JP3483581B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP3483581B2
JP3483581B2 JP23871491A JP23871491A JP3483581B2 JP 3483581 B2 JP3483581 B2 JP 3483581B2 JP 23871491 A JP23871491 A JP 23871491A JP 23871491 A JP23871491 A JP 23871491A JP 3483581 B2 JP3483581 B2 JP 3483581B2
Authority
JP
Japan
Prior art keywords
film
silicon nitride
thin film
region
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23871491A
Other languages
Japanese (ja)
Other versions
JPH0555582A (en
Inventor
舜平 山崎
保彦 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP23871491A priority Critical patent/JP3483581B2/en
Priority to KR1019920015127A priority patent/KR960000231B1/en
Publication of JPH0555582A publication Critical patent/JPH0555582A/en
Priority to US08/202,680 priority patent/US6849872B1/en
Priority to JP2000182365A priority patent/JP3352998B2/en
Application granted granted Critical
Publication of JP3483581B2 publication Critical patent/JP3483581B2/en
Priority to US11/041,704 priority patent/US7855106B2/en
Priority to US12/971,966 priority patent/US20110086472A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、信頼性および量産性に
優れ、歩留りの高い、薄膜トランジスタ等の薄膜状半導
体装置およびその製造方法に関する。本発明は、その応
用分野として、例えば、液晶ディスプレーや薄膜イメー
ジセンサー等の駆動回路あるいは3次元集積回路等を構
成せんとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film semiconductor device such as a thin film transistor having excellent reliability and mass productivity and high yield, and a method for manufacturing the same. The present invention constitutes, as its application field, a driving circuit such as a liquid crystal display or a thin film image sensor, or a three-dimensional integrated circuit.

【0002】[0002]

【従来の技術】従来、半導体集積回路は、シリコン等の
半導体基板上に形成されたモノリシック型が中心であっ
たが、近年、ガラスやサファイヤ等の絶縁基板上に形成
することが試みられている。その理由としては、基板と
配線間の寄生容量が低下して動作速度が向上すること
と、特に石英その等のガラス材料は、シリコンウェファ
ーのような大きさの制限がなく、安価であること、素子
間の分離が容易で、特にCMOSのモノリシック集積回
路で問題となるようなラッチアップ現象がおこらないこ
と等のためである。また、以上のような理由とは別に液
晶ディスプレーや密着型イメージセンサーにおいては、
半導体素子と液晶素子あるいは光検出素子とを一体化し
て構成する必要から、透明な基板上に薄膜トラジスター
(TFT)等を形成する必要がある。
2. Description of the Related Art Conventionally, a semiconductor integrated circuit has been mainly a monolithic type formed on a semiconductor substrate such as silicon, but in recent years, it has been attempted to form it on an insulating substrate such as glass or sapphire. . The reason is that the parasitic capacitance between the substrate and the wiring is reduced and the operation speed is improved, and in particular, the glass material such as quartz has no size limitation like a silicon wafer and is inexpensive, This is because the elements can be easily separated from each other, and in particular, a latch-up phenomenon which is a problem in a CMOS monolithic integrated circuit does not occur. In addition to the above reasons, in liquid crystal displays and contact image sensors,
Since it is necessary to integrate the semiconductor element and the liquid crystal element or the light detection element, it is necessary to form a thin film transistor (TFT) or the like on the transparent substrate.

【0003】このような理由から絶縁性基板上に薄膜状
の半導体素子が形成されるようになった。従来の薄膜状
半導体素子の例として、TFTを図5に示す。図に示さ
れるように、絶縁性基板501上に、パッシベーション
膜として、酸化珪素等の被膜503が形成され、その上
にTFTが他のTFTとは独立して形成される。TFT
は、モノリシック集積回路のMOSFETと同様に、ソ
ース(ドレイン)領域507とドレイン(ソース)領域
509、それらに挟まれたチャネル形成領域(単にチャ
ネル領域ともいう)508、ゲイト絶縁膜504、ゲイ
ト電極510、そして、ソース(ドレイン)電極511
とドレイン(ソース)電極512を有している。また、
多層配線が可能なようにPSG等の層間絶縁物506が
設けられる。
For these reasons, thin film semiconductor elements have been formed on insulating substrates. FIG. 5 shows a TFT as an example of a conventional thin film semiconductor element. As shown in the figure, a film 503 of silicon oxide or the like is formed as a passivation film on an insulating substrate 501, and a TFT is formed on the film 503 independently of other TFTs. TFT
Is a source (drain) region 507 and a drain (source) region 509, a channel formation region (also simply referred to as a channel region) 508 sandwiched between the source (drain) region 507, the gate insulating film 504, and the gate electrode 510, similarly to the MOSFET of the monolithic integrated circuit. , And source (drain) electrode 511
And a drain (source) electrode 512. Also,
An interlayer insulator 506 such as PSG is provided so that multilayer wiring can be performed.

【0004】図5の例は、順コプラナー型と呼ばれるも
のであるが、TFTでは、ゲイト電極とチャネル領域の
配置の様子によって、これ以外に逆コプラナー型、順ス
タガー型、逆スタガー型とよばれる形態があるが、その
詳細については他の文献に任せるとして、ここではこれ
以上、言及しない。
The example of FIG. 5 is called a forward coplanar type, but in the TFT, it is also called an inverse coplanar type, a forward stagger type, or an inverted stagger type depending on the arrangement of the gate electrode and the channel region. Although there is a form, the details will be left to other documents, and will not be further described here.

【0005】[0005]

【発明が解決しようとする課題】モノリシック集積回路
においても、ナトリウムやカリウムのようなアルカリイ
オン、あるいは鉄、銅、ニッケル等の遷移金属イオンに
よる汚染は深刻な問題であり、これらのイオンの侵入を
食い止めるために、非常な注意が払われてきた。TFT
でも、それらのイオンの問題は同様に重大なもので、極
力、汚染がないように生産工程の清浄化には注意が向け
られている。また、素子にもこれらの汚染が及ばないよ
うに対策が講じられている。
Even in a monolithic integrated circuit, contamination by alkali ions such as sodium and potassium or transition metal ions such as iron, copper and nickel is a serious problem, and the invasion of these ions is a serious problem. Great care has been taken to stop it. TFT
However, the problem of these ions is just as serious, and attention is paid to cleaning the production process so that contamination is minimized. Moreover, measures are taken to prevent the element from being contaminated with these substances.

【0006】薄膜状半導体素子がモノリシック集積回路
と異なることは、基板中の汚染イオンの濃度が比較的高
いということである。すなわち、モノリシック集積回路
に使用される単結晶シリコンは、長年の技術の蓄積によ
って、これらの有害な汚染元素を排除するようにして生
産されており、現在市販されているものでは、これらの
汚染元素は1010cm-3以下である。
The difference between a thin film semiconductor device and a monolithic integrated circuit is that the concentration of contaminant ions in the substrate is relatively high. In other words, the monocrystalline silicon used for monolithic integrated circuits is produced by eliminating these harmful pollutant elements through the accumulation of technology for many years, and those that are commercially available at present are those pollutant elements. Is 10 10 cm −3 or less.

