JP4327296B2 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP4327296B2
JP4327296B2 JP07577699A JP7577699A JP4327296B2 JP 4327296 B2 JP4327296 B2 JP 4327296B2 JP 07577699 A JP07577699 A JP 07577699A JP 7577699 A JP7577699 A JP 7577699A JP 4327296 B2 JP4327296 B2 JP 4327296B2
Authority
JP
Japan
Prior art keywords
water
temperature
heat exchanger
air conditioning
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07577699A
Other languages
Japanese (ja)
Other versions
JP2000274785A (en
Inventor
正佳 小松
明 高草木
広文 羽山
正道 絵内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP07577699A priority Critical patent/JP4327296B2/en
Publication of JP2000274785A publication Critical patent/JP2000274785A/en
Application granted granted Critical
Publication of JP4327296B2 publication Critical patent/JP4327296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、水循環サイクルを持つ空調システムに関する。
【0002】
【従来の技術】
熱源機で得られる冷水または温水を熱交換器に通して循環させる空調システムがある。
【0003】
この空調システムでは、熱源機から熱交換器に冷水を直接的に供給した場合、熱交換器の一部の表面温度が空調空間内の空気の露点温度より低くなり、熱交換器の表面に結露を生じることがある。
【0004】
一方、熱交換器を天井に設置する天井冷房方式や、建物の躯体に冷水用配管を埋設する躯体冷房方式の場合、結露水の処理設備を取り付けることがなかなか難しく、結露水による被害が懸念される。
【0005】
従来、結露を防ぐ手段として、熱源機から熱交換器に供給される冷水の温度を室内空気の露点温度より高くする方法がある。
【0006】
なお、空調システムの例として、特開平9−166346号公報に示されるように、熱交換器から熱源システムへと戻る水の温度を検出し、その検出温度が一定値となるよう熱源システムから熱交換器への供給水量を操作すると同時に、熱源システムに戻る水の一部を熱交換器の入口側に供給し、その供給量を制御対象温度に応じて調節することで熱交換器内の循環流量を操作し、制御対象量(室温および/または給気温度、還水温度)を目標値に到達させるものが知られている。
【0007】
【発明が解決しようとする課題】
上記のように、熱源機から熱交換器に供給される冷水の温度を室内空気の露点温度より高くする場合、その高くなった分の冷熱エネルギの遺失分を補うために、熱源機から熱交換器への冷水の供給量を多くしなければならない。
【0008】
しかしながら、熱源機から熱交換器への冷水の供給量を多くするためには、冷水の搬送に必要なエネルギ、たとえば送水用ポンプの消費電力が増大するという新たな問題がある。
【0009】
これに対し、上記公報のように、熱源システムに戻る水の一部を熱交換器の入口側に供給するものでは、仮に熱源機から熱交換器に供給される冷水の温度を室内空気の露点温度より高くした場合でも、熱源システムから熱交換器への冷水の供給量を多くすることなく、熱交換器において十分な量の冷熱を取り出すことができる。
【0010】
ただし、この場合の制御対象量は、空調空間内の温度および/または空調空間への給気温度、それから還水温度であり、熱交換器に流入する冷水の温度を所望の値(たとえば露点温度より高い値)に維持できないという別の問題がある。
【0011】
この発明は上記の事情を考慮したもので、その目的とするところは、水の熱エネルギを多段階に有効活用して省エネルギ効果の向上が図れるとともに、熱交換器または空調ユニットに流入する水の温度をたとえば結露対策用の所望の値に確実に維持することができ、しかも水の送出量を多くすることなく、ひいては水の搬送エネルギの増大を生じることなく、熱交換器または空調ユニットでの十分な量の放熱が可能な信頼性にすぐれた空調システムを提供することにある。
【0014】
課題を解決するための手段
請求項に係る発明の空調システムは、熱源機で冷却された水を1段側熱交換器に通して上記熱源機に戻し、上記熱源機で冷却された水の一部および上記1段側熱交換器を経た水の一部を混合部に導き、その混合部の水を2段側熱交換器に通して上記熱源機に戻し、その2段側熱交換器を経た水の一部をそのまま上記混合部に導くと共に屋外設置冷却手段に通してから上記混合部に導く水循環サイクルと;上記1段側熱交換器から上記混合部への水の流量を調節するための第1流量調節弁と;上記熱源機から上記混合部への水の流量を調節するための第2流量調節弁と;上記2段側熱交換器から上記混合部への水の流量を調節するための第3流量調節弁と;上記屋外設置冷却手段から上記混合部への水の流量を調節するための第4流量調節弁と;上記混合部から上記2段側熱交換器に供給される水の温度を検知する温度検知手段と;この温度検知手段の検知温度が目標値となるよう上記各流量調節弁の開度を制御する制御手段と;を備える。
【0015】
すなわち、請求項に係る発明では、熱源機で冷却された水が1段側熱交換器に供給され、その1段側熱交換器を経た水が熱源機に戻るとともに、1段側熱交換器を経た水の一部が混合部を介して2段側熱交換器に供給され、その2段側熱交換器を経た水が熱源機に戻る。さらに、2段側熱交換器を経た水の一部が、そのまま混合部に導かれると共に、屋外設置冷却手段を経由してから混合部に導かれる。混合部には、1段側熱交換器を経た水の一部、および2段側熱交換器を経た水の一部、屋外設置冷却手段を経た水だけでなく、熱源機で冷却された水の一部も導かれる。こうして混合部に導かれる4種類の温度レベルの異なる水は混合部において混合され、その混合(温度調節)された水が2段側熱交換器に供給される。このとき、混合部から2段側熱交換器に供給される水の温度が検知されており、その検知温度が目標値となるよう、混合部に導入される上記4種類の水の量がそれぞれ調節される。
【0016】
請求項に係る発明の空調システムは、請求項1に係る発明において、制御手段が、目標値として、2段側熱交換器が設置されている被空調空間の空気の露点温度より高い値を持つ。
【0017】
請求項に係る発明の空調システムは、請求項1に係る発明において、熱源機として、複数台が設けられている。
【0018】
請求項に係る発明の空調システムは、請求項に係る発明において、さらに、各熱源機に流入する水の量を検知する流量センサと;各熱源機に流入する水の温度を検知する第1温度センサと;各熱源機から流出する水の温度を検知する第2温度センサと;上記流量センサの検知流量に応じて各熱源機の運転台数を制御する第1制御手段と;上記各温度センサの検知温度の変化に応じて各熱源機の運転台数を補正制御する第2制御手段と;各熱源機の入口側と出口側との間に設けられた圧力調整手段と;各熱源機に流入する水の圧力と同各熱源機から流出する水の圧力との差を検知する差圧センサと;この差圧センサの検知結果が設定値となるよう上記圧力調整手段を制御する第3制御手段と;を備える。
【0019】
請求項に係る発明の空調システムは、請求項1に係る発明において、さらに、混合部と2段側熱交換器との間に設けられた送水用のポンプと;2段側熱交換器から流出する水の量を検知する流量センサと;この流量センサの検知流量に応じて上記ポンプの能力を制御する第1制御手段と;2段側熱交換器の出口側と混合部との間に設けられた圧力調整手段と;2段側熱交換器から流出する水の圧力と混合部内の水の圧力との差を検知する差圧センサと;この差圧センサの検知結果が設定値となるよう上記圧力調整手段を制御する第2制御手段と;を備える。
【0022】
請求項に係る発明の空調システムは、熱源機で冷却された水を第1空調ユニットに通して上記熱源機に戻し、上記熱源機で冷却された水の一部および上記第1空調ユニットを経た水の一部を混合部に導き、その混合部の水を第2空調ユニットに通して上記熱源機に戻し、その第2空調ユニットを経た水の一部をそのまま上記混合部に導くと共に屋外設置冷却手段に通してから上記混合部に導く水循環サイクルと;上記第1空調ユニットから上記混合部への水の流量を調節するための第1流量調節弁と;上記熱源機から上記混合部への水の流量を調節するための第2流量調節弁と;上記第2空調ユニットから上記混合部への水の流量を調節するための第3流量調節弁と;上記屋外設置冷却手段から上記混合部への水の流量を調節するための第4流量調節弁と;上記混合部から上記第2空調ユニットに供給される水の温度を検知する温度検知手段と;この温度検知手段の検知温度が目標値となるよう上記各流量調節弁の開度を制御する制御手段と;を備える。
【0023】
すなわち、請求項に係る発明では、熱源機で冷却された水が第1空調ユニットに供給され、その第1空調ユニットを経た水が熱源機に戻るとともに、第1空調ユニットを経た水の一部が混合部を介して第2空調ユニットに供給され、その第2空調ユニットを経た水が熱源機に戻る。さらに、第2空調ユニットを経た水の一部が、そのまま混合部に導かれると共に、屋外設置冷却手段を経由してから混合部に導かれる。混合部には、第1空調ユニットを経た水の一部、および第2空調ユニットを経た水の一部、屋外設置冷却手段を経た水だけでなく、熱源機で冷却された水の一部も導かれる。こうして混合部に導かれる4種類の温度レベルの異なる水は混合部において混合され、その混合(温度調節)された水が第2空調ユニットに供給される。このとき、混合部から第2空調ユニットに供給される水の温度が検知されており、その検知温度が目標値となるよう、混合部に導入される上記4種類の水の量がそれぞれ調節される。
【0024】
請求項に係る発明の空調システムは、請求項6に係る発明において、第1空調ユニットが、熱源機から供給される水と被空調空間の空気との熱交換を行う1段側熱交換器と;この1段側熱交換器を通る水の量を調節するための第1流量調節弁と;被空調空間の空気を上記1段側熱交換器に通して循環させるファンと;上記1段側熱交換器を経た空気の温度を検知する第1温度検知手段と;この第1温度検知手段の検知温度が設定値となるよう上記第1流量調節弁の開度を制御する第1制御器と;を有している。また、第2空調ユニットが、混合部から供給される水と被空調空間の自然対流空気との熱交換を行う2段側熱交換器と;この2段側熱交換器を通る水の量を調節するための第2流量調節弁と;2段側熱交換器を経た空気の温度を検知する第2温度検知手段と;この第2温度検知手段の検知温度が設定値となるよう上記第2流量調節弁の開度を制御する第2制御器と;を有している。さらに、制御手段が、目標値として、第2空調ユニットが設置されている被空調空間の空気の露点温度より高く、かつ第2空調ユニットにおける上記設定値より低い値を持つ。
【0025】
【発明の実施の形態】
[1]以下、この発明の第1実施例について図面を参照して説明する。
【0026】
図1において、1は熱源機器室、20は被空調空間たとえば被空調室、50は空調機械室で、同じ建物に設置される。
【0027】
この熱源機器室1、被空調室20、空調機械室50において、次の水循環サイクルが構成される。
【0028】
まず、熱源機器室1に還水管2が導入され、その還水管2を通る水がヘッダ3を介して送水用のポンプ4,6に吸込まれる。ポンプ4,6は、インバータ11,12の出力電圧によって駆動されるもので、その駆動電源の周波数に応じて能力が変化する。
【0029】
ポンプ4,6から送出される水は熱源機5,7に送られる。熱源機5,7は、ポンプ4,6から送られる水を冷却または加熱し、これにより冷房用の冷水または暖房用の温水を作るもので、吸収冷温水機などの採用が考えられる。
【0030】
熱源機5,7から流出する冷水または温水はヘッダ8および往水管9を介して被空調室20における複数の第1空調ユニット30に導かれ、その各第1空調ユニット30を経た水が水管21を介して上記還水管2に戻される。
【0031】
水管21を通る水(各第1空調ユニット30を経た水)の一部が、空調機械室50に導かれ、第1流量調節弁51を介して混合部たとえばヘッダ54に導かれる。
【0032】
往水管9を通る水(熱源機5,7から流出する冷水または温水)の一部が、空調機械室50に導かれ、第2流量調節弁52を介して上記ヘッダ54に導かれる。
【0033】
ヘッダ54内の水は送水用のポンプ55に吸込まれ、そのポンプ55から送出される水が配管22を介して被空調室20における複数の第2空調ユニット40に供給される。これら第2空調ユニット40を経た水は配管23によって空調機械室50におけるヘッダ57に導かれ、そのヘッダ57から還水管2に導かれる。ヘッダ57内の水の一部(各第2空調ユニット40を経た水の一部)は、第3流量調節弁53を介して上記ヘッダ54に導かれる。
【0034】
熱源機器室1には、上記の構成のほかに、熱源機5,7に流入する水の量を検知する流量センサ13、熱源機5,7に流入する水の温度を検知する温度センサ14、熱源機5,7から流出する水の温度を検知する温度センサ15、制御器10が設けられる。制御器10は、上記流量センサ13の検知流量に応じて熱源機5,7の運転台数(およびポンプ4,6の運転台数)を制御する第1制御手段と、上記温度センサ14,15の検知温度の変化に応じて熱源機5,7の運転台数を補正制御する第2制御手段とを有する。
【0035】
さらに、熱源機器室1において、熱源機5,7の入口側に位置するヘッダ3と出口側に位置するヘッダ8との間に圧力調整手段および差圧センサ17が設けられるとともに、制御器(第3制御手段)18が設けられる。
【0036】
圧力調整手段は、ヘッダ3,8を連通する状態に水管を接続し、その水管に圧力調整弁16を設けたものである。差圧センサ17は、ヘッダ3内の水の圧力(熱源機5,7に流入する水の圧力)とヘッダ8内の水の圧力(熱源機5,7から流出する水の圧力)との差を検知する。制御器18は、差圧センサ17の検知結果が予め定めた設定値となるよう、圧力調整弁16の開度を制御する。
【0037】
被空調室20における各第1空調ユニット30は、被空調室20において主に窓の近くのゾーンに設置されており、熱源機5,7から供給される水と室内空気(または室内空気と換気用外気との混合空気)との熱交換を行う1段側熱交換器31と、この1段側熱交換器31を通る水の量を調節するための流量調節弁32と、室内空気(または室内空気と換気用外気との混合空気)を1段側熱交換器31に通して循環させるファン33と、1段側熱交換器31を経た空気の温度を検知する室内温度センサ(温度検知手段)34と、この室内温度センサ34の検知温度が居住者や建物管理者によって予め定められた室内温度設定値となるよう流量調節弁32の開度を制御する制御器35を有する。
【0038】
これら第1空調ユニット30のうち、何台かはいわゆるファンコイルユニット(室内空気と熱交換を行う)、別の何台かは外気調和機(室内空気と換気用外気の混合空気と熱交換を行う)などに該当する。
【0039】
各第2空調ユニット40は、被空調室20において主に天井面に設置されており、混合部であるヘッダ54からポンプ55によって供給される水と自然対流室内空気との熱交換を行う2段側熱交換器41と、この2段側熱交換器41を通る水の量を調節するための流量調節弁42と、2段側熱交換器41を経た空気の温度を検知する室内温度センサ(温度検知手段)43と、この室内温度センサ43の検知温度が居住者や建物管理者によって予め定められた室内温度設定値となるよう流量調節弁42の開度を制御する制御器44を有する。ポンプ55は、インバータ61の出力電圧によって駆動されるもので、その駆動電源の周波数に応じて能力が変化する。
【0040】
これら、2段側熱交換器41は、いわゆる天井放射パネル(金属パネル、配管、断熱材により構成されるパネル形状のもの)や天井放射コンベクター(多数のアルミプレートフィン、銅管により構成されるコイル形状のもの)や建物の躯体に冷温水用配管を埋設したものなどが該当する。
【0041】
また、空調機械室50には、上記の構成のほかに、各空調ユニット40の2段側熱交換器41から流出する水の量を検知する流量センサ62、この流量センサ62の検知流量に応じて上記ポンプ55の能力(インバータ61の出力周波数)を制御する制御器(第1制御手段)60が設けられる。
【0042】
さらに、空調機械室50において、各空調ユニット40の出口側に位置するヘッダ57と混合部であるヘッダ54との間に圧力調整手段および差圧センサ64が設けられるとともに、制御器(第2制御手段)65が設けられる。
【0043】
圧力調整手段は、ヘッダ57,54を連通する状態に水管を接続し、その水管に圧力調整弁63を設けたものである。差圧センサ64は、ヘッダ57内の水の圧力(各2段側熱交換器41から流出する水の圧力)とヘッダ54内の水の圧力との差を検知する。制御器65は、差圧センサ64の検知結果が予め定めた設定値となるよう、圧力調整弁63の開度を制御する。
【0044】
また、空調機械室50において、ポンプ55の下流のヘッダ56に温度センサ58が設けられ、その温度センサ58が上記流量調節弁51,52,53と共に制御器59に接続される。制御器59は、温度センサ58の検知温度(ポンプ55から各2段側熱交換器41に供給される水の温度)Tが目標値Tsetとなるよう、流量調節弁51,52,53の開度を制御する。
【0045】
つぎに、上記の構成の作用を説明する。
【0046】
まず、冷房について説明する。
【0047】
熱源機5,7で作られる冷水がポンプ4,6の送水圧力を受けて各空調ユニット30の1段側熱交換器31に供給され、その1段側熱交換器31を経た冷水が熱源機5,7に戻るとともに、1段側熱交換器31を経た冷水の一部がヘッダ54を介して各空調ユニット40の2段側熱交換器41に供給され、その2段側熱交換器41を経た冷水が熱源機5,7に戻る。
【0048】
さらに、2段側熱交換器41を経た冷水の一部がヘッダ54に導かれる。ヘッダ54には、1段側熱交換器31を経た冷水の一部、および2段側熱交換器41を経た冷水の一部だけでなく、熱源機5,7から供給される冷水の一部も導かれる。こうしてヘッダ54に導かれる3種類の温度レベルの異なる冷水はヘッダ54において混合され、その混合(温度調節)された冷水がポンプ55によって2段側熱交換器41に供給される。
【0049】
ところで、1段側熱交換器31に流入する冷水の温度は、たとえば7℃である。この冷水は、1段側熱交換器31での熱交換により、12℃程度まで温度上昇して1段側熱交換器31から流出する。ここでの熱交換作用により、被空調室20内が冷房される。
【0050】
そして、室内温度が室内温度センサ34によって検知され、その検知温度が設定室内温度に達するよう、流量調節弁32の開度が制御され、1段側熱交換器31を通る冷水の量が調節される。
【0051】
一方、ヘッダ54から2段側熱交換器41に供給される冷水の温度Tが温度センサ58によって検知されており、その検知温度Tが目標値Tsetとなるよう、流量調節弁51,52,53の開度が制御される(TとTsetとの差に応じて比例制御される)。つまり、ヘッダ54に導入される上記3種類の冷水の量が調節される。この開度制御の様子を図2のフローチャートに示している。
【0052】
すなわち、検知温度Tが目標値Tsetより低い場合、熱源機系統の流量調節弁52が全閉で、2段側熱交換器系統の流量調節弁53が全開していれば、1段側熱交換器系統の流量調節弁51が閉方向に比例制御される。
【0053】
検知温度Tが目標値Tsetより低い場合、熱源機系統の流量調節弁52が全閉で、2段側熱交換器系統の流量調節弁53が全開していなければ、その流量調節弁53が開方向に比例制御される。
【0054】
検知温度Tが目標値Tsetより低い場合、熱源機系統の流量調節弁52が全閉していなければ、その流量調節弁52が閉方向に比例制御される。
【0055】
検知温度Tが目標値Tsetより高い場合、1段側熱交換器系統の流量調節弁51が全開で、2段側熱交換器系統の流量調節弁53が全閉していれば、熱源機系統の流量調節弁52が開方向に比例制御される。
【0056】
検知温度Tが目標値Tsetより高い場合、1段側熱交換器系統の流量調節弁51が全開で、2段側熱交換器系統の流量調節弁53が全閉していなければ、その流量調節弁53が閉方向に比例制御される。
【0057】
検知温度Tが目標値Tsetより高い場合、1段側熱交換器系統の流量調節弁51が全開していなければ、その流量調節弁51が開方向に比例制御される。
【0058】
目標値Tsetとしては、被空調室20内の空気の露点温度たとえば16℃より高く、かつ第2空調ユニット40における設定室内温度たとえば26℃より低い値、たとえば18℃が選定される。この18℃に温度制御された冷水が2段側熱交換器41で室内空気と熱交換することにより、空気の対流伝熱による冷房が行われる。同時に、第2空調ユニット40の室内側面から、被空調室20内の人体等の冷房対象に対して冷放射が発生し、放射伝熱による冷房が行われる。このとき、2段側熱交換器41の表面に結露は生じない。
【0059】
2段側熱交換器41を経て熱源機5,7に戻る冷水の温度は20℃程度まで高まっており、それが熱源機5,7で再び冷却されて7℃の冷水となる。
【0060】
熱源機器室1では、熱源機5,7に戻る冷水の量が流量センサ13によって検知され、その検知流量に応じて熱源機5,7の運転台数が制御される。検知流量が多ければ運転台数が2台、検知流量が少なければ運転台数が1台となる。この運転台数制御により、運転エネルギを最小化した効率の良い運転が実行される。
【0061】
ただし、熱源機5,7に戻る冷水の温度が温度センサ14で検知されており、その検知温度が下降した場合には、運転台数が減少方向に補正制御される。熱源機5,7から流出する冷水の温度が温度センサ15で検知されており、その検知温度が上昇した場合には、運転台数が増加方向に補正制御される。
【0062】
また、熱源機5,7に戻る冷水の圧力と熱源機5,7から流出する冷水の圧力との差が差圧センサ17で検知され、その検知圧力が予め定めた設定値となるよう、圧力調整弁16の開度が制御される。この制御により、熱源機5,7に戻る冷水の量の変動が抑制され、常に安定した量の冷水が熱源機5,7に戻るようになる。ひいては、熱源機5,7の安定かつ効率の良い運転を行うことができる。
【0063】
空調機械室50では、2段側熱交換器41から流出する冷水の量が流量センサ62で検知され、その検知流量に応じてポンプ55の能力が制御される(変流量制御)。たとえば、各空調ユニット40の空調負荷が減少して2段側熱交換器41から流出する冷水の量が減った場合には、それに見合うように、ポンプ55の能力が低減されてヘッダ54から各空調ユニット40への冷水の供給量が減らされる。各空調ユニット40の空調負荷が増大して2段側熱交換器41から流出する冷水の量が増えた場合には、それに見合うように、ポンプ55の能力が増加されてヘッダ54から各空調ユニット40への冷水の供給量が増やされる。
【0064】
また、2段側熱交換器41から流出する冷水の圧力とヘッダ54内の冷水の圧力との差が差圧センサ64で検知され、その検知圧力が予め定めた設定値となるよう、圧力調整弁63の開度が制御される。この制御により、ポンプ55に供給される冷水の量の変動が抑制され、ポンプ55の能力に対応する常に安定した量の冷水が2段側熱交換器41に供給されるようになる。ひいては、2段側熱交換器41での安定かつ効率の良い熱交換を行うことができる。
【0065】
以上のように、熱源機5,7で得られる冷水の熱エネルギを1段側熱交換器31および2段側熱交換器41で多段階に有効利用しながら、2段側熱交換器41に供給される冷水の温度をその2段側熱交換器41での結露が生じない温度に確実に維持することができる。2段側熱交換器41を有する各空調ユニット40は、天井面に設置されるタイプであるため、結露水の処理設備を設けることがもともと難しい状況にあり、そのような設置状況においても結露水の落下など不都合のない最適な空調を行うことができる。
【0066】
しかも、熱エネルギを多段階利用することで、省エネルギ効果が得られるとともに、熱源機5,7から送り出される冷水の温度いわゆる往水温度と熱源機5,7に戻る冷水の温度いわゆる還水温度との差を大きくとることができる。往水温度と還水温度との差を大きくとれることにより、熱源機5,7から送り出される冷水の量を多くしなくても、ひいてはポンプ4,6の消費電力(水の搬送エネルギ)の増大を招くことなく、1段側熱交換器31および2段側熱交換器41においてそれぞれの負荷に見合う十分な量の冷熱を取り出すことが可能である。
【0067】
次に、暖房について説明する。
【0068】
熱源機5,7で作られる温水がポンプ4,6の送水圧力を受けて各空調ユニット30の1段側熱交換器31に供給され、その1段側熱交換器31を経た温水が熱源機5,7に戻るとともに、1段側熱交換器31を経た温水の一部がヘッダ54を介して各空調ユニット40の2段側熱交換器41に供給され、その2段側熱交換器41を経た温水が熱源機5,7に戻る。
【0069】
さらに、2段側熱交換器41を経た温水の一部がヘッダ54に導かれる。ヘッダ54には、1段側熱交換器31を経た温水の一部、および2段側熱交換器41を経た温水の一部だけでなく、熱源機5,7から供給される温水の一部も導かれる。こうしてヘッダ54に導かれる3種類の温度レベルの異なる温水はヘッダ54において混合され、その混合(温度調節)された温水がポンプ55によって2段側熱交換器41に供給される。
【0070】
ところで、1段側熱交換器31に流入する温水の温度は、たとえば50℃である。この温水は、1段側熱交換器31での熱交換により、45℃程度まで温度下降して1段側熱交換器31から流出する。ここでの熱交換作用により、被空調室20内が暖房される。
【0071】
そして、室内温度が室内温度センサ34によって検知され、その検知温度が設定室内温度に達するよう、流量調節弁32の開度が制御され、1段側熱交換器31を通る温水の量が調節される。
【0072】
一方、ヘッダ54から2段側熱交換器41に供給される温水の温度Tが温度センサ58によって検知されており、その検知温度Tが目標値Tsetとなるよう、流量調節弁51,52,53の開度が制御される(TとTsetとの差に応じて比例制御される)。
【0073】
目標値Tsetとしては、第2空調ユニット40における設定室内温度たとえば22℃より高い値、たとえば37℃が選定される。この37℃に温度制御された温水が2段側熱交換器41で室内空気と熱交換することにより、空気の対流伝熱による暖房が行われる。同時に、第2空調ユニット40の室内側面から、被空調室20内の人体等の暖房対象に対して温放射が発生し、放射伝熱による暖房が行われる。
【0074】
2段側熱交換器41を経て熱源機5,7に戻る温水の温度は35℃程度に下がっており、それが熱源機5,7で再び加熱されて50℃の温水となる。
【0075】
熱源機器室1では、熱源機5,7に戻る温水の量が流量センサ13によって検知され、その検知流量に応じて熱源機5,7の運転台数が制御される。検知流量が多ければ運転台数が2台、検知流量が少なければ運転台数が1台となる。この運転台数制御により、運転エネルギを最小化した効率の良い運転が実行される。
【0076】
ただし、熱源機5,7に戻る温水の温度が温度センサ14で検知されており、その検知温度が上昇した場合には、運転台数が減少方向に補正制御される。熱源機5,7から流出する温水の温度が温度センサ15で検知されており、その検知温度が下降した場合には、運転台数が増加方向に補正制御される。
【0077】
また、熱源機5,7に戻る温水の圧力と熱源機5,7から流出する温水の圧力との差が差圧センサ16で検知され、その検知圧力が予め定めた設定値となるよう、圧力調整弁16の開度が制御される。この制御により、熱源機5,7に戻る温水の量の変動が抑制され、常に安定した量の温水が熱源機5,7に戻るようになる。ひいては、熱源機5,7の安定かつ効率の良い運転を行うことができる。
【0078】
空調機械室50では、2段側熱交換器41から流出する温水の量が流量センサ62で検知され、その検知流量に応じてポンプ55の能力が制御される(変流量制御)。たとえば、各空調ユニット40の空調負荷が減少して2段側熱交換器41から流出する温水の量が減った場合には、それに見合うように、ポンプ55の能力が低減されてヘッダ54から各空調ユニット40への温水の供給量が減らされる。各空調ユニット40の空調負荷が増大して2段側熱交換器41から流出する温水の量が増えた場合には、それに見合うように、ポンプ55の能力が増加されてヘッダ54から各空調ユニット40への温水の供給量が増やされる。
【0079】
また、2段側熱交換器41から流出する温水の圧力とヘッダ54内の温水の圧力との差が差圧センサ64で検知され、その検知圧力が予め定めた設定値となるよう、圧力調整弁63の開度が制御される。この制御により、ポンプ55に供給される温水の量の変動が抑制され、ポンプ55の能力に対応する常に安定した量の温水が2段側熱交換器41に供給されるようになる。ひいては、2段側熱交換器41での安定かつ効率の良い熱交換を行うことができる。
【0080】
以上のように、熱源機5,7で得られる温水の熱エネルギを1段側熱交換器31および2段側熱交換器41で多段階に有効利用しながら、2段側熱交換器41に供給される温水の温度を所望の温度に確実に維持することができる。
【0081】
しかも、熱エネルギを多段階利用することで、省エネルギ効果が得られるとともに、熱源機5,7から送り出される温水の温度いわゆる往水温度と熱源機5,7に戻る温水の温度いわゆる還水温度との差を大きくとることができる。往水温度と還水温度との差を大きくとれることにより、熱源機5,7から送り出される温水の量を多くしなくても、ひいてはポンプ4,6の消費電力(水の搬送エネルギ)の増大を招くことなく、1段側熱交換器31および2段側熱交換器41においてそれぞれの負荷に見合う十分な量の温熱を取り出すことが可能である。
【0082】
[2]第2実施例について説明する。
【0083】
図3に示すように、空調機械室50のヘッダ57に配管71を介して外気冷房運転用の屋外設置冷却手段たとえば冷却塔70が接続され、その冷却塔70が配管72、送水用ポンプ73、および第4流量調節弁74を介してヘッダ54に接続される。冷却塔70は、ヘッダ57から導かれる水の熱を外気に放出するもので、クーリングタワーとも称され、建物の屋上などに設置される。
【0084】
流量調節弁74は、制御器59に接続される。制御器59は、温度センサ58の検知温度(ポンプ55から各2段側熱交換器41に供給される水の温度)Tが目標値Tsetとなるよう、流量調節弁51,52,53,74の開度を制御する。
【0085】
作用を説明する。
【0086】
まず、冷房について説明する。
【0087】
熱源機5,7で作られる冷水がポンプ4,6の送水圧力を受けて各空調ユニット30の1段側熱交換器31に供給され、その1段側熱交換器31を経た冷水が熱源機5,7に戻るとともに、1段側熱交換器31を経た冷水の一部がヘッダ54を介して各空調ユニット40の2段側熱交換器41に供給され、その2段側熱交換器41を経た冷水が熱源機5,7に戻る。
【0088】
さらに、2段側熱交換器41を経た冷水の一部が、ヘッダ57からそのままヘッダ54に導かれるとともに、ヘッダ57から冷却塔70を経由してヘッダ54に導かれる。ヘッダ54には、1段側熱交換器31を経た冷水の一部、および2段側熱交換器41を経た冷水の一部、冷却塔70を経由した冷水だけでなく、熱源機5,7から供給される冷水の一部も導かれる。こうしてヘッダ54に導かれる4種類の温度レベルの異なる冷水はヘッダ54において混合され、その混合(温度調節)された冷水がポンプ55によって2段側熱交換器41に供給される。
【0089】
ところで、1段側熱交換器31に流入する冷水の温度は、たとえば7℃である。この冷水は、1段側熱交換器31での熱交換により、12℃程度まで温度上昇して1段側熱交換器31から流出する。ここでの熱交換作用により、被空調室20内が冷房される。
【0090】
そして、室内温度が室内温度センサ34によって検知され、その検知温度が設定室内温度に達するよう、流量調節弁32の開度が制御され、1段側熱交換器31を通る冷水の量が調節される。
【0091】
一方、ヘッダ54から2段側熱交換器41に供給される冷水の温度Tが温度センサ58によって検知されており、その検知温度Tが目標値Tsetとなるよう、流量調節弁51,52,53,74の開度が制御される(TとTsetとの差に応じて比例制御される)。つまり、ヘッダ54に導入される上記4種類の冷水の量が調節される。この開度制御の様子を図4のフローチャートに示している。
【0092】
すなわち、検知温度Tが目標値Tsetより低い場合、熱源機系統の流量調節弁52が全閉で、2段側熱交換器系統の流量調節弁53が全開で、外気冷房運転用の冷却塔70が不使用状態にあれば、1段側熱交換器系統の流量調節弁51が閉方向に比例制御される。冷却塔70が使用されていれば、冷却塔系統の流量調節弁74が全閉している場合に限り、1段側熱交換器系統の流量調節弁51が閉方向に比例制御される。
【0093】
検知温度Tが目標値Tsetより低い場合、熱源機系統の流量調節弁52が全閉で、2段側熱交換器系統の流量調節弁53が全開していなければ、その流量調節弁53が開方向に比例制御される。
【0094】
検知温度Tが目標値Tsetより低い場合、熱源機系統の流量調節弁52が全閉していなければ、その流量調節弁52が閉方向に比例制御される。
【0095】
検知温度Tが目標値Tsetより高い場合、1段側熱交換器系統の流量調節弁51が全開で、2段側熱交換器系統の流量調節弁53が全閉で、外気冷房運転用の冷却塔70が不使用状態にあれば、熱源機系統の流量調節弁52が開方向に比例制御される。冷却塔70が使用されていれば、冷却塔系統の流量調節弁74が全開している場合に限り、熱源機系統の流量調節弁52が開方向に比例制御される。
【0096】
検知温度Tが目標値Tsetより高い場合、1段側熱交換器系統の流量調節弁51が全開で、2段側熱交換器系統の流量調節弁53が全閉していなければ、その流量調節弁53が閉方向に比例制御される。
【0097】
検知温度Tが目標値Tsetより高い場合、1段側熱交換器系統の流量調節弁51が全開していなければ、その流量調節弁51が開方向に比例制御される。
【0098】
目標値Tsetとしては、被空調室20内の空気の露点温度たとえば16℃より高く、かつ第2空調ユニット40における設定室内温度たとえば26℃より低い値、たとえば18℃が選定される。この18℃に温度制御された冷水が2段側熱交換器41で室内空気と熱交換することにより、空気の対流伝熱による冷房が行われる。同時に、第2空調ユニット40の室内側面から、被空調室20内の人体等の冷房対象に対して冷放射が発生し、放射伝熱による冷房が行われる。このとき、2段側熱交換器41の表面に結露は生じない。
【0099】
2段側熱交換器41を経て熱源機5,7に戻る冷水の温度は20℃程度まで高まっており、それが熱源機5,7で再び冷却されて7℃の冷水となる。
【0100】
熱源機器室1では、熱源機5,7に戻る冷水の量が流量センサ13によって検知され、その検知流量に応じて熱源機5,7の運転台数が制御される。検知流量が多ければ運転台数が2台、検知流量が少なければ運転台数が1台となる。この運転台数制御により、運転エネルギを最小化した効率の良い運転が実行される。
【0101】
ただし、熱源機5,7に戻る冷水の温度が温度センサ14で検知されており、その検知温度が下降した場合には、運転台数が減少方向に補正制御される。熱源機5,7から流出する冷水の温度が温度センサ15で検知されており、その検知温度が上昇した場合には、運転台数が増加方向に補正制御される。
【0102】
また、熱源機5,7に戻る冷水の圧力と熱源機5,7から流出する冷水の圧力との差が差圧センサ17で検知され、その検知圧力が予め定めた設定値となるよう、圧力調整弁16の開度が制御される。この制御により、熱源機5,7に戻る冷水の量の変動が抑制され、常に安定した量の冷水が熱源機5,7に戻るようになる。ひいては、熱源機5,7の安定かつ効率の良い運転を行うことができる。
【0103】
空調機械室50では、2段側熱交換器41から流出する冷水の量が流量センサ62で検知され、その検知流量に応じてポンプ55の能力が制御される(変流量制御)。たとえば、各空調ユニット40の空調負荷が減少して2段側熱交換器41から流出する冷水の量が減った場合には、それに見合うように、ポンプ55の能力が低減されてヘッダ54から各空調ユニット40への冷水の供給量が減らされる。各空調ユニット40の空調負荷が増大して2段側熱交換器41から流出する冷水の量が増えた場合には、それに見合うように、ポンプ55の能力が増加されてヘッダ54から各空調ユニット40への冷水の供給量が増やされる。
【0104】
また、2段側熱交換器41から流出する冷水の圧力とヘッダ54内の冷水の圧力との差が差圧センサ64で検知され、その検知圧力が予め定めた設定値となるよう、圧力調整弁63の開度が制御される。この制御により、ポンプ55に供給される冷水の量の変動が抑制され、ポンプ55の能力に対応する常に安定した量の冷水が2段側熱交換器41に供給されるようになる。ひいては、2段側熱交換器41での安定かつ効率の良い熱交換を行うことができる。
【0105】
以上のように、熱源機5,7で得られる冷水の熱エネルギを1段側熱交換器31および2段側熱交換器41で多段階に有効利用しながら、2段側熱交換器41に供給される冷水の温度をその2段側熱交換器41での結露が生じない温度に確実に維持することができる。2段側熱交換器41を有する各空調ユニット40は、天井面に設置されるタイプであるため、結露水の処理設備を設けることがもともと難しい状況にあり、そのような設置状況においても結露水の落下など不都合のない最適な空調を行うことができる。
【0106】
しかも、熱エネルギを多段階利用することで、省エネルギ効果が得られるとともに、熱源機5,7から送り出される冷水の温度いわゆる往水温度と熱源機5,7に戻る冷水の温度いわゆる還水温度との差を大きくとることができる。往水温度と還水温度との差を大きくとれることにより、熱源機5,7から送り出される冷水の量を多くしなくても、ひいてはポンプ4,6の消費電力(水の搬送エネルギ)の増大を招くことなく、1段側熱交換器31および2段側熱交換器41においてそれぞれの負荷に見合う十分な量の冷熱を取り出すことが可能である。
【0107】
暖房の場合は、冷却塔70は使用されず、第1実施例と同じ運転および制御が実行される。
【0108】
また、この第2実施例の特徴として、冷房運転と暖房運転の同時実行がある。
【0109】
この場合、流量調節弁51,52は、全閉で、流量調節弁53,74のみが開度制御される。
【0110】
すなわち、熱源機5,7で作られる温水が各空調ユニット30の1段側熱交換器31を経由することにより、被空調室20における各空調ユニット30の設置ゾーンで暖房が行われる。各空調ユニット30を経て温度低下した水は還水管2を経て、熱源機5,7に戻る。
【0111】
また、冷却塔70で作られる冷水はポンプ73の送水圧力を受けて各空調ユニット40の2段側熱交換器41に供給され、その2段側熱交換器41を経た冷水が冷却塔70に戻るとともに、2段側熱交換器41を経た冷水の一部がヘッダ54を介して各空調ユニット40の2段側熱交換器41に供給され、その2段側熱交換器41を経た冷水が冷却塔70に戻ることにより、被空調室20における各空調ユニット40の設置ゾーンで冷房が行われる。各空調ユニット30,40での個々の制御については、第1実施例を含めて上記までの説明と同じである。
【0112】
なお、この発明は上記実施例に限定されるものではなく、要旨を変えない範囲で種々変形実施可能である。
【0113】
【発明の効果】
以上述べたようにこの発明によれば水の熱エネルギを多段階に有効活用して省エネルギ効果の向上が図れるとともに、熱交換器または空調ユニットに流入する水の温度をたとえば結露対策用の所望の値に確実に維持することができ、しかも水の送出量を多くすることなく、ひいては水の搬送エネルギの増大を生じることなく、熱交換器または空調ユニットでの十分な量の冷熱を取り出すことが可能な信頼性にすぐれた空調システムを提供できる。
【図面の簡単な説明】
【図1】第1実施例の構成を示すブロック図。
【図2】第1実施例の作用を説明するためのフローチャート。
【図3】第2実施例の構成を示すブロック図。
【図4】第2実施例の作用を説明するためのフローチャート。
【符号の説明】
1…熱源機器室
2…還水管
5,7…熱源機
9…往水管
20…被空調室
30…第1空調ユニット
31…1段側熱交換器
40…第2空調ユニット
41…2段側熱交換器
50…空調機械室
51,52,53,74…流量調節弁
54…ヘッダ(混合部)
55…ポンプ
58…温度センサ
59…制御器(制御手段)
70…冷却塔(屋外設置冷却手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioning system having a water circulation cycle.
[0002]
[Prior art]
There is an air conditioning system in which cold water or hot water obtained from a heat source machine is circulated through a heat exchanger.
[0003]
In this air conditioning system, when chilled water is supplied directly from the heat source unit to the heat exchanger, the surface temperature of a part of the heat exchanger becomes lower than the dew point temperature of the air in the conditioned space, and condensation is formed on the surface of the heat exchanger. May occur.
[0004]
On the other hand, in the case of the ceiling cooling system where the heat exchanger is installed on the ceiling or the cooling system where the chilled water pipe is embedded in the building frame, it is difficult to install the dew condensation water treatment equipment, and there is concern about the damage caused by the dew condensation water. The
[0005]
Conventionally, as a means for preventing condensation, there is a method in which the temperature of cold water supplied from a heat source unit to a heat exchanger is made higher than the dew point temperature of room air.
[0006]
As an example of an air conditioning system, as shown in Japanese Patent Laid-Open No. 9-166346, the temperature of water returning from the heat exchanger to the heat source system is detected, and the heat from the heat source system is set so that the detected temperature becomes a constant value. At the same time as manipulating the amount of water supplied to the exchanger, a part of the water returning to the heat source system is supplied to the inlet side of the heat exchanger, and the amount of supply is adjusted according to the temperature to be controlled. It is known to manipulate the flow rate so that the control target amount (room temperature and / or supply air temperature, return water temperature) reaches a target value.
[0007]
[Problems to be solved by the invention]
As described above, when the temperature of the cold water supplied from the heat source unit to the heat exchanger is made higher than the dew point temperature of the room air, heat exchange from the heat source unit is made up to compensate for the lost amount of cold energy. The amount of cold water supplied to the vessel must be increased.
[0008]
However, in order to increase the amount of cold water supplied from the heat source unit to the heat exchanger, there is a new problem that energy required for conveying the cold water, for example, power consumption of the water supply pump increases.
[0009]
On the other hand, in the case where a part of the water returning to the heat source system is supplied to the inlet side of the heat exchanger as in the above publication, the temperature of the cold water supplied from the heat source unit to the heat exchanger is assumed to be the dew point of the room air. Even when the temperature is higher than the temperature, a sufficient amount of cold heat can be taken out in the heat exchanger without increasing the amount of cold water supplied from the heat source system to the heat exchanger.
[0010]
However, the control target amount in this case is the temperature in the air-conditioned space and / or the supply air temperature to the air-conditioned space and then the return water temperature, and the temperature of the cold water flowing into the heat exchanger is set to a desired value (for example, dew point temperature). There is another problem that it cannot be maintained at a higher value.
[0011]
The present invention has been made in consideration of the above circumstances, and the object of the present invention is to effectively use the thermal energy of water in multiple stages to improve the energy saving effect and to supply water flowing into the heat exchanger or the air conditioning unit. The temperature of the heat exchanger or the air conditioning unit can be reliably maintained at a desired value for preventing condensation, for example, without increasing the amount of water delivered and without increasing the water transport energy. It is an object of the present invention to provide a highly reliable air conditioning system that can dissipate a sufficient amount of heat.
[0014]
[ Means for solving the problem ]
Claim 1 In the air conditioning system according to the invention, the water cooled by the heat source unit is returned to the heat source unit through the first stage side heat exchanger, a part of the water cooled by the heat source unit and the first stage side heat exchanger Part of the water that has passed through this is introduced to the mixing section, the water in the mixing section is passed through the two-stage side heat exchanger and returned to the heat source machine, and the part of the water that has passed through the two-stage side heat exchanger is mixed as it is A water circulation cycle that leads to the mixing section and leads to the mixing section after passing through the outdoor installation cooling means; a first flow rate control valve for adjusting the flow rate of water from the first stage heat exchanger to the mixing section; A second flow rate control valve for adjusting the flow rate of water from the heat source device to the mixing unit; and a third flow rate control valve for adjusting the flow rate of water from the second-stage heat exchanger to the mixing unit; A fourth flow rate control valve for adjusting the flow rate of water from the outdoor installation cooling means to the mixing unit; Temperature detecting means for detecting the temperature of the water supplied from the joint to the two-stage heat exchanger; and control for controlling the opening degree of each flow rate control valve so that the detected temperature of the temperature detecting means becomes a target value. Means.
[0015]
That is, the claim 1 In the invention according to the above, water cooled by the heat source unit is supplied to the first stage heat exchanger, the water that has passed through the first stage heat exchanger returns to the heat source unit, and the water that has passed through the first stage heat exchanger A part is supplied to the two-stage side heat exchanger via the mixing section, and the water that has passed through the two-stage side heat exchanger returns to the heat source unit. Further, a part of the water that has passed through the two-stage heat exchanger is led to the mixing section as it is, and is also led to the mixing section after passing through the outdoor installation cooling means. In the mixing part, not only a part of the water that has passed through the first stage heat exchanger, a part of the water that has passed through the second stage side heat exchanger, the water that has passed through the outdoor installation cooling means, but also the water that has been cooled by the heat source device A part of is also guided. In this way, the four types of water having different temperature levels guided to the mixing unit are mixed in the mixing unit, and the mixed (temperature-controlled) water is supplied to the two-stage heat exchanger. At this time, the temperature of the water supplied to the two-stage heat exchanger from the mixing unit is detected, and the amounts of the four types of water introduced into the mixing unit are respectively set so that the detected temperature becomes a target value. Adjusted.
[0016]
Claim 2 The air conditioning system of the invention according to Claim 1 In the present invention, the control means has a target value that is higher than the dew point temperature of the air in the air-conditioned space in which the two-stage heat exchanger is installed.
[0017]
Claim 3 The air conditioning system of the invention according to Claim 1 In the invention according to the above, a plurality of heat source devices are provided.
[0018]
Claim 4 The air conditioning system of the invention according to claim 3 In the invention according to the present invention, a flow rate sensor that detects an amount of water flowing into each heat source unit; a first temperature sensor that detects a temperature of water flowing into each heat source unit; and a temperature of water flowing out from each heat source unit A first temperature sensor that detects the number of operating heat source units according to the detected flow rate of the flow rate sensor; an operation of each heat source unit according to a change in the temperature detected by each temperature sensor; Second control means for correcting and controlling the number of units; pressure adjusting means provided between the inlet side and the outlet side of each heat source unit; the pressure of water flowing into each heat source unit and the water flowing out from each heat source unit And a third control means for controlling the pressure adjusting means so that a detection result of the differential pressure sensor becomes a set value.
[0019]
Claim 5 The air conditioning system of the invention according to Claim 1 In the invention according to the present invention, a pump for water supply provided between the mixing unit and the second stage heat exchanger; a flow sensor for detecting the amount of water flowing out from the second stage heat exchanger; First control means for controlling the capacity of the pump in accordance with the detected flow rate of the sensor; pressure adjusting means provided between the outlet side of the two-stage side heat exchanger and the mixing section; and two-stage side heat exchanger A differential pressure sensor for detecting a difference between the pressure of water flowing out from the water and the pressure of water in the mixing section; and a second control means for controlling the pressure adjusting means so that a detection result of the differential pressure sensor becomes a set value; Is provided.
[0022]
Claim 6 In the air conditioning system according to the present invention, the water cooled by the heat source unit passes through the first air conditioning unit and returns to the heat source unit, and a part of the water cooled by the heat source unit and the water passed through the first air conditioning unit A part of the water is guided to the mixing unit, the water of the mixing unit is returned to the heat source unit through the second air conditioning unit, and a part of the water passed through the second air conditioning unit is directly guided to the mixing unit and is installed outdoors. A water circulation cycle leading to the mixing unit after passing through; a first flow control valve for adjusting the flow rate of water from the first air conditioning unit to the mixing unit; and water from the heat source unit to the mixing unit A second flow rate adjusting valve for adjusting the flow rate; a third flow rate adjusting valve for adjusting the flow rate of water from the second air conditioning unit to the mixing unit; and the outdoor installation cooling means to the mixing unit Fourth flow control to adjust water flow rate A temperature detecting means for detecting the temperature of water supplied from the mixing section to the second air conditioning unit; and controlling the opening degree of each flow rate adjusting valve so that the detected temperature of the temperature detecting means becomes a target value. And a control means.
[0023]
That is, the claim 6 In the invention according to the above, water cooled by the heat source unit is supplied to the first air conditioning unit, the water that has passed through the first air conditioning unit returns to the heat source unit, and a part of the water that has passed through the first air conditioning unit has passed through the mixing unit. The water that has passed through the second air conditioning unit returns to the heat source unit. Furthermore, a part of the water that has passed through the second air conditioning unit is guided to the mixing unit as it is, and is also guided to the mixing unit after passing through the outdoor installation cooling means. In the mixing unit, not only a part of the water that has passed through the first air conditioning unit, a part of the water that has passed through the second air conditioning unit, the water that has passed through the outdoor cooling means, but also part of the water that has been cooled by the heat source unit Led. Thus, the four types of water having different temperature levels guided to the mixing unit are mixed in the mixing unit, and the mixed (temperature-adjusted) water is supplied to the second air conditioning unit. At this time, the temperature of the water supplied from the mixing unit to the second air conditioning unit is detected, and the amounts of the four types of water introduced into the mixing unit are adjusted so that the detected temperature becomes a target value. The
[0024]
Claim 7 The air conditioning system of the invention according to Claim 6 In the invention according to the first aspect, the first air conditioning unit includes a first stage heat exchanger that performs heat exchange between water supplied from the heat source unit and air in the air-conditioned space; and the amount of water passing through the first stage heat exchanger A first flow rate adjusting valve for adjusting the air flow; a fan for circulating air in the air-conditioned space through the first stage heat exchanger; and a first temperature sensor for detecting the temperature of the air passing through the first stage heat exchanger Temperature detecting means; and a first controller for controlling the opening of the first flow rate control valve so that the detected temperature of the first temperature detecting means becomes a set value. A second air conditioning unit that exchanges heat between water supplied from the mixing unit and natural convection air in the air-conditioned space; and an amount of water that passes through the second air heat exchanger. A second flow rate adjusting valve for adjusting; a second temperature detecting means for detecting the temperature of the air that has passed through the second stage heat exchanger; and the second temperature detecting means so that the detected temperature of the second temperature detecting means becomes a set value. A second controller for controlling the opening degree of the flow control valve. Further, the control means has a target value that is higher than the dew point temperature of the air in the air-conditioned space where the second air conditioning unit is installed and lower than the set value in the second air conditioning unit.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
[1] A first embodiment of the present invention will be described below with reference to the drawings.
[0026]
In FIG. 1, 1 is a heat source equipment room, 20 is an air-conditioned space, for example, an air-conditioned room, and 50 is an air-conditioning machine room, which are installed in the same building.
[0027]
In the heat source device room 1, the air-conditioned room 20, and the air-conditioning machine room 50, the following water circulation cycle is configured.
[0028]
First, the return water pipe 2 is introduced into the heat source device room 1, and water passing through the return water pipe 2 is sucked into the water supply pumps 4 and 6 through the header 3. The pumps 4 and 6 are driven by the output voltages of the inverters 11 and 12, and their capacities change according to the frequency of the driving power supply.
[0029]
Water sent from the pumps 4 and 6 is sent to the heat source devices 5 and 7. The heat source units 5 and 7 cool or heat the water sent from the pumps 4 and 6 and thereby produce cold water for cooling or warm water for heating. Adoption of an absorption cold / hot water machine or the like can be considered.
[0030]
Cold water or hot water flowing out from the heat source units 5 and 7 is guided to the plurality of first air conditioning units 30 in the air-conditioned room 20 via the header 8 and the outgoing pipe 9, and the water passing through each first air conditioning unit 30 is the water pipe 21. Is returned to the return water pipe 2.
[0031]
Part of the water that passes through the water pipe 21 (water that has passed through each first air conditioning unit 30) is led to the air conditioning machine room 50 and led to the mixing unit, for example, the header 54 via the first flow rate control valve 51.
[0032]
A part of the water (cold water or hot water flowing out from the heat source devices 5 and 7) passing through the outgoing water pipe 9 is led to the air conditioning machine room 50 and led to the header 54 via the second flow rate control valve 52.
[0033]
The water in the header 54 is sucked into the water supply pump 55, and the water sent from the pump 55 is supplied to the plurality of second air conditioning units 40 in the air-conditioned room 20 through the pipe 22. The water that has passed through the second air conditioning unit 40 is led to the header 57 in the air conditioning machine room 50 by the pipe 23, and is led from the header 57 to the return water pipe 2. Part of the water in the header 57 (part of the water that has passed through each second air conditioning unit 40) is guided to the header 54 via the third flow rate adjustment valve 53.
[0034]
In addition to the above configuration, the heat source device room 1 includes a flow rate sensor 13 that detects the amount of water flowing into the heat source units 5 and 7, a temperature sensor 14 that detects the temperature of water flowing into the heat source units 5 and 7, A temperature sensor 15 for detecting the temperature of water flowing out from the heat source units 5 and 7 and a controller 10 are provided. The controller 10 includes first control means for controlling the number of operating heat source units 5 and 7 (and the number of operating pumps 4 and 6) according to the detected flow rate of the flow rate sensor 13, and detection of the temperature sensors 14 and 15. And second control means for correcting and controlling the number of operating heat source units 5 and 7 in accordance with a change in temperature.
[0035]
Further, in the heat source equipment room 1, pressure adjusting means and a differential pressure sensor 17 are provided between the header 3 located on the inlet side of the heat source devices 5 and 7 and the header 8 located on the outlet side, and a controller (first 3 control means) 18 is provided.
[0036]
The pressure adjusting means is such that a water pipe is connected in a state where the headers 3 and 8 are communicated, and a pressure adjusting valve 16 is provided in the water pipe. The differential pressure sensor 17 is a difference between the pressure of water in the header 3 (pressure of water flowing into the heat source units 5 and 7) and the pressure of water in the header 8 (pressure of water flowing out of the heat source units 5 and 7). Is detected. The controller 18 controls the opening degree of the pressure regulating valve 16 so that the detection result of the differential pressure sensor 17 becomes a predetermined set value.
[0037]
Each first air conditioning unit 30 in the air-conditioned room 20 is installed mainly in a zone near the window in the air-conditioned room 20, and water and room air (or room air and ventilation) supplied from the heat source devices 5 and 7. A first-stage heat exchanger 31 that exchanges heat with the outside air for use), a flow control valve 32 for adjusting the amount of water that passes through the first-stage heat exchanger 31, and indoor air (or A fan 33 that circulates the mixed air of indoor air and outside air for ventilation) through the first-stage heat exchanger 31 and an indoor temperature sensor (temperature detection means) that detects the temperature of the air that has passed through the first-stage heat exchanger 31. ) 34 and a controller 35 for controlling the opening degree of the flow control valve 32 so that the temperature detected by the room temperature sensor 34 becomes a room temperature set value predetermined by a resident or a building manager.
[0038]
Some of these first air conditioning units 30 are so-called fan coil units (which exchange heat with indoor air), and some of them are outdoor air conditioners (which exchange heat with mixed air of indoor air and outdoor air for ventilation). To do).
[0039]
Each of the second air conditioning units 40 is installed mainly on the ceiling surface in the air-conditioned room 20 and performs heat exchange between the water supplied by the pump 55 from the header 54 serving as a mixing unit and the natural convection room air. A side heat exchanger 41, a flow rate adjustment valve 42 for adjusting the amount of water passing through the second stage side heat exchanger 41, and an indoor temperature sensor that detects the temperature of the air that has passed through the second stage side heat exchanger 41 ( And a controller 44 for controlling the opening degree of the flow rate adjusting valve 42 so that the temperature detected by the room temperature sensor 43 becomes a room temperature set value predetermined by a resident or a building manager. The pump 55 is driven by the output voltage of the inverter 61, and the capacity changes according to the frequency of the drive power supply.
[0040]
These two-stage side heat exchangers 41 are constituted by so-called ceiling radiant panels (panel-shaped ones composed of metal panels, piping, and heat insulating materials) and ceiling radiant convectors (multiple aluminum plate fins and copper tubes). Coil-shaped) and cold / hot water pipes embedded in the building frame.
[0041]
In addition to the above-described configuration, the air conditioning machine room 50 includes a flow sensor 62 that detects the amount of water flowing out from the two-stage heat exchanger 41 of each air conditioning unit 40, and a flow rate detected by the flow sensor 62. A controller (first control means) 60 for controlling the capacity of the pump 55 (output frequency of the inverter 61) is provided.
[0042]
Further, in the air conditioning machine room 50, pressure adjusting means and a differential pressure sensor 64 are provided between the header 57 located on the outlet side of each air conditioning unit 40 and the header 54 which is a mixing unit, and a controller (second control). Means) 65 is provided.
[0043]
The pressure adjusting means is such that a water pipe is connected in a state where the headers 57 and 54 are communicated, and a pressure adjusting valve 63 is provided in the water pipe. The differential pressure sensor 64 detects the difference between the pressure of water in the header 57 (pressure of water flowing out from each two-stage heat exchanger 41) and the pressure of water in the header 54. The controller 65 controls the opening degree of the pressure regulating valve 63 so that the detection result of the differential pressure sensor 64 becomes a predetermined set value.
[0044]
In the air conditioning machine room 50, a temperature sensor 58 is provided in the header 56 downstream of the pump 55, and the temperature sensor 58 is connected to the controller 59 together with the flow rate adjusting valves 51, 52, 53. The controller 59 detects the temperature detected by the temperature sensor 58 (temperature of water supplied from the pump 55 to each of the two-stage heat exchangers 41) T 1 Is set to the target value Tset, and the opening degree of the flow rate adjusting valves 51, 52, 53 is controlled.
[0045]
Next, the operation of the above configuration will be described.
[0046]
First, cooling will be described.
[0047]
Cold water produced by the heat source units 5 and 7 receives the water supply pressure of the pumps 4 and 6 and is supplied to the first stage heat exchanger 31 of each air conditioning unit 30, and the cold water passing through the first stage heat exchanger 31 is the heat source unit. 5 and 7, part of the cold water that has passed through the first stage heat exchanger 31 is supplied to the second stage heat exchanger 41 of each air conditioning unit 40 via the header 54, and the second stage heat exchanger 41. The cold water that has passed through returns to the heat source units 5 and 7.
[0048]
Further, a part of the cold water that has passed through the second-stage heat exchanger 41 is guided to the header 54. The header 54 includes not only a part of the cold water that has passed through the first-stage heat exchanger 31 and a part of the cold water that has passed through the second-stage heat exchanger 41, but also a part of the cold water supplied from the heat source devices 5 and 7. Is also guided. The three kinds of cold water having different temperature levels guided to the header 54 are mixed in the header 54, and the mixed (temperature-adjusted) cold water is supplied to the two-stage heat exchanger 41 by the pump 55.
[0049]
By the way, the temperature of the cold water flowing into the first stage heat exchanger 31 is, for example, 7 ° C. The cold water rises to about 12 ° C. by heat exchange in the first stage heat exchanger 31 and flows out from the first stage heat exchanger 31. The air-conditioned room 20 is cooled by the heat exchange action here.
[0050]
Then, the indoor temperature is detected by the indoor temperature sensor 34, the opening degree of the flow rate control valve 32 is controlled so that the detected temperature reaches the set indoor temperature, and the amount of cold water passing through the first stage heat exchanger 31 is adjusted. The
[0051]
On the other hand, the temperature T of the cold water supplied from the header 54 to the second stage heat exchanger 41 1 Is detected by the temperature sensor 58, and the detected temperature T 1 Of the flow rate control valves 51, 52, 53 is controlled so that becomes the target value Tset (T 1 And proportionally controlled according to the difference between Tset). That is, the amount of the three types of cold water introduced into the header 54 is adjusted. The state of this opening degree control is shown in the flowchart of FIG.
[0052]
That is, the detected temperature T 1 Is lower than the target value Tset, if the flow control valve 52 of the heat source system is fully closed and the flow control valve 53 of the second stage heat exchanger system is fully open, the flow control of the first stage heat exchanger system The valve 51 is proportionally controlled in the closing direction.
[0053]
Detection temperature T 1 Is lower than the target value Tset, if the flow rate control valve 52 of the heat source system is fully closed and the flow rate control valve 53 of the two-stage side heat exchanger system is not fully open, the flow rate control valve 53 is proportional to the opening direction. Be controlled.
[0054]
Detection temperature T 1 Is lower than the target value Tset, if the flow rate adjustment valve 52 of the heat source system is not fully closed, the flow rate adjustment valve 52 is proportionally controlled in the closing direction.
[0055]
Detection temperature T 1 Is higher than the target value Tset, if the flow control valve 51 of the first stage heat exchanger system is fully open and the flow control valve 53 of the second stage heat exchanger system is fully closed, the flow control of the heat source system The valve 52 is proportionally controlled in the opening direction.
[0056]
Detection temperature T 1 Is higher than the target value Tset, if the flow control valve 51 of the first stage heat exchanger system is fully open and the flow control valve 53 of the second stage heat exchanger system is not fully closed, the flow control valve 53 is Proportionally controlled in the closing direction.
[0057]
Detection temperature T 1 Is higher than the target value Tset, if the flow control valve 51 of the first stage heat exchanger system is not fully opened, the flow control valve 51 is proportionally controlled in the opening direction.
[0058]
As the target value Tset, a value that is higher than the dew point temperature of the air in the air-conditioned room 20, for example, 16 ° C., and lower than the set room temperature in the second air conditioning unit 40, for example, 26 ° C., for example, 18 ° C. is selected. The chilled water whose temperature is controlled to 18 ° C. exchanges heat with room air in the two-stage heat exchanger 41, whereby cooling by convective heat transfer of air is performed. At the same time, cooling radiation is generated from the side surface of the second air conditioning unit 40 to the cooling target such as a human body in the air-conditioned room 20, and cooling by radiant heat transfer is performed. At this time, no condensation occurs on the surface of the two-stage heat exchanger 41.
[0059]
The temperature of the cold water returning to the heat source devices 5 and 7 through the two-stage side heat exchanger 41 is increased to about 20 ° C., and is cooled again by the heat source devices 5 and 7 to become 7 ° C. cold water.
[0060]
In the heat source equipment room 1, the amount of cold water returning to the heat source units 5 and 7 is detected by the flow rate sensor 13, and the number of operating heat source units 5 and 7 is controlled according to the detected flow rate. If the detected flow rate is large, the number of operating units is 2, and if the detected flow rate is small, the operating number is 1. By this operation number control, efficient operation with minimized operation energy is executed.
[0061]
However, when the temperature of the cold water returning to the heat source units 5 and 7 is detected by the temperature sensor 14 and the detected temperature decreases, the number of operating units is corrected and controlled in a decreasing direction. When the temperature of the cold water flowing out from the heat source devices 5 and 7 is detected by the temperature sensor 15 and the detected temperature rises, the number of operating units is corrected and controlled in the increasing direction.
[0062]
The difference between the pressure of the cold water returning to the heat source units 5 and 7 and the pressure of the cold water flowing out from the heat source units 5 and 7 is a differential pressure sensor. 17 The degree of opening of the pressure regulating valve 16 is controlled so that the detected pressure becomes a predetermined set value. By this control, fluctuations in the amount of cold water returning to the heat source devices 5 and 7 are suppressed, and a stable amount of cold water always returns to the heat source devices 5 and 7. As a result, the heat source machines 5 and 7 can be operated stably and efficiently.
[0063]
In the air conditioning machine room 50, the amount of cold water flowing out from the two-stage heat exchanger 41 is detected by the flow rate sensor 62, and the capacity of the pump 55 is controlled according to the detected flow rate (variable flow rate control). For example, when the air conditioning load of each air conditioning unit 40 is reduced and the amount of cold water flowing out from the second stage heat exchanger 41 is reduced, the capacity of the pump 55 is reduced and each header 54 The amount of cold water supplied to the air conditioning unit 40 is reduced. When the air conditioning load of each air conditioning unit 40 increases and the amount of cold water flowing out from the second-stage heat exchanger 41 increases, the capacity of the pump 55 is increased and the air conditioning unit from the header 54 is increased accordingly. The amount of cold water supplied to 40 is increased.
[0064]
Further, the pressure adjustment is performed so that the difference between the pressure of the cold water flowing out from the second-stage heat exchanger 41 and the pressure of the cold water in the header 54 is detected by the differential pressure sensor 64 and the detected pressure becomes a predetermined set value. The opening degree of the valve 63 is controlled. By this control, fluctuations in the amount of cold water supplied to the pump 55 are suppressed, and a constantly stable amount of cold water corresponding to the capacity of the pump 55 is supplied to the two-stage heat exchanger 41. As a result, stable and efficient heat exchange can be performed in the two-stage heat exchanger 41.
[0065]
As described above, the heat energy of the cold water obtained by the heat source devices 5 and 7 is effectively utilized in multiple stages by the first stage heat exchanger 31 and the second stage heat exchanger 41, and the second stage heat exchanger 41 The temperature of the supplied cold water can be reliably maintained at a temperature at which dew condensation does not occur in the two-stage heat exchanger 41. Since each air conditioning unit 40 having the two-stage heat exchanger 41 is a type installed on the ceiling surface, it is inherently difficult to provide a dew condensation water treatment facility. Optimum air conditioning without inconvenience such as falling.
[0066]
In addition, by using heat energy in multiple stages, an energy saving effect can be obtained, and the temperature of cold water sent out from the heat source units 5 and 7, so-called water temperature, and the temperature of cold water returning to the heat source units 5 and 7, so-called return water temperature The difference with can be taken. By increasing the difference between the incoming water temperature and the return water temperature, the power consumption of the pumps 4 and 6 (water transport energy) can be increased without increasing the amount of cold water sent out from the heat source devices 5 and 7. In the first stage heat exchanger 31 and the second stage heat exchanger 41, it is possible to take out a sufficient amount of cold heat corresponding to each load.
[0067]
Next, heating will be described.
[0068]
The hot water produced by the heat source units 5 and 7 receives the water supply pressure of the pumps 4 and 6 and is supplied to the first stage heat exchanger 31 of each air conditioning unit 30, and the hot water that has passed through the first stage heat exchanger 31 is the heat source unit. 5 and 7, a part of the hot water that has passed through the first stage heat exchanger 31 is supplied to the second stage heat exchanger 41 of each air conditioning unit 40 via the header 54, and the second stage heat exchanger 41. After passing through, the hot water returns to the heat source units 5 and 7.
[0069]
Further, a part of the hot water that has passed through the second-stage heat exchanger 41 is guided to the header 54. The header 54 includes not only a part of the hot water that has passed through the first stage heat exchanger 31 and a part of the hot water that has passed through the second stage heat exchanger 41, but also a part of the hot water supplied from the heat source devices 5 and 7. Is also led. The three types of hot water having different temperature levels guided to the header 54 are mixed in the header 54, and the mixed (temperature-adjusted) hot water is supplied to the second stage heat exchanger 41 by the pump 55.
[0070]
By the way, the temperature of the hot water flowing into the first stage heat exchanger 31 is, for example, 50 ° C. The hot water is cooled to about 45 ° C. by heat exchange in the first stage heat exchanger 31 and flows out from the first stage heat exchanger 31. The inside of the air-conditioned room 20 is heated by the heat exchange action here.
[0071]
Then, the indoor temperature is detected by the indoor temperature sensor 34, the opening degree of the flow rate control valve 32 is controlled so that the detected temperature reaches the set indoor temperature, and the amount of hot water passing through the first stage heat exchanger 31 is adjusted. The
[0072]
On the other hand, the temperature T of the hot water supplied from the header 54 to the second-stage heat exchanger 41 1 Is detected by the temperature sensor 58, and the detected temperature T 1 Of the flow rate control valves 51, 52, 53 is controlled so that becomes the target value Tset (T 1 And proportionally controlled according to the difference between Tset).
[0073]
As the target value Tset, a value higher than the set room temperature in the second air conditioning unit 40, for example, 22 ° C., for example, 37 ° C. is selected. The hot water whose temperature is controlled to 37 ° C. exchanges heat with room air in the two-stage heat exchanger 41, whereby heating by convective heat transfer of air is performed. At the same time, warm radiation is generated from the indoor side surface of the second air conditioning unit 40 to a heating target such as a human body in the air-conditioned room 20, and heating by radiant heat transfer is performed.
[0074]
The temperature of the hot water that returns to the heat source units 5 and 7 through the second-stage heat exchanger 41 is lowered to about 35 ° C., and is heated again by the heat source units 5 and 7 to become 50 ° C. hot water.
[0075]
In the heat source equipment room 1, the amount of warm water returning to the heat source units 5 and 7 is detected by the flow rate sensor 13, and the number of operating heat source units 5 and 7 is controlled according to the detected flow rate. If the detected flow rate is large, the number of operating units is 2, and if the detected flow rate is small, the operating number is 1. By this operation number control, efficient operation with minimized operation energy is executed.
[0076]
However, when the temperature of the hot water returning to the heat source devices 5 and 7 is detected by the temperature sensor 14 and the detected temperature rises, the number of operating units is corrected and controlled in a decreasing direction. When the temperature of the hot water flowing out from the heat source devices 5 and 7 is detected by the temperature sensor 15 and the detected temperature decreases, the number of operating units is corrected and controlled in the increasing direction.
[0077]
Further, the pressure difference between the pressure of the hot water returning to the heat source devices 5 and 7 and the pressure of the hot water flowing out from the heat source devices 5 and 7 is detected by the differential pressure sensor 16 so that the detected pressure becomes a predetermined set value. The opening degree of the regulating valve 16 is controlled. By this control, fluctuations in the amount of warm water returning to the heat source devices 5 and 7 are suppressed, and a stable amount of warm water always returns to the heat source devices 5 and 7. As a result, the heat source machines 5 and 7 can be operated stably and efficiently.
[0078]
In the air conditioning machine room 50, the amount of hot water flowing out from the two-stage side heat exchanger 41 is detected by the flow rate sensor 62, and the capacity of the pump 55 is controlled according to the detected flow rate (variable flow rate control). For example, when the air conditioning load of each air conditioning unit 40 is reduced and the amount of hot water flowing out from the second stage heat exchanger 41 is reduced, the capacity of the pump 55 is reduced and the header 54 The amount of hot water supplied to the air conditioning unit 40 is reduced. When the air conditioning load of each air conditioning unit 40 increases and the amount of hot water flowing out from the second-stage heat exchanger 41 increases, the capacity of the pump 55 is increased and the air conditioning unit is sent from the header 54 to meet that. The amount of hot water supplied to 40 is increased.
[0079]
Further, the pressure adjustment is performed so that the difference between the pressure of the hot water flowing out from the second-stage heat exchanger 41 and the pressure of the hot water in the header 54 is detected by the differential pressure sensor 64 and the detected pressure becomes a predetermined set value. The opening degree of the valve 63 is controlled. By this control, fluctuations in the amount of hot water supplied to the pump 55 are suppressed, and a constantly stable amount of hot water corresponding to the capacity of the pump 55 is supplied to the second-stage heat exchanger 41. As a result, stable and efficient heat exchange can be performed in the two-stage heat exchanger 41.
[0080]
As described above, the thermal energy of the hot water obtained by the heat source devices 5 and 7 is effectively used in multiple stages by the first stage heat exchanger 31 and the second stage heat exchanger 41, and the second stage heat exchanger 41 The temperature of the supplied hot water can be reliably maintained at a desired temperature.
[0081]
In addition, by using heat energy in multiple stages, an energy saving effect can be obtained, and the temperature of hot water sent out from the heat source units 5 and 7, so-called water temperature, and the temperature of hot water returning to the heat source units 5 and 7, so-called return water temperature The difference with can be taken. By increasing the difference between the incoming water temperature and the return water temperature, the power consumption of the pumps 4 and 6 (water transport energy) can be increased without increasing the amount of hot water sent from the heat source devices 5 and 7. In the first stage heat exchanger 31 and the second stage heat exchanger 41, it is possible to take out a sufficient amount of thermal energy that matches each load.
[0082]
[2] A second embodiment will be described.
[0083]
As shown in FIG. 3, an outdoor installation cooling means such as a cooling tower 70 for outdoor air cooling operation is connected to the header 57 of the air conditioning machine room 50 via a pipe 71, and the cooling tower 70 includes a pipe 72, a water supply pump 73, And connected to the header 54 via a fourth flow rate control valve 74. The cooling tower 70 discharges the heat of water guided from the header 57 to the outside air, and is also called a cooling tower, and is installed on the rooftop of a building.
[0084]
The flow control valve 74 is connected to the controller 59. The controller 59 detects the temperature detected by the temperature sensor 58 (temperature of water supplied from the pump 55 to each of the two-stage heat exchangers 41) T 1 Is controlled so that the opening degree of the flow rate control valves 51, 52, 53, 74 is equal to the target value Tset.
[0085]
The operation will be described.
[0086]
First, cooling will be described.
[0087]
Cold water produced by the heat source units 5 and 7 receives the water supply pressure of the pumps 4 and 6 and is supplied to the first stage heat exchanger 31 of each air conditioning unit 30, and the cold water passing through the first stage heat exchanger 31 is the heat source unit. 5 and 7, part of the cold water that has passed through the first stage heat exchanger 31 is supplied to the second stage heat exchanger 41 of each air conditioning unit 40 via the header 54, and the second stage heat exchanger 41. The cold water that has passed through returns to the heat source units 5 and 7.
[0088]
Further, a part of the cold water that has passed through the second-stage heat exchanger 41 is guided as it is from the header 57 to the header 54 and from the header 57 via the cooling tower 70 to the header 54. The header 54 includes not only a part of the cold water that has passed through the first stage heat exchanger 31, a part of the cold water that has passed through the second stage heat exchanger 41, and the cold water that has passed through the cooling tower 70, but also the heat source devices 5, 7. A part of the cold water supplied from is also led. The four types of cold water having different temperature levels guided to the header 54 are mixed in the header 54, and the mixed (temperature adjusted) cold water is supplied to the second stage heat exchanger 41 by the pump 55.
[0089]
By the way, the temperature of the cold water flowing into the first stage heat exchanger 31 is, for example, 7 ° C. The cold water rises to about 12 ° C. by heat exchange in the first stage heat exchanger 31 and flows out from the first stage heat exchanger 31. The air-conditioned room 20 is cooled by the heat exchange action here.
[0090]
Then, the indoor temperature is detected by the indoor temperature sensor 34, the opening degree of the flow rate control valve 32 is controlled so that the detected temperature reaches the set indoor temperature, and the amount of cold water passing through the first stage heat exchanger 31 is adjusted. The
[0091]
On the other hand, the temperature T of the cold water supplied from the header 54 to the second stage heat exchanger 41 1 Is detected by the temperature sensor 58, and the detected temperature T 1 Of the flow rate control valves 51, 52, 53, 74 is controlled so that becomes the target value Tset (T 1 And proportionally controlled according to the difference between Tset). That is, the amount of the four types of cold water introduced into the header 54 is adjusted. The state of this opening degree control is shown in the flowchart of FIG.
[0092]
That is, the detected temperature T 1 Is lower than the target value Tset, the flow control valve 52 of the heat source system is fully closed, the flow control valve 53 of the two-stage heat exchanger system is fully open, and the cooling tower 70 for the outside air cooling operation is not used. If there is, the flow rate control valve 51 of the first stage heat exchanger system is proportionally controlled in the closing direction. If the cooling tower 70 is used, the flow control valve 51 of the first stage heat exchanger system is proportionally controlled in the closing direction only when the flow control valve 74 of the cooling tower system is fully closed.
[0093]
Detection temperature T 1 Is lower than the target value Tset, if the flow rate control valve 52 of the heat source system is fully closed and the flow rate control valve 53 of the two-stage side heat exchanger system is not fully open, the flow rate control valve 53 is proportional to the opening direction. Be controlled.
[0094]
Detection temperature T 1 Is lower than the target value Tset, if the flow rate adjustment valve 52 of the heat source system is not fully closed, the flow rate adjustment valve 52 is proportionally controlled in the closing direction.
[0095]
Detection temperature T 1 Is higher than the target value Tset, the flow control valve 51 of the first stage heat exchanger system is fully opened, the flow control valve 53 of the second stage heat exchanger system is fully closed, and the cooling tower 70 for the outside air cooling operation is provided. If it is not in use, the flow control valve 52 of the heat source system is proportionally controlled in the opening direction. If the cooling tower 70 is used, the flow control valve 52 of the heat source system is proportionally controlled in the opening direction only when the flow control valve 74 of the cooling tower system is fully opened.
[0096]
Detection temperature T 1 Is higher than the target value Tset, if the flow control valve 51 of the first stage heat exchanger system is fully open and the flow control valve 53 of the second stage heat exchanger system is not fully closed, the flow control valve 53 is Proportionally controlled in the closing direction.
[0097]
Detection temperature T 1 Is higher than the target value Tset, if the flow control valve 51 of the first stage heat exchanger system is not fully opened, the flow control valve 51 is proportionally controlled in the opening direction.
[0098]
As the target value Tset, a value that is higher than the dew point temperature of the air in the air-conditioned room 20, for example, 16 ° C., and lower than the set room temperature in the second air conditioning unit 40, for example, 26 ° C., for example, 18 ° C. is selected. The chilled water whose temperature is controlled to 18 ° C. exchanges heat with room air in the two-stage heat exchanger 41, whereby cooling by convective heat transfer of air is performed. At the same time, cooling radiation is generated from the side surface of the second air conditioning unit 40 to the cooling target such as a human body in the air-conditioned room 20, and cooling by radiant heat transfer is performed. At this time, no condensation occurs on the surface of the two-stage heat exchanger 41.
[0099]
The temperature of the cold water returning to the heat source devices 5 and 7 through the two-stage side heat exchanger 41 is increased to about 20 ° C., and is cooled again by the heat source devices 5 and 7 to become 7 ° C. cold water.
[0100]
In the heat source equipment room 1, the amount of cold water returning to the heat source units 5 and 7 is detected by the flow rate sensor 13, and the number of operating heat source units 5 and 7 is controlled according to the detected flow rate. If the detected flow rate is large, the number of operating units is 2, and if the detected flow rate is small, the operating number is 1. By this operation number control, efficient operation with minimized operation energy is executed.
[0101]
However, when the temperature of the cold water returning to the heat source units 5 and 7 is detected by the temperature sensor 14 and the detected temperature decreases, the number of operating units is corrected and controlled in a decreasing direction. When the temperature of the cold water flowing out from the heat source devices 5 and 7 is detected by the temperature sensor 15 and the detected temperature rises, the number of operating units is corrected and controlled in the increasing direction.
[0102]
Further, the pressure difference between the pressure of the cold water returning to the heat source devices 5 and 7 and the pressure of the cold water flowing out from the heat source devices 5 and 7 is detected by the differential pressure sensor 17 so that the detected pressure becomes a predetermined set value. The opening degree of the regulating valve 16 is controlled. By this control, fluctuations in the amount of cold water returning to the heat source devices 5 and 7 are suppressed, and a stable amount of cold water always returns to the heat source devices 5 and 7. As a result, the heat source machines 5 and 7 can be operated stably and efficiently.
[0103]
In the air conditioning machine room 50, the amount of cold water flowing out from the two-stage heat exchanger 41 is detected by the flow rate sensor 62, and the capacity of the pump 55 is controlled according to the detected flow rate (variable flow rate control). For example, when the air conditioning load of each air conditioning unit 40 is reduced and the amount of cold water flowing out from the second stage heat exchanger 41 is reduced, the capacity of the pump 55 is reduced and each header 54 The amount of cold water supplied to the air conditioning unit 40 is reduced. When the air conditioning load of each air conditioning unit 40 increases and the amount of cold water flowing out from the second-stage heat exchanger 41 increases, the capacity of the pump 55 is increased and the air conditioning unit from the header 54 is increased accordingly. The amount of cold water supplied to 40 is increased.
[0104]
Further, the pressure adjustment is performed so that the difference between the pressure of the cold water flowing out from the second-stage heat exchanger 41 and the pressure of the cold water in the header 54 is detected by the differential pressure sensor 64 and the detected pressure becomes a predetermined set value. The opening degree of the valve 63 is controlled. By this control, fluctuations in the amount of cold water supplied to the pump 55 are suppressed, and a constantly stable amount of cold water corresponding to the capacity of the pump 55 is supplied to the two-stage heat exchanger 41. As a result, stable and efficient heat exchange can be performed in the two-stage heat exchanger 41.
[0105]
As described above, the heat energy of the cold water obtained by the heat source devices 5 and 7 is effectively utilized in multiple stages by the first stage heat exchanger 31 and the second stage heat exchanger 41, and the second stage heat exchanger 41 The temperature of the supplied cold water can be reliably maintained at a temperature at which dew condensation does not occur in the two-stage heat exchanger 41. Since each air conditioning unit 40 having the two-stage heat exchanger 41 is a type installed on the ceiling surface, it is inherently difficult to provide a dew condensation water treatment facility. Optimum air conditioning without inconvenience such as falling.
[0106]
In addition, by using heat energy in multiple stages, an energy saving effect can be obtained, and the temperature of cold water sent out from the heat source units 5 and 7, so-called water temperature, and the temperature of cold water returning to the heat source units 5 and 7, so-called return water temperature The difference with can be taken. By increasing the difference between the incoming water temperature and the return water temperature, the power consumption of the pumps 4 and 6 (water transport energy) can be increased without increasing the amount of cold water sent out from the heat source devices 5 and 7. In the first stage heat exchanger 31 and the second stage heat exchanger 41, it is possible to take out a sufficient amount of cold heat corresponding to each load.
[0107]
In the case of heating, the cooling tower 70 is not used, and the same operation and control as in the first embodiment are performed.
[0108]
Further, as a feature of the second embodiment, there is simultaneous execution of cooling operation and heating operation.
[0109]
In this case, the flow control valves 51 and 52 are fully closed, and only the flow control valves 53 and 74 are controlled in opening.
[0110]
That is, the hot water produced by the heat source devices 5 and 7 passes through the first-stage heat exchanger 31 of each air conditioning unit 30 so that heating is performed in the installation zone of each air conditioning unit 30 in the air-conditioned room 20. The water whose temperature has decreased through the air conditioning units 30 returns to the heat source units 5 and 7 through the return water pipe 2.
[0111]
Further, the cold water produced in the cooling tower 70 is supplied to the second stage heat exchanger 41 of each air conditioning unit 40 by receiving the water supply pressure of the pump 73, and the cold water passing through the second stage heat exchanger 41 is supplied to the cooling tower 70. At the same time, a part of the cold water that has passed through the second stage heat exchanger 41 is supplied to the second stage heat exchanger 41 of each air conditioning unit 40 via the header 54, and the cold water that has passed through the second stage heat exchanger 41 is By returning to the cooling tower 70, cooling is performed in the installation zone of each air conditioning unit 40 in the air-conditioned room 20. The individual controls in the air conditioning units 30 and 40 are the same as those described above including the first embodiment.
[0112]
In addition, this invention is not limited to the said Example, A various deformation | transformation implementation is possible in the range which does not change a summary.
[0113]
【The invention's effect】
As described above, according to the present invention, , The heat energy of water can be effectively used in multiple stages to improve the energy saving effect, and the temperature of the water flowing into the heat exchanger or air conditioning unit can be reliably maintained at a desired value for preventing condensation, for example. In addition, a highly reliable air-conditioning system that can extract a sufficient amount of cold heat from the heat exchanger or air-conditioning unit without increasing the amount of water delivered and, consequently, without increasing the energy for transporting water. Can provide.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a first embodiment.
FIG. 2 is a flowchart for explaining the operation of the first embodiment.
FIG. 3 is a block diagram showing a configuration of a second embodiment.
FIG. 4 is a flowchart for explaining the operation of the second embodiment.
[Explanation of symbols]
1 ... Heat source equipment room
2 ... Return pipe
5, 7 ... Heat source machine
9 ... Outbound pipe
20 ... Air-conditioned room
30 ... 1st air conditioning unit
31 ... 1st stage heat exchanger
40. Second air conditioning unit
41 ... Two-stage heat exchanger
50 ... Air conditioning machine room
51, 52, 53, 74 ... Flow control valve
54 ... Header (mixing part)
55 ... Pump
58 ... Temperature sensor
59 ... Controller (control means)
70 ... Cooling tower (outdoor installation cooling means)

Claims (7)

熱源機で冷却された水を1段側熱交換器に通して前記熱源機に戻し、前記熱源機で冷却された水の一部および前記1段側熱交換器を経た水の一部を混合部に導き、その混合部の水を2段側熱交換器に通して前記熱源機に戻し、その2段側熱交換器を経た水の一部をそのまま前記混合部に導くと共に屋外設置冷却手段に通してから前記混合部に導く水循環サイクルと、
前記1段側熱交換器から前記混合部への水の流量を調節するための第1流量調節弁と、
前記熱源機から前記混合部への水の流量を調節するための第2流量調節弁と、
前記2段側熱交換器から前記混合部への水の流量を調節するための第3流量調節弁と、
前記屋外設置冷却手段から前記混合部への水の流量を調節するための第4流量調節弁と、
前記混合部から前記2段側熱交換器に供給される水の温度を検知する温度検知手段と、
この温度検知手段の検知温度が目標値となるよう前記各流量調節弁の開度を制御する制御手段と、
を具備したことを特徴とする空調システム。
The water cooled by the heat source unit is passed through the first stage heat exchanger and returned to the heat source unit, and a part of the water cooled by the heat source unit and a part of the water passed through the first stage side heat exchanger are mixed. The water in the mixing section is returned to the heat source device through a two-stage side heat exchanger, and a part of the water that has passed through the two-stage side heat exchanger is directly introduced to the mixing section and is installed outdoors. A water circulation cycle leading to the mixing section after passing through
A first flow rate control valve for adjusting the flow rate of water from the first stage heat exchanger to the mixing unit;
A second flow rate adjustment valve for adjusting the flow rate of water from the heat source unit to the mixing unit;
A third flow rate control valve for adjusting the flow rate of water from the second-stage heat exchanger to the mixing unit;
A fourth flow rate adjustment valve for adjusting the flow rate of water from the outdoor installation cooling means to the mixing unit;
Temperature detection means for detecting the temperature of water supplied from the mixing section to the second-stage heat exchanger;
Control means for controlling the opening of each flow rate control valve so that the detected temperature of the temperature detecting means becomes a target value;
An air conditioning system characterized by comprising:
請求項1に記載の空調システムにおいて、
前記制御手段は、前記2段側熱交換器に供給される水の温度の目標値として、前記2段側熱交換器が設置されている被空調空間の空気の露点温度より高い値を持つ
ことを特徴とする空調システム。
The air conditioning system according to claim 1 ,
Wherein the control means, as the target value of the temperature of the water supplied to the two-stage heat exchanger has a higher value than the dew point temperature of the air of the conditioned space to the two-stage heat exchanger is installed,
An air conditioning system characterized by that.
請求項1に記載の空調システムにおいて、
前記熱源機は、複数台であることを特徴とする空調システム。
The air conditioning system according to claim 1 ,
An air conditioning system comprising a plurality of the heat source units.
請求項3に記載の空調システムにおいて、
前記各熱源機に流入する水の量を検知する流量センサと、
前記各熱源機に流入する水の温度を検知する第1温度センサと、
前記各熱源機から流出する水の温度を検知する第2温度センサと、
前記流量センサの検知流量に応じて前記各熱源機の運転台数を制御する第1制御手段と、
前記各温度センサの検知温度の変化に応じて前記各熱源機の運転台数を補正制御する第2制御手段と、
前記各熱源機の入口側と出口側との間に設けられた圧力調整手段と、
前記各熱源機に流入する水の圧力と同各熱源機から流出する水の圧力との差を検知する差圧センサと、
この差圧センサの検知結果が設定値となるよう前記圧力調整手段を制御する第3制御手段と、
を備えることを特徴とする空調システム
In the air conditioning system according to claim 3 ,
A flow sensor for detecting the amount of water flowing into each of the heat source units,
A first temperature sensor for detecting a temperature of water flowing into each of the heat source units;
A second temperature sensor for detecting the temperature of water flowing out from each of the heat source units;
First control means for controlling the number of operating heat source units according to the detected flow rate of the flow rate sensor;
Second control means for correcting and controlling the number of operating heat source units according to a change in temperature detected by each temperature sensor;
Pressure adjusting means provided between an inlet side and an outlet side of each of the heat source units;
A differential pressure sensor for detecting a difference between a pressure of water flowing into each of the heat source units and a pressure of water flowing out of the respective heat source units;
Third control means for controlling the pressure adjusting means so that a detection result of the differential pressure sensor becomes a set value;
An air conditioning system comprising:
請求項1に記載の空調システムにおいて、
前記混合部と前記2段側熱交換器との間に設けられた送水用のポンプと、
前記2段側熱交換器から流出する水の量を検知する流量センサと、
この流量センサの検知流量に応じて前記ポンプの能力を制御する第1制御手段と、
前記2段側熱交換器の出口側と前記混合部との間に設けられた圧力調整手段と、
前記2段側熱交換器から流出する水の圧力と前記混合部内の水の圧力との差を検知する差圧センサと、
この差圧センサの検知結果が設定値となるよう前記圧力調整手段を制御する第2制御手段と、
を備えることを特徴とする空調システム
The air conditioning system according to claim 1 ,
A water pump provided between the mixing section and the second-stage heat exchanger;
A flow sensor for detecting the amount of water flowing out of the second-stage heat exchanger;
First control means for controlling the capacity of the pump according to the detected flow rate of the flow sensor;
Pressure adjusting means provided between the outlet side of the two-stage heat exchanger and the mixing section;
A differential pressure sensor for detecting the difference between the pressure of water flowing out of the second-stage heat exchanger and the pressure of water in the mixing section;
Second control means for controlling the pressure adjusting means so that a detection result of the differential pressure sensor becomes a set value;
An air conditioning system comprising:
熱源機で冷却された水を第1空調ユニットに通して前記熱源機に戻し、前記熱源機で冷却された水の一部および前記第1空調ユニットを経た水の一部を混合部に導き、その混合部の水を第2空調ユニットに通して前記熱源機に戻し、その第2空調ユニットを経た水の一部をそのまま前記混合部に導くと共に屋外設置冷却手段に通してから前記混合部に導く水循環サイクルと、
前記第1空調ユニットから前記混合部への水の流量を調節するための第1流量調節弁と、
前記熱源機から前記混合部への水の流量を調節するための第2流量調節弁と、
前記第2空調ユニットから前記混合部への水の流量を調節するための第3流量調節弁と、
前記屋外設置冷却手段から前記混合部への水の流量を調節するための第4流量調節弁と、
前記混合部から前記第2空調ユニットに供給される水の温度を検知する温度検知手段と、
この温度検知手段の検知温度が目標値となるよう前記各流量調節弁の開度を制御する制御手段と、
を具備したことを特徴とする空調システム。
The water cooled by the heat source unit is returned to the heat source unit through the first air conditioning unit, and a part of the water cooled by the heat source unit and a part of the water passed through the first air conditioning unit are led to the mixing unit, The water in the mixing section is returned to the heat source unit through the second air conditioning unit, and a part of the water that has passed through the second air conditioning unit is led to the mixing section as it is and passed through the outdoor installation cooling means, and then to the mixing section. A leading water cycle,
A first flow rate adjusting valve for adjusting a flow rate of water from the first air conditioning unit to the mixing unit;
A second flow rate adjustment valve for adjusting the flow rate of water from the heat source unit to the mixing unit;
A third flow rate control valve for adjusting the flow rate of water from the second air conditioning unit to the mixing unit;
A fourth flow rate adjustment valve for adjusting the flow rate of water from the outdoor installation cooling means to the mixing unit;
Temperature detecting means for detecting the temperature of water supplied from the mixing unit to the second air conditioning unit;
Control means for controlling the opening of each flow rate control valve so that the detected temperature of the temperature detecting means becomes a target value;
An air conditioning system characterized by comprising:
請求項6に記載の空調システムにおいて、
前記第1空調ユニットは、前記熱源機から供給される水と被空調空間の空気との熱交換を行う1段側熱交換器と、この1段側熱交換器を通る水の量を調節するための第1流量調節弁と、被空調空間の空気を前記1段側熱交換器に通して循環させるファンと、前記1段側熱交換器を経た空気の温度を検知する第1温度検知手段と、この第1温度検知手段の検知温度が設定値となるよう前記第1流量調節弁の開度を制御する第1制御器とを有する、
前記第2空調ユニットは、前記混合部から供給される水と被空調空間の自然対流空気との熱交換を行う2段側熱交換器と、この2段側熱交換器を通る水の量を調節するための第2流量調節弁と、前記2段側熱交換器を経た空気の温度を検知する第2温度検知手段と、この第2温度検知手段の検知温度が設定値となるよう前記第2流量調節弁の開度を制御する第2制御器とを有する、
前記制御手段は、前記第1空調ユニットに供給される水の温度の目標値として、前記第2空調ユニットが設置されている被空調空間の空気の露点温度より高く、かつ前記第2空調ユニットにおける前記設定値より低い値を持つ
ことを特徴とする空調システム。
The air conditioning system according to claim 6 ,
The first air conditioning unit adjusts the amount of water passing through the first stage heat exchanger that performs heat exchange between the water supplied from the heat source unit and the air in the air-conditioned space, and the first stage heat exchanger. A first flow rate adjusting valve, a fan for circulating air in the air-conditioned space through the first-stage heat exchanger, and first temperature detection means for detecting the temperature of the air that has passed through the first-stage heat exchanger And a first controller for controlling the opening of the first flow rate control valve so that the detected temperature of the first temperature detecting means becomes a set value.
The second air conditioning unit has a two-stage heat exchanger for exchanging heat between water supplied from the mixing unit and natural convection air in the air-conditioned space, and an amount of water passing through the two-stage heat exchanger. A second flow rate adjusting valve for adjusting, a second temperature detecting means for detecting the temperature of the air that has passed through the second-stage heat exchanger, and the second temperature detecting means so that the detected temperature of the second temperature detecting means becomes a set value. 2 having a second controller for controlling the opening degree of the flow rate control valve,
The control means has a target value for the temperature of the water supplied to the first air conditioning unit that is higher than the dew point temperature of the air in the air-conditioned space in which the second air conditioning unit is installed, and in the second air conditioning unit. Having a value lower than the set value ,
An air conditioning system characterized by that.
JP07577699A 1999-03-19 1999-03-19 Air conditioning system Expired - Fee Related JP4327296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07577699A JP4327296B2 (en) 1999-03-19 1999-03-19 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07577699A JP4327296B2 (en) 1999-03-19 1999-03-19 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2000274785A JP2000274785A (en) 2000-10-06
JP4327296B2 true JP4327296B2 (en) 2009-09-09

Family

ID=13585967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07577699A Expired - Fee Related JP4327296B2 (en) 1999-03-19 1999-03-19 Air conditioning system

Country Status (1)

Country Link
JP (1) JP4327296B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4014491B2 (en) * 2002-11-07 2007-11-28 シャープ株式会社 Air conditioner
JP4134781B2 (en) * 2003-03-26 2008-08-20 株式会社日立プラントテクノロジー Air conditioning equipment
JP4385738B2 (en) * 2003-11-21 2009-12-16 株式会社日立プラントテクノロジー Air conditioning equipment
JP4989256B2 (en) * 2007-02-23 2012-08-01 株式会社大気社 Control device and control method for air conditioning equipment and heat source equipment, air conditioning system and control method therefor.
JP6980829B2 (en) * 2016-07-12 2021-12-15 東芝キヤリア株式会社 Heat source device and its control method
JP6974553B2 (en) * 2016-09-06 2021-12-01 高砂熱学工業株式会社 Air conditioner and air conditioning system for air supply / exhaust path
JP6804740B2 (en) * 2017-02-27 2020-12-23 清水建設株式会社 Radiant air conditioning system
JP6425750B2 (en) * 2017-03-01 2018-11-21 木村工機株式会社 Air conditioning system
CA2995017C (en) 2017-03-01 2019-12-24 Kimura Kohki Co., Ltd. Air conditioner and air conditioning system including the same
WO2018193615A1 (en) * 2017-04-21 2018-10-25 三菱電機株式会社 Fan coil system
JP7209585B2 (en) * 2019-05-29 2023-01-20 三菱電機株式会社 Cooling and heating device and method for controlling the cooling and heating device
CN111947264B (en) * 2020-09-17 2024-07-05 临沂智慧新能源科技有限公司 Residential district radiation heating and cooling system and operation control method
CN112856612B (en) * 2021-01-07 2022-07-12 丁一 Air conditioner cold source system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118621A (en) * 1991-10-28 1993-05-14 Matsushita Electric Ind Co Ltd Air conditioner
JPH06241537A (en) * 1993-02-22 1994-08-30 Ebara Corp Controlling method of air conditioner
JP3670731B2 (en) * 1995-10-23 2005-07-13 三洋電機株式会社 Air conditioning system
JP3583536B2 (en) * 1995-12-14 2004-11-04 高砂熱学工業株式会社 Air conditioner, air conditioning system and control method thereof
JPH09280630A (en) * 1996-04-10 1997-10-31 Taikisha Ltd Air conditioner
JPH1038324A (en) * 1996-07-23 1998-02-13 Matsushita Electric Works Ltd Cooling and heating system
JP3325778B2 (en) * 1996-08-26 2002-09-17 松下電工株式会社 Indoor cooling system
JPH10300163A (en) * 1997-04-28 1998-11-13 Mitsubishi Electric Corp Method for operating air conditioner and air conditioner
JP3320631B2 (en) * 1997-05-14 2002-09-03 三菱電機株式会社 Cooling and heating equipment

Also Published As

Publication number Publication date
JP2000274785A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
JP4327296B2 (en) Air conditioning system
US20070095519A1 (en) Method and device for recovering energy
JP5291396B2 (en) Control method of air conditioner and air conditioner
JP6119141B2 (en) Air conditioning system
WO2013145005A1 (en) Air-conditioning system
KR20150111721A (en) One body type airconditioing Circulation System
KR20170069318A (en) Air conditioning system for vehicle
US20180003398A1 (en) Variable refrigerant flow (VRF) air conditioning and related methods
KR101562744B1 (en) Air handling system interworking with ventilation unit
JP2009138997A (en) Outside air cold recovery control system and outside air cold recovery control method
JP2013079785A (en) Air conditioning system
JP6545378B2 (en) Air conditioning system and relay unit
JP4477914B2 (en) Air conditioning system
CN111895559B (en) Floor radiation cooling and heating system with indoor convection tail end
JP5827717B2 (en) Fan coil type radiant air conditioning panel air conditioner with heat pump
JP6002444B2 (en) Water-cooled air conditioning system
JP4594146B2 (en) Optimum control method for variable air volume of air conditioning system
JP3299415B2 (en) Refrigerant circulation type air conditioning system
JP3299414B2 (en) Refrigerant circulation type air conditioning system
WO2023148854A1 (en) Heat-exchange-type ventilation device
KR102111585B1 (en) Oac system using waste heat from cooling water
JP3236927B2 (en) Refrigerant circulation type air conditioning system
EP2077424A2 (en) Low power consumption dehumidifier unit
JP3003832B2 (en) Multi-room air conditioner
JPH0213749A (en) Airconditioner

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040727

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees