JP3479543B2 - ロイコチトゾーン原虫に対する免疫を誘導するポリペプチド、及びこのポリペプチドをコードした組換えdna分子 - Google Patents

ロイコチトゾーン原虫に対する免疫を誘導するポリペプチド、及びこのポリペプチドをコードした組換えdna分子

Info

Publication number
JP3479543B2
JP3479543B2 JP22607893A JP22607893A JP3479543B2 JP 3479543 B2 JP3479543 B2 JP 3479543B2 JP 22607893 A JP22607893 A JP 22607893A JP 22607893 A JP22607893 A JP 22607893A JP 3479543 B2 JP3479543 B2 JP 3479543B2
Authority
JP
Japan
Prior art keywords
gaa
glu
glu glu
gta
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22607893A
Other languages
English (en)
Other versions
JPH0789995A (ja
Inventor
篤 加藤
博資 大永
進 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISSEIKEN CO., LTD.
Original Assignee
NISSEIKEN CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISSEIKEN CO., LTD. filed Critical NISSEIKEN CO., LTD.
Priority to JP22607893A priority Critical patent/JP3479543B2/ja
Publication of JPH0789995A publication Critical patent/JPH0789995A/ja
Application granted granted Critical
Publication of JP3479543B2 publication Critical patent/JP3479543B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、マラリア原虫と同じく
住血胞子虫類に分類され、鶏のロイコチトゾーン症を引
き起こすロイコチトゾイダエ科、ロイコチトゾーン属に
属するロイコチトゾーン・カウレリー(ロイコチトゾー
ン原虫)の構造蛋白質等に関し、詳しくは、ロイコチト
ゾーン原虫の構造蛋白質(ポリペプチド)、この蛋白質
をコードする組換えDNA分子、この遺伝子を組み込ん
だ発現べクター、宿主細胞、更には、発現された蛋白質
を有効成分とする組成物,ワクチンあるいは抗体検査用
試薬に関するものである。
【0002】
【発明の背景】鶏のロイコチトゾーン症は、主に住血胞
子虫(原虫)であるロイコチトゾーン・カウレリー(Le
ucocytozoon caulleryi )の感染に起因することが19
09年に初めて報告された、鶏の出血性、貧血性の疾病
であり、産卵率低下、増体率低下、死亡率の上昇などを
誘導するため、養鶏産業において重要疾病の一つとされ
ている。
【0003】本原虫は、鶏体内での無性生殖と双翅目ヌ
カカ科に属するニワトリヌカカ体内での有性生殖とを交
互に宿主として繰り返す複雑な生活環を持っている。す
なわち、鶏血管内に侵入したスポロゾイト期の原虫は血
管内皮細胞において第1代シゾントを形成し、感染後5
から7日目にはシゾントが成熟して第1代メロゾイトを
放出し、それから再びほぼ全身の血管内皮細胞に再侵入
して第2代シゾントを形成する。感染後10日目以後の
シゾントは細胞外に出て細胞間隙で増殖するようにな
り、14日目には第2代メロゾイトを血液中に放出す
る。メロゾイトは血流中の赤血球に侵入し、18から1
9日目にミクロ及びマクロガメートに形態変化する。
【0004】こうした感染鶏を吸血したニワトリヌカカ
(以降、ヌカカと略)には、血液と共にガメートが取り
込まれ、蚊の中腸内でマクロ及びミクロガメートは接合
してザイゴットとなり、それから生まれたスポロゾイト
はヌカカの唾液腺内に蓄積、貯留される。
【0005】このように、ヌカカが再度鶏を吸血するこ
とにより鶏を感染させることから、ヌカカは本原虫の媒
介体の役割を演じている。
【0006】本原虫の媒介体であるヌカカは、もっぱら
水田などに生息するため、水田を有する東南アジア、中
国、北朝鮮、韓国が流行地と認められている。日本国内
における本疾病の最初の発生は1954年に兵庫県下で
確認され、西日本を中心に発生を繰り返し、1961年
には青森県にまで北上したことが確認されている。そし
て、稲作中心の農業形態ではもっぱら水田に生息するニ
ワトリヌカカの発生を抑えされず、従ってロイコチトゾ
ーン症による経済損失を抑えることは困難な状況であっ
たが、1964年以後ピリメタミンや種々のサルファ剤
を飼料に配合して用いることが本原虫に対して有効なこ
とが確認され、それ以降長年にわたり連続または間欠投
与により予防的に使用されて効果をあげてきた。
【0007】しかしながら、その後これらの薬剤に対し
て耐性を示す原虫の出現や、食用の鶏肉や鶏卵の残留薬
剤に対する諸規制などから、化学療法によって本症の予
防を行なうことは困難になっている。
【0008】このため、養鶏産業界においては本症対策
に支障を来たしているのが実情であり、化学薬剤に代わ
る新たな予防法の開発が切望されているという状況にあ
り、特に、免疫による本疾病の予防法は、従来の化学薬
剤の使用に係る種々の問題を克服できる有効な方法であ
るため、鶏に高度の免疫を付与できる有効かつ安全なワ
クチンの開発が強く求められている。
【0009】このような本疾病に対する免疫による予防
法で養鶏業界の経済的損失・負担をできるだけ小さくす
るには、効果的で安価なワクチンの安定大量の供給が重
要であると共に、同時に、接種されたワクチンが鶏に有
効に免疫を惹起させたか否かを迅速に判定できる検査が
重要である。また本症に対する有効な抗体検査法の確立
は、本疾病の日本における疫学調査や、実際の被害状況
に対応した防疫対策を図るためにも重要かつ有益であ
る。
【0010】
【従来の技術】鶏のロイコチトゾーン症について行なわ
れている従来の予防法や、診断法をまとめると以下の通
りである。
【0011】(1)ロイコチトゾーン症の予防法 従来、ロイコチトゾーン原虫感染症の予防法としては、
以下の3つの方向から取り組まれている。
【0012】第1は、上述したピリメタミンやサルファ
剤といった化学薬剤の使用による予防法であり、196
4年以降は飼料に化学薬剤を添加することにより、本疾
病の発生を抑えることに成功し、大きな効果を上げ、防
疫法の最も確実で安価な手段として普及したが、その
後、薬剤耐性の原虫の出現が明らかとなり、薬の改良と
耐性原虫の出現とが繰り返し行われてきたが、1976
年には畜産物の安全性要求に対応して飼料安全法の一部
が改正され、採卵鶏には薬剤の使用ができなくなった。
【0013】第2は、物理的な予防法によるものであ
る。すなわち、本疾病がニワトリヌカカにより媒介され
ることから、蚊の侵入しにくい鶏舎構造ヘの改築が考え
られ、ウィンドレス鶏舎が代表的なものとして提案され
た他、防虫網や送風装置の設置と殺虫剤の併用が行われ
ている。
【0014】第3は、対症療法及びワクチンで発症した
鶏にビタミン剤を投与することにより産卵率の低下を抑
えるというものであるが、本疾病に対するワクチンは現
在までのところ全く実用化されておらず、開発段階に留
まっている。今日までに試作されているワクチンは、ス
ポロゾイトを用いた生ワクチンと虫体由来物質を抗原と
する不活化ワクチンの2種類である。生ワクチンを用い
た試験[椎原ら、静岡県鶏試研報、13:25-27(1978)、山
口ら、畜産の研究、34:69-70(1980)]は、計画感染と呼
ベるもので、ニワトリヌカカの唾液腺よりスポロゾイド
を分離し、その少数を鶏に接種し、免疫系を刺激して抵
抗性を獲得させるというものである。しかし、この方法
はニワトリヌカカからスポロゾイトを得なければならな
いことから、大量供給、スポロゾイトの保存方法に難点
があり、且つ厳密なスポロゾイト接種量のコントロール
やニワトリヌカカに潜んでいるかもしれない他の病原体
を人為的にニワトリに媒介してしまう危険性が指摘され
ており、野外における普及は難しい。
【0015】もう一つの虫体由来物質を抗原とした不活
化ワクチンには、鶏及び発育鶏卵由来の第1代シゾン
ト、第1代メロゾイト、第2代シゾント、第2代メロゾ
イトと第2代シゾントから第2代メロゾイトが形成され
るときに血中に放出される血清可溶性抗原(SSA)が
試験され、その有用性が指摘されている。なかでも第2
代シゾントやSSAには、比較的強い防御抗原性がある
ことが報告されている[磯部と鈴木、日本原虫学雑誌
(Jpn.J.Parasitol.)、37:214-219(1988)]。更にこう
した原虫を抗原として、大量に得る困難さを改善するた
めに原虫感染した鶏の臓器乳剤をそのままホルマリンで
不活化して抗原として使うことが提案され、これがワク
チンとして効果があることが報告されている[森井ら、
パラサイトロジカル・リサーチ(J.Parasitol.Res )、
76:630-632(1990)]。しかし、これらの改良方法も、原
虫抗原を得るには常に実験感染した鶏を材料としなけれ
ばならず、工業的規模でのワクチン製造には大きな制約
となっている。
【0016】(2)ロイコチトゾーン症の診断法 ロイコチトゾーン症の診断法としては、従来、SSAあ
るいは第2代シゾント抗原を用いたゲル拡散法による血
清学的診断が、その手法の簡便さからよく用いられてお
り、更にこの知見に基づいて、短時間で判定できる対向
流免疫電気泳動法が開発されている[藤崎ら、家畜衛生
試験場報(Natl.Inst.Anim.Health Q.(Jpn) 、20:96-10
0(1980) ]。しかしながらこうしたゲル拡散法は感度が
低く、疫学調査をする上での問題点となっている。近
年、こうしたことから、同様の抗原を固相化してELI
SAによる判定方法が示されており、感度と判定までに
要する時間短縮に貢献しているが、一方で、抗原に混入
する鶏イムノグロブリンが、2次抗体と反応して偽陽性
を生じるという問題点を抱えている。
【0017】ロイコチトゾーン原虫に対する抗体測定の
他に、感染耐過鶏血清と蛍光標識された抗鶏イムノグロ
ブリンを用いた間接蛍光抗体法による原虫の確認も診断
法として利用されている。しかしこの場合でも、組織に
残った鶏イムノグロブリンの偽陽性像を避けるには、抗
体を直接標識する方がよいとされており、この様なこと
から、抗原の標準化及び定量性の高い蛍光抗体法の実用
化には至っていないのが実情である。
【0018】
【発明が解決しようとする課題】以上のような従来の技
術の状況のために、鶏のロイコチトゾーン症は、夏季を
中心として本州以南で毎年のように流行しているにもか
かわらず有効な対応策がないのが現状である。即ち、化
学薬剤を使用せずに、物理的な方法、例えば蚊の侵入を
阻むウィンドレス鶏舎への転換や、殺虫剤(防蚊剤)等
の散布の方法を行なうのでは、設備費用等の対効果負担
が大きく、殺虫剤(防蚊剤)等については有効性の限界
も指摘されている。こうした事由から、野外ではワクチ
ンの実用化が強く望まれているのである。
【0019】免疫応答によるロイコチトゾーン症予防の
可能性については、本原虫に対する宿主の免疫現象の一
端はすでに明らかにされている。即ち、軽度の感染また
は原虫の第2代シゾント由来の抗原物質の接種により、
鶏に対して高度の免疫を付与でき、その後の感染から防
御し得る。また、免疫の持続は長期にわたり安定してい
る。これらの明らかにされた現象は、免疫による予防、
言い代えればワクチンによる有効な予防が確立できる可
能性を示している。
【0020】ところが、従来から研究、試作されている
ロイコチトゾーン症ワクチンには、上述した生ワクチン
(スポロゾイト使用)と不活化ワクチン(SSA、第2
代シゾント、感染鶏臓器乳剤等使用)の2種類があるも
のの、生ワクチンの場合には、製造とのかねあいにおい
て使用原虫数が少なくてすむという利点があるが、厳密
な安全性、安定性及び使用法に介在する難問を解決する
必要があり、早急な実用化は困難であるし、他方、不活
化ワクチンの場合には、安全性が高いという長所をもつ
反面、原虫の有効成分を損耗せずに効果的に不活化する
方法や大量の抗原を生産する方法の確立ができておらず
問題が山積みされている。
【0021】実際に、実験的試験成績では上記生ワクチ
ン使用による場合の副作用や事故の報告があり、また、
効果不十分な不活化ワクチン使用によって病気の発生を
招いた報告もされている。またこれらのワクチン製造に
は、材料として何れも必ずニワトリヌカカと鶏の双方が
必要なため、大量、安全且つ安価な製造を困難にしてお
り、現時点において最も実用化に移しやすいと考えられ
る第2代シゾントを含んだ感染鶏の臓器乳剤を用いた不
活化ワクチンでさえ、製造工程でヌカカを要しその繁雑
性については全く改善されず、この様な生産効率の低い
従来法によるワクチン製造では、工業的規模での大量生
産には限界がある。
【0022】以上のこととは別に、野外では接種効率の
よい多価ワクチンを望む声が大きいが、そうした多価ワ
クチンの要望に即応するためには効力、安定性及び安全
性に優れることが要求されるのに対し、上述した従来の
ロイコチトゾーン症ワクチンでは、必要な条件に適応で
きない。
【0023】また、鶏ロイコチトゾーンの抗体検査法に
ついては、従来、ゲル拡散法によるのが普通であるが、
しかしこの方法は簡便であるという長所があるものの、
時間がかかり、感度的に鈍いという欠点を持っている。
これに対し、ELISAは、簡便で再現性が高く、感度
的には格段に優れる。ところが、本症の診断をELIS
Aによって行なう場合、従来用いられている抗原は、ロ
イコチトゾーン原虫感染鶏から採取した粗精製抗原であ
るため、非特異的な抗体との反応を生じ易いという問題
点がある。こうした非特異反応の防止には高度に精製さ
れた原虫抗原が必要であるが、鶏で生産した原虫を材料
として用いる以上、抗原精製を安定,高純度に維持する
ことは極めて困難である。
【0024】更にまた、現在市販されている診断用抗原
はロイコチトゾーン原虫を鶏に実験感染させた感染臓器
より採剤していることから、人手にたよるところが多
く、大規模化、低価格化の限界が指摘されており、こう
したことから、未だ大規模な疫学調査は行われておら
ず、養鶏産業界では効果的なワクチンと共に安価な診断
用抗原も求められている。
【0025】以上のように、鶏とヌカカを用いて生産し
たロイコチトゾーン原虫抗原については、それをワクチ
ンの原料、あるいは診断用抗原等の抗体検査用試薬とし
て用いるには、種々の難題があってその克服は容易でな
かった。
【0026】本発明者は、かかる諸問題の解決に向け鋭
意研究を重ねた。その研究の結果として、ロイコチトゾ
ーン原虫の感染防御に関わる蛋白質をコードする遺伝子
を見出し、組換え遺伝子技術を用いることによって、当
該原虫の抗原性を示す新しい蛋白質の生産系を提供でき
る本発明に到達した。
【0027】本発明の目的は、鶏、ヌカカを用いずにロ
イコチトゾーン感染を予防するためのワクチンを提供
し、またロイコチトゾーン症診断等に有効な抗体検査用
試薬を提供するところにある。
【0028】
【課題を解決するための手段】上記の目的を達成するた
めに本発明者は、感染防御にとって重要な抗原を含む第
2代シゾントよりmRNAを抽出し、cDNAライブラ
リーを作製し、ロイコチトゾーン感染耐過鶏血清を用い
たイムノスクリーニングにより免疫原性の高い原虫抗原
をコードしたクローンをクローニングした。そして更
に、該操作により得られたクローンのそれぞれを免疫原
として鶏を免疫して感染防御試験を行い、防御効果の認
められるクローンを得、このクローンの塩基配列(配列
番号1)から、この塩基配列は、グルタミン酸を多く含
んだ蛋白質をコードしていることを解明し、この遺伝子
を本発明者は、GLURP遺伝子と命名した。この遺伝
子によって産生されるGLURPの構造蛋白質(以下、
単に「GLURP」と略記する)は、ロイコチトゾーン
原虫に感染した鶏の血清と強く反応し、且つGLURP
で免疫された鶏はロイコチトゾーン感染に対して抵抗性
を獲得することが認められた。かかる知見に基づいて本
発明を完成するに至ったものである。
【0029】防御抗原性を有し、診断用抗原としても用
いることができる本発明の配列番号1ないし3で示され
るGLURPは、ロイコチトゾーン・カウレリー原虫の
第2代シゾント由来のcDNAである。
【0030】本発明において、べクターに組み込まれる
cDNAは、ロイコチトゾーン・カウレリーに分類され
る原虫由来ならば特に株の限定はされない。本発明にお
いてロイコチトゾーンcDNAとは、特にロイコチトゾ
ーン原虫の第2代シゾントが有する蛋白質をコードして
いるRNAの逆転写産物の1部またはその変異物や改変
物をいい、実質的にGLURP遺伝子をコードしている
塩基配列を示す。この遺伝子は、特に感染臓器、感染発
育鶏卵から得たロイコチトゾーン原虫の第2代シゾント
由来mRNAを公知の方法により逆転写酵素を利用して
得られるcDNAを用いることができるが、これに限定
されず、化学的に人工合成されたものであってもよく、
要は実質的にコードする遺伝子がGLURP遺伝子に対
応するものであればよい。
【0031】本発明において用いることができるべクタ
ーは、宿主細胞(菌)内で蛋白質を発現させることので
きるものであれば特に限定されない。具体例としては、
pGEM−EX、pTac、pKK233、pMALな
どの大腸菌発現べクター、pPL−λなどの大腸菌ファ
ージ系ベクター、pSVL、pKSV、pMAMなどの
大腸菌−培養細胞シャトルベクター、またはワクチニ
ア、バキュロ等のウイルスベクターなどが例示される。
【0032】本発明において、GLURP遺伝子を組み
込んだ発現べクターで形質転換された宿主菌あるいは細
胞では、挿入したGLURPが産生される。宿主菌の培
養方法としては菌を培養できるものであるならば特に限
定されず、例えばフラスコによる振とう培養や発酵タン
ク培養等が例示される。宿主細胞の培養方法は細胞を培
養できるものであるならば特に限定されず、培養フラス
コによる静置培養、ローラーボトルによる回転培養、ス
ピンナーフラスコ等による懸濁培養等が例示できる。
【0033】本発明における組換え発現蛋白質は宿主細
胞より遠心分離、ゲル濾過カラム、電気泳動などの手法
により精製することもできる。組換え発現蛋白質をロイ
コチトゾーン症用ワクチンとして用いる場合、特に濃縮
あるいは精製の操作なしに感染細胞の抽出物をそのまま
使用しても防御効果が得られる。鶏には公知の方法によ
り免疫ができ、燐酸アルミニウムゲルアジュバント、水
酸化アルミニウムゲルアジュバント、オイルアジュバン
トと混合して免疫する方法が例示できる。抗体検査用の
抗原として組換え発現蛋白質を用いる場合、感染細胞の
抽出物を用いることもできるが、検査時の好ましからぬ
反応をなくすために精製操作が勧められる。抗体検査の
方法としては固相化抗原を用いたELISAによる発色
あるは発光による測定法、RIAによる放射活性測定
法、ラテックス粒子による凝集反応法、対向流電気泳動
法、ゲル拡散反応法などが例示される。
【0034】
【作用】本発明のcDNAを組み込んだ組換え体から抽
出した組換え蛋白質は、抗原的に単一であり、微生物に
よる生産物であることから安全性、経済性、生産性の点
で鶏で生産される原虫抗原採取法より優れている。
【0035】
【実施例】以下に本発明の実施例を、図面を参照しなが
ら説明する。
【0036】(1)ロイコチトゾーン・カウレリーcD
NAライブラリーの作成(図1参照) ニワトリヌカカより調製したロイコチトゾーン・カウレ
リーのスポロゾイトを鶏1羽あたり約5000匹静脈内
に接種して実験感染させた。
【0037】感染後14日目に感染鶏を解剖し、肺、脾
臓、胸腺、肝臓、ファブリキウス嚢の各組織を採取し、
それらの組織乳剤から第2代シゾントを分離した。分離
した第2代シゾントを急速凍結させた後、グアニジンイ
ソチオシアネート法によりRNAを抽出し、塩化リチウ
ムによる分別沈澱を行い、再びエタノール沈澱を行って
全RNAを得た。さらに、オリゴdTラテックス(宝酒
造社製)を用いて得られた全RNAからmRNAを精製
した。次に、得られたmRNAを鋳型として、ランダム
プライマーと逆転写酵素を用いてギュブラーとホフマン
の方法に準じ、cDNAを合成した。
【0038】得られた1本鎖cDNAに、RNaseH
とDNAポリメラーゼとを作用させて2本鎖のcDNA
にした後、ラムダファージZAPII(クローンテック社
製(米国);販売元東洋紡)の左右アームとライゲーシ
ョンさせた後、同じく市販のインビトロパッケージング
キットを用いてラムダファージのパッケージングを行っ
た。その後、このファージを宿主大腸菌(BB4株)に
感染させ、その溶菌液をcDNAを含んだファージライ
ゼート、即ちcDNAライブラリー原液とした。
【0039】(2)cDNAライブラリーのプラックイ
ムノスクリーニング(図2参照) cDNAライブラリー原液を、形成された相互のプラッ
クが接触する程度の量を大腸菌に感染させ(9cmプレ
ートで60000プラック)、常法に従い、感染後4−
5時間目に予め lacプロモーターの誘導剤であるイソプ
ロピル−β−D−チオガラクシド(IPTG)を染み込
ませたニトロセルロースフィルター(NEN社製)に写
し取り、更に3時間培養した後、フィルターを剥し取
り、常法に従って、感染鶏血清を用いたイムノスクリー
ニングを行った。この操作で約30万個のプラックか
ら、30個のプラックを拾うことができた(1次スクリ
ーニング)。
【0040】次に、この30個の拾ったプラックをそれ
ぞれのプラック同志の間隔が十分空く位の濃度(9cm
プレートで200以下)でまき、同様にイムノスクリー
ニングを行い、再び陽性プラックを拾ってクローンニン
グを行った(2次スクリーニング)。
【0041】(3)クローンを用いた感染防御試験 30個のクローンのうち、任意に12個のクローンを選
び、ラムダZAPIIのへルパーファージf1を使った自
動プラスミッド切り出し法を用いて、l2クローン全て
について大腸菌プラスミッドpBluescript (ストラトジ
ーン社製)へ移し変えた。
【0042】発現している組換え蛋白質の性状を調べる
目的で12個の大陽菌クローンの対数増殖期の中期にI
PTGを添加し、発現の誘導をかけ、そのまま2時間培
養後、菌を遠心にて回収した。得られた菌をプラスミッ
ドを持たない宿主菌を対照としてSDS電気泳動を行
い、続いてウエスタンブロッティングを行ったところ、
クローンにより反応に相違が認められ、#12、13、
14、16、22、23、24の7つのクローンで強く
反応が見られた。そこで、これらの強い反応性を示した
7クローンについて防御に関わる抗原をコードしている
かどうかを感染防御試験により調ベた。
【0043】感染防御試験には、1群あたり5羽のSP
F鶏(日生研株式会社製)を用い、陰性対照として、P
BS接種群を、また陽性対照として既に防御効果の認め
られている原虫の第2代シゾント抗原免疫群(2GS)
をおいた。実験群にはプラスミッド化したcDNAを含
む大腸菌の可溶化物を免疫原として用いた。試験は、フ
ロインドの完全アジュバントと共に2週間隔で3回免疫
を行い、最終免疫後1週目で1羽あたり1万個のロイコ
チトゾーン・カウレリースポロゾイトを静脈注射して攻
撃し、攻撃後14日目に採血して血清可溶性抗原(SS
A)価をゲル拡散法で測定して行なった。その結果を下
記表1に示す。
【0044】
【表1】
【0045】攻撃の結果、陰性対照群では攻撃後13日
から15日に試験鶏が5羽中3羽が死亡し、SSA価は
いずれも32倍以上を示していた。一方、陽性対照群で
は全鶏生残し、そのSSA価も測定限界以下であった。
【0046】実験群の#14免疫群では4羽死亡、#1
3免疫群では3羽死亡した。また、これらの鶏は#l4
免疫群の1羽を除いていずれも32倍以上のSSA価を
示した。実験群#12、16と22免疫群では、死亡し
た鶏はいずれも2羽で陰性対照群より成績において僅か
に向上がみられた。しかしながら、これらの鶏では、い
ずれもSSA価が32倍以上にあり、SSA価での改善
は伺えなかった。実験群#23と#24免疫群では死亡
鶏がどちらも1羽であり、明らかに陰性対照群より向上
していた。加えて、SSA価の低い鶏も見られ、防御効
果が認められた。#24は実験群中、最良の防御を示
し、有力な候補として選抜できると判断された。
【0047】(4)2次スクリーニングされた組換え体
の型別(図3参照) イムノスクリーニングの結果得られた30個のクローン
について、その有用の可能性を速やかに絞りこむため
に、上述の防御試験結果を基にDNAレベルの解析を行
った。即ち、防御抗原として有効とされた#24のDN
Aと、無効とされた#12のDNAをそれぞれプローブ
として用い、それぞれのプローブにハイブリダイズする
クローンは、プローブに用いたクローンと性状を共にす
るものとして、その後の解析から省略することにした。
30個のラムダファージのプレートライゼートからファ
ージDNAを抽出し、制限酵素BamHI(べーリンガ
ーマンハイム社製)で切断後、アガロース電気泳動にか
けニトロセルロース膜にブロッティングした。上段はエ
チジウムブロマイド染色によりDNA断片像、中段及び
下段はアガロースゲル内のDNAをアルカリ変性させニ
トロセルロース膜に転写した後、#12、#24のDN
A断片を制限酵素EcoRI消化により得られる#12
の1.3Kbpのインサートと、#24の長い方の断片
(24H:1.1Kbp)をニックトランスレーション
法によりアイソトープで標識し、常法に従い、サザンハ
イブリダイゼイションを行った。図表中レーン番号はそ
れぞれのクローン番号を示し、右端と左端に各々DNA
サイズマーカーと陰性対象のラムダファージDNAを泳
動した。
【0048】プローブ24Hとハイブリダイズするクロ
ーンとして7個のクローン、即ち、#21、24、3
1、42、44、46及び51があった。一方、プロー
ブ12とハイブリダイズするクローンとして21個のク
ローン、#12、13、14、l6、22、23、2
4、32、33、34、35、41、43、44、4
5、46、51、53、54、55及び56があった。
プローブ12は非常に多くのクローンとハイブリダイズ
し、そのうち4個のクローン、#24、44、46及び
51は、プローブ24Hともハイブリダイズした。この
ことから、元来#12と#24は同一遺伝子の別々の場
所をコードするクローンであることが示された。両方に
ハイブリダイズしないクローンとして#11、15、2
5、26、36及び52の6個のクローンがあった。こ
れらの6クローンについて順次ヘルパーファージflを
用いてプラスミッド化を行い、その大腸菌ライゼートに
ついて感染防御試験により防御抗原との関連を解析し
た。
【0049】(5)感染防御試験によるスクリーニング #11、15、52はウエスタンブロッティングでは特
異的に反応する発現蛋白質が認められず、感染防御試験
から除外し、特異的な反応が認められた#26と36及
び#24を再び免疫用抗原として、その防御免疫力を試
験した。陽性対照に第2代シゾント免疫(2GS)、陰
性対照にPBS接種群を置き、一群7羽のSPF鶏を用
いて前回実施した試験と同様に感染防御試験を行った。
その結果を下記表2に示す。
【0050】
【表2】
【0051】その結果、#24免疫群では7羽中4羽が
防御と判定され、この試験結果でも#24の防御効果が
確認された。#26、36免疫群では、それぞれ防御羽
数が7羽中3羽及び0羽であり、#24より優れた成績
は得られなかった。このことから、DNAハイブリダイ
ゼーションに供試した30クローンの中には#24を超
えるクローンはないと結論した。
【0052】(6)塩基配列と構造上の特徴 #24遺伝子の構造をより詳細に解析するために、常法
に従いダイデオキシチェインターミネーション法を用い
て塩基配列の決定を行った。その結果、全長が1686
bpの配列番号1で示される塩基配列を有することが判
明した。塩基配列上の特徴的なこととして、 1.非常にATに富んでいる(70%>)、 2.繰り返し構造が多い、 3.繰り返し部分は必ずグルタミン酸をコードしてい
る、 4.全体的に親水性の高い蛋白質をコードしている、 ことがあげられ、こられのことから、#24にコードさ
れている蛋白質をGLURP(グルタミン酸リッチ蛋白
質)と命名した。そしてこのGLURPは、熱帯熱マラ
リヤ(P.falciparum)の持つ、機能の解析されていない
蛋白質と非常に強い相同性が認められた。
【0053】 (7)防御抗原をコードしている遺伝子部位の検索 約1.7KbpのGLURP遺伝子のなかで、防御抗原
をコードしている部分を更に細かく明らかにする目的
で、制限酵素EcoRIを用いてこの1.7KbpのD
NAを2つ(これらを以下24L、24Hという)に切
断した。
【0054】それぞれをプラスミッドベクターpGEM-3Z
(プロメガ社製)に、常法に従って再組換えし、得られ
たそれぞれの抗原を1群8羽のSPF鶏に免疫した後、
上述の試験同様に感染防御試験を行った。その結果を下
記表3に示す。
【0055】
【表3】
【0056】その結果、PBSを接種した陰性対照群の
SSA価の最低が16倍であったことからSSA価16
倍未満の鶏を防御されたと判定した。#24の全体のD
NA免疫群では防御率は3/8、24Lでは5/8、2
4Hでは1/8となり、24全体よりも優れた防御率を
示す24L、即ち1.7Kbpの下流側585bpの配
列番号3で示される塩基配列を有するDNA断片に、防
御抗原がコードされていることが判明した。
【0057】(8)発現べクターの改良(図4参照) 大腸菌プラスミッドpBluescript や、プラスミッドベク
ターpGEM-3Z で発現させた#24(配列番号1)及び2
4L由来蛋白質は、ウエスタンブロッティング法では検
出されるものの、電気泳動後の染色では直接バンドを確
認できない程少量である。
【0058】そこで、いくつかの発現用プラスミッド、
プロモーター、宿主菌について検討した結果、プロモー
ターとしてTac、ターミネーターとしてrrnB、遺
伝子制御用リプレッサーとしてlacIを合わせ持った
プラスミッド(pMAL、ニューイングランドバイオラ
ボ社製)が発現において比較的好成績を示した。更に、
挿入するDNAについてはGLURP遺伝子全体ではな
く、24Hと24Lの試験成績及び、塩基配列の結果を
基にして、#24の制限酵素Dral断片(0.7−
1.7Kbp:以下24Dという)(配列番号2で示さ
れる塩基配列を有する)を用いた。即ち、ラムダファー
ジクローン#24cDNAをへルパーファージf1を用
いてプラスミッドベクター(pBluescript )に自動組換