【0007】しかしながら、一般に薄膜状半導体素子用
の絶縁性基板の汚染元素濃度は低くない。もちろん、ス
ピネル基板やサファイヤ基板のような単結晶基板では、
上記汚染源となる異元素の濃度を低減することが理論的
には可能であるが、採算面から現実的ではない。また、
石英基板は、高純度シランガスと酸素を原料として、気
相反応で製造すれば、理想的には異元素の侵入を食い止
めることが可能であるが、構造がアモルファスであるの
で、いったん異元素が取り込まれた場合にこれを外部に
吐き出すことが困難である。また、液晶ディスプレーに
使用される基板は特にコストの問題が優先するため、価
格の低いものを用いる必要があり、そのようなものでは
製造・加工を容易にするため、最初から、各種の異元素
を含有している。これらの異元素自体が半導体素子にと
って好ましくないものもあるし、これらの異元素を添加
する過程で、外部から混入し、あるいは添加材料に不純
物として含まれる場合がある。
However, in general, the concentration of pollutant elements in an insulating substrate for a thin film semiconductor device is not low. Of course, with single crystal substrates such as spinel substrates and sapphire substrates,
Although it is theoretically possible to reduce the concentration of the foreign element that is the pollution source, it is not practical from the viewpoint of profitability. Also,
If a quartz substrate is manufactured by a gas phase reaction using high-purity silane gas and oxygen as raw materials, it is possible to ideally prevent the invasion of foreign elements, but since the structure is amorphous, the foreign elements are taken in once. If this happens, it is difficult to spit this out. In addition, the cost of the substrate used for the liquid crystal display is especially high, so it is necessary to use a low priced substrate. Contains. Some of these foreign elements themselves are not preferable for the semiconductor element, and in the process of adding these foreign elements, they may be mixed in from the outside or contained as impurities in the additive material.

【0008】例えば、TNガラスは安価なガラス基板で
耐熱性がよく、熱膨張率等がシリコンに近いため、液晶
ディスプレー用の基板として好ましいものであるが、リ
チウムを5%程度含有している。このリチウムの一部は
イオン化し、可動イオンとして半導体素子に侵入し、素
子の劣化をもたらす。また、このリチウムは99%以上
の高純度のものを製造することが難しく、通常、0.7
%程度のナトリウムが含まれている。ナトリウムのイオ
ン化率は10%程度で、極めて大きく、このナトリウム
イオンは素子の特性に極めて深刻な影響をもたらす。
For example, TN glass is an inexpensive glass substrate having good heat resistance and a coefficient of thermal expansion close to that of silicon, so that it is preferable as a substrate for liquid crystal displays, but contains about 5% lithium. A part of this lithium is ionized and penetrates into the semiconductor element as mobile ions, causing deterioration of the element. In addition, it is difficult to produce lithium having a high purity of 99% or more, and it is usually 0.7
It contains about% sodium. The ionization rate of sodium is about 10%, which is extremely large, and this sodium ion has a very serious effect on the characteristics of the device.

【0009】従来の薄膜状半導体素子では、図5に示す
ように、この可動イオンの侵入に対しては、酸化珪素等
をパッシベーション膜として使用し、また、層間絶縁物
をPSGやBPSGとすることによってこれらの可動イ
オンをゲッタリングすることによって対処されてきた。
しかしながら、これらの方法では汚染を十分に防ぐこと
は困難であった。本発明は、これらの汚染元素・イオン
を侵入によって素子が劣化することを抑制することを目
的とする。
In the conventional thin film semiconductor device, as shown in FIG. 5, silicon oxide or the like is used as a passivation film against the invasion of mobile ions, and PSG or BPSG is used as the interlayer insulator. Have been addressed by gettering these mobile ions.
However, it is difficult to prevent contamination sufficiently by these methods. It is an object of the present invention to prevent the element from deteriorating due to invasion of these contaminant elements and ions.

【0010】[0010]

【問題を解決する方法】本発明では、以上のような汚染
を抑制するために薄膜半導体素子の下部と上部にそれぞ
れ窒化珪素や酸化アルミニウム、酸化タンタル等の可動
イオンに対してブロッキング作用を有する膜(ブロッキ
ング膜)を形成したことを特徴とする。
According to the present invention, a film having a blocking action against mobile ions such as silicon nitride, aluminum oxide, and tantalum oxide is provided in the lower part and the upper part of a thin film semiconductor device in order to suppress the above contamination. (Blocking film) is formed.

【0011】本発明の典型的な例は図1に示される。図
1では本発明を用いたTFTが示されている。すなわ
ち、絶縁性基板101上に第1のブロッキング膜102
として第1の窒化珪素膜が形成されている。第1の窒化
珪素皮膜は基板からの汚染を防ぐ効果を有する。そし
て、第1の窒化珪素膜上に、例えば酸化珪素のようなシ
リコン材料と密着性のよい皮膜103を形成する。この
皮膜103を形成せずして、直接、半導体皮膜を第1の
窒化珪素上に形成し、TFTを作製すると、窒化珪素と
半導体材料の界面に生ずるトラップ準位によってチャネ
ル領域が導通化し、TFTが動作しなくなる。したがっ
て、このような緩衝体を設けることは重要である。
A typical example of the present invention is shown in FIG. FIG. 1 shows a TFT using the present invention. That is, the first blocking film 102 is formed on the insulating substrate 101.
As a first silicon nitride film is formed. The first silicon nitride film has an effect of preventing contamination from the substrate. Then, a film 103 having good adhesion to a silicon material such as silicon oxide is formed on the first silicon nitride film. When the semiconductor film is directly formed on the first silicon nitride without forming the film 103 and the TFT is manufactured, the channel region becomes conductive due to the trap level generated at the interface between the silicon nitride and the semiconductor material, and the TFT is formed. Does not work. Therefore, it is important to provide such a buffer.

【0012】皮膜103上にはTFTが形成される。T
FTは、ソース(ドレイン)領域107とドレイン(ソ
ース)領域109、それらに挟まれたチャネル領域10
8、ゲイト絶縁膜104、ゲイト電極110を有する。
TFTのソース、ドレイン、チャネル各領域は単結晶も
しくは多結晶、あるいはアモルファスの半導体材料で形
成される。半導体材料としては、例えば、シリコン、ゲ
ルマニウム、炭化珪素、およびこれらの合金が使用され
うる。
A TFT is formed on the film 103. T
FT includes a source (drain) region 107, a drain (source) region 109, and a channel region 10 sandwiched between them.
8, a gate insulating film 104, and a gate electrode 110.
The source, drain, and channel regions of the TFT are formed of a single crystal, polycrystal, or amorphous semiconductor material. As the semiconductor material, for example, silicon, germanium, silicon carbide, and alloys thereof can be used.

【0013】そして、このTFTを覆って、第2のブロ
ッキング膜105として第2の窒化珪素皮膜が形成され
る。ここで、第2の窒化珪素皮膜が、TFTの作製の後
で、かつ、ソースおよび/またはドレインに電極が形成
される前に形成されることが本発明の特徴とするところ
である。従来の技術では、電極形成後にファイナルパッ
シベーション膜としての窒化珪素膜が形成されたが、本
発明はそのような意味で形成される窒化珪素膜とは目的
が異なる。すなわち、本発明における第2の窒化珪素膜
は、第1の窒化珪素膜とともにTFTを包み込んでしま
うために形成されるのであり、TFT形成後の電極形成
の工程での汚染をも防ぐことを意図するものである。し
たがって、本発明によってTFTとそれに付随する電極
や配線を形成した後、従来のようにファイナルパッシベ
ーション膜として窒化珪素膜を形成してもよい。
Then, a second silicon nitride film is formed as a second blocking film 105 so as to cover the TFT. Here, it is a feature of the present invention that the second silicon nitride film is formed after the fabrication of the TFT and before the electrodes are formed on the source and / or the drain. In the conventional technique, the silicon nitride film as the final passivation film was formed after the electrodes were formed, but the present invention has a different purpose from the silicon nitride film formed in that sense. That is, the second silicon nitride film in the present invention is formed because it encloses the TFT together with the first silicon nitride film, and is intended to prevent contamination in the step of forming an electrode after the TFT is formed. To do. Therefore, a silicon nitride film may be formed as a final passivation film as in the conventional method after the TFT and the electrodes and wirings associated therewith are formed according to the present invention.

【0014】さて、第2の窒化珪素膜形成後に、層間背
絶縁材料、例えばPSG等によって、層間絶縁膜106
を形成し、ソース(ドレイン)電極111とドレイン
(ソース)電極112を形成する。
After the second silicon nitride film is formed, the interlayer insulating film 106 is formed by using an interlayer back insulating material such as PSG.
Then, a source (drain) electrode 111 and a drain (source) electrode 112 are formed.

【0015】図1の例では、しかしながら、ゲイト絶縁
膜が遠方に延びており、その端部からTFT内部に侵入
する可能性がある。これを改良したものが、図2に示さ
れる例で、ゲイト絶縁膜はTFT上にしかないため、図
1のような問題はない。しかしながら、この場合はチャ
ネル領域に隣接した部分のソース領域およびドレイン領
域が窒化珪素膜に接触しているため、この部分の窒化珪
素がゲイト電圧によって分極し、あるいは電子をトラッ
プして、TFTの動作を妨げることがある。
In the example of FIG. 1, however, the gate insulating film extends distantly, and there is a possibility that the gate insulating film may enter the inside of the TFT from its end. An improved version of this is the example shown in FIG. 2, in which the gate insulating film is only on the TFT, so there is no problem as in FIG. However, in this case, since the source region and the drain region of the portion adjacent to the channel region are in contact with the silicon nitride film, the silicon nitride in this portion is polarized by the gate voltage or traps electrons to operate the TFT. May interfere with.

【0016】その問題を克服した例が図3に示される。
ここでは、チャネル領域に隣接したソース領域およびド
レイン領域は窒化珪素膜に隣接していない。したがっ
て、窒化珪素の分極や電子トラップという困難は解決さ
れる。しかしながら、ソースおよびドレイン領域の形成
にあたって、ゲイト電極をマスクとするセルフアライン
プロセスを採用する場合には、この例では図1の例と同
様に、ゲイト絶縁膜を通して、アクセプターあるいはド
ナー元素を注入しなければならず、そのためイオン注入
法を採用するのであれば、イオンの加速エネルギーを高
める必要がある。その際、高速イオンが注入される結
果、その2次散乱によってソースおよびドレイン領域が
広がることがある。
An example of overcoming that problem is shown in FIG.
Here, the source region and the drain region adjacent to the channel region are not adjacent to the silicon nitride film. Therefore, the problems of polarization of silicon nitride and electron trap are solved. However, when the self-alignment process using the gate electrode as a mask is adopted for forming the source and drain regions, in this example, as in the example of FIG. 1, an acceptor or donor element must be implanted through the gate insulating film. Therefore, if the ion implantation method is adopted, it is necessary to increase the acceleration energy of ions. At that time, as a result of the implantation of the fast ions, the source and drain regions may spread due to the secondary scattering.

【0017】図2において、201は絶縁性基板、20
2は第1の窒化珪素膜、203は酸化珪素等の緩衝用絶
縁膜、204はゲイト絶縁膜、205は第2の窒化珪素
膜、206は層間絶縁膜、207はソース(ドレイン)
領域、208はチャネル領域、209はドレイン(ソー
ス)領域、210はゲイト電極、211はソース(ドレ
イン)電極、212はドレイン(ソース)電極である。
また、図3において、301は絶縁性基板、302は第
1の窒化珪素膜、303は酸化珪素等の緩衝用絶縁膜、
304はゲイト絶縁膜、305は第2の窒化珪素膜、3
06は層間絶縁膜、307はソース(ドレイン)領域、
308はチャネル領域、309はドレイン(ソース)領
域、310はゲイト電極、311はソース(ドレイン)
電極、312はドレイン(ソース)電極である。
In FIG. 2, 201 is an insulating substrate, 20
2 is a first silicon nitride film, 203 is a buffer insulating film such as silicon oxide, 204 is a gate insulating film, 205 is a second silicon nitride film, 206 is an interlayer insulating film, and 207 is a source (drain).
A region, 208 is a channel region, 209 is a drain (source) region, 210 is a gate electrode, 211 is a source (drain) electrode, and 212 is a drain (source) electrode.
Further, in FIG. 3, 301 is an insulating substrate, 302 is a first silicon nitride film, 303 is a buffer insulating film such as silicon oxide,
304 is a gate insulating film, 305 is a second silicon nitride film, 3
Reference numeral 06 is an interlayer insulating film, 307 is a source (drain) region,
308 is a channel region, 309 is a drain (source) region, 310 is a gate electrode, and 311 is a source (drain).
Electrodes 312 are drain (source) electrodes.

【0018】本発明において、ブロッキング膜として窒
化珪素膜を用いる場合には、化学式でSiNx で表した
とき、x=1.0からx=1.7が適し、特に、x=
1.3からx=1.35の化学量論的組成(x=1.3
3)のもの、あるいはそれに近いのものでよい結果が得
られた。したがって、本発明では、窒化珪素は減圧CV
D法によって形成する方が良かった。しかしながら、プ
ラズマCVD法や光CVD法で形成された窒化珪素皮膜
であっても、本発明を使用しない場合に比べて素子の信
頼性が向上することは言うまでもない。
In the present invention, when a silicon nitride film is used as the blocking film, when represented by SiN x in the chemical formula, x = 1.0 to x = 1.7 is suitable, and particularly x =
Stoichiometric composition from 1.3 to x = 1.35 (x = 1.3
Good results were obtained with 3) or close thereto. Therefore, in the present invention, silicon nitride is used as a reduced pressure CV.
It was better to form by the D method. However, it goes without saying that even with a silicon nitride film formed by the plasma CVD method or the photo CVD method, the reliability of the element is improved as compared with the case where the present invention is not used.

【0019】減圧CVD法によって、窒化珪素膜を形成
しようとすれば、原料ガスとしてジクロールシラン(S
iCl22 )とアンモニア(NH3 )を用い、圧力1
0〜1000Paで500〜800℃、好ましくは55
0〜750℃で反応させればよい。もちろん、シラン
(SiH4 )やテトラクロロシラン(SiCl4 )を用
いてもよい。
When a silicon nitride film is to be formed by the low pressure CVD method, dichlorosilane (S
iCl 2 H 2 ) and ammonia (NH 3 ) at a pressure of 1
500 to 800 ° C. at 0 to 1000 Pa, preferably 55
The reaction may be performed at 0 to 750 ° C. Of course, silane (SiH 4 ) or tetrachlorosilane (SiCl 4 ) may be used.

【0020】さらに、窒化珪素以外に酸化アルミニウム
や酸化タンタルがブロッキング膜として用いられること
は先に述べた通りである。これらの被膜を形成するに
は、CVD法やスパッタ法を用いればよい。例えば、酸
化アルミニウム膜の形成には、トリメチルアルミニウム
Al(CH3 3 を酸化窒素(N2O、NO、NO2
等と酸化反応させればよい。
Further, as described above, aluminum oxide or tantalum oxide is used as the blocking film in addition to silicon nitride. A CVD method or a sputtering method may be used to form these coatings. For example, to form an aluminum oxide film, trimethylaluminum Al (CH 3 ) 3 is added to nitric oxide (N 2 O, NO, NO 2 )
And the like.

【0021】図4には、本発明を使用して、公知の技術
である低不純物濃度ドレイン(LDD)を形成する例を
示した。まず、石英あるいはANガラス等の絶縁性基板
401上に減圧CVD法によって窒化珪素膜402を厚
さ50〜1000nm形成する。このとき、基板の表面
だけでなく、裏面をも窒化珪素膜で被覆してしまうと本
発明をより確実に効果的に実施できる。すなわち、製造
工程においては裏面から発生した可動イオン(それらは
基板に含まれているのだが)が、さまざまな理由によっ
て表面に到達することがよくあり、その結果、例えば、
ゲイト酸化膜作製中に膜中に可動イオンが侵入する。ま
た、裏面が可動イオンの発生源であると、成膜装置等の
製造装置は絶えず、可動イオンによって汚染されている
ので、製造装置の清浄度を保つうえでも、基板の裏面に
窒化珪素膜を設けることは必要なことである。窒化珪素
膜の上に緩衝用の酸化珪素皮膜403を同じく減圧CV
D法によって、厚さ50〜1000nm形成する。この
際、原料ガス中に体積比で3%から6%、例えば5%ほ
どの塩化水素等のハロゲンを含むガスを混入させておく
と、得られる酸化珪素膜中にハロゲン元素が取り込まれ
る。このハロゲンはナトリウム等のアルカリイオンと結
合して、ナトリウムを固定するので、ナトリウム汚染を
防ぐうえでより大きな効果が得られる。しかし、過剰な
ハロゲンの添加は膜を粗にし、密着性や表面の平坦性を
損なうので好ましくない。
FIG. 4 shows an example of forming a low impurity concentration drain (LDD) which is a known technique using the present invention. First, a silicon nitride film 402 having a thickness of 50 to 1000 nm is formed on an insulating substrate 401 such as quartz or AN glass by a low pressure CVD method. At this time, if not only the front surface of the substrate but also the back surface is covered with the silicon nitride film, the present invention can be carried out more reliably and effectively. That is, in the manufacturing process, mobile ions generated from the back surface (though they are contained in the substrate) often reach the front surface for various reasons, and as a result, for example,
Mobile ions penetrate into the gate oxide film during fabrication. Further, when the back surface is a source of mobile ions, manufacturing equipment such as a film forming apparatus is constantly contaminated by mobile ions. It is necessary to provide it. A buffer silicon oxide film 403 is also formed on the silicon nitride film under reduced pressure CV.
A thickness of 50 to 1000 nm is formed by the D method. At this time, if a gas containing halogen such as hydrogen chloride in a volume ratio of 3% to 6%, for example, about 5% is mixed in the source gas, the halogen element is incorporated into the obtained silicon oxide film. Since this halogen binds to alkali ions such as sodium to fix sodium, a larger effect can be obtained in preventing sodium contamination. However, excessive addition of halogen roughens the film and impairs adhesion and flatness of the surface, which is not preferable.

【0022】次にドナーもアクセプターも添加されない
非晶質シリコン膜を減圧CVD法、あるいはプラズマC
VD法、あるいはスパッタ法によって厚さ20〜500
nmだけ形成する。そして、これを島上にエッチングす
る。その上にゲイト絶縁膜として、厚さ10〜100n
mの酸化珪素膜を減圧CVD法、あるいはスパッタ法に
よって形成する。この際も、先のように、原料ガス中、
あるいはスパッタガス中にハロゲン材料ガスを混入させ
ておくとよい。
Next, an amorphous silicon film to which neither a donor nor an acceptor is added is formed by a low pressure CVD method or plasma C
20-500 thickness by VD method or sputtering method
Only nm is formed. Then, this is etched on the island. A gate insulating film with a thickness of 10 to 100 n
A silicon oxide film of m is formed by a low pressure CVD method or a sputtering method. Also in this case, as described above, in the source gas,
Alternatively, a halogen material gas may be mixed in the sputtering gas.

【0023】そして、その上に減圧CVD法、あるいは
プラズマCVD法によって、リンが1021cm-3程度に
ドープされた多結晶あるいは微結晶シリコン膜を形成す
る。そして、このシリコン膜およびその下のゲイト絶縁
膜(酸化珪素)をパターニングし、ゲイト電極410と
ゲイト絶縁膜404を形成する。
Then, a polycrystalline or microcrystalline silicon film doped with phosphorus to a concentration of about 10 21 cm -3 is formed thereon by a low pressure CVD method or a plasma CVD method. Then, this silicon film and the gate insulating film (silicon oxide) thereunder are patterned to form a gate electrode 410 and a gate insulating film 404.

【0024】さらに、このゲイト電極をマスクとしてセ
ルフアライン的にイオン注入をおこない、比較的不純物
濃度の小さい(1017〜1019cm-3程度)ソース(ド
レイン)領域407、ドレイン(ソース)領域408を
形成する。不純物の注入されなかった部分がチャネル領
域408として残る。こうして、図4(A)が得られ
る。
Further, ion implantation is carried out in a self-aligned manner using this gate electrode as a mask, and a source (drain) region 407 and a drain (source) region 408 having a relatively low impurity concentration (about 10 17 to 10 19 cm −3 ) are used. To form. The portion where the impurities are not implanted remains as the channel region 408. Thus, FIG. 4A is obtained.

【0025】次に、図4(B)に示すように減圧CVD
法によって、全体にPSG膜413が形成される。そし
て、これを公知の方向性エッチングによってエッチング
し、ゲイト電極の横に側壁414を形成する。その後、
再び、イオン注入をおこない、不純物濃度の高いソース
(ドレイン)領域407aとドレイン(ソース)領域4
09aを形成する。不純物濃度の低い領域はソース(ド
レイン)領域407bとドレイン(ソース)領域409
bとなって、LDDを形成する。こうして、図4(C)
を得る。
Next, as shown in FIG. 4B, low pressure CVD is performed.
The PSG film 413 is formed on the entire surface by the method. Then, this is etched by a known directional etching to form a side wall 414 beside the gate electrode. afterwards,
Ion implantation is performed again, and the source (drain) region 407a and the drain (source) region 4 having a high impurity concentration are formed.
09a is formed. A region having a low impurity concentration is a source (drain) region 407b and a drain (source) region 409.
b, LDD is formed. Thus, FIG. 4 (C)
To get

【0026】その後、図4(D)に示すように、減圧C
VD法によって、全体に窒化珪素膜405を、厚さ50
〜1000nm形成する。その後、例えば、600℃程
度の低温アニールによってシリコン膜の結晶化をおこな
い、ソース、ドレイン領域の活性化をおこなう。この工
程はレーザーアニールでおこなってもよい。このように
して、TFTの中間体が得られる。
Thereafter, as shown in FIG. 4D, the reduced pressure C
A silicon nitride film 405 is formed to a thickness of 50 by VD method.
-1000 nm is formed. Then, the silicon film is crystallized by low-temperature annealing at about 600 ° C. to activate the source / drain regions. This step may be performed by laser annealing. In this way, a TFT intermediate is obtained.

【0027】図4の例は、本発明の例を示したに過ぎ
ず、本発明が、上記の工程に制約されないことは明らか
であろう。図4の例では、図3の例と同様に、窒化珪素
膜とゲイト電極とソースあるいはドレイン領域が隣接す
る部分がない。すなわち、図2の場合とは違って、側壁
414が存在するため、図2で懸念されたような問題は
ない。さらに、図3とは異なって、ドナーやアクセプタ
ーの添加は容易におこなえるという特徴を有する。
It will be appreciated that the example of FIG. 4 is merely an example of the present invention and that the present invention is not limited to the above steps. In the example of FIG. 4, as in the example of FIG. 3, there is no portion where the silicon nitride film, the gate electrode, and the source or drain region are adjacent to each other. That is, unlike the case of FIG. 2, since the side wall 414 is present, there is no problem of concern in FIG. Further, unlike FIG. 3, it has a feature that a donor and an acceptor can be easily added.

【0028】[0028]

【実施例】本発明を用いたTFTの特性について記述す
る。本実施例で使用したTFTは石英ガラス基板上に図
4のプロセスに従って作製したLDD型TFTである。
まず、石英ガラス基板401上およびその裏面と側面
(すなわち、基板全体)に減圧CVD法によって窒化珪
素膜402を厚さ100nm形成し、さらに、連続的に
減圧CVD法によって酸化珪素膜(低温酸化膜(LTO
膜)ともいう)403を厚さ200nm形成し、最後
に、やはり減圧CVD法によって非晶質シリコン膜を厚
さ30nm形成した。このときの最高プロセス温度は6
00℃であった。次に、非晶質シリコン膜を島状にパタ
ーニングした。そして、その非晶質シリコン膜の表面の
ごく薄い部分、厚さ2〜10nmを陽極酸化法によって
酸化した。その後、スパッタ法によって酸化珪素膜を1
00nm形成した。ここで、スパッタ雰囲気は酸素とア
ルゴンもしくは他の希ガスの混合気体とし、かつ、酸素
の分圧を80%以上とした。このとき、スパッタ衝撃に
よって、下地の膜に欠陥が生じる。例えば、下地がシリ
コン膜であった場合には、シリコン中に酸素原子が打ち
込まれ、酸素の濃度が増加する。このような状態ではシ
リコンは極在準位の多いものとなってしまう。すなわ
ち、シリコンと酸化珪素の境界がはっきりしないものと
なってしまう。しかし、本実施例のように予め薄い陽極
酸化膜を形成しておけば、スパッタの際には既に酸化珪
素が存在しているため、上記のような原子の混合が避け
られ、シリコン膜と酸化珪素膜の境界は保たれる。
EXAMPLE The characteristics of the TFT using the present invention will be described. The TFT used in this example is an LDD type TFT manufactured on a quartz glass substrate according to the process of FIG.
First, a silicon nitride film 402 having a thickness of 100 nm is formed on the quartz glass substrate 401 and its back surface and side surfaces (that is, the entire substrate) by a low pressure CVD method, and further, a silicon oxide film (low temperature oxide film) is continuously formed by the low pressure CVD method. (LTO
(Also referred to as a film) 403 was formed to a thickness of 200 nm, and finally, an amorphous silicon film was formed to a thickness of 30 nm by the low pressure CVD method. The maximum process temperature at this time is 6
It was 00 ° C. Next, the amorphous silicon film was patterned into an island shape. Then, a very thin portion of the surface of the amorphous silicon film, having a thickness of 2 to 10 nm, was oxidized by an anodic oxidation method. After that, a silicon oxide film is formed by a sputtering method.
Was formed to a thickness of 00 nm. Here, the sputtering atmosphere was a mixed gas of oxygen and argon or another rare gas, and the partial pressure of oxygen was 80% or more. At this time, the sputter impact causes defects in the underlying film. For example, when the base is a silicon film, oxygen atoms are implanted in the silicon and the oxygen concentration increases. In such a state, silicon has many polar levels. That is, the boundary between silicon and silicon oxide becomes unclear. However, if a thin anodic oxide film is formed in advance as in the present embodiment, since the silicon oxide is already present at the time of sputtering, the above-mentioned mixing of atoms is avoided, and the silicon film and the oxide film are oxidized. The boundary of the silicon film is maintained.

【0029】この酸化珪素膜の形成後、減圧CVD法に
よって、リンを1021cm-3程度含んだn+ 型の微結晶
珪素膜を厚さ300nm形成した。以上の被膜形成の最
高プロセス温度は650℃であった。その後、ゲイト電
極のパターニングをおこないゲイト電極410とゲイト
絶縁膜404を形成した。さらに、イオン打ち込みによ
って砒素イオンを2×1018cm-3だけ注入し、ソース
およびドレイン領域407、409を形成した。こうし
て、図4(A)を得た。
After forming this silicon oxide film, an n + -type microcrystalline silicon film containing phosphorus of about 10 21 cm -3 was formed to a thickness of 300 nm by the low pressure CVD method. The maximum process temperature for forming the above coating was 650 ° C. Then, the gate electrode was patterned to form a gate electrode 410 and a gate insulating film 404. Further, arsenic ions were implanted by 2 × 10 18 cm −3 by ion implantation to form source and drain regions 407 and 409. Thus, FIG. 4A was obtained.

【0030】次いで、図4(B)のように減圧CVD法
によってPSG膜413を形成し、方向性エッチングに
よって、図4(C)に示される側壁414を形成した。
さらに、イオン打ち込み法によって砒素イオンを領域4
07aおよび409aに5×1020cm-3注入した。
Next, as shown in FIG. 4B, a PSG film 413 was formed by a low pressure CVD method, and a side wall 414 shown in FIG. 4C was formed by directional etching.
Further, arsenic ions are added to the region 4 by the ion implantation method.
5x10 20 cm -3 was injected into 07a and 409a.

【0031】その後、全体に窒化珪素膜405を減圧C
VD法によって形成した。こうして、図4(D)を得
た。その後、真空中620℃で48時間アニールして、
領域407a、407b、408、409a、409b
を活性化させた。そして、減圧CVD法によって層間絶
縁物として、全体にPSG膜を形成し、電極用の穴を開
け、アルミ電極をソース領域およびドレイン領域に形成
した。そして、最後に、パッシベーションの目的で全体
に再び、減圧CVD法によって窒化珪素膜を形成した。
After that, a silicon nitride film 405 is formed on the entire surface under reduced pressure C.
It was formed by the VD method. Thus, FIG. 4D was obtained. Then, anneal in vacuum at 620 ° C for 48 hours,
Regions 407a, 407b, 408, 409a, 409b
Was activated. Then, a PSG film was formed over the entire surface as an interlayer insulator by the low pressure CVD method, holes for electrodes were opened, and aluminum electrodes were formed in the source region and the drain region. Then, finally, for the purpose of passivation, a silicon nitride film was formed again on the entire surface by the low pressure CVD method.

【0032】このようにして形成されたTFTは極めて
信頼性の高いものであった。いわゆるバイアス−温度処
理(BT処理)によっても素子の動作特性が変化しない
ことが示された。その例を図6に示す。BT処理は図6
中に示された回路図のように配線して、加温中でゲイト
(G)とソース(S)、ドレイン(D)間にバイアス電
圧VB を加えることによっておこなった。具体的には、
作製後直ちに室温でTFTのゲイト電圧−ドレイン電流
特性を測定し(VB=0)、その後、150℃で1時
間、ゲイト電極に+20Vの電圧を加え、室温でTFT
のゲイト電圧−ドレイン電流特性を測定し(VB =+2
0V)、次に、再び、150℃で1時間、ゲイト電極に
今度は−20Vの電圧を加え、その後、室温でTFTの
ゲイト電圧−ドレイン電流特性を測定し(VB =−20
V)、TFTのしきい値電圧の変動を調べた。
The TFT thus formed was extremely reliable. It was shown that the so-called bias-temperature treatment (BT treatment) did not change the operating characteristics of the device. An example thereof is shown in FIG. Figure 6 shows the BT process.
Wiring was performed as in the circuit diagram shown therein, and a bias voltage V B was applied between the gate (G), the source (S) and the drain (D) during heating. In particular,
Immediately after fabrication, the gate voltage-drain current characteristics of the TFT are measured at room temperature (V B = 0), and then a voltage of +20 V is applied to the gate electrode for 1 hour at 150 ° C.
Of the gate voltage-drain current characteristics of (V B = + 2
0 V), and then again at 150 ° C. for 1 hour, applying a voltage of −20 V to the gate electrode, and then measuring the gate voltage-drain current characteristic of the TFT at room temperature (V B = −20).
V), and the change in the threshold voltage of the TFT was investigated.

【0033】図6(B)が以上に記載した方法によって
作製したTFTの特性である。このように、バイアス電
圧VB に全く特性が影響されず、精密な測定の結果、し
きい値電圧の変動は0.2V以下であった。
FIG. 6B shows the characteristics of the TFT manufactured by the method described above. Thus, the characteristics were not affected by the bias voltage V B at all, and as a result of precise measurement, the fluctuation of the threshold voltage was 0.2 V or less.

【0034】一方、図6(A)に示されるものは、窒化
珪素膜402と405を設けなかった以外は本実施例に
示した方法と全く同じプロセスで作製したものである
が、図から明らかなように特性がVB に大きく依存して
しまっている。このような特性の変動(しきい値電圧の
変動)は、ゲイト絶縁膜中のナトリウム等の可動イオン
によるものと説明され、変動が大きいほど可動イオンが
多く、また、図6(B)のように変動が少ないものは可
動イオンの量がすくないと説明されている。しきい値電
圧の変動幅から本実施例で作製したTFTのゲイト電極
中の可動イオンの量は8×1010cm-3程度であると推
定される。すなわち、本発明のように窒化珪素膜を設け
ることによって、TFTの特性を著しく改善し、信頼性
を向上せしめることが可能であることが示された。
On the other hand, what is shown in FIG. 6A is manufactured by the same process as the method shown in this embodiment except that the silicon nitride films 402 and 405 are not provided. As described above, the characteristics greatly depend on V B. It is explained that such characteristic fluctuations (threshold voltage fluctuations) are caused by mobile ions such as sodium in the gate insulating film. The larger the fluctuations, the more mobile ions, and as shown in FIG. 6B. It is explained that those with little fluctuation have a small amount of mobile ions. From the fluctuation width of the threshold voltage, it is estimated that the amount of mobile ions in the gate electrode of the TFT manufactured in this example is about 8 × 10 10 cm −3 . That is, it was shown that by providing a silicon nitride film as in the present invention, it is possible to remarkably improve the characteristics of the TFT and improve the reliability.

【0035】[0035]

【発明の効果】本発明によって、ナトリウム等の可動イ
オンの影響の少ないTFT等の薄膜状半導体素子を作製
することができる。従来、可動イオンが存在するため素
子が形成できなかった基板においても、TFTを形成す
ることが可能となった。本発明を実施するには、図1な
いし図4のようにコプラナ型であっても、また、逆コプ
ラナ型やスタガ型、逆スタガ型のTFTを用いても構わ
ない。また、本発明は、薄膜状半導体素子の動作につい
て制約を加えるものではないので、トランジスタのシリ
コンはアモルファスであっても、多結晶であっても、微
結晶であっても、またそれらの中間状態のものであって
も、さらには単結晶であっても構わないことは明らかで
あろう。
According to the present invention, a thin film semiconductor element such as a TFT which is less affected by mobile ions such as sodium can be manufactured. Conventionally, it is possible to form a TFT even on a substrate in which elements cannot be formed due to the presence of mobile ions. To implement the present invention, a coplanar TFT as shown in FIGS. 1 to 4, or an inverse coplanar TFT, a stagger TFT, or an inverse stagger TFT may be used. In addition, since the present invention does not impose restrictions on the operation of the thin film semiconductor element, the silicon of the transistor may be amorphous, polycrystalline, microcrystalline, or an intermediate state thereof. It will be clear that it may be a single crystal or even a single crystal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるTFTの例を示す。FIG. 1 shows an example of a TFT according to the present invention.

【図2】本発明によるTFTの例を示す。FIG. 2 shows an example of a TFT according to the present invention.

【図3】本発明によるTFTの例を示す。FIG. 3 shows an example of a TFT according to the present invention.

【図4】本発明によるTFTの作製例を示す。FIG. 4 shows an example of manufacturing a TFT according to the present invention.

【図5】従来のTFTの例を示す。FIG. 5 shows an example of a conventional TFT.

【図6】本発明を利用したTFTと利用しないTFTの
特性を示す。
FIG. 6 shows characteristics of a TFT using the present invention and a TFT not using the present invention.

【符号の説明】[Explanation of symbols]

101 絶縁性基板 102 第1のブロッキング膜 103 緩衝絶縁膜 104 ゲイト絶縁膜 105 第2のブロッキング膜 106 層間絶縁膜 107 ソース(ドレイン)領域 108 チャネル領域 109 ドレイン(ソース)領域 110 ゲイト電極 111 ソース(ドレイン)電極 112 ドレイン(ソース)電極 101 insulating substrate 102 first blocking film 103 buffer insulating film 104 Gate insulation film 105 Second blocking film 106 Interlayer insulation film 107 source (drain) region 108 channel region 109 drain (source) region 110 gate electrode 111 Source (drain) electrode 112 Drain (source) electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−35961(JP,A) 特開 昭58−164268(JP,A) 特開 昭59−126673(JP,A) 特開 昭58−93273(JP,A)   ─────────────────────────────────────────────────── ─── Continued front page       (56) References JP-A 64-35961 (JP, A)                 JP 58-164268 (JP, A)                 JP-A-59-126673 (JP, A)                 JP 58-93273 (JP, A)

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に設けられた前記基板からの汚染
を防ぐ第1の窒化珪素膜と、 前記第1の窒化珪素膜上に設けられたハロゲン元素を含
む絶縁性被膜と、 前記絶縁性被膜上の、ソース領域、ドレイン領域、LD
D領域およびチャネル形成領域が設けられた半導体薄膜
を有する薄膜トランジスタと、 前記薄膜トランジスタ上に設けられた外部からの汚染を
防ぐ第2の窒化珪素膜と、を有することを特徴とする半
導体装置。
1. A first silicon nitride film provided on a substrate for preventing contamination from the substrate, an insulating film containing a halogen element provided on the first silicon nitride film, and the insulating property. Source region, drain region, LD on the film
A semiconductor device comprising: a thin film transistor having a semiconductor thin film provided with a D region and a channel formation region; and a second silicon nitride film provided on the thin film transistor for preventing contamination from the outside.
【請求項2】 基板上に設けられた前記基板からの汚染
を防ぐ第1の窒化珪素膜と、 前記第1の窒化珪素膜上に設けられたハロゲン元素を含
む絶縁性被膜と、 前記絶縁性被膜上の、ソース領域、ドレイン領域、LD
D領域およびチャネル形成領域を有する半導体薄膜、ゲ
イト絶縁膜およびゲイト電極、を有する薄膜トランジス
タと、 前記薄膜トランジスタ上に設けられた外部からの汚染を
防ぐ第2の窒化珪素膜と、を有することを特徴とする半
導体装置。
2. A first silicon nitride film provided on a substrate for preventing contamination from the substrate, an insulating film containing a halogen element provided on the first silicon nitride film, and the insulating property. Source region, drain region, LD on the film
A thin film transistor having a semiconductor thin film having a D region and a channel forming region, a gate insulating film and a gate electrode, and a second silicon nitride film provided on the thin film transistor for preventing external contamination. Semiconductor device.
【請求項3】 基板上に設けられた前記基板からの汚染
を防ぐ第1の窒化珪素膜と、 前記第1の窒化珪素膜上に設けられたハロゲン元素を含
む絶縁性被膜と、 前記絶縁性被膜上の、ソース領域、ドレイン領域、LD
D領域およびチャネル形成領域が設けられた半導体薄
膜、ゲイト絶縁膜およびゲイト電極、を有する薄膜トラ
ンジスタと、 前記薄膜トランジスタ上に設けられた外部からの汚染を
防ぐ第2の窒化珪素膜と、を有する半導体装置であっ
て、 前記薄膜トランジスタは、前記第1の窒化珪素膜と前記
第2の窒化珪素膜とによって挟まれていることを特徴と
する半導体装置。
3. A first silicon nitride film provided on a substrate for preventing contamination from the substrate, an insulating film containing a halogen element provided on the first silicon nitride film, and the insulating property. Source region, drain region, LD on the film
A semiconductor device having a thin film transistor having a semiconductor thin film provided with a D region and a channel formation region, a gate insulating film and a gate electrode, and a second silicon nitride film provided on the thin film transistor for preventing external contamination. The semiconductor device is characterized in that the thin film transistor is sandwiched between the first silicon nitride film and the second silicon nitride film.
【請求項4】 基板上に設けられた前記基板からの汚染
を防ぐ第1の窒化珪素膜と、 前記第1の窒化珪素膜上に設けられたハロゲン元素を含
む絶縁性被膜と、 前記絶縁性被膜上の、ソース領域、ドレイン領域、LD
D領域およびチャネル形成領域が設けられた半導体薄
膜、ゲイト絶縁膜およびゲイト電極、を有する薄膜トラ
ンジスタと、 前記薄膜トランジスタ上に設けられた外部からの汚染を
防ぐ第2の窒化珪素膜と、前記第2の窒化珪素膜上の絶
縁膜と、を有する半導体装置であって、 前記薄膜トランジスタは、前記第1の窒化珪素膜と前記
第2の窒化珪素膜とによって挟まれていることを特徴と
する半導体装置。
4. A first silicon nitride film provided on a substrate for preventing contamination from the substrate, an insulating film containing a halogen element provided on the first silicon nitride film, and the insulating property. Source region, drain region, LD on the film
A thin film transistor having a semiconductor thin film provided with a D region and a channel formation region, a gate insulating film and a gate electrode, a second silicon nitride film provided on the thin film transistor for preventing external contamination, and the second thin film. A semiconductor device, comprising: an insulating film on a silicon nitride film, wherein the thin film transistor is sandwiched between the first silicon nitride film and the second silicon nitride film.
【請求項5】 前記薄膜トランジスタは、コプラナ型の
薄膜トランジスタである請求項乃至のいずれか一に
記載の半導体装置。
Wherein said thin film transistor, the semiconductor device according to any one of claims 1 to 4, which is a coplanar type thin film transistor.
【請求項6】 前記薄膜トランジスタは、逆スタガ型の
薄膜トランジスタである請求項乃至のいずれか一に
記載の半導体装置。
Wherein said thin film transistor, the semiconductor device according to any one of claims 1 to 4 which is an inverted staggered thin film transistor.
【請求項7】 請求項1からのいずれか一項におい
て、前記半導体薄膜は、単結晶半導体薄膜、多結晶半導
体薄膜またはアモルファス半導体薄膜であることを特徴
とする半導体装置。
7. A any one of claims 1 6, wherein the semiconductor thin film, wherein a single crystal semiconductor thin film, a polycrystalline semiconductor thin film or an amorphous semiconductor thin film.
【請求項8】 請求項1からのいずれか一項におい
て、前記半導体薄膜は、シリコン膜またはシリコンとゲ
ルマニウムの合金膜であることを特徴とする半導体装
置。
8. according to any one of claims 1 to 7, wherein the semiconductor thin film, wherein a is an alloy film of a silicon film or silicon and germanium.
【請求項9】 請求項1からのいずれか一項におい
て、前記ハロゲン元素は、アルカリイオンをゲッタリン
グすることを特徴とする半導体装置。
9. A any one of claims 1 8, wherein the halogen element, and wherein a gettering alkali ions.
JP23871491A 1991-08-26 1991-08-26 Semiconductor device Expired - Lifetime JP3483581B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP23871491A JP3483581B2 (en) 1991-08-26 1991-08-26 Semiconductor device
KR1019920015127A KR960000231B1 (en) 1991-08-26 1992-08-22 Thin film type semiconductor and its making method
US08/202,680 US6849872B1 (en) 1991-08-26 1994-02-25 Thin film transistor
JP2000182365A JP3352998B2 (en) 1991-08-26 2000-06-19 Method for manufacturing semiconductor device
US11/041,704 US7855106B2 (en) 1991-08-26 2005-01-25 Semiconductor device and method for forming the same
US12/971,966 US20110086472A1 (en) 1991-08-26 2010-12-17 Semiconductor device and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23871491A JP3483581B2 (en) 1991-08-26 1991-08-26 Semiconductor device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2000182365A Division JP3352998B2 (en) 1991-08-26 2000-06-19 Method for manufacturing semiconductor device
JP2003317783A Division JP3923458B2 (en) 2003-09-10 2003-09-10 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0555582A JPH0555582A (en) 1993-03-05
JP3483581B2 true JP3483581B2 (en) 2004-01-06

Family

ID=17034181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23871491A Expired - Lifetime JP3483581B2 (en) 1991-08-26 1991-08-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3483581B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719065A (en) 1993-10-01 1998-02-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device with removable spacers
US6133620A (en) * 1995-05-26 2000-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US5834827A (en) * 1994-06-15 1998-11-10 Seiko Epson Corporation Thin film semiconductor device, fabrication method thereof, electronic device and its fabrication method
EP0714140B1 (en) * 1994-06-15 2003-09-03 Seiko Epson Corporation Method of manufacturing a semiconductor thin film transistor
JP3897826B2 (en) * 1994-08-19 2007-03-28 株式会社半導体エネルギー研究所 Active matrix display device
JPH08153879A (en) 1994-11-26 1996-06-11 Semiconductor Energy Lab Co Ltd Fabrication of semiconductor device
US5814529A (en) 1995-01-17 1998-09-29 Semiconductor Energy Laboratory Co., Ltd. Method for producing a semiconductor integrated circuit including a thin film transistor and a capacitor
JP3565983B2 (en) 1996-04-12 2004-09-15 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JPH1054999A (en) * 1996-06-04 1998-02-24 Canon Inc Display device and its production
US5802091A (en) * 1996-11-27 1998-09-01 Lucent Technologies Inc. Tantalum-aluminum oxide coatings for semiconductor devices
US6291837B1 (en) 1997-03-18 2001-09-18 Semiconductor Energy Laboratory Co., Ltd. Substrate of semiconductor device and fabrication method thereof as well as semiconductor device and fabrication method thereof
US7402467B1 (en) 1999-03-26 2008-07-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
JP4578611B2 (en) * 1999-03-26 2010-11-10 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2001007342A (en) * 1999-04-20 2001-01-12 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
US7038239B2 (en) 2002-04-09 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
JP3989761B2 (en) 2002-04-09 2007-10-10 株式会社半導体エネルギー研究所 Semiconductor display device
US7256421B2 (en) 2002-05-17 2007-08-14 Semiconductor Energy Laboratory, Co., Ltd. Display device having a structure for preventing the deterioration of a light emitting device
KR101169371B1 (en) 2002-10-30 2012-07-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting device
KR100656497B1 (en) 2004-02-09 2006-12-11 삼성에스디아이 주식회사 Organic light-emitting dispaly and fabrication method of the same
WO2007086163A1 (en) * 2006-01-25 2007-08-02 Sharp Kabushiki Kaisha Process for producing semiconductor device and semiconductor device
US9082857B2 (en) * 2008-09-01 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising an oxide semiconductor layer
JP5063640B2 (en) * 2009-04-27 2012-10-31 株式会社半導体エネルギー研究所 Semiconductor device

Also Published As

Publication number Publication date
JPH0555582A (en) 1993-03-05

Similar Documents

Publication Publication Date Title
JP3483581B2 (en) Semiconductor device
JP3187086B2 (en) Semiconductor device and method for manufacturing semiconductor device
KR100191091B1 (en) Thin film transistor and its fabrication method
US7855106B2 (en) Semiconductor device and method for forming the same
US7528406B2 (en) Semiconductor integrated circuit and method of fabricating same
US7635861B2 (en) Semiconductor device and method of manufacturing the same
JP3923458B2 (en) Semiconductor device
US8603870B2 (en) Semiconductor device and method of manufacturing the same
JP3171673B2 (en) Thin film transistor and method of manufacturing the same
JP3390731B2 (en) Semiconductor device
JP3970891B2 (en) Semiconductor device
JP3701549B2 (en) Semiconductor device
JP3352998B2 (en) Method for manufacturing semiconductor device
JP3375938B2 (en) Semiconductor device
JP3958349B2 (en) Method for manufacturing semiconductor device
JP3310654B2 (en) Semiconductor device
JPH11135797A (en) Working method for shape of laminated film and manufacture of thin-film transistor by making use of the same
JPS61214542A (en) Manufacture of semiconductor device
KR960000231B1 (en) Thin film type semiconductor and its making method
JP3291069B2 (en) Semiconductor device and manufacturing method thereof
JP2003197638A (en) Thin film transistor and its manufacturing method
JPH08255915A (en) Liquid crystal display
JP2001135822A (en) Thin film transistor, manufacturing method thereof and liquid crystal display device
JPS59150478A (en) Thin film circuit device
JP2960742B2 (en) Thin film transistor element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

EXPY Cancellation because of completion of term