaluation criteria.

【0035】上記の実施の形態では、室外熱交換器3と
室内熱交換器5の両方のパス数を切り換えられるように
三方弁6a,6b,7a,7bを設けたが、室外熱交換
器3は1パス状態だけで室内熱交換器5は三方弁7a,
7bを設けて冷房運転において三方弁7a,7bを空調
負荷に応じて切り換えて室内熱交換器5のパス数を切り
換えたり、室内熱交換器5は1パス状態だけで室外熱交
換器3は三方弁6a,6bを設けて冷房運転において三
方弁6a,6bを空調負荷に応じて切り換えて室外熱交
換器3のパス数を切り換えるだけでも従来に比べてサイ
クル性能の改善を実現できる。
In the above embodiment, the three-way valves 6a, 6b, 7a, 7b are provided so that the number of paths of both the outdoor heat exchanger 3 and the indoor heat exchanger 5 can be switched, but the outdoor heat exchanger 3 Is a one-pass state, the indoor heat exchanger 5 is a three-way valve 7a,
7b is provided to switch the three-way valves 7a and 7b according to the air conditioning load to switch the number of passes of the indoor heat exchanger 5 in the cooling operation, or the indoor heat exchanger 5 is in only one pass state and the outdoor heat exchanger 3 is three-way. Even if the valves 6a and 6b are provided and the three-way valves 6a and 6b are switched according to the air conditioning load in the cooling operation to switch the number of paths of the outdoor heat exchanger 3, the cycle performance can be improved as compared with the conventional case.

【0036】上記の各実施の形態において、制御部8は
運転モードと圧縮機1の回転数から時々の空調負荷(冷
媒循環量)を検出したが、運転モードと下記の何れかの
単数または複数から空調負荷を判定しても同様の効果を
期待できる。
In each of the above embodiments, the control unit 8 detects the air conditioning load (refrigerant circulation amount) from time to time based on the operation mode and the number of revolutions of the compressor 1. Even if the air conditioning load is determined from the above, the same effect can be expected.

【0037】・電源電流値から圧縮機の回転数を推測す
る ・圧縮機の吸入圧力 ・蒸発器の温度 上記の各実施の形態では、室外熱交換器3,室内熱交換
器5のパス数の切り換えは1パス状態と2パス状態であ
ったが、2パス状態と4パス状態などでもよく、1パス
状態と2パス状態の切り換えに限定されるものではな
い。
The number of passes of the outdoor heat exchanger 3 and the indoor heat exchanger 5 is estimated in each of the above embodiments by estimating the rotation speed of the compressor from the power supply current value, the suction pressure of the compressor, and the temperature of the evaporator. The switching is performed in the one-pass state and the two-pass state, but may be performed in the two-pass state and the four-pass state, and is not limited to the switching between the one-pass state and the two-pass state.

【0038】[0038]

【発明の効果】本発明の請求項1の構成によると、少な
くとも室内熱交換器と室外熱交換器を介装して冷凍サイ
クルを形成した空気調和機であって、前記室内熱交換器
と室外熱交換器のうちの少なくとも一方の熱交換器のパ
ス数を、空調負荷の大小に応じて変更する冷媒流路切換
制御手段を設けたため、冷房運転では室外熱交換器を1
パス、室内熱交換器を2パスで運転しているだけの従来
の空気調和機に比べてより広い領域でサイクル性能の向
上を図ることができる。しかも、冷媒流路切換制御手段
を、冷房運転中には、空調負荷が定格出力の場合に室内
熱交換器を2パスで運転し、室外熱交換器を1パスで運
転し、空調負荷が小さくなると室内熱交換器と室外熱交
換器をともに1パスで運転し、空調負荷が大きくなると
室内熱交換器と室外熱交換器をともに2パスで運転する
ように構成したため、現行のシーズンエネルギ効率(S
EER)の評価基準において冷房SEERの向上を図る
ことができる。
According to the structure of claim 1 of the present invention , there is provided an air conditioner in which a refrigerating cycle is formed by interposing at least an indoor heat exchanger and an outdoor heat exchanger, wherein the indoor heat exchanger and the outdoor Since the refrigerant flow path switching control means for changing the number of paths of at least one of the heat exchangers according to the size of the air conditioning load is provided, the outdoor heat exchanger is set to 1 in the cooling operation.
It is possible to improve the cycle performance in a wider area as compared with the conventional air conditioner in which the pass and the indoor heat exchanger are only operated in two passes. Moreover, the refrigerant flow path switching control means
During cooling operation, if the air conditioning load is rated output,
Operate the heat exchanger in 2 passes and operate the outdoor heat exchanger in 1 pass.
When the air conditioning load decreases, the indoor heat exchanger and outdoor heat exchange
If both air conditioners are operated in one pass and the air conditioning load increases
Operate both indoor heat exchanger and outdoor heat exchanger in 2 passes
The current season energy efficiency (S
Aiming to improve cooling SEER in the evaluation standard of (EER)
be able to.