えを行なった。この組換えプラスミッドから制限酵素D
raI及びHindIII を用いてDNA断片を切り出し
た。一方、発現べクター(pMAL−c)を制限酵素S
tuI及びHindIII で切断後、アルカリフォスファ
ターゼ処理を行い、前述の切り出したDNA断片とDN
Aライゲースを用いてライゲーションを行い24DH/
pMAL−cを構築した。図表中malEとはマルトー
ス結合蛋白質を、lacZとはべータガラクトシダーゼ
のアルファペプチドを指し、本組換え蛋白質はmal
E、24D、lacZアルファの順に融合蛋白質として
産生される。
【0059】このプラスミッド(24DH/pMAL−
C)を持った菌は、通常の増殖状態ではほとんどGLU
RPを発現することはなく、外来遺伝子の発現ストレス
による増殖率の低下やプラスミッドの脱落を抑えること
ができた。発現誘導剤のIPTGを添加すると、大腸菌
の菌体内では比較的多くのGLURPが発現され、この
GLURPを菌体のエキストラクトとして可溶性の形で
得ることができた。
【0060】発現蛋白質はSDS電気泳動後の染色で容
易に検出でき、総可溶化蛋白質の5%程を占めていると
推定された。プロモーターが強力にも関わらず、発現率
がそれほど上昇しない理由として、並外れてATに偏っ
た塩基配列の構成とそこから産生されるグルタミン酸に
富んだ蛋白質が大腸菌に合わない事が考えられた。
【0061】(9)組換え体の培養方法及びGLURP
の抽出(図5参照) シードから増やされたパイロット培養液を、本培養液に
1/100量接種し、37℃で3時間半振盪培養した。
即ち、図表中に示すように600nmにおける各吸光度
で菌量をモニターし一定時間ごとに大腸菌を一部採取し
IPTGを添加し、4時間培養後に大腸菌を7.5%S
DS−PAGEに供試し、クマシーブリリアントブルー
でゲルを染色したところ、白抜き三角印で示したGLU
RP融合蛋白質はOD1.2〜1.4に達するまで培養
した場合において発現量が最も多かった。
【0062】誘導後、約3000回転の低速遠心で菌を
回収した。菌体ペレットを氷上で速やかに培養量の1/
20量の20mM 燐酸緩衝液(pH7.0)、0.5
MNaCl、0.2% Tween-20 、10mM DTTに
懸濁し、−80℃で一晩、あるいはドライアイス/エタ
ノール、液体チッソに数分間浸すことで完全に凍結させ
た。
【0063】凍結状態の菌体を水につけて融解し、更に
超音波処理により菌を可溶化させた。超音波処理菌液を
12000回転で高速冷却遠心機を用いて15分問遠心
し、その上清を菌体の第一エキストラクト(抽出物)と
した。更に、遠心沈澱物に再び緩衝液を、培養量の1/
100量を加えて同様に超音波処理と遠心を繰り返した
上清を第二エキストラクトとした。この第一と第二エキ
ストラクトを合わせたものをGLURP抗原とした。
【0064】 (10)GLURP抗原を用いた感染防御試験 GLURP抗原の免疫能における有効性を確認する目的
で、1倍から8倍にまで希釈したGLURP抗原を、そ
れぞれ2週間隔で2回、フロインドの完全アジュバント
と共に1群7羽のSPF鶏に免疫した。最終免疫後2週
目に15000個のスポロゾイドを静脈内に接種して攻
撃した。その結果を下記表4に示す。
【0065】
【表4】
【0066】その結果、GLURPにより免疫された鶏
はその免疫された量に従い感染防御能が増加しておりG
LURPの有効性が確かめられた。
【0067】(11)GLURPを用いた抗体検査 GLURP蛋白質を、常法に従いELISA用プレート
(ファルコン社製)に一つの穴(ウエル)あたり0.1
μgになるように50mM炭酸緩衝液で希釈分注し、凍
結乾燥法でプレートに固相化した。
【0068】使用直前に3%スキムミルクで各ウエルを
37℃、1時間ブロッキングしたのち、抗体検査に用い
た。試験用抗体としてロイコチトゾーン・カウレリーを
実験感染させた鶏血清、及び第2代シゾント抗原で免疫
した鶏血清を使用した。ブロッキング液を洗い流した
後、それぞれの血清を生理燐酸緩衝食塩液(PBS)で
200倍希釈し、各ウエルに50μlづつ加え、37
℃、1時間反応させた。
【0069】続いて、血清希釈液を洗い流し、西洋ワサ
ビのパーオキシダーゼ(HRPO)で標識された抗鶏イ
ムノグロブリン抗体を加え、再び37℃で1時間反応さ
せた。
【0070】未反応の標識抗体を洗い流した後、発色試
薬(ABTS)と過酸化水素を加えて発色させた。発色
の程度はプレートリーダー(インターメッド社製)を用
いて測定した。その結果を下記表5に示す。
【0071】
【表5】
【0072】その結果、従来のSSAを抗原としたゲル
拡散法と比較して、成績においてゲル拡散法と一致性に
優れ、ゲル拡散法で陽性のものはその抗体価に従って発
色度が増加することが示された。この発色は非免疫の鶏
では認められないことから、ロイコチトゾーン原虫に対
する抗体価を測定するための抗原としてもこの組換えG
LURPは有効であることが判明した。
【0073】
【発明の効果】本発明によれば、以下の効果が得られ
る。 1.不活化ワクチンであるため、環境への病原体汚染の
問題がなく、安全である。
【0074】2.単一抗原なので、抗原の量的ばらつき
が少なく、均一なワクチンを提供できる。
【0075】3.大量発現が可能なことから低価格でワ
クチンを製造できる。
【0076】4.簡単な工程で濃縮できるため接種量の
少ないワクチンを製造でき、接種労力の軽減に貢献でき
る。
【0077】5.単一抗原であることから、ワクチン免
疫と感染免疫の識別が可能であり、ワクチンの広域的な
利用を行っても疫学調査が可能である。
【0078】以上のような長所により、本組換え発現蛋
白質を用いたワクチンは、製造場面や使用場面において
非常に有効な製剤を提供できる。
【0079】また、抗体検査試薬用抗原として利用する
に場合には、以下の効果が得られる。
【0080】1.大量の抗原を提供でき、大規模検査に
対応できる。
【0081】2.抗原の濃縮が簡単な工程でおこなえ、
品質の均一性を保って、広範囲な検査法に応用できる。
【0082】3.鶏由来の抗原を含まないため、検査時
の夾雑物による好ましからざる反応を抑止でき、検査精
度を向上させ得る。
【0083】4.抗体検査において、GLURPと、そ
れ以外のロイコチトゾーン抗原を用いることにより、G
LURPによるワクチン免疫と感染免疫を区別すること
が可能であり、ワクチンスケジュールの組立に有益であ
る。
【0084】以上の種々の特徴から、本発明の検査試薬
用抗原によれば、GLURP非接種地域においては広範
囲にロイコチトゾーン原虫の感染状況を、またGLUR
P接種地域においては摂取鶏の免疫状態を調査すること
ができる効果が得られる。
【0085】
【配列表】
配列番号:1 配列の長さ:1686(塩基配列)、562(アミノ酸
配列) 配列の型:核酸、アミノ酸 トポロジー:直鎖状 配列の種類:塩基配列、アミノ酸配列 配列の特徴 特徴を決定した方法:塩基配列決定(シークエンシン
グ) 配列 AAT TCA TTA TAT AAT TTA TTT GTT GAA ATA GGT AAC TCA GTA TCA 45 Asn Ser Leu Tyr Asn Leu Phe Val Glu Ile Gly Asn Ser Val Ser 5 10 15 GAT GAA TTA TAT ATT ATT CCT TCT TCA AAT AAT AAA ATT AAA AAT 90 Asp Glu Leu Tyr Ile Ile Pro Ser Ser Asn Asn Lys Ile Lys Asn 20 25 30 GTA GAA AAA GAA GAA GAA AAT GAA GAA AAT GAA AAA GAA GAA CAA 135 Val Glu Lys Glu Glu Glu Asn Glu Glu Asn Glu Lys Glu Glu Gln 35 40 45 GAA GAA GAA GAA CAA GAA CAA GAA GAA CAA GAA CAA GAA ATC GTA 180 Glu Glu Glu Glu Gln Glu Gln Glu Glu Gln Glu Gln Glu Ile Val 50 55 60 GAA GAA CAA GAA CAA GAT GAA GAA GAA CAA GAA GAG GAA GAT GAA 225 Glu Glu Gln Glu Gln Asp Glu Glu Glu Gln Glu Glu Glu Asp Glu 65 70 75 GAA GAA GAA GAA GAA AAA GAA GAA GAA GAA GAA GAA GAA GAA GAA 270 Glu Glu Glu Glu Glu Lys Glu Glu Glu Glu Glu Glu Glu Glu Glu 80 85 90 GAA GAA GAA GAA GAA GAA GAA GAA GAA GAG CAA GAT GAA GAA GAA 315 Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu Gln Asp Glu Glu Glu 95 100 105 GAA GAA GAA GAA GAA CAA GAT GAA GAT GAA GAA GAA GAA GAA GAT 360 Glu Glu Glu Glu Glu Gln Asp Glu Asp Glu Glu Glu Glu Glu Asp 110 115 120 GAA GAA GAA GAA GAA GAA GAA GAA CAA AAT GAA GAA GAA CAA AAT 405 Glu Glu Glu Glu Glu Glu Glu Glu Gln Asn Glu Glu Glu Gln Asn 125 130 135 GAA GAT GAA CAA AAT GAA GAT GAA CAA AAT GAA GAA GAA GAA GAA 450 Glu Asp Glu Gln Asn Glu Asp Glu Gln Asn Glu Glu Glu Glu Glu 140 145 150 GAA GAA GAA GAA GAA CAA CAA GAA CAA GAT GAA GAA GAA CAA GAT 495 Glu Glu Glu Glu Glu Gln Gln Glu Gln Asp Glu Glu Glu Gln Asp 155 160 165 GAA GAA GAA CAA GAT GAA GAA GAA GAA GAA GAA GAA CAG GAA GAA 540 Glu Glu Glu Gln Asp Glu Glu Glu Glu Glu Glu Glu Gln Glu Glu 170 175 180 CAA GAT GAA GAA CAA GAA GAA GTA TAT GCT GAA AAA GAA AAT GAA 585 Gln Asp Glu Glu Gln Glu Glu Val Tyr Ala Glu Lys Glu Asn Glu 185 190 195 GAT GAA GAA AAA AAA GAA AAA GAA GAA GAA CAA GAA GAT GAA AAA 630 Asp Glu Glu Lys Lys Glu Lys Glu Glu Glu Gln Glu Asp Glu Lys 200 205 210 ATA TAT GTT GAA AAA GAA AAA GAT GAA GAA GTA TAT GTA GAA AAA 675 Ile Tyr Val Glu Lys Glu Lys Asp Glu Glu Val Tyr Val Glu Lys 215 220 225 GAA CAA GAA CAT TTT AAA GAA TTA GAA AAA GAA GTT TTA GAA GAA 720 Glu Gln Glu His Phe Lys Glu Leu Glu Lys Glu Val Leu Glu Glu 230 235 240 AAA GTA GAA AGT GAA CAT AAA GAT GAT AAG AAA GAG ACA AAA ATA 765 Lys Val Glu Ser Glu His Lys Asp Asp Lys Lys Glu Thr Lys Ile 245 250 255 AAA AAG CAT GAA GTT GAA GAA GAA CGA GAA ATA GAA ATA AAA GGA 810 Lys Lys His Glu Val Glu Glu Glu Arg Glu Ile Glu Ile Lys Gly 255 260 265 GAA TCA GAA GAA ATA GAT GAG AAA AAA TCA GAA GTA AAA GAA CAA 855 Glu Ser Glu Glu Ile Asp Glu Lys Lys Ser Glu Val Lys Glu Gln 270 275 280 AAT GGA CAA GTA CAA GGA AAA ACA AAT GAA CAA AAA GAA TAT ATA 900 Asn Gly Gln Val Gln Gly Lys Thr Asn Glu Gln Lys Glu Tyr Ile 285 290 295 CAA GAT CCA ATT TGG TCA TCA ATA TTA AGA TAT ATG ATA AAT AAA 945 Gln Asp Pro Ile Trp Ser Ser Ile Leu Arg Tyr Met Ile Asn Lys 300 305 310 AGA ACA GAA ACA GAA AAA ACT AAT CAG CAA AAT TAT AAC ATT AAA 990 Arg Thr Glu Thr Glu Lys Thr Asn Gln Gln Asn Tyr Asn Ile Lys 315 320 325 GTA ACT AAT GAA TCA AAA TCC GAA ATA AAT TCA ACT ACA AAT ATA 1035 Val Thr Asn Glu Ser Lys Ser Glu Ile Asn Ser Thr Thr Asn Ile 330 335 340 TTT GAA GAT GAA AAT AAA AAT TCA TCA TTG AAA AAA CCA GAA TTA 1080 Phe Glu Asp Glu Asn Lys Asn Ser Ser Leu Lys Lys Pro Glu Leu 345 350 355 AAT GAA GCT ACT AGA GGC CGG AAT TCC GGA CCA GTA GTT GAA GAA 1125 Asn Glu Ala Thr Arg Gly Arg Asn Ser Gly Pro Val Val Glu Glu 360 365 370 GTT GTT GAA GAA ACA CCA GTA GTT GAA GAA GAA ATG GTA GAA GAA 1170 Val Val Glu Glu Thr Pro Val Val Glu Glu Glu Met Val Glu Glu 375 380 385 ACA CCT GTA GTT GAA GAA GAA ATG ATA GAA GAA ACA CCT GTA GTT 1215 Thr Pro Val Val Glu Glu Glu Met Ile Glu Glu Thr Pro Val Val 390 395 400 GAA GAA GAA ATG ATA GAA GAA ACA CCA GTA GTG GAA GAA GAT GTC 1260 Glu Glu Glu Met Ile Glu Glu Thr Pro Val Val Glu Glu Asp Val 405 410 415 GTC GAA GAA ACA CCA ATA GTG GAA GAA GAT GTA GTA GAA GAA ACT 1305 Val Glu Glu Thr Pro Ile Val Glu Glu Asp Val Val Glu Glu Thr 420 425 430 AAT GTA GTT GAA GAA GTA GTA GAA GAA ACA CCA GTA GTT GAA GAA 1350 Asn Val Val Glu Glu Val Val Glu Glu Thr Pro Val Val Glu Glu 435 440 445 GAA ATG ATA GAA GAA ACT CCT GTA GTT GAA GAA GTA GTA GAA GAA 1395 Glu Met Ile Glu Glu Thr Pro Val Val Glu Glu Val Val Glu Glu 450 455 460 ACA CCA GTA GTT GAA GAA GAA GTT GTA GAA GAA ACA CCA GTA GTG 1440 Thr Pro Val Val Glu Glu Glu Val Val Glu Glu Thr Pro Val Val 465 470 475 GAA GAA GAA ATG GTA GAA GAA ACA CCA GTA GTG GAA GAA GAT GTA 1485 Glu Glu Glu Met Val Glu Glu Thr Pro Val Val Glu Glu Asp Val 480 485 490 GTA GAA GAA ACA CCA GTA GTT GAA GAA GAA GTT GTT GAA GAA ACA 1530 Val Glu Glu Thr Pro Val Val Glu Glu Glu Val Val Glu Glu Thr 495 500 505 CCA GTA TTT GAA GAA GAA GTT GTA GAA GAA ACA TCA GTA GTT GAA 1575 Pro Val Phe Glu Glu Glu Val Val Glu Glu Thr Ser Val Val Glu 519 515 520 GAA GAA ATG ATA GAA GAA ACA CCA GTA GTT GAA GAA AAA GTA GTA 1620 Glu Glu Met Ile Glu Glu Thr Pro Val Val Glu Glu Lys Val Val 525 525 530 GAA GAA ACA CCA GTA GTG GAA GAA AAA GTT GTT GAA GAA ACA TCA 1665 Glu Glu Thr Pro Val Val Glu Glu Lys Val Val Glu Glu Thr Ser 535 540 545 GTA ATT GAA GAC GCC CGG AAT 1686 Val Ile Glu Asp Ala Arg Asn 550 552
【0086】
【配列表】
配列番号:2 配列の長さ:996(塩基配列)、332(アミノ酸配
列) 配列の型:核酸、アミノ酸 トポロジー:直鎖状 配列の種類:塩基配列、アミノ酸配列 配列の特徴 特徴を決定した方法:塩基配列決定(シークエンシン
グ) 配列 AAA GAA TTA GAA AAA GAA GTT TTA GAA GAA AAA GTA GAA AGT GAA 45 Lys Glu Leu Glu Lys Glu Val Leu Glu Glu Lys Val Glu Ser Glu 5 10 15 CAT AAA GAT GAT AAG AAA GAG ACA AAA ATA AAA AAG CAT GAA GTT 90 His Lys Asp Asp Lys Lys Glu Thr Lys Ile Lys Lys His Glu Val 20 25 30 GAA GAA GAA CGA GAA ATA GAA ATA AAA GGA GAA TCA GAA GAA ATA 135 Glu Glu Glu Arg Glu Ile Glu Ile Lys Gly Glu Ser Glu Glu Ile 35 40 45 GAT GAG AAA AAA TCA GAA GTA AAA GAA CAA AAT GGA CAA GTA CAA 180 Asp Glu Lys Lys Ser Glu Val Lys Glu Gln Asn Gly Gln Val Gln 50 55 60 GGA AAA ACA AAT GAA CAA AAA GAA TAT ATA CAA GAT CCA ATT TGG 225 Gly Lys Thr Asn Glu Gln Lys Glu Tyr Ile Gln Asp Pro Ile Trp 65 70 75 TCA TCA ATA TTA AGA TAT ATG ATA AAT AAA AGA ACA GAA ACA GAA 270 Ser Ser Ile Leu Arg Tyr Met Ile Asn Lys Arg Thr Glu Thr Glu 80 85 90 AAA ACT AAT CAG CAA AAT TAT AAC ATT AAA GTA ACT AAT GAA TCA 315 Lys Thr Asn Gln Gln Asn Tyr Asn Ile Lys Val Thr Asn Glu Ser 95 100 105 AAA TCC GAA ATA AAT TCA ACT ACA AAT ATA TTT GAA GAT GAA AAT 360 Lys Ser Glu Ile Asn Ser Thr Thr Asn Ile Phe Glu Asp Glu Asn 110 115 120 AAA AAT TCA TCA TTG AAA AAA CCA GAA TTA AAT GAA GCT ACT AGA 405 Lys Asn Ser Ser Leu Lys Lys Pro Glu Leu Asn Glu Ala Thr Arg 125 130 135 GGC CGG AAT TCC GGA CCA GTA GTT GAA GAA GTT GTT GAA GAA ACA 450 Gly Arg Asn Ser Gly Pro Val Val Glu Glu Val Val Glu Glu Thr 140 145 150 CCA GTA GTT GAA GAA GAA ATG GTA GAA GAA ACA CCT GTA GTT GAA 495 Pro Val Val Glu Glu Glu Met Val Glu Glu Thr Pro Val Val Glu 155 160 165 GAA GAA ATG ATA GAA GAA ACA CCT GTA GTT GAA GAA GAA ATG ATA 540 Glu Glu Met Ile Glu Glu Thr Pro Val Val Glu Glu Glu Met Ile 170 175 180 GAA GAA ACA CCA GTA GTG GAA GAA GAT GTC GTC GAA GAA ACA CCA 585 Glu Glu Thr Pro Val Val Glu Glu Asp Val Val Glu Glu Thr Pro 185 190 195 ATA GTG GAA GAA GAT GTA GTA GAA GAA ACT AAT GTA GTT GAA GAA 630 Ile Val Glu Glu Asp Val Val Glu Glu Thr Asn Val Val Glu Glu 200 205 210 GTA GTA GAA GAA ACA CCA GTA GTT GAA GAA GAA ATG ATA GAA GAA 675 Val Val Glu Glu Thr Pro Val Val Glu Glu Glu Met Ile Glu Glu 215 220 225 ACT CCT GTA GTT GAA GAA GTA GTA GAA GAA ACA CCA GTA GTT GAA 720 Thr Pro Val Val Glu Glu Val Val Glu Glu Thr Pro Val Val Glu 230 235 240 GAA GAA GTT GTA GAA GAA ACA CCA GTA GTG GAA GAA GAA ATG GTA 765 Glu Glu Val Val Glu Glu Thr Pro Val Val Glu Glu Glu Met Val 245 250 255 GAA GAA ACA CCA GTA GTG GAA GAA GAT GTA GTA GAA GAA ACA CCA 810 Glu Glu Thr Pro Val Val Glu Glu Asp Val Val Glu Glu Thr Pro 260 265 270 GTA GTT GAA GAA GAA GTT GTT GAA GAA ACA CCA GTA TTT GAA GAA 855 Val Val Glu Glu Glu Val Val Glu Glu Thr Pro Val Phe Glu Glu 275 280 285 GAA GTT GTA GAA GAA ACA TCA GTA GTT GAA GAA GAA ATG ATA GAA 900 Glu Val Val Glu Glu Thr Ser Val Val Glu Glu Glu Met Ile Glu 290 295 300 GAA ACA CCA GTA GTT GAA GAA AAA GTA GTA GAA GAA ACA CCA GTA 945 Glu Thr Pro Val Val Glu Glu Lys Val Val Glu Glu Thr Pro Val 305 310 315 GTG GAA GAA AAA GTT GTT GAA GAA ACA TCA GTA ATT GAA GAC GCC 990 Val Glu Glu Lys Val Val Glu Glu Thr Ser Val Ile Glu Asp Ala 320 325 330 CGG AAT 996 Arg Asn 332
【0087】
【配列表】
配列番号:3 配列の長さ:585(塩基配列)、195(アミノ酸配
列) 配列の型:核酸、アミノ酸 トポロジー:直鎖状 配列の種類:塩基配列、アミノ酸配列 配列の特徴 特徴を決定した方法:塩基配列決定(シークエンシン
グ) 配列 AAT TCC GGA CCA GTA GTT GAA GAA GTT GTT GAA GAA ACA CCA GTA 45 Asn Ser Gly Pro Val Val Glu Glu Val Val Glu Glu Thr Pro Val 5 10 15 GTT GAA GAA GAA ATG GTA GAA GAA ACA CCT GTA GTT GAA GAA GAA 90 Val Glu Glu Glu Met Val Glu Glu Thr Pro Val Val Glu Glu Glu 20 25 30 ATG ATA GAA GAA ACA CCT GTA GTT GAA GAA GAA ATG ATA GAA GAA 135 Met Ile Glu Glu Thr Pro Val Val Glu Glu Glu Met Ile Glu Glu 35 40 45 ACA CCA GTA GTG GAA GAA GAT GTC GTC GAA GAA ACA CCA ATA GTG 180 Thr Pro Val Val Glu Glu Asp Val Val Glu Glu Thr Pro Ile Val 50 55 60 GAA GAA GAT GTA GTA GAA GAA ACT AAT GTA GTT GAA GAA GTA GTA 225 Glu Glu Asp Val Val Glu Glu Thr Asn Val Val Glu Glu Val Val 65 70 75 GAA GAA ACA CCA GTA GTT GAA GAA GAA ATG ATA GAA GAA ACT CCT 270 Glu Glu Thr Pro Val Val Glu Glu Glu Met Ile Glu Glu Thr Pro 80 85 90 GTA GTT GAA GAA GTA GTA GAA GAA ACA CCA GTA GTT GAA GAA GAA 315 Val Val Glu Glu Val Val Glu Glu Thr Pro Val Val Glu Glu Glu 95 100 105 GTT GTA GAA GAA ACA CCA GTA GTG GAA GAA GAA ATG GTA GAA GAA 360 Val Val Glu Glu Thr Pro Val Val Glu Glu Glu Met Val Glu Glu 110 115 120 ACA CCA GTA GTG GAA GAA GAT GTA GTA GAA GAA ACA CCA GTA GTT 405 Thr Pro Val Val Glu Glu Asp Val Val Glu Glu Thr Pro Val Val 125 130 135 GAA GAA GAA GTT GTT GAA GAA ACA CCA GTA TTT GAA GAA GAA GTT 450 Glu Glu Glu Val Val Glu Glu Thr Pro Val Phe Glu Glu Glu Val 140 145 150 GTA GAA GAA ACA TCA GTA GTT GAA GAA GAA ATG ATA GAA GAA ACA 495 Val Glu Glu Thr Ser Val Val Glu Glu Glu Met Ile Glu Glu Thr 155 160 165 CCA GTA GTT GAA GAA AAA GTA GTA GAA GAA ACA CCA GTA GTG GAA 540 Pro Val Val Glu Glu Lys Val Val Glu Glu Thr Pro Val Val Glu 170 175 180 GAA AAA GTT GTT GAA GAA ACA TCA GTA ATT GAA GAC GCC CGG AAT 585 Glu Lys Val Val Glu Glu Thr Ser Val Ile Glu Asp Ala Arg Asn 185 190 195
【図面の簡単な説明】
【図1】本発明の実施例におけるロイコチトゾーン・カ
ウレリー原虫第2代シゾント由来のcDNAライブラリ
ーの構築手順を示したものである。
【図2】ラムダファージcDNAライブラリーのプラッ
クイムノスクリーニングを示したものであり、(a)は
第1回目に行った抗血清と反応する抗原を産生している
ファージプラックを示し、(b)はラムダファージのク
ローニングのために(a)にある反応したプラックを採
取し、第2回目の抗血清と反応させた像を示す。
【図3】cDNAクローンを対象としたサザンハイブリ
ダイゼーションの成績を示している。
【図4】改良発現べクターの組換え術式を示す。
【図5】組換え体による発現を確認した結果を示した図
である。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G01N 33/53 G01N 33/569 A 33/569 C12N 15/00 A (72)発明者 上田 進 埼玉県所沢市中新井3−12−19 (58)調査した分野(Int.Cl.7,DB名) C07K 14/44 A61K 39/015 BIOSIS(DIALOG) SwissProt/PIR/GeneS eq GenBank/EMBL/DDBJ/G eneSeq

Claims (7)

    (57)【特許請求の範囲】
  1. 【請求項1】 配列番号1又は3で示されるロイコチト
    ゾーン原虫の構造蛋白質を含むことを特徴とするポリペ
    プチド。
  2. 【請求項2】 請求項1のポリペプチド及びアジュバン
    トを含むことを特徴とするロイコチトゾーン原虫に対す
    る鶏の免疫を誘導するワクチン。
  3. 【請求項3】 請求項1のポリペプチドを含むことを特
    徴とする鶏のロイコチトゾーン原虫に対する抗体検査用
    試薬。
  4. 【請求項4】 配列番号1又はで示されるロイコチト
    ゾーン原虫の遺伝子を含むことを特徴とする組換えDN
    A分子。
  5. 【請求項5】 発現制御配列に操作的に結合された請求
    に記載の組換えDNA分子。
  6. 【請求項6】 請求項の組換えDNA分子が挿入され
    た組換えDNAクローニングビークル又はベクター。
  7. 【請求項7】 請求項に記載の組換えDNA分子、又
    は請求項に記載の組換えDNAクローニングビークル
    又はベクター。
JP22607893A 1993-09-10 1993-09-10 ロイコチトゾーン原虫に対する免疫を誘導するポリペプチド、及びこのポリペプチドをコードした組換えdna分子 Expired - Lifetime JP3479543B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22607893A JP3479543B2 (ja) 1993-09-10 1993-09-10 ロイコチトゾーン原虫に対する免疫を誘導するポリペプチド、及びこのポリペプチドをコードした組換えdna分子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22607893A JP3479543B2 (ja) 1993-09-10 1993-09-10 ロイコチトゾーン原虫に対する免疫を誘導するポリペプチド、及びこのポリペプチドをコードした組換えdna分子

Publications (2)

Publication Number Publication Date
JPH0789995A JPH0789995A (ja) 1995-04-04
JP3479543B2 true JP3479543B2 (ja) 2003-12-15

Family

ID=16839479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22607893A Expired - Lifetime JP3479543B2 (ja) 1993-09-10 1993-09-10 ロイコチトゾーン原虫に対する免疫を誘導するポリペプチド、及びこのポリペプチドをコードした組換えdna分子

Country Status (1)

Country Link
JP (1) JP3479543B2 (ja)

Also Published As

Publication number Publication date
JPH0789995A (ja) 1995-04-04

Similar Documents

Publication Publication Date Title
US4973551A (en) Vector for the expression of fusion proteins and protein immunogens
US20080213795A1 (en) DNA sequences encoding peptide sequences specific for the hepatic stages of P. falciparum bearing epitopes capable of stimulating the T lymphocytes
JPS61149093A (ja) 免疫的活性ペプチドおよび抗マラリア免疫原性刺激剤
JPS62224293A (ja) コクシジウム症予防用抗原性蛋白質およびそれを含有するワクチン
JPH0699475B2 (ja) コクシジウムのモノクロ−ナル抗体
AU623624B2 (en) Recombinant and native group b eimeria tenella immunogens useful as coccidiosis vaccines
Niu et al. Expression analysis and biological characterization of Babesia sp. BQ1 (Lintan)(Babesia motasi-like) rhoptry-associated protein 1 and its potential use in serodiagnosis via ELISA
JP4116680B2 (ja) 家禽コクシジウム症ワクチン
EP0953047B1 (en) Vaccine containing a peroxiredoxin
CA2135547A1 (en) Coccidiosis poultry vaccine
AU707356B2 (en) Coccidiosis poultry vaccine
WO2003086453A9 (en) Purified subfragment codifying for neuroaminidase, recombinant neuroaminidase and its use in zooprophylaxis
JP3479543B2 (ja) ロイコチトゾーン原虫に対する免疫を誘導するポリペプチド、及びこのポリペプチドをコードした組換えdna分子
CZ20012360A3 (cs) Farmaceutický prostředek, vakcína, protein a způsob prevence nebo léčby
US6187310B1 (en) Recombinant Entamoeba histolytica lectin subunit peptides and reagents specific for members of the 170 kDa subunit multigene family
JP2000219635A (ja) コクシジウム症ワクチン
DE60131962T2 (de) Verfahren und zusammensetzungen zum nachweis von taenia solium larven mittels eines klonierten antigens
AU747818B2 (en) Vaccines
US5861160A (en) Isospora suis sporozoite antigen
JP3582663B2 (ja) 鶏ロイコチトゾーン免疫原性蛋白質を発現する遺伝子クローン及び鶏ロイコチトゾーン症に対する遺伝子組換えワクチン
Itoh et al. The correlation of protective effects and antibody production in immunized chickens with recombinant R7 vaccine against Leucocytozoon caulleryi
JPH06505865A (ja) トキソプラズマ・ゴンディの蛋白抗原のクローニング及び発現
JP4785531B2 (ja) マーカーワクチンとしてのニューカッスル病ウイルスのエスケープミュータント
AU673614B2 (en) Peptide for prevention of infection with bovine small piroplasma protozoa
CA2442346A1 (en) Nucleic acids encoding isav polypeptides

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20081003

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20111003

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20121003

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20131003