JP3467450B2 - Porous membrane for dissolving hardly soluble gas and method for producing the same - Google Patents

Porous membrane for dissolving hardly soluble gas and method for producing the same

Info

Publication number
JP3467450B2
JP3467450B2 JP2000137927A JP2000137927A JP3467450B2 JP 3467450 B2 JP3467450 B2 JP 3467450B2 JP 2000137927 A JP2000137927 A JP 2000137927A JP 2000137927 A JP2000137927 A JP 2000137927A JP 3467450 B2 JP3467450 B2 JP 3467450B2
Authority
JP
Japan
Prior art keywords
gas
tube
liquid
pressure
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000137927A
Other languages
Japanese (ja)
Other versions
JP2001314737A (en
Inventor
徹 森田
琢磨 吉坂
山口  篤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Fine Polymer Inc
Original Assignee
Sumitomo Electric Fine Polymer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Fine Polymer Inc filed Critical Sumitomo Electric Fine Polymer Inc
Priority to JP2000137927A priority Critical patent/JP3467450B2/en
Publication of JP2001314737A publication Critical patent/JP2001314737A/en
Application granted granted Critical
Publication of JP3467450B2 publication Critical patent/JP3467450B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、オゾンなどの難溶
性ガスを液体中に溶解させるためのチューブ状多孔質膜
およびその製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a tubular porous membrane for dissolving a sparingly soluble gas such as ozone in a liquid and a method for producing the same.

【0002】[0002]

【従来の技術】オゾンや炭酸ガスなどの気体を溶解させ
た水などの液体は、洗浄液などとして利用されている。
たとえば、半導体製造工程に於いて、オゾン添加超純水
が湿式洗浄処理で用いられている。オゾン添加超純水
は、微量(ppmのオ−ダ−)のオゾンを添加した超純
水である。超純水に溶解したオゾンは、クリーンで強力
な酸化剤として働き、シリコンウエハー上の界面活性剤
等の残留有機物を分解・除去し、均一で平坦な酸化膜を
形成する。また、液晶デイスプレイ製造工程に於いて
も、ガラス基板の洗浄、エッチング処理後の洗浄、ラッ
ピング処理後の洗浄などで、有機物やレジスト残さの除
去効率を高めることができると言われている。
2. Description of the Related Art A liquid such as water in which a gas such as ozone or carbon dioxide is dissolved is used as a cleaning liquid.
For example, in a semiconductor manufacturing process, ozone-added ultrapure water is used in a wet cleaning process. Ozone-added ultrapure water is ultrapure water to which a very small amount (ppm order) of ozone is added. Ozone dissolved in ultrapure water acts as a clean and strong oxidizing agent, decomposes and removes residual organic substances such as surfactants on the silicon wafer, and forms a uniform and flat oxide film. Also, in the liquid crystal display manufacturing process, it is said that the efficiency of removing organic substances and resist residues can be improved by cleaning the glass substrate, cleaning after etching, cleaning after lapping, and the like.

【0003】気体を液体中に溶解させる方法としては、
従来より、次のような方法が知られている。 気体と液体とを機械的に混合する方法。 気体を液体の中でバブリングさせる方法。 ポリテトラフルオロエチレン(以下、PTFEと略
記する)からなる多孔質PTFEチューブを使用する方
法。 これらの方法の中で、の機械的混合法は、液体中に一
定量の気体を効率よく溶解させることが難しく、しか
も、混合装置や部品からの金属イオンの混入の問題があ
る。金属イオンが混入した液体は、高純度が要求される
半導体や液晶関連の用途に用いることができない。ま
た、のバブリングによる方法は、気体の溶解効率が悪
く、気体の溶解量の制御も困難で、しかも、バブリング
時に溶解しなかった気体が系外に放出され、悪さをする
おそれもある。また、バブリングによる方法に於いて
も、使用する装置や部品から金属イオンが混入するおそ
れがある。
As a method of dissolving gas in a liquid,
Conventionally, the following methods are known. A method of mechanically mixing a gas and a liquid. A method of bubbling gas in a liquid. A method of using a porous PTFE tube made of polytetrafluoroethylene (hereinafter abbreviated as PTFE). Among these methods, the mechanical mixing method has a problem that it is difficult to efficiently dissolve a certain amount of gas in a liquid, and furthermore, there is a problem that metal ions are mixed from a mixing device or parts. A liquid mixed with metal ions cannot be used for semiconductor or liquid crystal related applications that require high purity. In addition, the method of bubbling has a low gas dissolution efficiency, it is difficult to control the amount of gas dissolved, and there is a possibility that gas that has not dissolved during bubbling is released to the outside of the system, which may be bad. Further, also in the method using bubbling, there is a possibility that metal ions may be mixed from the device or part used.

【0004】これに対して、の多孔質PTFEチュー
ブを使用する方法では、気体と被処理液体とをチューブ
状の多孔質PTFE膜を介して接触させ、多孔質PTF
E膜の疎水性と気体透過性を利用して、気体を被処理液
体中に溶解させるため、金属イオンの混入問題を回避す
ることができる。しかも、多孔質PTFEチューブは、
多数本を束ねてモジュール化することにより、単位容量
当りの膜面積を大きくすることができる。こうしてモジ
ュール化した多孔質PTFEチューブを容器の中に入
れ、チューブ内に液体を流しながら、容器の中に、当該
気体を、たとえば5〜15vol%といった範囲で適宜
混合したガスを供給して、容器の中の当該気体の分圧を
調整することにより、膜を介して透過する気体の液体中
へのバブリングを防止しつつ、ヘンリーの気体溶解の法
則に従って、気体の溶解量を制御しながら、効率よく気
体を溶解させることができると言われている。
On the other hand, in the method using the porous PTFE tube, the gas and the liquid to be treated are brought into contact with each other through the tubular porous PTFE membrane to form the porous PTFE.
Since the gas is dissolved in the liquid to be treated by utilizing the hydrophobicity and gas permeability of the E film, the problem of mixing of metal ions can be avoided. Moreover, the porous PTFE tube is
The film area per unit capacity can be increased by bundling a large number of modules into a module. The porous PTFE tube thus modularized is put into a container, and while the liquid is caused to flow in the tube, the gas is appropriately mixed in the container, for example, in the range of 5 to 15 vol%, and the container is supplied. By controlling the partial pressure of the gas in the liquid, while preventing bubbling of gas that permeates through the membrane into the liquid, according to Henry's law of gas dissolution, while controlling the amount of gas dissolved, the efficiency It is often said that it can dissolve gas.

【0005】ところで、半導体、液晶洗浄に於いて採用
されている枚葉式洗浄装置等では、洗浄効率を高めるた
めに高圧の水源が使用されており、ガス溶解モジュール
は、高い耐水圧が要求される。もちろん、チューブの外
側のガスの圧力を高めれば、チューブ内の水圧の増加を
キャンセルさせることができるが、そのためには、外側
のガスを加圧する設備が必要であったり、モジュール全
体の強度をあげることが必要であるなど、モジュール全
体としてはコストアップになってしまう。そのため、チ
ューブ自体の強度がある程度あって、水圧の増加に耐え
られることが求められる。
By the way, in the single-wafer cleaning apparatus and the like adopted in semiconductor and liquid crystal cleaning, a high-pressure water source is used to enhance cleaning efficiency, and the gas dissolving module is required to have high water pressure resistance. It Of course, increasing the pressure of the gas on the outside of the tube can cancel the increase in water pressure inside the tube, but for that purpose, equipment for pressurizing the outside gas is required and the strength of the entire module is increased. Therefore, the cost of the module as a whole increases. Therefore, it is required that the tube itself has some strength and can withstand an increase in water pressure.

【0006】そこで、たとえば、特開平7−21388
0号公報には、(a)孔径の大きな多孔質チューブの外
周にPTFEシートを延伸して得られる孔径の小さい多孔質
PTFEフィルムを積層したチューブ状膜、および、
(b)孔径の小さい多孔質PTFEフィルムを巻き重ね
て形成したチューブ状膜を、それぞれ、オゾン溶解モジ
ュールに使用することが提案されている。
Therefore, for example, Japanese Patent Laid-Open No. 7-21388.
No. 0 publication discloses (a) a tubular membrane in which a porous PTFE film having a small pore size obtained by stretching a PTFE sheet on the outer periphery of a porous tube having a large pore size is laminated, and
(B) It has been proposed to use a tubular membrane formed by winding a porous PTFE film having a small pore size in an ozone dissolving module.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特開平
7−213880号公報に記載されているチューブ状膜
には、次のような問題がある。すなわち、前記(a)の
チューブ状膜は、被処理液体が流れるチューブの内側に
孔径の大きな多孔質チューブが配置されていて、孔径の
小さい多孔質PTFEフィルムは、気―液の接触に寄与
していない。そのため、被処理液体の使用圧力に対する
信頼性が不十分で、部分的または全体的に、被処理液体
が、膜内部に侵入する。膜内部に侵入した被処理液体
は、流れ難く、よどんだ状態になり、局部的にオゾン濃
度があがり、その結果、オゾンが定常的に気―液の接触
界面に到達することが妨げられ、チューブ内を流れる被
処理液体のオゾン溶解量が極端に低下する。また、液圧
によって、内側の孔径の大きな多孔質チューブの一部に
膨れが生じ、外側の孔径の小さい多孔質PTFEフィル
ムの剥離が生じることがある。
However, the tubular membrane described in Japanese Patent Laid-Open No. 7-213880 has the following problems. That is, in the tubular membrane of (a) above, a porous tube having a large pore size is arranged inside the tube through which the liquid to be treated flows, and the porous PTFE film having a small pore size contributes to the contact between gas and liquid. Not not. Therefore, the reliability of the liquid to be treated with respect to the operating pressure is insufficient, and the liquid to be treated enters the inside of the film partially or entirely. The liquid to be treated that has entered the inside of the film is difficult to flow and becomes stagnant, and the ozone concentration rises locally, and as a result, ozone is constantly prevented from reaching the gas-liquid contact interface, The amount of ozone dissolved in the liquid to be processed flowing inside is extremely reduced. Further, due to hydraulic pressure, a part of the inner porous tube having a large pore size may be swollen and the outer porous PTFE film having a small pore size may be peeled off.

【0008】また、前記(b)の孔径の小さい多孔質P
TFEフィルムを巻き重ねて形成したチューブ状膜は、
機械的強度を確保するため、多数回積層する必要があ
り、層間の接着を確実にするために、各層間にPFAや
FEPなどの接着剤を介入させる必要があり、有効な気孔
数が減少し、フィルムの潰れも含めて、気体の透過性が
低下し、多孔質PTFEフィルム本来の特性を活かすこ
とができていない。また、(a)も(b)も製造に大変
手間がかかるという問題もある。
In addition, the porous P having a small pore size of the above (b)
The tubular membrane formed by winding TFE film is
In order to secure mechanical strength, it is necessary to laminate many times, and in order to ensure adhesion between layers, PFA or
Since it is necessary to interpose an adhesive such as FEP, the number of effective pores is reduced, the gas permeability including the collapse of the film is reduced, and the original characteristics of the porous PTFE film cannot be utilized. Further, there is a problem that both (a) and (b) are very troublesome to manufacture.

【0009】[0009]

【課題を解決するための手段】本発明は、前記の課題を
解決し、被処理液体の使用圧力に対する信頼性が十分
で、被処理液体が、膜内部に侵入することがなく、安定
して効率よくオゾンなどの気体を溶解させることができ
るチューブ状膜、および、その製造方法を提供すること
を目的とするものである。本発明の難溶性ガス溶解用チ
ューブ状膜は、多孔質PTFEチューブで、その気孔率
が10%以上、40%以下であり、かつ該チューブの漏
水圧が0.4MPa以上であることを特徴とするもので
ある。一般に、ガス吸収に於いては、次の式が理論式と
して適用されている。 Qa=Kov・A・(ya−H(y)・Xa)lm Qa:溶解量 A:有効膜面積(気液接触面積) H(y):ヘンリー定数 ya:気体中のガスモル分率 Xa:液中のガスモル分率 Kov:総括物質移動係数 上式によれば、ガスの溶解量は、気液接触面積に比例し
ている。従って、ガス溶解量は、気孔率に比例するはず
である。ところが、PTFE多孔質の場合、その領域に
よっては、この理論式があてはまらぬことを、本発明者
等は見出し、本発明に至った。即ち、気孔率を低くすれ
ば、孔径も小さくなり、漏水圧が上昇することは予想で
きるが、それとともに、気孔率を低くすれば、気液接触
面積が低減され、ガスの溶解量も低下すると考えるのが
普通である。ところが、驚くべきことに、気孔率を40
%より小さくしても、10%以上であれば、ガスの溶解
量の低下が認められないことがわかった。PTFEは、
撥水性が極めて強いため、気液接触界面に於いて、空気
の層が広がっていて、連続気孔になっているかぎり、ガ
スの溶解量は、気孔率に影響されないようである。こう
して、PTFE多孔質膜の好ましい気孔率の領域であれ
ば、ガスの溶解能力が大きく、かつ、漏水性も大きい多
孔質膜が得られることを見出した。当該多孔質PTFE
チューブは、チューブ状に押出し成型したPTFEチュ
ーブを、延伸率115%以上、140%以下で、実質的
に一軸延伸することにより気孔率が10%以上、40%
以下で、かつ漏水圧が0.4MPa以上である特性を有
するチューブとすることができる。
Means for Solving the Problems The present invention has solved the above-mentioned problems and has sufficient reliability with respect to the working pressure of the liquid to be treated, the liquid to be treated does not enter the inside of the film, and is stable. An object of the present invention is to provide a tubular film capable of efficiently dissolving a gas such as ozone and a method for producing the tubular film. The sparingly soluble gas-dissolving tubular membrane of the present invention is a porous PTFE tube having a porosity of 10% or more and 40% or less and leakage of the tube.
The water pressure is 0.4 MPa or more . Generally, in gas absorption, the following formula is applied as a theoretical formula. Qa = Kov.A. (Ya-H (y) .Xa) lm Qa: Dissolution amount A: Effective membrane area (gas-liquid contact area) H (y): Henry's constant ya: Gas mole fraction in gas Xa: Liquid Gas mole fraction Kov in: Overall mass transfer coefficient According to the above equation, the dissolved amount of gas is proportional to the gas-liquid contact area. Therefore, the amount of dissolved gas should be proportional to the porosity. However, the present inventors have found that, in the case of PTFE porous, this theoretical formula is not applicable depending on the region, and the present invention has been completed. That is, if the porosity is lowered, the pore diameter is also decreased, and it is expected that the water leak pressure will increase. At the same time, if the porosity is lowered, the gas-liquid contact area is reduced and the gas dissolution amount is also lowered. It is normal to think. However, surprisingly, the porosity was 40%.
It was found that even if the content is smaller than 10%, if the content is 10% or more, no decrease in the amount of dissolved gas is observed. PTFE is
Since the water repellency is extremely strong, the amount of dissolved gas does not seem to be affected by the porosity as long as the air layer is widened at the gas-liquid contact interface to form continuous pores. In this way, it was found that a porous membrane having a large gas dissolving ability and a large water leakage can be obtained in the range of the preferable porosity of the PTFE porous membrane. The porous PTFE
The tube has a porosity of 10% or more and 40% by uniaxially stretching a PTFE tube extruded into a tubular shape at a stretching rate of 115% or more and 140% or less.
It has the following characteristics and a leak pressure of 0.4 MPa or more.
It can be a tube.

【0010】[0010]

【実施例】実施例、比較例を用いて、本発明の内容を説
明する。実施例、比較例ともに、共通して次のように、
PTFEチューブを作成した。旭硝子フロロポリマーズ
製PTFEファインパウダーCD123・1kgに、液
体潤滑剤としてナフサ220gを加えて均一に混合し、
圧力5MPaで予備成型後、ペースト押出機によりチュ
ーブ状に押出した後、加熱してナフサを除去した。
EXAMPLES The contents of the present invention will be described with reference to examples and comparative examples. In both Examples and Comparative Examples, the following is common:
A PTFE tube was made. Asahi Glass Fluoropolymers PTFE fine powder CD123 · 1kg, 220g naphtha as a liquid lubricant was added and mixed uniformly,
After preforming at a pressure of 5 MPa, the paste was extruded into a tube shape with a paste extruder and then heated to remove naphtha.

【0011】ついで、縦型円筒炉内で、実施例、比較
例、各々所定の比率に、一軸延伸したあと、同じく円筒
炉内で、チューブ内面まで焼結した。実施例、比較例、
各々のチューブの形状、延伸率と気孔率、その他を表1
に示す。また、各々のチューブについて、サンプル有効
長500mmのチューブを用いて、大気中で、チューブ
内に昇圧スピード0.1MPa/30secで水圧をか
け、チューブ外表面に水滴が認められたときの圧力を漏
水圧として、調査し、その結果も表1に示した。また、
破壊圧力とは、1分以内に破壊する圧力をいう。
Next, in the vertical cylindrical furnace, uniaxially stretched at a predetermined ratio in each of Examples and Comparative Examples, and then sintered in the same cylindrical furnace to the inner surface of the tube. Examples, comparative examples,
Table 1 shows the shape, drawing rate and porosity of each tube.
Shown in. For each tube, a tube with a sample effective length of 500 mm was used to apply water pressure to the tube at a pressurizing speed of 0.1 MPa / 30 sec in the atmosphere, and the pressure when water droplets were observed on the outer surface of the tube was leaked. The pressure was investigated, and the results are also shown in Table 1. Also,
Breaking pressure means the pressure to break within 1 minute.

【0012】[0012]

【表1】 [Table 1]

【0013】表1からわかるように、実施例1、2のよ
うに、延伸率を115%以上、140%以下とすること
により、気孔率10%以上、40%以下の多孔質PTF
Eチューブが得られる。また、チューブの外側のガス圧
が大気圧のとき、これらのチューブの漏水圧は0.4M
Pa以上であり、モジュールに組んで、チューブ内の水
に、オゾンを溶解させ、半導体、液晶洗浄用として充分
有効に使用できる特性を有している。一方、比較例2、
3のように、延伸率を150%にし、気孔率を、45
%、60%と大きくすると、漏水圧は、それぞれ、0.
3、0.15MPaと小さくなり、半導体、液晶洗浄用
としては不十分である。
As can be seen from Table 1, as in Examples 1 and 2, by setting the stretching ratio to 115% or more and 140% or less, the porous PTF having a porosity of 10% or more and 40% or less.
E-tube is obtained. When the gas pressure outside the tubes is atmospheric pressure, the leak pressure of these tubes is 0.4M.
It has a property of being Pa or more, and being assembled in a module to dissolve ozone in water in a tube and sufficiently effectively used for cleaning semiconductors and liquid crystals. On the other hand, Comparative Example 2,
As shown in 3, the stretch ratio is set to 150% and the porosity is set to 45.
% And 60%, the water leak pressure becomes 0.
3, which is as small as 0.15 MPa, which is insufficient for cleaning semiconductors and liquid crystals.

【0014】次に、実施例、比較例それぞれのチューブ
を束ねてモジュール化し、所定の条件でチューブ内の水
へのオゾンガスの溶解を行った。このとき、ハウジング
としては、外径53mm、長さ550mmのものを使用
し、チューブ状膜として、有効長さ450mmのチュー
ブを実施例1、比較例1、2では100本、実施例2、
比較例3では50本使用した。また、ハウジング内に、
オゾンガスを濃度200g/Nm3で、ガス圧、大気圧
で、ガス流量、0.25リットル/minで供給した。
チューブ内の水圧と、溶解したオゾン濃度との関係(実
験をスタートして1時間後の値)は、図1に示した通り
で、実施例1、2は、水圧0.1〜0.4MPaの範囲
で、溶解オゾン濃度7〜8mg/Lで安定していた。そ
れに対して、比較例1のように、延伸率を110%に
し、気孔率を5%にしたものでは、溶解オゾン濃度が低
すぎ、これでは洗浄の効果が期待できないという状態で
あった。また、比較例2、3のように、延伸率を150
%にし、気孔率を、45%、60%と大きくしたもの
は、水圧安定性が悪く、水圧をあげると、溶解オゾン濃
度が低下するので、半導体、液晶洗浄用としては不適当
であった。
Next, the tubes of Examples and Comparative Examples were bundled into a module, and ozone gas was dissolved in water in the tubes under predetermined conditions. At this time, a housing having an outer diameter of 53 mm and a length of 550 mm was used, and a tube having an effective length of 450 mm was used as a tubular membrane in Example 1, 100 in Comparative Examples 1 and 2, and Example 2,
In Comparative Example 3, 50 pieces were used. Also, in the housing,
Ozone gas was supplied at a concentration of 200 g / Nm 3 at a gas pressure and atmospheric pressure at a gas flow rate of 0.25 liter / min.
The relationship between the water pressure in the tube and the dissolved ozone concentration (value one hour after starting the experiment) is as shown in FIG. 1, and in Examples 1 and 2, the water pressure was 0.1 to 0.4 MPa. In the range of, the dissolved ozone concentration was stable at 7 to 8 mg / L. On the other hand, as in Comparative Example 1, when the stretching ratio was 110% and the porosity was 5%, the dissolved ozone concentration was too low, and the cleaning effect could not be expected. Further, as in Comparative Examples 2 and 3, the stretching ratio was 150.
%, And the porosity increased to 45% and 60% are not suitable for cleaning semiconductors and liquid crystals because the water pressure stability is poor and the dissolved ozone concentration decreases with increasing water pressure.

【0015】[0015]

【発明の効果】本発明の気孔率が10%以上、40%以
下の多孔質PTFEチューブは、チューブ状に押出し成
型したPTFEチューブを、延伸率115%以上、14
0%以下で、実質的に一軸延伸することで容易に製造す
ることができ、漏水圧0.4MPa以上であって、チュ
ーブの外側のガス圧は大気圧のままで、水圧をアップし
ても、水が膜の水側からガス側へ漏れないことはもちろ
んのこと、膜内部への水の浸入による溶解性能のダウン
もなく、安定してオゾンを溶解させることができる。従
って、これをオゾン溶解モジュールに組み、チューブ内
の水にオゾンを溶解させれば、半導体、液晶の洗浄用と
して充分有効に活用できる。
The porous PTFE tube having a porosity of 10% or more and 40% or less according to the present invention is obtained by extruding a PTFE tube into a tubular shape and stretching it at 115% or more and 14% or more.
It can be easily produced by substantially uniaxially stretching at 0% or less, the water leakage pressure is 0.4 MPa or more, and the gas pressure outside the tube remains at atmospheric pressure, even if the water pressure is increased. Of course, water does not leak from the water side to the gas side of the membrane, and ozone can be stably dissolved without the dissolution performance being lowered due to the infiltration of water into the membrane. Therefore, if this is assembled into an ozone dissolution module and ozone is dissolved in the water in the tube, it can be used sufficiently effectively for cleaning semiconductors and liquid crystals.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例、比較例のチューブでのチューブ内の水
圧とオゾンガス溶解濃度との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between water pressure in a tube and ozone gas dissolved concentration in tubes of Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

A 実施例1 B 実施例2 C 比較例1 D 比較例2 E 比較例3 A Example 1 B Example 2 C Comparative Example 1 D Comparative Example 2 E Comparative Example 3

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C02F 1/78 C02F 1/78 C08J 9/00 C08J 9/00 A (56)参考文献 特開 平11−227087(JP,A) 特開 平10−174834(JP,A) 特公 昭42−13560(JP,B1) (58)調査した分野(Int.Cl.7,DB名) B01D 61/00 - 71/82 510 B01D 53/22 B01F 1/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI C02F 1/78 C02F 1/78 C08J 9/00 C08J 9/00 A (56) Reference JP-A-11-227087 (JP, A ) JP-A-10-174834 (JP, A) JP-B-42-13560 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) B01D 61/00-71/82 510 B01D 53 / 22 B01F 1/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多孔質PTFEチューブであって、気孔率
が10%以上、40%以下であり、かつ該チューブの漏
水圧が0.4MPa以上であることを特徴とする難溶性
ガス溶解用チューブ状膜。
1. A porous PTFE tube having a porosity of 10% or more and 40% or less and a leakage of the tube.
A tubular membrane for dissolving a sparingly soluble gas , which has a water pressure of 0.4 MPa or more .
【請求項2】ペースト押出成型法によって、PTFEの
ファインパウダーと液体潤滑剤との混合物を、チューブ
状に成型し、加熱して液体潤滑剤を除去した後、延伸率
115%以上、140%以下で実質的に一軸延伸するこ
により、気孔率が10%以上、40%以下で、かつ漏
水圧が0.4MPa以上であるチューブとすることを特
徴とする難溶性ガス溶解用チューブ状膜の製造方法。
2. A paste extrusion molding method is used to mold a mixture of PTFE fine powder and a liquid lubricant into a tube shape, and after heating to remove the liquid lubricant, a stretching ratio of 115% or more and 140% or less. By uniaxially stretching the film , the porosity is 10% or more and 40% or less, and the leakage
A method for producing a hardly-soluble gas-dissolving tubular membrane, characterized in that the tube has a water pressure of 0.4 MPa or more .
JP2000137927A 2000-05-11 2000-05-11 Porous membrane for dissolving hardly soluble gas and method for producing the same Expired - Lifetime JP3467450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000137927A JP3467450B2 (en) 2000-05-11 2000-05-11 Porous membrane for dissolving hardly soluble gas and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000137927A JP3467450B2 (en) 2000-05-11 2000-05-11 Porous membrane for dissolving hardly soluble gas and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001314737A JP2001314737A (en) 2001-11-13
JP3467450B2 true JP3467450B2 (en) 2003-11-17

Family

ID=18645615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000137927A Expired - Lifetime JP3467450B2 (en) 2000-05-11 2000-05-11 Porous membrane for dissolving hardly soluble gas and method for producing the same

Country Status (1)

Country Link
JP (1) JP3467450B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101797484B (en) * 2010-04-06 2012-09-05 东阳市金隆轻化有限公司 Method for preparing polytetrafluoroethylene tubular membrane

Also Published As

Publication number Publication date
JP2001314737A (en) 2001-11-13

Similar Documents

Publication Publication Date Title
JP4498748B2 (en) Hollow fiber membrane contactor and process
CN1299333C (en) Method and device for cleaning electronic element or its mfg. equipment element
US8999069B2 (en) Method for producing cleaning water for an electronic material
TWI746528B (en) Diluted medicinal solution manufacturing device and diluted medicinal solution manufacturing method
KR20120099056A (en) Cleaning method
WO2001051187A1 (en) Ozone treating apparatus
JPH1171600A (en) Production of cleaning solution and apparatus therefor
JP2002253936A (en) Separation membrane tube and separation membrane module
JP5320665B2 (en) Ultrapure water production apparatus and method
JP3467450B2 (en) Porous membrane for dissolving hardly soluble gas and method for producing the same
CN110168705B (en) Semiconductor substrate cleaning device and semiconductor substrate cleaning method
JP4483160B2 (en) Ultrapure water supply equipment
JP4151088B2 (en) Hydrogen-containing ultrapure water supply device
JP2003245525A (en) Module
JP4438077B2 (en) Method for preparing gas-dissolved water for cleaning electronic materials
WO1993001133A1 (en) System for supplying pure water and cleaning method therefor
JP2000216130A (en) Washing water and method for electronic material
KR100964020B1 (en) Feeder for drug solution or ultrapurified water, board treating system, board treating device or board treating method
JP3873434B2 (en) Gas dissolution module and gas dissolution method using porous polytetrafluoroethylene membrane for gas dissolution
JP5358910B2 (en) Carbonated water manufacturing apparatus and manufacturing method
JPH10202074A (en) Asymmetric structural fluororesin tube, production thereof, deaerating method using the tube and device therefor
JPH1057946A (en) Deaerator
JP4636659B2 (en) Substrate cleaning device
JP2004281894A (en) Cleaning water for electronic material, manufacturing method thereof, and cleaning method of electronic material
JP3967458B2 (en) Deaerator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3467450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term