【0039】[0039]

【0040】[0040]

【0041】[0041]

【0042】[0042]

【0043】本発明の請求項2の構成によると、少なく
とも室内熱交換器と室外熱交換器を介装して冷凍サイク
ルを形成した空気調和機であって、前記室内熱交換器と
室外熱交換器のうちの少なくとも一方の熱交換器のパス
数を、空調負荷の大小に応じて変更する冷媒流路切換制
御手段を設けたため、冷房運転では室外熱交換器を1パ
ス、室内熱交換器を2パスで運転しているだけの従来の
空気調和機に比べてより広い領域でサイクル性能の向上
を図ることができる。しかも、冷媒流路切換制御手段
を、暖房運転中には、空調負荷が定格出力の場合に室内
熱交換器を1パスで運転し、室外熱交換器を2パスで運
転し、空調負荷が小さくなると室内熱交換器と室外熱交
換器をともに1パスで運転し、空調負荷が大きくなると
室内熱交換器と室外熱交換器をともに2パスで運転する
ように構成したため、現行のシーズンエネルギ効率(S
EER)において、暖房SEERの向上を図ることがで
きる。
[0043] According to the second aspect of the present invention, less
Both are equipped with an indoor heat exchanger and an outdoor heat exchanger for refrigeration cycle.
And an indoor heat exchanger, wherein
Path of at least one of the outdoor heat exchangers
Refrigerant flow path switching control that changes the number according to the size of the air conditioning load
Due to the provision of control means, the outdoor heat exchanger is
Conventional, only operating the indoor heat exchanger in two passes
Improved cycle performance in a wider area than air conditioners
Can be achieved. Moreover, during the heating operation , the refrigerant flow path switching control means operates the indoor heat exchanger in one pass and the outdoor heat exchanger in two passes when the air conditioning load is at the rated output, thereby reducing the air conditioning load. In that case, both the indoor heat exchanger and the outdoor heat exchanger are operated in one pass, and when the air-conditioning load increases, both the indoor heat exchanger and the outdoor heat exchanger are operated in two passes. S
In the EER), the heating SEER can be improved.

【0044】本発明の請求項3の構成によると、少なく
とも室内熱交換器と室外熱交換器を介装して冷凍サイク
ルを形成した空気調和機であって、前記室内熱交換器と
室外熱交換器のうちの少なくとも一方の熱交換器のパス
数を、空調負荷の大小に応じて変更する冷媒流路切換制
御手段を設けたため、冷房運転では室外熱交換器を1パ
ス、室内熱交換器を2パスで運転しているだけの従来の
空気調和機に比べてより広い領域でサイクル性能の向上
を図ることができる。しかも、冷媒流路切換制御手段
を、冷房運転中には冷房運転と暖房運転の別を表す運転
モードならびに空調負荷の大小に応じて、空調負荷が定
格出力の場合に室内熱交換器を2パスで運転し、室外熱
交換器を1パスで運転し、空調負荷が小さくなると室内
熱交換器と室外熱交換器をともに1パスで運転し、空調
負荷が大きくなると室内熱交換器と室外熱交換器をとも
に2パスで運転し、暖房運転中には冷房運転と暖房運転
の別を表す運転モードならびに空調負荷の大小に応じ
て、空調負荷が定格出力の場合に室内熱交換器を1パス
で運転し、室外熱交換器を2パスで運転し、空調負荷が
小さくなると室内熱交換器と室外熱交換器をともに1パ
スで運転し、空調負荷が大きくなると室内熱交換器と室
外熱交換器をともに2パスで運転するように構成したた
め、現行のシーズンエネルギ効率(SEER)におい
て、冷房と暖房のSEERの向上を図ることができる。
[0044] According to the third aspect of the present invention, less
Both are equipped with an indoor heat exchanger and an outdoor heat exchanger for refrigeration cycle.
And an indoor heat exchanger, wherein
Path of at least one of the outdoor heat exchangers
Refrigerant flow path switching control that changes the number according to the size of the air conditioning load
Due to the provision of control means, the outdoor heat exchanger is
Conventional, only operating the indoor heat exchanger in two passes
Improved cycle performance in a wider area than air conditioners
Can be achieved. In addition, the refrigerant flow path switching control means is configured to use the indoor heat exchanger with two paths when the air conditioning load is the rated output according to the operation mode indicating the distinction between the cooling operation and the heating operation during the cooling operation and the magnitude of the air conditioning load. When the air conditioning load is small, both the indoor heat exchanger and the outdoor heat exchanger are operated in one pass, and when the air conditioning load is large, the indoor heat exchanger and the outdoor heat exchanger are operated. When the air conditioning load is rated output, the indoor heat exchanger can be operated in one pass depending on the operating mode that indicates the difference between cooling operation and heating operation and the air conditioning load during heating operation. When the air conditioning load is small, the indoor heat exchanger and the outdoor heat exchanger are both operated in one pass, and when the air conditioning load is large, the indoor heat exchanger and the outdoor heat exchanger are operated. Drive both in two passes Because it forms, in the current season energy efficiency (SEER), it is possible to improve the SEER of cooling and heating.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の空気調和装置の構成図FIG. 1 is a configuration diagram of an air conditioner of the present invention.

【図2】同実施の形態の制御部のテーブル説明図FIG. 2 is an explanatory diagram of a table of a control unit according to the same embodiment.

【図3】同実施の形態の冷房運転中の制御部のフローチ
ャート
FIG. 3 is a flowchart of a control unit during the cooling operation of the same embodiment.

【図4】同実施の形態の暖房運転中の制御部のフローチ
ャート
FIG. 4 is a flowchart of a control unit during the heating operation according to the same embodiment.

【図5】同実施の形態の冷房運転中のパス数切り換え状
態の冷媒経路の説明図
FIG. 5 is an explanatory diagram of a refrigerant path in the number of paths switching state during cooling operation of the embodiment.

【図6】冷媒流量と管内熱伝達率ならびに圧力損失の関
係図
FIG. 6 is a diagram showing the relationship between the refrigerant flow rate, the heat transfer coefficient in the pipe, and the pressure loss.

【図7】従来の空気調和装置の構成図FIG. 7 is a configuration diagram of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外熱交換器 4 減圧器 5 室内熱交換器 6a,6b 三方弁 7a,7b 三方弁 8 制御部 A テーブル 1 compressor 2 four-way valve 3 outdoor heat exchanger 4 pressure reducer 5 Indoor heat exchanger 6a, 6b 3-way valve 7a, 7b 3-way valve 8 control unit A table

フロントページの続き (72)発明者 薬丸 雄一 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 藤高 章 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 渡邊 幸男 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 羽根田 完爾 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 沼本 浩直 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 実開 平5−90267(JP,U) 実開 昭56−136283(JP,U) 実開 昭50−68955(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 F25B 5/02 F25B 6/02 F25B 13/00 F28D 21/00 Front Page Continuation (72) Inventor Yuichi Yakumaru 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor, Akira Fujitaka 1006 Kadoma, Kadoma City, Osaka Prefecture (72) ) Inventor Yukio Watanabe 1006, Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor: Kaneda Haneda, 1006, Kadoma, Kadoma City, Osaka (72) Inventor, Numamoto Hironao 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Bibliography Actual flat 5-90267 (JP, U) Actual opening 56-136283 (JP, U) Actual opening 50-68955 ( (58) Fields investigated (Int.Cl. 7 , DB name) F25B 1/00 F25B 5/02 F25B 6/02 F25B 13/00 F28D 21/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも室内熱交換器と室外熱交換器を
介装して冷凍サイクルを形成した空気調和機であって、
前記室内熱交換器と室外熱交換器のうちの少なくとも一
方の熱交換器のパス数を、空調負荷の大小に応じて変更
する冷媒流路切換制御手段を設け 冷房運転中の冷媒流路切換制御手段は、空調負荷が定格
出力の場合に室内熱交換器を2パスで運転し、室外熱交
換器を1パスで運転し、空調負荷が小さくなると室内熱
交換器と室外熱交換器をともに1パスで運転し、空調負
荷が大きくなると室内熱交換器と室外熱交換器をともに
2パスで運転する 空気調和機。
1. An air conditioner in which a refrigeration cycle is formed by interposing at least an indoor heat exchanger and an outdoor heat exchanger,
The number of passes at least one of the heat exchangers of the indoor heat exchanger and the outdoor heat exchanger, a refrigerant flow path switching control means for changing according to the magnitude of air conditioning load is provided, the refrigerant flow channel switching during the cooling operation The control means is rated by the air conditioning load.
In the case of output, the indoor heat exchanger is operated in two passes to allow outdoor heat exchange.
When the air conditioner load is reduced, the indoor heat
Operate both the heat exchanger and the outdoor heat exchanger in one pass, and
When the load increases, both the indoor heat exchanger and the outdoor heat exchanger
An air conditioner that operates in two passes .
【請求項2】少なくとも室内熱交換器と室外熱交換器を
介装して冷凍サイクルを形成した空気調和機であって、
前記室内熱交換器と室外熱交換器のうちの少なくとも一
方の熱交換器のパス数を、空調負荷の大小に応じて変更
する冷媒流路切換制御手段を設け、 暖房運転中の冷媒流路切換制御手段は、空調負荷が定格
出力の場合に室内熱交換器を1パスで運転し、室外熱交
換器を2パスで運転し、空調負荷が小さくなると室内熱
交換器と室外熱交換器をともに1パスで運転し、空調負
荷が大きくなると室内熱交換器と室外熱交換器をともに
2パスで運転する 空気調和機。
2. At least an indoor heat exchanger and an outdoor heat exchanger
An air conditioner in which a refrigeration cycle is formed by interposing,
At least one of the indoor heat exchanger and the outdoor heat exchanger
Change the number of heat exchanger paths depending on the size of the air conditioning load
The refrigerant flow path switching control means for operating the refrigerant flow path switching control means during heating operation is rated at the air conditioning load.
In case of output, the indoor heat exchanger is operated in one pass to
When the air conditioner load is reduced, the indoor heat
Operate both the heat exchanger and the outdoor heat exchanger in one pass, and
When the load increases, both the indoor heat exchanger and the outdoor heat exchanger
An air conditioner that operates in two passes .
【請求項3】少なくとも室内熱交換器と室外熱交換器を
介装して冷凍サイクルを形成した空気調和機であって、
前記室内熱交換器と室外熱交換器のうちの少なくとも一
方の熱交換器のパス数を、空調負荷の大小に応じて変更
する冷媒流路切換制御手段を設け、 冷媒流路切換制御手段は、冷房運転中には冷房運転と暖
房運転の別を表す運転モードならびに空調負荷の大小に
応じて、空調負荷が定格出力の場合に室内熱交換器を2
パスで運転し、室外熱交換器を1パスで運転し、空調負
荷が小さくなると室内熱交換器と室外熱交換器をともに
1パスで運転し、空調負荷が大きくなると室内熱交換器
と室外熱交換器をともに2パスで運転し、暖房運転中に
は冷房運 転と暖房運転の別を表す運転モードならびに空
調負荷の大小に応じて、空調負荷が定格出力の場合に室
内熱交換器を1パスで運転し、室外熱交換器を2パスで
運転し、空調負荷が小さくなると室内熱交換器と室外熱
交換器をともに1パスで運転し、空調負荷が大きくなる
と室内熱交換器と室外熱交換器をともに2パスで運転す
空気調和機。
3. At least an indoor heat exchanger and an outdoor heat exchanger
An air conditioner in which a refrigeration cycle is formed by interposing,
At least one of the indoor heat exchanger and the outdoor heat exchanger
Change the number of heat exchanger paths depending on the size of the air conditioning load
The cooling medium flow path switching control means is provided, and the cooling medium flow path switching control means operates during the cooling operation and during the cooling operation.
The operation mode that indicates the different operation of the cell and the size of the air conditioning load
Accordingly, if the air conditioning load is the rated output, the indoor heat exchanger is
Operate in a single pass, operate the outdoor heat exchanger in a single pass, and
When the load gets smaller, both the indoor heat exchanger and the outdoor heat exchanger are
Indoor heat exchanger when the air conditioning load increases with one pass operation
Both the outdoor heat exchanger and the outdoor heat exchanger are operated in two passes, and during heating operation
Operation mode as well as the sky represents a separate heating operation and cooling OPERATION
If the air conditioning load is rated output, the
Operate the internal heat exchanger in one pass and the outdoor heat exchanger in two passes
Indoor heat exchanger and outdoor heat when the air-conditioning load is reduced by operating
Both exchanges operate in one pass, increasing air conditioning load
Both the indoor heat exchanger and the outdoor heat exchanger are operated in two passes.
Air conditioner that.
JP07548496A 1996-03-29 1996-03-29 Air conditioner Expired - Fee Related JP3489932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07548496A JP3489932B2 (en) 1996-03-29 1996-03-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07548496A JP3489932B2 (en) 1996-03-29 1996-03-29 Air conditioner

Publications (2)

Publication Number Publication Date
JPH09264614A JPH09264614A (en) 1997-10-07
JP3489932B2 true JP3489932B2 (en) 2004-01-26

Family

ID=13577622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07548496A Expired - Fee Related JP3489932B2 (en) 1996-03-29 1996-03-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP3489932B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5204987B2 (en) * 2007-04-11 2013-06-05 高砂熱学工業株式会社 Air conditioning system and control method of air conditioning system
EP2600081A4 (en) * 2010-07-29 2015-12-30 Hitachi Ltd Air conditioning and hot-water supply system
WO2013160929A1 (en) * 2012-04-23 2013-10-31 三菱電機株式会社 Refrigeration cycle system
JP5805833B1 (en) 2014-07-28 2015-11-10 木村工機株式会社 Heat pump air conditioner
CN106288466A (en) * 2015-06-11 2017-01-04 深圳市立冰节能科技有限公司 A kind of heat pump
JP6664503B2 (en) * 2016-09-23 2020-03-13 三菱電機株式会社 Air conditioner
US11175080B2 (en) 2016-10-28 2021-11-16 Mitsubishi Electric Corporation Refrigeration cycle apparatus having heat exchanger switchable between parallel and series connection
RU2743727C1 (en) * 2017-04-18 2021-02-25 Мицубиси Электрик Корпорейшн Air conditioning unit

Also Published As

Publication number Publication date
JPH09264614A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
JP3858015B2 (en) Refrigerant circuit and heat pump water heater
JP3816860B2 (en) Heat pump air conditioner
JP3740637B2 (en) Air conditioner
CN106440560B (en) The adjustable air-conditioning system of condensation area and its control method
JPH0762569B2 (en) Operation control device for air conditioner
JP3489932B2 (en) Air conditioner
JP2000274879A (en) Air conditioner
JP2001201143A (en) Air conditioner
JP3404133B2 (en) Thermal storage type air conditioner
CN112594918A (en) Air conditioner heat exchange system and control method thereof
JP2001263848A (en) Air conditioner
JP2005016881A (en) Air conditioning system
CN211876411U (en) Air conditioning unit capable of continuously heating
CN114963442A (en) Air conditioner and control method thereof
CN112432379A (en) Air conditioning system
JPH09264627A (en) Air conditioner
JPH0891042A (en) Heat pump type air-conditioning cooling and heating equipment
JPH02169968A (en) Heat pump type room cooler/heater hot water supply apparatus
CN214039030U (en) Air conditioning system
JP2000154941A (en) Refrigerator
JPS6150211B2 (en)
CN220624375U (en) Heat exchange system and air conditioning equipment
JPH06213531A (en) Heat pump air conditioner for car
JP3670731B2 (en) Air conditioning system
CN215675900U (en) Air conditioning unit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees