JP3670731B2 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP3670731B2
JP3670731B2 JP27422095A JP27422095A JP3670731B2 JP 3670731 B2 JP3670731 B2 JP 3670731B2 JP 27422095 A JP27422095 A JP 27422095A JP 27422095 A JP27422095 A JP 27422095A JP 3670731 B2 JP3670731 B2 JP 3670731B2
Authority
JP
Japan
Prior art keywords
water
boiler
condensing unit
cooling tower
source unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27422095A
Other languages
Japanese (ja)
Other versions
JPH09113006A (en
Inventor
靖功 田宮
邦衛 関上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27422095A priority Critical patent/JP3670731B2/en
Publication of JPH09113006A publication Critical patent/JPH09113006A/en
Application granted granted Critical
Publication of JP3670731B2 publication Critical patent/JP3670731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To sufficiently raise heating efficiency even in the case of low outdoor temperature (in a cold climate area) and enable demonstration of performance utilizing waste heat. SOLUTION: This air conditioning system comprises a water cooled condensing unit 200 for a showcase 210 and the like, a water source unit 300 for an air conditioner and a cooling tower 100 which are connected to each other by pipe lines so as to allow cooling water from the cooling tower 100 to circulate to the water cooled condensing unit 100 and/or the water source unit 300. A pipe line 24 is connected to a boiler 400, and hot water heated by the boiler 400 and/or hot water heated by the water cooled condensing unit 200 is used in heating operation as hot water circulated to the water source unit 300 of the air conditioner.

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、ショーケース、空気調和機、及び冷却塔を備えてなる空気調和システムに関する。
【0002】
【従来の技術】
一般に、ショーケース等の水冷式コンデンシングユニットと、複数の室内ユニットを有する空気調和機の水熱源ユニットと、冷却塔とを管路でつなぎ、この冷却塔からの冷却水を、前記水冷式コンデンシングユニット、及び/又は前記水熱源ユニットに循環可能にした空気調和システムは知られている。
【0003】
この種のものでは、ショーケース等の水冷式コンデンシングユニットにおける廃熱を利用した、空気調和機による空調を行なうことができるという利点が得られる(例えば、特公昭54−28022号公報参照)。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の構成によれば、水冷式コンデンシングユニットにおける廃熱を利用した空調を行なうことはできても、外気温度が低い場合(寒冷地)には、十分な暖房効率をあげることができないという問題がある。
これを解消するためには、ボイラを設け、外気温度が低い場合に、水熱源ユニットに高温の温水を循環できるようにすることが考えられる。
【0005】
しかしながら、複数の室内ユニットを有する空気調和機にあっては、暖房負荷に応じて室内ユニットの運転台数を増減させるので、運転台数が減少した場合あるいは暖房負荷が減少した場合にまで、ボイラを運転させては、燃料の無駄になり、せっかくの廃熱利用による空気調和システムが有効に機能しなくなるという問題がある。
【0006】
そこで、本発明の目的は、外気温度が低い場合(寒冷地)にあっても、十分な暖房効率を挙げることができ、しかも廃熱利用による機能を十分に発揮できる、空気調和システムを提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために、請求項1に記載の発明は、ショーケース等の水冷式コンデンシングユニットと、空気調和機の水熱源ユニットと、冷却塔とを管路でつなぎ、この冷却塔からの冷却水を、前記水冷式コンデンシングユニット、及び/又は前記水熱源ユニットに循環可能にした空気調和システムにおいて、前記管路にはボイラをつなぎ、暖房運転時に前記空気調和機の水熱源ユニットには、暖房負荷が大きい時は前記ボイラにより昇温させた温水と前記水冷式コンデンシングユニットにより昇温させた温水とを循環させ、一方、暖房負荷が小さい時は前記ボイラの運転を停止させて前記水冷式コンデンシングユニットにより昇温させた温水のみを循環させることを特徴とするものである。
【0009】
請求項1に記載の発明によれば、管路にボイラを設けることにより、暖房負荷が大きくなった場合には、ボイラを運転させることにより、システム全体としての暖房能力不足を解消することができる。よって、いわゆる寒冷地向けのシステムになる。暖房負荷が小さくなった場合には、ボイラの運転を停止させて、コンデンサの廃熱だけを利用した運転に切り替えることができるので、暖房運転の効率を向上させることができる。更には、コンデンサの廃熱を利用するシステムであるので、ボイラだけを利用する場合に比べて、当該ボイラの容量を小さく設計することができるものである。
【0010】
【発明の実施の形態】
以下、本発明による一実施の形態を添付図面を参照して説明する。
図1において、100は冷却塔を示し、200はショーケース210の水冷式コンデンシングユニットを示し、300は複数の室内ユニット310を有する空気調和機の水熱源ユニットを示している。冷却塔100と、水冷式コンデンシングユニット200と、水熱源ユニット300とは管路でつながれている。
【0011】
配管系を説明すると、冷却塔100から導出される管路11は、温度センサT3、T4を介してポンプPにつながれ、このポンプPからの管路12は水冷式コンデンシングユニット200のコンデンサ201につながれる。このコンデンサ201からの管路13は三方弁V4のポートAにつながれ、この三方弁V4のポートCは、後述する水熱源ユニット300をバイパスして、冷却塔100に連なる管路14がつながれる。三方弁V4のポートBには管路15がつながれ、この管路15は、三方弁V3のポートBにつながれる。
【0012】
この三方弁V3のポートCには、温度センサT2を介して、三方弁V2のポートBがつながれ、この三方弁V2のポートCには管路16を通じて水熱源ユニット300の熱交換器301がつながれる。この熱交換器301には管路17がつながれ、この管路17は上記の管路14につながれ、これらの管路14,17は、温度センサT1を介して三方弁V1のポートAにつながれる。この三方弁V1のポートCは、管路18を介して冷却塔100につながれる。
【0013】
更に説明すると、三方弁V1のポートBは、管路21を介して管路11につながれ、三方弁V2のポートAは、管路22を介して管路12につながれ、三方弁V3のポートAは、管路23を介してボイラ400につながれ、このボイラ400は管路24を介して管路12につながれる。
【0014】
水冷式コンデンシングユニット200のコンデンサ201は、冷媒管を介して、圧縮機202、ショーケースのエバポレータ211、減圧手段203につながれ、これらは冷凍サイクルを構成している。また、水熱源ユニット300の熱交換器301は、室外熱交換器を構成し、冷媒管を介して、圧縮機302、四方弁303、減圧手段304、室内ユニット310の熱交換器311につながれ、しかも、複数の室内ユニット310は個別運転制御可能になっている。
【0015】
つぎに、動作を説明する。
ショーケース210は冷凍・冷蔵用に、通年、使用されるので、夏期、冬期に関係なく、冷却塔100からの冷水は、ショーケース210につながる水冷式コンデンシングユニット200のコンデンサ201に常に供給される。
【0016】
夏期においては、図1に示すように、三方弁V4のポートA,Cと、三方弁V2のポートA,Cと、三方弁V1のポートA,Cとがつながれる。
冷却塔100からの冷水は、実線の矢印で示すように、管路11、ポンプP、管路12を通して、水冷式コンデンシングユニット200のコンデンサ201に流入し、そこで熱交換した後、管路13、三方弁V4のポートA,C、管路14、三方弁V1のポートA,C、管路18を通じて冷却塔100に戻される。それと同時に、冷却塔100からの冷水は、管路22、三方弁V2のポートA,Cを通じて、水熱源ユニット300の熱交換器301に流入し、そこで熱交換した後、管路17、三方弁V1のポートA,Cを通じて冷却塔100に戻される。尚、図1において、参照符号70はファンを示す。
【0017】
これによれば、水冷式コンデンシングユニット200のコンデンサ201、及び水熱源ユニット300の熱交換器301には、それぞれ並列に冷却塔100からの冷水が供給されるので、運転効率が向上する。
【0018】
冬期においては、暖房負荷に応じて温水の流れが制御される。
暖房負荷が大きいときには、三方弁V4のポートA,Bと、三方弁V3のポートA,B,Cと、三方弁V2のポートB,Cと、三方弁V1のポートA,Cとがつながれる。冷却塔100からの冷水は、図2に実線の矢印で示すように、管路11、ポンプP、管路12を通じて、水冷式コンデンシングユニット200のコンデンサ201に流入し、そこで熱交換した後、管路13、三方弁V4のポートA,B、管路15を経て三方弁V3のポートBに至り、それと同時に、冷却塔100からの冷水は、管路24を経て、ボイラ400に流入し、このボイラ400で昇温された後、三方弁V3のポートAに至り、これらは三方弁V3で合流してポートCから流出し、三方弁V2のポートA,Cを通じて、水熱源ユニット300の熱交換器301に流入する。そして、そこを経た後、管路17、三方弁V1のポートA,Cを通じて冷却塔100に戻される。
【0019】
これによれば、コンデンサ201の廃熱とボイラ400の熱の双方が上記の熱交換器301で利用されるので、暖房負荷が大きい(例えば外気温度が低い)場合でも、十分な暖房効率をあげることができる。
【0020】
暖房負荷が小さいときには、三方弁V4のポートA,Bと、三方弁V3のポートB,Cと、三方弁V2のポートB,Cと、三方弁V1のポートA,Cとがつながれる。冷却塔100からの冷水は、図3に実線の矢印で示すように、管路11、ポンプP、管路12を通じて、水冷式コンデンシングユニット200のコンデンサ201に流入し、そこで熱交換した後、管路13、三方弁V4のポートA,B、管路15、三方弁V3のポートB,C、三方弁V2のポートB,Cを経て、水熱源ユニット300の熱交換器301に流入する。そして、そこを経た後、管路17、三方弁V1のポートA,Cを通じて冷却塔100に戻される。
【0021】
暖房負荷が小さい(例えば室内ユニット310の運転台数が少ない)ときには、コンデンサ201の廃熱だけを利用しても、十分な暖房効率をあげることができるので、ボイラ400の運転を停止させることにより、化石燃料の無駄使いを解消することができ、省資源化が図れられる。
【0022】
要するに、この実施の形態によれば、ボイラ400を設けることにより、暖房負荷の大きい場合に、能力不足に至らず、いわゆる寒冷地向けのシステムを提供することができる。また、暖房負荷が小さい場合には、ボイラ400の運転を停止させて、コンデンサ201の廃熱だけを利用した運転に切り替えることができるので、暖房運転の効率を向上させることができる。更に、コンデンサ201の廃熱を利用するシステムであるので、ボイラ400だけを利用する場合に比べ、当該ボイラ400の容量を小さくすることができる。
【0023】
【発明の効果】
以上の説明から明らかなように、管路にボイラを設けることにより、ボイラの熱を利用した暖房が可能になると共に、例えば暖房負荷が小さい場合には、ボイラの運転を停止させ、コンデンサの廃熱だけを利用した運転に切り替えることもできるので、経済的なシステムを提供することができる。
【図面の簡単な説明】
【図1】本発明による空気調和システムの一実施の形態を示す系統図である。
【図2】暖房負荷の大きい場合の冷却水の流れを示す系統図である。
【図3】暖房負荷の小さい場合の冷却水の流れを示す系統図である。
【符号の説明】
100 冷却塔
200 水冷式コンデンシングユニット
201 コンデンサ
210 ショーケース
300 水熱源ユニット
301 熱交換器
310 室内ユニット
400 ボイラ
V1〜V4 三方弁
A〜C ポート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioning system including a showcase, an air conditioner, and a cooling tower, for example.
[0002]
[Prior art]
Generally, a water-cooled condensing unit such as a showcase, a water heat source unit of an air conditioner having a plurality of indoor units, and a cooling tower are connected by a pipe, and the cooling water from the cooling tower is supplied to the water-cooled condensing unit. There are known air conditioning systems that can be circulated to the cooling unit and / or the water heat source unit.
[0003]
This type has an advantage that air conditioning can be performed by an air conditioner using waste heat in a water-cooled condensing unit such as a showcase (see, for example, Japanese Patent Publication No. Sho 54-28022).
[0004]
[Problems to be solved by the invention]
However, according to the conventional configuration, air conditioning using waste heat in the water-cooled condensing unit can be performed, but sufficient heating efficiency cannot be increased when the outside air temperature is low (cold region). There is a problem.
In order to solve this, it is conceivable to provide a boiler so that hot water can be circulated to the water heat source unit when the outside air temperature is low.
[0005]
However, in an air conditioner having a plurality of indoor units, the number of indoor units operated is increased or decreased according to the heating load, so the boiler is operated until the number of operating units decreases or the heating load decreases. In other words, there is a problem that fuel is wasted and the air conditioning system using waste heat does not function effectively.
[0006]
Accordingly, an object of the present invention is to provide an air-conditioning system that can increase sufficient heating efficiency even when the outside air temperature is low (cold region) and that can fully exhibit the function of using waste heat. There is.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention described in claim 1 includes a water-cooled condensing unit such as a showcase, a water heat source unit of an air conditioner, and a cooling tower connected by a pipe. In the air conditioning system in which the cooling water can be circulated to the water cooling type condensing unit and / or the water heat source unit, a boiler is connected to the pipeline, and the water heat source unit of the air conditioner is connected to the air conditioner during heating operation. Circulates hot water heated by the boiler and hot water heated by the water-cooled condensing unit when the heating load is large, while stopping the boiler operation when the heating load is small Only hot water heated by the water-cooled condensing unit is circulated.
[0009]
According to the first aspect of the present invention, when the heating load becomes large by providing the boiler in the pipeline, the shortage of the heating capacity as the whole system can be solved by operating the boiler. . Therefore, it becomes a system for so-called cold districts. When the heating load becomes small, the operation of the boiler can be stopped and switched to the operation using only the waste heat of the condenser, so that the efficiency of the heating operation can be improved. Furthermore, since the system uses the waste heat of the condenser, the capacity of the boiler can be designed to be smaller than when only the boiler is used.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
In FIG. 1, 100 indicates a cooling tower, 200 indicates a water-cooled condensing unit of the showcase 210, and 300 indicates a water heat source unit of an air conditioner having a plurality of indoor units 310. The cooling tower 100, the water-cooled condensing unit 200, and the water heat source unit 300 are connected by a pipe line.
[0011]
Explaining the piping system, the pipe line 11 led out from the cooling tower 100 is connected to a pump P through temperature sensors T 3 and T 4, and the pipe line 12 from the pump P is connected to the condenser 201 of the water-cooled condensing unit 200. Connected. The pipe 13 from the condenser 201 is connected to the port A of the three-way valve V4, and the port C of the three-way valve V4 is connected to the pipe 14 connected to the cooling tower 100, bypassing the water heat source unit 300 described later. A pipe line 15 is connected to the port B of the three-way valve V4, and this pipe line 15 is connected to the port B of the three-way valve V3.
[0012]
The port C of the three-way valve V3 is connected to the port B of the three-way valve V2 via the temperature sensor T2, and the heat exchanger 301 of the water heat source unit 300 is connected to the port C of the three-way valve V2 through the pipe line 16. The The heat exchanger 301 is connected to a pipe line 17, the pipe line 17 is connected to the above-described pipe line 14, and these pipe lines 14 and 17 are connected to a port A of the three-way valve V <b> 1 through a temperature sensor T <b> 1. . The port C of the three-way valve V1 is connected to the cooling tower 100 via a pipe line 18.
[0013]
More specifically, the port B of the three-way valve V1 is connected to the pipe line 11 via the pipe line 21, the port A of the three-way valve V2 is connected to the pipe line 12 via the pipe line 22, and the port A of the three-way valve V3. Is connected to the boiler 400 via the conduit 23, and the boiler 400 is connected to the conduit 12 via the conduit 24.
[0014]
The condenser 201 of the water-cooled condensing unit 200 is connected to a compressor 202, a showcase evaporator 211, and a decompression means 203 via a refrigerant pipe, and these constitute a refrigeration cycle. In addition, the heat exchanger 301 of the water heat source unit 300 constitutes an outdoor heat exchanger, and is connected to the compressor 302, the four-way valve 303, the decompression means 304, and the heat exchanger 311 of the indoor unit 310 via a refrigerant pipe. In addition, the plurality of indoor units 310 can be controlled individually.
[0015]
Next, the operation will be described.
Since the showcase 210 is used for freezing and refrigeration throughout the year, cold water from the cooling tower 100 is always supplied to the condenser 201 of the water-cooled condensing unit 200 connected to the showcase 210 regardless of summer or winter. The
[0016]
In the summer, as shown in FIG. 1, the ports A and C of the three-way valve V4, the ports A and C of the three-way valve V2, and the ports A and C of the three-way valve V1 are connected.
The cold water from the cooling tower 100 flows into the condenser 201 of the water-cooled condensing unit 200 through the pipe 11, the pump P, and the pipe 12 as indicated by solid arrows, and after heat exchange there, the pipe 13 The three-way valve V4 is returned to the cooling tower 100 through the ports A and C, the pipeline 14, the ports A and C of the three-way valve V1, and the pipeline 18. At the same time, the cold water from the cooling tower 100 flows into the heat exchanger 301 of the water heat source unit 300 through the pipe 22 and the ports A and C of the three-way valve V2, and after heat exchange there, the pipe 17 and the three-way valve It is returned to the cooling tower 100 through ports A and C of V1. In FIG. 1, reference numeral 70 indicates a fan.
[0017]
According to this, since the cold water from the cooling tower 100 is supplied in parallel to the condenser 201 of the water-cooled condensing unit 200 and the heat exchanger 301 of the water heat source unit 300, operation efficiency is improved.
[0018]
In winter, the flow of hot water is controlled according to the heating load.
When the heating load is large, the ports A and B of the three-way valve V4, the ports A, B and C of the three-way valve V3, the ports B and C of the three-way valve V2, and the ports A and C of the three-way valve V1 are connected. . The cold water from the cooling tower 100 flows into the condenser 201 of the water-cooled condensing unit 200 through the pipe 11, the pump P, and the pipe 12, as indicated by solid arrows in FIG. The pipe 13, the ports A and B of the three-way valve V 4, and the pipe 15 reach the port B of the three-way valve V 3. At the same time, the cold water from the cooling tower 100 flows into the boiler 400 through the pipe 24, After the temperature is raised by the boiler 400, it reaches the port A of the three-way valve V3, which merges at the three-way valve V3 and flows out from the port C, and passes through the ports A and C of the three-way valve V2 to heat the water heat source unit 300. It flows into the exchanger 301. And after passing there, it returns to the cooling tower 100 through the pipe 17 and the ports A and C of the three-way valve V1.
[0019]
According to this, since both the waste heat of the condenser 201 and the heat of the boiler 400 are used in the heat exchanger 301, sufficient heating efficiency is increased even when the heating load is large (for example, the outside air temperature is low). be able to.
[0020]
When the heating load is small, ports A and B of the three-way valve V4, ports B and C of the three-way valve V3, ports B and C of the three-way valve V2, and ports A and C of the three-way valve V1 are connected. The cold water from the cooling tower 100 flows into the condenser 201 of the water-cooled condensing unit 200 through the pipe 11, the pump P, and the pipe 12, as indicated by solid arrows in FIG. It flows into the heat exchanger 301 of the water heat source unit 300 through the pipe 13, the ports A and B of the three-way valve V 4, the pipe 15, the ports B and C of the three-way valve V 3, and the ports B and C of the three-way valve V 2. And after passing there, it returns to the cooling tower 100 through the pipe 17 and the ports A and C of the three-way valve V1.
[0021]
When the heating load is small (for example, the number of operating indoor units 310 is small), even if only the waste heat of the condenser 201 is used, sufficient heating efficiency can be increased. Therefore, by stopping the operation of the boiler 400, The wasteful use of fossil fuel can be eliminated and resource saving can be achieved.
[0022]
In short, according to this embodiment, by providing the boiler 400, it is possible to provide a system for a so-called cold region without being short of capacity when the heating load is large. Further, when the heating load is small, the operation of the boiler 400 can be stopped and switched to an operation using only the waste heat of the condenser 201, so that the efficiency of the heating operation can be improved. Furthermore, since the system uses the waste heat of the condenser 201, the capacity of the boiler 400 can be reduced as compared with the case where only the boiler 400 is used.
[0023]
【The invention's effect】
As is clear from the above description, by providing a boiler in the pipeline, heating using the heat of the boiler becomes possible. For example, when the heating load is small, the operation of the boiler is stopped and the condenser is discarded. Since it is possible to switch to operation using only heat, an economical system can be provided.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of an air conditioning system according to the present invention.
FIG. 2 is a system diagram showing the flow of cooling water when the heating load is large.
FIG. 3 is a system diagram showing the flow of cooling water when the heating load is small.
[Explanation of symbols]
100 Cooling tower 200 Water-cooled condensing unit 201 Condenser 210 Showcase 300 Water heat source unit 301 Heat exchanger 310 Indoor unit 400 Boiler V1 to V4 Three-way valve A to C Port

Claims (1)

ショーケースと冷媒管を介してつながれショーケース用の冷凍サイクルを構成する水冷式コンデンシングユニットと、室内ユニットと冷媒管を介してつながれ空調用の冷凍サイクルを構成する空気調和機の水熱源ユニットと、冷水を生成する冷却塔とを備え、前記水冷式コンデンシングユニットのコンデンサと前記水熱源ユニットの熱交換器と前記冷却塔とを管路でつなぎ、この冷却塔からの冷却水を、前記水冷式コンデンシングユニット、及び/又は前記水熱源ユニットに循環可能にし、前記両冷凍サイクルの運転によってショーケースの冷却と室内ユニットの空調が行える空気調和システムにおいて、前記管路にはボイラをつなぎ、暖房運転時に前記水熱源ユニットの熱交換器には、暖房負荷が大きい時は前記ボイラにより昇温させた温水と前記水冷式コンデンシングユニットのコンデンサにより昇温させた温水とを循環させ、一方、暖房負荷が小さい時は前記ボイラの運転を停止させて前記水冷式コンデンシングユニットのコンデンサにより昇温させた温水のみを循環させることを特徴とする空気調和システム。 A water-cooled condensing unit that forms a refrigeration cycle for a showcase connected through a showcase and a refrigerant pipe, and a water heat source unit for an air conditioner that forms a refrigeration cycle for an air conditioner connected through an indoor unit and a refrigerant pipe A cooling tower that generates cold water, and a condenser of the water-cooled condensing unit, a heat exchanger of the water heat source unit, and the cooling tower are connected by a pipe, and the cooling water from the cooling tower is cooled with the water-cooling In an air conditioning system that can be circulated to the water-type condensing unit and / or the water heat source unit, and can cool the showcase and air-condition the indoor unit by operating both refrigeration cycles, a boiler is connected to the pipe line, and heating is performed. During operation, the heat exchanger of the water heat source unit has a temperature raised by the boiler when the heating load is large. And hot water heated by the condenser of the water-cooled condensing unit are circulated, while when the heating load is small, the operation of the boiler is stopped and the hot water heated by the condenser of the water-cooled condensing unit is heated. Air conditioning system characterized by circulating only air.
JP27422095A 1995-10-23 1995-10-23 Air conditioning system Expired - Fee Related JP3670731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27422095A JP3670731B2 (en) 1995-10-23 1995-10-23 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27422095A JP3670731B2 (en) 1995-10-23 1995-10-23 Air conditioning system

Publications (2)

Publication Number Publication Date
JPH09113006A JPH09113006A (en) 1997-05-02
JP3670731B2 true JP3670731B2 (en) 2005-07-13

Family

ID=17538706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27422095A Expired - Fee Related JP3670731B2 (en) 1995-10-23 1995-10-23 Air conditioning system

Country Status (1)

Country Link
JP (1) JP3670731B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4327296B2 (en) * 1999-03-19 2009-09-09 株式会社Nttファシリティーズ Air conditioning system
KR101198457B1 (en) 2006-09-01 2012-11-06 엘지전자 주식회사 Water cooling type air conditioner

Also Published As

Publication number Publication date
JPH09113006A (en) 1997-05-02

Similar Documents

Publication Publication Date Title
JP3858015B2 (en) Refrigerant circuit and heat pump water heater
JP2006258343A (en) Air conditioning system
JP2001099514A (en) Heat storage type air-conditioning and refrigerating device
JP2007198730A (en) Air conditioning refrigeration device
JP3670731B2 (en) Air conditioning system
JP4809055B2 (en) Air conditioner and other function addition equipment
JP2001201143A (en) Air conditioner
JPH1054619A (en) Air conditioning method and air conditioning system
JP2010243005A (en) Dehumidification system
CN100552310C (en) The air-conditioning unit of many cold and heat sources
JP2004028576A (en) Air conditioning refrigerating device
JP3044409B2 (en) Air conditioning system
JP2006145098A (en) Heat storage type air conditioner
JPH05118595A (en) Water heat source air-conditioner device and air-conditioning facility employing the same device
CN2524181Y (en) Multiple system blowing pipe style heat pump defroster
JP2007147133A (en) Air conditioner
CN1427231A (en) Multi system air duct blow type heat pump machine frost eliminating method
JPH04103931A (en) Air-handling unit and its operation
JP2691423B2 (en) Engine driven heat pump air conditioner
JPH0548039Y2 (en)
JP3046044B2 (en) Air conditioning system
JP3357827B2 (en) Floor heating system
JP3173234B2 (en) Cold water supply system using a direct-fired absorption refrigerator
JP2002071238A (en) Heat storage tank
JP3999874B2 (en) Air conditioning system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees