JPH09113006A - Air conditioning system - Google Patents

Air conditioning system

Info

Publication number
JPH09113006A
JPH09113006A JP7274220A JP27422095A JPH09113006A JP H09113006 A JPH09113006 A JP H09113006A JP 7274220 A JP7274220 A JP 7274220A JP 27422095 A JP27422095 A JP 27422095A JP H09113006 A JPH09113006 A JP H09113006A
Authority
JP
Japan
Prior art keywords
water
boiler
source unit
condensing unit
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7274220A
Other languages
Japanese (ja)
Other versions
JP3670731B2 (en
Inventor
Yasuisa Tamiya
靖功 田宮
Kunimori Sekigami
邦衛 関上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27422095A priority Critical patent/JP3670731B2/en
Publication of JPH09113006A publication Critical patent/JPH09113006A/en
Application granted granted Critical
Publication of JP3670731B2 publication Critical patent/JP3670731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To sufficiently raise heating efficiency even in the case of low outdoor temperature (in a cold climate area) and enable demonstration of performance utilizing waste heat. SOLUTION: This air conditioning system comprises a water cooled condensing unit 200 for a showcase 210 and the like, a water source unit 300 for an air conditioner and a cooling tower 100 which are connected to each other by pipe lines so as to allow cooling water from the cooling tower 100 to circulate to the water cooled condensing unit 100 and/or the water source unit 300. A pipe line 24 is connected to a boiler 400, and hot water heated by the boiler 400 and/or hot water heated by the water cooled condensing unit 200 is used in heating operation as hot water circulated to the water source unit 300 of the air conditioner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、ショーケ
ース、空気調和機、及び冷却塔を備えてなる空気調和シ
ステムに関する。
TECHNICAL FIELD The present invention relates to an air conditioning system including, for example, a showcase, an air conditioner, and a cooling tower.

【0002】[0002]

【従来の技術】一般に、ショーケース等の水冷式コンデ
ンシングユニットと、複数の室内ユニットを有する空気
調和機の水熱源ユニットと、冷却塔とを管路でつなぎ、
この冷却塔からの冷却水を、前記水冷式コンデンシング
ユニット、及び/又は前記水熱源ユニットに循環可能に
した空気調和システムは知られている。
2. Description of the Related Art Generally, a water cooling type condensing unit such as a showcase, a water heat source unit of an air conditioner having a plurality of indoor units, and a cooling tower are connected by a pipe line.
An air conditioning system is known in which cooling water from this cooling tower can be circulated to the water cooling type condensing unit and / or the water heat source unit.

【0003】この種のものでは、ショーケース等の水冷
式コンデンシングユニットにおける廃熱を利用した、空
気調和機による空調を行なうことができるという利点が
得られる(例えば、特公昭54−28022号公報参
照)。
This type has an advantage that air conditioning can be performed by an air conditioner utilizing waste heat in a water-cooled condensing unit such as a showcase (for example, Japanese Patent Publication No. Sho 54-28022). reference).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
構成によれば、水冷式コンデンシングユニットにおける
廃熱を利用した空調を行なうことはできても、外気温度
が低い場合(寒冷地)には、十分な暖房効率をあげるこ
とができないという問題がある。これを解消するために
は、ボイラを設け、外気温度が低い場合に、水熱源ユニ
ットに高温の温水を循環できるようにすることが考えら
れる。
However, according to the conventional configuration, although air conditioning using waste heat in the water-cooled condensing unit can be performed, when the outside air temperature is low (cold region), There is a problem that the heating efficiency cannot be increased sufficiently. In order to solve this, it is conceivable to provide a boiler so that high-temperature hot water can be circulated in the water heat source unit when the outside air temperature is low.

【0005】しかしながら、複数の室内ユニットを有す
る空気調和機にあっては、暖房負荷に応じて室内ユニッ
トの運転台数を増減させるので、運転台数が減少した場
合あるいは暖房負荷が減少した場合にまで、ボイラを運
転させては、燃料の無駄になり、せっかくの廃熱利用に
よる空気調和システムが有効に機能しなくなるという問
題がある。
However, in an air conditioner having a plurality of indoor units, the number of operating indoor units is increased / decreased according to the heating load. Therefore, even when the operating number decreases or the heating load decreases. When the boiler is operated, there is a problem that fuel is wasted and the air conditioning system due to the waste heat utilization does not function effectively.

【0006】そこで、本発明の目的は、外気温度が低い
場合(寒冷地)にあっても、十分な暖房効率を挙げるこ
とができ、しかも廃熱利用による機能を十分に発揮でき
る、空気調和システムを提供することにある。
[0006] Therefore, an object of the present invention is to provide an air conditioning system in which sufficient heating efficiency can be achieved even when the outside air temperature is low (cold region), and the function by utilizing waste heat can be sufficiently exerted. To provide.

【0007】[0007]

【課題を解決するための手段】上記課題を解消するため
に、請求項1に記載の発明は、ショーケース等の水冷式
コンデンシングユニットと、空気調和機の水熱源ユニッ
トと、冷却塔とを管路でつなぎ、この冷却塔からの冷却
水を、水冷式コンデンシングユニット、及び/又は水熱
源ユニットに循環可能にした空気調和システムにおい
て、前記管路にはボイラをつなぎ、暖房運転時に空気調
和機の水熱源ユニットに循環させる温水としてはボイラ
により昇温させた温水、及び/又は水冷式コンデンシン
グユニットにより昇温させた温水を循環させることを特
徴とするものである。
In order to solve the above problems, the invention according to claim 1 includes a water cooling type condensing unit such as a showcase, a water heat source unit of an air conditioner, and a cooling tower. In an air conditioning system in which cooling water from this cooling tower is circulated to a water-cooled condensing unit and / or a water heat source unit by connecting with a pipeline, a boiler is connected to the pipeline to perform air conditioning during heating operation. The hot water circulated in the water heat source unit of the machine is characterized by circulating hot water heated by a boiler and / or warm water heated by a water-cooling condensing unit.

【0008】請求項2に記載の発明は、ショーケース等
の水冷式コンデンシングユニットと、複数の室内ユニッ
トを有する空気調和機の水熱源ユニットと、冷却塔とを
管路でつなぎ、この冷却塔からの冷却水を、前記水冷式
コンデンシングユニット、及び/又は前記水熱源ユニッ
トに循環可能にした空気調和システムにおいて、前記管
路にはボイラをつなぎ、暖房運転時に複数の室内ユニッ
トの暖房負荷が所定負荷よりも大きい時には、前記ボイ
ラにより昇温させた温水、及び前記水冷式コンデンシン
グユニットにより昇温させた温水を空気調和機の水熱源
ユニットに循環させ、複数の室内ユニットの暖房負荷が
所定負荷よりも小さい時には、前記ボイラを停止させ
て、前記水冷式コンデンシングユニットにより昇温させ
た温水を空気調和機の水熱源ユニットに循環させること
を特徴とするものである。
According to a second aspect of the present invention, a water cooling type condensing unit such as a showcase, a water heat source unit of an air conditioner having a plurality of indoor units, and a cooling tower are connected by a pipeline, and the cooling tower is connected. In the air conditioning system in which the cooling water from is circulated to the water-cooled condensing unit and / or the water heat source unit, a boiler is connected to the pipeline, and a heating load of a plurality of indoor units is applied during heating operation. When the load is larger than a predetermined load, the hot water heated by the boiler and the hot water heated by the water-cooling condensing unit are circulated to the water heat source unit of the air conditioner so that the heating loads of the plurality of indoor units are predetermined. When the load is smaller than the load, the boiler is stopped and hot water heated by the water-cooled condensing unit is supplied to the air conditioner. It is characterized in that the circulating water the heat source unit.

【0009】請求項1〜2に記載の発明によれば、管路
にボイラを設けることにより、暖房負荷が大きくなった
場合には、ボイラを運転させることにより、システム全
体としての暖房能力不足を解消することができる。よっ
て、いわゆる寒冷地向けのシステムになる。暖房負荷が
小さくなった場合には、ボイラの運転を停止させて、コ
ンデンサの廃熱だけを利用した運転に切り替えることが
できるので、暖房運転の効率を向上させることができ
る。更には、コンデンサの廃熱を利用するシステムであ
るので、ボイラだけを利用する場合に比べて、当該ボイ
ラの容量を小さく設計することができるものである。
According to the first and second aspects of the present invention, by providing the boiler in the pipeline, when the heating load becomes large, the boiler is operated to reduce the heating capacity of the entire system. It can be resolved. Therefore, it becomes a system for so-called cold regions. When the heating load becomes small, the operation of the boiler can be stopped and switched to the operation using only the waste heat of the condenser, so that the efficiency of the heating operation can be improved. Further, since the system uses the waste heat of the condenser, the capacity of the boiler can be designed to be smaller than the case where only the boiler is used.

【0010】[0010]

【発明の実施の形態】以下、本発明による一実施の形態
を添付図面を参照して説明する。図1において、100
は冷却塔を示し、200はショーケース210の水冷式
コンデンシングユニットを示し、300は複数の室内ユ
ニット310を有する空気調和機の水熱源ユニットを示
している。冷却塔100と、水冷式コンデンシングユニ
ット200と、水熱源ユニット300とは管路でつなが
れている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the accompanying drawings. In FIG. 1, 100
Indicates a cooling tower, 200 indicates a water-cooled condensing unit of the showcase 210, and 300 indicates a water heat source unit of an air conditioner having a plurality of indoor units 310. The cooling tower 100, the water-cooled condensing unit 200, and the water heat source unit 300 are connected by a pipe line.

【0011】配管系を説明すると、冷却塔100から導
出される管路11は、温度センサT3、T4を介してポ
ンプPにつながれ、このポンプPからの管路12は水冷
式コンデンシングユニット200のコンデンサ201に
つながれる。このコンデンサ201からの管路13は三
方弁V4のポートAにつながれ、この三方弁V4のポー
トCは、後述する水熱源ユニット300をバイパスし
て、冷却塔100に連なる管路14がつながれる。三方
弁V4のポートBには管路15がつながれ、この管路1
5は、三方弁V3のポートBにつながれる。
Explaining the piping system, the pipe line 11 led out from the cooling tower 100 is connected to a pump P via temperature sensors T3 and T4, and the pipe line 12 from the pump P is connected to the water cooling type condensing unit 200. It is connected to the capacitor 201. The pipe 13 from the condenser 201 is connected to the port A of the three-way valve V4, and the port C of the three-way valve V4 bypasses the water heat source unit 300 described later and is connected to the pipe 14 connected to the cooling tower 100. A pipe 15 is connected to the port B of the three-way valve V4, and this pipe 1
5 is connected to the port B of the three-way valve V3.

【0012】この三方弁V3のポートCには、温度セン
サT2を介して、三方弁V2のポートBがつながれ、こ
の三方弁V2のポートCには管路16を通じて水熱源ユ
ニット300の熱交換器301がつながれる。この熱交
換器301には管路17がつながれ、この管路17は上
記の管路14につながれ、これらの管路14,17は、
温度センサT1を介して三方弁V1のポートAにつなが
れる。この三方弁V1のポートCは、管路18を介して
冷却塔100につながれる。
The port C of the three-way valve V3 is connected to the port B of the three-way valve V2 via the temperature sensor T2, and the heat exchanger of the water heat source unit 300 is connected to the port C of the three-way valve V2 through the pipe 16. 301 is connected. A pipe line 17 is connected to the heat exchanger 301, the pipe line 17 is connected to the pipe line 14 and the pipe lines 14 and 17 are connected to each other.
It is connected to the port A of the three-way valve V1 via the temperature sensor T1. The port C of the three-way valve V1 is connected to the cooling tower 100 via the pipe line 18.

【0013】更に説明すると、三方弁V1のポートB
は、管路21を介して管路11につながれ、三方弁V2
のポートAは、管路22を介して管路12につながれ、
三方弁V3のポートAは、管路23を介してボイラ40
0につながれ、このボイラ400は管路24を介して管
路12につながれる。
To explain further, the port B of the three-way valve V1
Is connected to the pipeline 11 through the pipeline 21, and the three-way valve V2
Port A is connected to the pipeline 12 via the pipeline 22,
The port A of the three-way valve V3 is connected to the boiler 40 via the pipe line 23.
0, the boiler 400 is connected to the conduit 12 via the conduit 24.

【0014】水冷式コンデンシングユニット200のコ
ンデンサ201は、冷媒管を介して、圧縮機202、シ
ョーケースのエバポレータ211、減圧手段203につ
ながれ、これらは冷凍サイクルを構成している。また、
水熱源ユニット300の熱交換器301は、室外熱交換
器を構成し、冷媒管を介して、圧縮機302、四方弁3
03、減圧手段304、室内ユニット310の熱交換器
311につながれ、しかも、複数の室内ユニット310
は個別運転制御可能になっている。
The condenser 201 of the water-cooled condensing unit 200 is connected to a compressor 202, a showcase evaporator 211, and a pressure reducing means 203 via a refrigerant pipe, and these constitute a refrigeration cycle. Also,
The heat exchanger 301 of the water heat source unit 300 constitutes an outdoor heat exchanger, and includes a compressor 302 and a four-way valve 3 via a refrigerant pipe.
03, the pressure reducing means 304, and the heat exchanger 311 of the indoor unit 310, and moreover, the plurality of indoor units 310.
Can be controlled individually.

【0015】つぎに、動作を説明する。ショーケース2
10は冷凍・冷蔵用に、通年、使用されるので、夏期、
冬期に関係なく、冷却塔100からの冷水は、ショーケ
ース210につながる水冷式コンデンシングユニット2
00のコンデンサ201に常に供給される。
Next, the operation will be described. Showcase 2
10 is used all year round for freezing and refrigerating, so in the summer,
Regardless of the winter season, the cold water from the cooling tower 100 is connected to the showcase 210 by the water-cooled condensing unit 2
No. 00 capacitor 201 is always supplied.

【0016】夏期においては、図1に示すように、三方
弁V4のポートA,Cと、三方弁V2のポートA,C
と、三方弁V1のポートA,Cとがつながれる。冷却塔
100からの冷水は、実線の矢印で示すように、管路1
1、ポンプP、管路12を通して、水冷式コンデンシン
グユニット200のコンデンサ201に流入し、そこで
熱交換した後、管路13、三方弁V4のポートA,C、
管路14、三方弁V1のポートA,C、管路18を通じ
て冷却塔100に戻される。それと同時に、冷却塔10
0からの冷水は、管路22、三方弁V2のポートA,C
を通じて、水熱源ユニット300の熱交換器301に流
入し、そこで熱交換した後、管路17、三方弁V1のポ
ートA,Cを通じて冷却塔100に戻される。尚、図1
において、参照符号70はファンを示す。
In the summer, as shown in FIG. 1, ports A and C of the three-way valve V4 and ports A and C of the three-way valve V2.
And the ports A and C of the three-way valve V1 are connected. The chilled water from the cooling tower 100, as shown by the solid arrow, is
1, through the pump P and the pipe 12, flows into the condenser 201 of the water-cooled condensing unit 200, and after heat exchange there, the pipe 13, the ports A and C of the three-way valve V4,
It is returned to the cooling tower 100 through the pipe 14, the ports A and C of the three-way valve V1, and the pipe 18. At the same time, the cooling tower 10
The chilled water from 0 is the conduit 22 and the ports A and C of the three-way valve V2.
Through the heat exchanger 301 of the water heat source unit 300, and after heat exchange there, it is returned to the cooling tower 100 through the pipe 17 and the ports A and C of the three-way valve V1. FIG.
In, reference numeral 70 indicates a fan.

【0017】これによれば、水冷式コンデンシングユニ
ット200のコンデンサ201、及び水熱源ユニット3
00の熱交換器301には、それぞれ並列に冷却塔10
0からの冷水が供給されるので、運転効率が向上する。
According to this, the condenser 201 of the water-cooled condensing unit 200 and the water heat source unit 3
The heat exchangers 301 of the cooling towers 10 are connected in parallel to each other.
Since the cold water from 0 is supplied, the operation efficiency is improved.

【0018】冬期においては、暖房負荷に応じて温水の
流れが制御される。暖房負荷が大きいときには、三方弁
V4のポートA,Bと、三方弁V3のポートA,B,C
と、三方弁V2のポートB,Cと、三方弁V1のポート
A,Cとがつながれる。冷却塔100からの冷水は、図
2に実線の矢印で示すように、管路11、ポンプP、管
路12を通じて、水冷式コンデンシングユニット200
のコンデンサ201に流入し、そこで熱交換した後、管
路13、三方弁V4のポートA,B、管路15を経て三
方弁V3のポートBに至り、それと同時に、冷却塔10
0からの冷水は、管路24を経て、ボイラ400に流入
し、このボイラ400で昇温された後、三方弁V3のポ
ートAに至り、これらは三方弁V3で合流してポートC
から流出し、三方弁V2のポートA,Cを通じて、水熱
源ユニット300の熱交換器301に流入する。そし
て、そこを経た後、管路17、三方弁V1のポートA,
Cを通じて冷却塔100に戻される。
In the winter, the flow of hot water is controlled according to the heating load. When the heating load is large, ports A and B of three-way valve V4 and ports A, B and C of three-way valve V3
And the ports B and C of the three-way valve V2 and the ports A and C of the three-way valve V1 are connected. The cold water from the cooling tower 100 passes through the pipe line 11, the pump P, and the pipe line 12 as shown by the solid line arrow in FIG.
Of the three-way valve V3 through the pipe 13, the ports A and B of the three-way valve V4, and the pipe 15 and then to the port B of the three-way valve V3, at the same time.
The cold water from 0 flows into the boiler 400 via the pipe line 24, is heated in the boiler 400, and then reaches the port A of the three-way valve V3.
And flows into the heat exchanger 301 of the water heat source unit 300 through the ports A and C of the three-way valve V2. Then, after passing through it, the pipe line 17, the port A of the three-way valve V1,
It is returned to the cooling tower 100 through C.

【0019】これによれば、コンデンサ201の廃熱と
ボイラ400の熱の双方が上記の熱交換器301で利用
されるので、暖房負荷が大きい(例えば外気温度が低
い)場合でも、十分な暖房効率をあげることができる。
According to this, since both the waste heat of the condenser 201 and the heat of the boiler 400 are used in the heat exchanger 301, sufficient heating is achieved even when the heating load is large (for example, the outside air temperature is low). You can improve efficiency.

【0020】暖房負荷が小さいときには、三方弁V4の
ポートA,Bと、三方弁V3のポートB,Cと、三方弁
V2のポートB,Cと、三方弁V1のポートA,Cとが
つながれる。冷却塔100からの冷水は、図3に実線の
矢印で示すように、管路11、ポンプP、管路12を通
じて、水冷式コンデンシングユニット200のコンデン
サ201に流入し、そこで熱交換した後、管路13、三
方弁V4のポートA,B、管路15、三方弁V3のポー
トB,C、三方弁V2のポートB,Cを経て、水熱源ユ
ニット300の熱交換器301に流入する。そして、そ
こを経た後、管路17、三方弁V1のポートA,Cを通
じて冷却塔100に戻される。
When the heating load is small, the ports A and B of the three-way valve V4, the ports B and C of the three-way valve V3, the ports B and C of the three-way valve V2, and the ports A and C of the three-way valve V1 are connected. It Cold water from the cooling tower 100 flows into the condenser 201 of the water-cooled condensing unit 200 through the conduit 11, the pump P, and the conduit 12 as shown by the solid arrow in FIG. It flows into the heat exchanger 301 of the water heat source unit 300 via the pipe 13, the ports A and B of the three-way valve V4, the pipe 15, the ports B and C of the three-way valve V3, and the ports B and C of the three-way valve V2. Then, after passing there, it is returned to the cooling tower 100 through the conduit 17 and the ports A and C of the three-way valve V1.

【0021】暖房負荷が小さい(例えば室内ユニット3
10の運転台数が少ない)ときには、コンデンサ201
の廃熱だけを利用しても、十分な暖房効率をあげること
ができるので、ボイラ400の運転を停止させることに
より、化石燃料の無駄使いを解消することができ、省資
源化が図れられる。
The heating load is small (for example, the indoor unit 3
10), the condenser 201
Since the sufficient heating efficiency can be improved by using only the waste heat of the above, by stopping the operation of the boiler 400, waste of fossil fuel can be eliminated and resource saving can be achieved.

【0022】要するに、この実施の形態によれば、ボイ
ラ400を設けることにより、暖房負荷の大きい場合
に、能力不足に至らず、いわゆる寒冷地向けのシステム
を提供することができる。また、暖房負荷が小さい場合
には、ボイラ400の運転を停止させて、コンデンサ2
01の廃熱だけを利用した運転に切り替えることができ
るので、暖房運転の効率を向上させることができる。更
に、コンデンサ201の廃熱を利用するシステムである
ので、ボイラ400だけを利用する場合に比べ、当該ボ
イラ400の容量を小さくすることができる。
In short, according to the present embodiment, by providing the boiler 400, it is possible to provide a so-called cold region system without causing capacity shortage when the heating load is large. When the heating load is small, the operation of the boiler 400 is stopped and the condenser 2
Since it is possible to switch to the operation using only the waste heat of 01, it is possible to improve the efficiency of the heating operation. Furthermore, since the system uses the waste heat of the condenser 201, the capacity of the boiler 400 can be reduced as compared with the case where only the boiler 400 is used.

【0023】[0023]

【発明の効果】以上の説明から明らかなように、管路に
ボイラを設けることにより、ボイラの熱を利用した暖房
が可能になると共に、例えば暖房負荷が小さい場合に
は、ボイラの運転を停止させ、コンデンサの廃熱だけを
利用した運転に切り替えることもできるので、経済的な
システムを提供することができる。
As is clear from the above description, by providing the boiler in the pipeline, it becomes possible to perform heating utilizing the heat of the boiler, and when the heating load is small, the operation of the boiler is stopped. Since it is also possible to switch to operation using only the waste heat of the condenser, it is possible to provide an economical system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による空気調和システムの一実施の形態
を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of an air conditioning system according to the present invention.

【図2】暖房負荷の大きい場合の冷却水の流れを示す系
統図である。
FIG. 2 is a system diagram showing a flow of cooling water when a heating load is large.

【図3】暖房負荷の小さい場合の冷却水の流れを示す系
統図である。
FIG. 3 is a system diagram showing a flow of cooling water when a heating load is small.

【符号の説明】[Explanation of symbols]

100 冷却塔 200 水冷式コンデンシングユニット 201 コンデンサ 210 ショーケース 300 水熱源ユニット 301 熱交換器 310 室内ユニット 400 ボイラ V1〜V4 三方弁 A〜C ポート 100 Cooling Tower 200 Water Cooling Condensing Unit 201 Condenser 210 Showcase 300 Water Heat Source Unit 301 Heat Exchanger 310 Indoor Unit 400 Boiler V1-V4 Three-way Valve A-C Port

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ショーケース等の水冷式コンデンシング
ユニットと、空気調和機の水熱源ユニットと、冷却塔と
を管路でつなぎ、この冷却塔からの冷却水を、前記水冷
式コンデンシングユニット、及び/又は前記水熱源ユニ
ットに循環可能にした空気調和システムにおいて、前記
管路にはボイラをつなぎ、暖房運転時に前記空気調和機
の水熱源ユニットに循環させる温水としては前記ボイラ
により昇温させた温水、及び/又は前記水冷式コンデン
シングユニットにより昇温させた温水を循環させること
を特徴とする空気調和システム。
1. A water-cooled condensing unit such as a showcase, a water heat source unit of an air conditioner, and a cooling tower are connected by a pipe line, and cooling water from the cooling tower is connected to the water-cooled condensing unit, And / or in the air conditioning system that can be circulated to the water heat source unit, a boiler is connected to the pipeline, and hot water circulated to the water heat source unit of the air conditioner during heating operation is heated by the boiler. An air conditioning system characterized in that hot water and / or hot water heated by the water-cooled condensing unit is circulated.
【請求項2】 ショーケース等の水冷式コンデンシング
ユニットと、複数の室内ユニットを有する空気調和機の
水熱源ユニットと、冷却塔とを管路でつなぎ、この冷却
塔からの冷却水を、前記水冷式コンデンシングユニッ
ト、及び/又は前記水熱源ユニットに循環可能にした空
気調和システムにおいて、前記管路にはボイラをつな
ぎ、暖房運転時に複数の室内ユニットの暖房負荷が所定
負荷よりも大きい時には、前記ボイラにより昇温させた
温水、及び前記水冷式コンデンシングユニットにより昇
温させた温水を空気調和機の水熱源ユニットに循環さ
せ、複数の室内ユニットの暖房負荷が所定負荷よりも小
さい時には、前記ボイラを停止させて、前記水冷式コン
デンシングユニットにより昇温させた温水を空気調和機
の水熱源ユニットに循環させることを特徴とする空気調
和システム。
2. A water cooling type condensing unit such as a showcase, a water heat source unit of an air conditioner having a plurality of indoor units, and a cooling tower are connected by a pipeline, and cooling water from this cooling tower is connected to In a water-cooled condensing unit, and / or an air conditioning system that can be circulated to the water heat source unit, a boiler is connected to the pipe line, and when a heating load of a plurality of indoor units during a heating operation is larger than a predetermined load, The hot water heated by the boiler and the hot water heated by the water-cooled condensing unit are circulated to the water heat source unit of the air conditioner, and when the heating load of the plurality of indoor units is smaller than a predetermined load, the The boiler is stopped and the hot water heated by the water-cooled condensing unit is circulated to the water heat source unit of the air conditioner. An air conditioning system that is characterized by
JP27422095A 1995-10-23 1995-10-23 Air conditioning system Expired - Fee Related JP3670731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27422095A JP3670731B2 (en) 1995-10-23 1995-10-23 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27422095A JP3670731B2 (en) 1995-10-23 1995-10-23 Air conditioning system

Publications (2)

Publication Number Publication Date
JPH09113006A true JPH09113006A (en) 1997-05-02
JP3670731B2 JP3670731B2 (en) 2005-07-13

Family

ID=17538706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27422095A Expired - Fee Related JP3670731B2 (en) 1995-10-23 1995-10-23 Air conditioning system

Country Status (1)

Country Link
JP (1) JP3670731B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274785A (en) * 1999-03-19 2000-10-06 Ntt Power & Building Facilities Inc Air conditioning system
US7918104B2 (en) 2006-09-01 2011-04-05 Lg Electronics Inc. Water cooling type air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274785A (en) * 1999-03-19 2000-10-06 Ntt Power & Building Facilities Inc Air conditioning system
US7918104B2 (en) 2006-09-01 2011-04-05 Lg Electronics Inc. Water cooling type air conditioner

Also Published As

Publication number Publication date
JP3670731B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
JP2006258343A (en) Air conditioning system
JP2979061B2 (en) Natural cooling air conditioner
JP2007198730A (en) Air conditioning refrigeration device
JP2001099514A (en) Heat storage type air-conditioning and refrigerating device
CN2884059Y (en) Cold/hot parallel type cold water supply set
CN101089517A (en) Air-cooled water-cooled double-evaporator hot water unit
CN206743754U (en) Heat pipe radiating system between a kind of data center's row
KR102393637B1 (en) Hybrid type chiller and heater using water as a heat transfer medium
JP3670731B2 (en) Air conditioning system
KR101753086B1 (en) Hybrid type air conditioning and heat pump system
US20060117778A1 (en) Cooling/heating system and method for controlling the same
JP3439004B2 (en) Air conditioning system, air conditioner and air conditioning method
KR20190014672A (en) Control method of multi heat pump system using multiple heat source with air heat source cooling operation and simultianeous operation of water heat source cooling and heating
CN108507237A (en) A kind of data center's refrigeration system
CN100552310C (en) The air-conditioning unit of many cold and heat sources
JP2004028576A (en) Air conditioning refrigerating device
CN216115284U (en) Heat pump drying system capable of recycling energy
JPH04103931A (en) Air-handling unit and its operation
CN219510925U (en) High heat density building medium temperature water supply and dehumidification system
CN218820769U (en) Dehumidification reheating air conditioning system
CN2524181Y (en) Multiple system blowing pipe style heat pump defroster
KR101641245B1 (en) Chiller
JP2007147133A (en) Air conditioner
CN1427231A (en) Multi system air duct blow type heat pump machine frost eliminating method
JP3357827B2 (en) Floor heating system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees