JP3466765B2 - ビオチン化ホタルルシフェラーゼ、ビオチン化ホタルルシフェラーゼ遺伝子、新規な組み換え体dna、ビオチン化ホタルルシフェラーゼの製造法及び生物発光分析法 - Google Patents

ビオチン化ホタルルシフェラーゼ、ビオチン化ホタルルシフェラーゼ遺伝子、新規な組み換え体dna、ビオチン化ホタルルシフェラーゼの製造法及び生物発光分析法

Info

Publication number
JP3466765B2
JP3466765B2 JP09885795A JP9885795A JP3466765B2 JP 3466765 B2 JP3466765 B2 JP 3466765B2 JP 09885795 A JP09885795 A JP 09885795A JP 9885795 A JP9885795 A JP 9885795A JP 3466765 B2 JP3466765 B2 JP 3466765B2
Authority
JP
Japan
Prior art keywords
firefly luciferase
biotinylated
gly
leu
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09885795A
Other languages
English (en)
Other versions
JPH08308578A (ja
Inventor
宏樹 辰巳
賢 福田
護 菊地
泰二 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikkoman Corp
Original Assignee
Kikkoman Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikkoman Corp filed Critical Kikkoman Corp
Priority to JP09885795A priority Critical patent/JP3466765B2/ja
Priority to US08/460,934 priority patent/US5814465A/en
Publication of JPH08308578A publication Critical patent/JPH08308578A/ja
Priority to US08/782,118 priority patent/US5843746A/en
Application granted granted Critical
Publication of JP3466765B2 publication Critical patent/JP3466765B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/66Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving luciferase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、ビオチン化ホタルルシ
フェラーゼ、ビオチン化ホタルルシフェラーゼ遺伝子、
新規な組み換え体DNA、ビオチン化ホタルルシフェラ
ーゼの製造法及びビオチン化ホタルルシフェラーゼを用
いた生物発光分析法に関する。
【0002】
【従来の技術】従来、50%以上の活性を保持した化学修
飾ビオチン化ホタルルシフェラーゼを用いる免疫測定法
は知られている。(特開昭60-138463号公報参照)しか
しながら、化学修飾ではビオチンの結合するルシフェラ
ーゼ内の残基が特定できず、また、ルシフェラーゼ1分
子に結合するビオチンの数も一定でなく、均一な性質を
有するビオチン化ホタルルシフェラーゼを得ることはで
きない。
【0003】従って、化学修飾で得られたビオチン化ホ
タルルシフェラーゼを、生物発光分析に用いた場合、検
出感度は満足のできるものではなく、化学修飾で得られ
たビオチン化ホタルルシフェラーゼを、高感度を必要と
する生物発光分析法に用いることは不適当であった。一
方、ビオチン酵素の活性中心の1つと考えられる保存さ
れたLys残基には、細胞内において、ビオチンホロエン
ザイムシンセターゼの作用によりビオチンが結合してい
ることが知られている〔D. Samols et al.,The Journal
of Biological Chemistry, 263, 6461 (1988)〕。
【0004】最近、ビオチン酵素のビオチン化Lys残基
を含む領域と目的の蛋白質との融合蛋白質を遺伝子操作
的手法により生産したところ、ビオチン化された該融合
タンパク質が確認された〔J.E.Cronal,Jr.,The Biologi
cal Chemistry, 265, 10327(1990)〕。Promega社では、
上記の方法によりビオチン化ホタルルシフェラーゼの製
造を行なった。すなわち、遺伝子操作的手法により、北
米ホタル(Photinus pyralis)由来のルシフェラーゼ
と、ビオチン酵素の1つであるプロピオニバクテリウム
・シェルマニイ(Proprionibacterium shermanii)のト
ランスカルボキシラーゼコンプレックスの12.5 kDaサブ
ユニットとの融合蛋白質の生産を試みた。しかしなが
ら、得られた融合蛋白質は不溶性であり、活性のあるビ
オチン化ホタルルシフェラーゼはほとんど得られなかっ
た〔Promega社、ピンポイント テンエープロテイン
ピューリフィケーション システム (PinPoint Xa Prot
ein Purification System)パンフレット〕。
【0005】
【発明が解決しようとする課題】そこで、本発明は、上
記欠点のないビオチン化ホタルルシフェラーゼ、ビオチ
ン化ホタルルシフェラーゼ遺伝子、ビオチン化ホタルル
シフェラーゼの製造法及びこのルシフェラーゼを用いた
生物発光分析法を提供することを目的とするものであ
る。
【0006】
【課題を解決するための手段】本発明者等は、上記課題
を解決すべく鋭意検討を行なった結果、エッシェリシア
属に属し、配列番号1又は7で表されるアミノ酸配列を
コードするビオチン化ペプチド遺伝子及びホタルルシフ
ェラーゼ遺伝子を連結してなるビオチン化ホタルルシフ
ェラーゼ遺伝子をベクターDNAに挿入してなる組み換
え体DNAを含有する微生物を培地に培養すれば、培養
物より可溶性で活性のあるビオチン化ホタルルシフェラ
ーゼが効率よく得られること、更にこのようにして得ら
れたビオチン化ホタルルシフェラーゼを、生物発光分析
に用いれば、化学修飾により得られたビオチン化ホタル
ルシフェラーゼを用いる生物発光分析法に比し高感度に
分析することができること等の知見を得、本発明を完成
した。
【0007】すなわち本発明は、ビオチン化ペプチド及
びホタルルシフェラーゼを連結してなることを特徴とす
るビオチン化ホタルルシフェラーゼである。ここで、ビ
オチン化ペプチドとはビオチンホロエンザイムシンセタ
ーゼの作用によりビオチンを結合しうるペプチドをい
う。更に本発明は、配列番号6又は9で表されるアミノ
酸配列、或いは該アミノ酸配列において1もしくは複数
のアミノ酸が付加、欠失もしくは置換されており且つビ
オチン化ホタルルシフェラーゼ活性を有するビオチン化
ホタルルシフェラーゼである。
【0008】更に本発明は、ビオチン化ペプチドをコー
ドする遺伝子及びホタルルシフェラーゼ遺伝子を連結し
てなることを特徴とするビオチン化ホタルルシフェラー
ゼ遺伝子である。更に本発明は、配列番号1又は7で表
されるアミノ酸配列或いは該アミノ酸配列において1も
しくは複数のアミノ酸が付加、欠失もしくは置換されて
おり且つビオチン化ペプチド活性をもたらすアミノ酸配
列をコードするビオチン化ペプチド遺伝子及びホタルル
シフェラーゼ遺伝子を連結してなることを特徴とするビ
オチン化ホタルルシフェラーゼ遺伝子である。
【0009】更に本発明は、上記ビオチン化ホタルルシ
フェラーゼ遺伝子をベクターDNAに挿入してなること
を特徴とする新規な組み換え体DNAである。更に本発
明は、エッシェリシア属に属し、上記組み換え体DNA
を含有する微生物を培地に培養し、培養物よりビオチン
化ホタルルシフェラーゼを採取することを特徴とするビ
オチン化ホタルルシフェラーゼの製造法である。
【0010】更に本発明は、上記ビオチン化ホタルルシ
フェラーゼを用いることを特徴とする生物発光分析法で
ある。更に本発明は、上記ビオチン化ホタルルシフェラ
ーゼを使用し、ビオチン化受容体を測定することによ
り、リガンドを定量することを特徴とする生物発光分析
法である。
【0011】以下、本発明を詳細に説明する。本発明
は、細胞内においてビオチンホロエンザイムシンセター
ゼの作用によりビオチンが結合する10〜120 残基程度の
ペプチド(ビオチン化ペプチド)をコードする遺伝子と
ホタルルシフェラーゼの遺伝子を連結し、該連結遺伝子
を微生物に導入し、該微生物が保有するビオチンホロエ
ンザイムシンセターゼの作用によりビオチン化ペプチド
がビオチン化された融合蛋白質を微生物に於いて生産す
ることを必須とする。
【0012】本発明において、細胞内においてビオチン
ホロエンザイムシンセターゼの作用によりビオチンが結
合するペプチド、即ちビオチン化ペプチドとしては、例
えば、天然のビオチン酵素〔例えばThe Journal of Bio
logical Chemistry, 263, 6461 (1988)に記載のビオチ
ン酵素〕のビオチン化されたリジン残基を含む10〜120
残基のペプチド、または、これらの配列を基に人工的に
作られたビオチン化ペプチド〔例えばBIO/TECHNOLOGY,
11, 1138 (1993)に記載のペプチド〕が含まれる。
【0013】このビオチン化ペプチドの具体例として
は、配列番号1又は7のアミノ酸配列を有するペプチド
が挙げられる。なお、該ペプチドにおいてアミノ酸配列
内の小さな変更がその活性を失うことなく行われること
が期待される。このような変更には、配列内の1もしく
は複数のアミノ酸が付加、欠失もしくは置換が含まれ、
そしてそれらのうち上記ビオチン化の活性が維持される
ものは本発明のビオチン化ペプチドの範囲に含まれる。
そして、これらのアミノ酸が付加、欠失もしくは置換さ
れたものは、周知のペプチド合成法により適宜調製でき
る。
【0014】ホタルルシフェラーゼとしては、例えば、
ルシオラ・クルシアタ(Luciola cruciata)、ルシオラ
・ラテラリス(Luciola lateralis)〔何れもN. Kajiya
ma et al., Biochim. Biophys. Acta, 1120, 228 (199
2)〕、ルシオラ・ミングレリカ(Luciola mingrelica)
〔N. Yu. Philippova and N. N. Ugarova, Biokhimiya,
44, 1508 (1979)〕、フォティナス・ピラリス〔M. DeL
uca and W. D. McElroy, Meth. Enzymol., 72, 3 (197
8)〕等のホタル由来のルシフェラーゼが挙げられる。そ
のうちヘイケボタル(Luciola lateralis)由来で、217
番目のAlaがLeuに置換された耐熱性変異型ルシフェラー
ゼのアミノ酸配列は配列番号2に示す通りである。
【0015】ビオチン化ペプチドの遺伝子はDNA合成機
により合成することができる。ホタルルシフェラーゼの
遺伝子は通常の方法〔J. Sambrook et al. et al., Mol
ecular Cloning A Laboratory Manual (1989) Cold Spr
ing Harbor Laboratory Press〕によりクローニングす
るか、または、配列が既知の場合はPCR法によりクロー
ニングすることができる。
【0016】ビオチン化ペプチドとホタルルシフェラー
ゼの融合蛋白質(ビオチン化ホタルルシフェラーゼ)
は、両者の機能を損なわない範囲で、一次配列上の配置
にはこだわらない。すなわち、いずれをN末に配置して
もよく、また、一方を他方の分子内に配置する場合もあ
る。また、両者の間にリンカー配列、例えば(Gly4Ser)3
〔J. S. Huston et al., Proc. Natl. Acad. Sci. USA
(1988)〕やSer Ser Ala(Asp Asp Ala Lys Lys)4 Asp Gl
y 〔M. W. Pantoliano et al., Biochemistry, 30, 101
17 (1991)〕、を配置してもよい。
【0017】ビオチン化ペプチドの遺伝子とホタルルシ
フェラーゼの遺伝子とを通常の方法〔J. Sambrook et a
l. et al., Molecular Cloning A Laboratory Manual
(1989) Cold Spring Harbor Laboratory Press〕により
結合し、このビオチン化ホタルルシフェラーゼ遺伝子
を、通常の方法により、プロモーター配列、マーカー遺
伝子、複製起点を有するベクターに連結し、微生物、例
えば大腸菌(Escherichiacoli)や酵母(Saccharomyces ce
revisiae)等に形質転換し、組み換え体を取得すること
ができる。
【0018】上記ベクターDNAとしては、例えば、pU
C119(宝酒造社・製)、pMA56〔G.Ammerer, Meth. Enzy
mol., 101, 192 (1983)〕等が挙げられる。ビオチン化
ホタルルシフェラーゼを生産するには、上記組み換え体
DNAを有する微生物を培地中で培養することにより、
該微生物の保有するビオチンホロエンザイムシンセター
ゼの作用によりビオチン化ペプチド内の保存されたLys
残基がビオチン化された融合蛋白質が得られる。この微
生物の培養は固体培養法で培養してもよいが、液体培養
法により培養するのが好ましい。
【0019】また、培地としては、例えば、酵母エキ
ス、トリプトン、ペプトン、肉エキス、コーンスティー
プリカーあるいは大豆もしくは小麦ふすま浸出液等の1
種以上の窒素源に、塩化ナトリウム、リン酸1カリウ
ム、リン酸2カリウム、硫酸マグネシウム、塩化マグネ
シウム、塩化第2鉄、硫酸第2鉄、あるいは硫酸マンガ
ン等の無機塩類の1種以上を添加し、更に必要により糖
質原料、ビタミン等を適宜添加したものが用いられる。
【0020】なお、培地の初発pHは、pH7〜9に調製
するのが適当である。また培養は30〜42℃、好ましくは
37℃前後で3〜24時間、好ましくは5〜8時間、通気撹は
ん深部培養、振とう培養、静置培養等により実施するの
が好ましい。培養終了後、該培養物よりビオチン化ホタ
ルルシフェラーゼの採取は、例えば、該培養物を遠心分
離にかけ培養上清と菌体を得、菌体は超音波処理や溶菌
酵素処理により破砕する。次いで、これら培養上清また
は菌体破砕液からビオチン化ホタルルシフェラーゼの精
製は、常法の精製手段、例えば硫安沈澱、ゲル濾過、イ
オン交換クロマト、疎水クロマト等を組み合わせること
により行うことができる。菌体上清または菌体破砕液中
のビオチン化ホタルルシフェラーゼ融合蛋白の活性は、
E. A. Bayerら記載の方法〔Anal. Biochem., 154, 367
(1986)〕とJ. R. De Wet等の方法〔Meth. Enzymol., 13
3, 3 (1986)〕により測定することができる。
【0021】このようにして得られたビオチン化ホタル
ルシフェラーゼは、種々の生物発光分析法に利用でき
る。ビオチン化ホタルルシフェラーゼは、そのビオチン
を介してルシフェラーゼとアビジンまたはストレプトア
ビジンとの複合体を作成することにより、例えば、現在
多用されている酵素免疫測定法、DNAプローブ法、免疫
染色法、レセプター測定法、in situハイブリダイゼー
ション法等のビオチン・アビジンを利用した検出系にホ
タルルシフェラーゼを用いた発光分析法を適用すること
ができる〔北川常廣等編,酵素免疫測定法(蛋白質核酸
酵素別冊No.31)(1987),共立出版、P. Tijssen著,石川
栄治監訳,エンザイムイムノアッセイ(1989),東京化学
同人、高橋豊三著,DNAプローブ(1988),シーエムシ
ー〕。
【0022】
【実施例】以下、本発明を実施例を挙げて更に具体的に
説明する。 実施例 1.ビオチン化ホタルルシフェラーゼ bL203を発現する
プラスミドの作製 ビオチン化ペプチド #84(Met Ala Phe Ser Leu Arg Se
r Ile Leu Glu Ala Gln Lys Met Glu Leu Arg Asn Thr
Pro Gly Gly Ser)〔P. J. Shatz, BIO/TECHNOLOGY, 1
1, 1138 (1993),ビオチンホロエンザイムシンセターゼ
の作用により13番目のLys残基がビオチン化されると考
えられる。〕をコードし、下流に制限酵素XhoI部位と制
限酵素MunI部位を持つオリゴヌクレオチド〔順鎖のSLF6
9(配列番号3)と逆鎖のSLF70(配列番号4)の合計2
本〕をDNA Model 392 シンセサイザー(Applied Biosys
tems社・製)を用いて合成した。
【0023】オリゴヌクレオチドSLF69及びSLF70各々1
pmolをT4ポリヌクレオチドキナーゼ(宝酒造社・製)を
用いてリン酸化した後、両者を混合し、90℃にて10分間
保温後、更に37℃にて10分間保温し、2種のオリゴヌク
レオチドのアニーリングを行なった。次いで、プラスミ
ドpUTE100DNA(特開平5-317055号公報記載)を制限
酵素HpaIで切断した後、アルカリフォスファターゼ(宝
酒造社・製)にて脱リン酸化を行ない、これに上記のア
ニーリングしたオリゴヌクレオチドを加え、T4DNAリガ
ーゼ(宝酒造社・製)を用いて連結し、プラスミドpUTE
100DNAのHpaI部位にビオチン化ペプチド#84をコード
するオリゴヌクレオチドがβ-ガラクトシダーゼプロモ
ーターより順方向に転写される方向に挿入された組み換
え体プラスミドpHLf200DNAを取得した(図1参
照)。
【0024】一方、組み換え体プラスミドpHLf7-217Leu
〔プラスミドpUC119に217番目のAlaがLeuに置換された
耐熱変異型ヘイケボタルルシフェラーゼの遺伝子(特開
平5-244942号公報記載)が挿入されたものであり、この
耐熱性変異型ヘイケボタルルシフェラーゼのアミノ酸配
列を配列番号2に示す。〕の1本鎖DNAをヘルパーフ
ァージ M13 KO7(宝酒造社・製)を用いて調製し、オリ
ゴヌクレオチド SLF15(AGGAATAAAGAACTCTTCACAGTT)とオ
リゴヌクレオチド-ダイレクティッド インビトロ ミ
ュータジェネシス システム バージョン2 (Amersham
社・製)を用いて、ルシフェラーゼ遺伝子がコードする
アミノ酸配列は変えずにルシフェラーゼ遺伝子の内部に
存在するEcoRI部位を除去したプラスミドpHLf107DNA
を得た(図1参照)。 次いで、同様の方法により、組
み換え体pHLf107DNAのルシフェラーゼ遺伝子の5'端
付近に、オリゴヌクレオチド SLF43 (TTCATCGTTCTCGAGG
TTTTCCATAGA)(下線部は制限酵素XhoI部位)を用いてXh
oI部位を導入したプラスミドpHLf108を取得した(図1
参照)。
【0025】pHLf108を制限酵素XhoI(宝酒造社・製)
及びEcoRI(同社・製)で切断した後、アガロースゲル
電気泳動とgene clean II kit (BIO101社・製)により
ルシフェラーゼ遺伝子断片を調製した。この断片を、予
めXhoIとMunI(何れも宝酒造社・製)で切断したpHLf20
0と連結し、ビオチン化ホタルルシフェラーゼ bL203を
β−ガラクトシダーゼプロモーターにより発現させるこ
とのできる組み換え体プラスミドpHLf203DNAを構築
した(図1参照)。組み換え体プラスミドpHLf203DN
Aの有するビオチン化ホタルルシフェラーゼ bL203遺伝
子の塩基配列及び該遺伝子から発現されるアミノ酸配列
を夫々配列番号5及び配列番号6に示した。
【0026】2.ビオチン化ホタルルシフェラーゼ bL2
03の大腸菌による生産の確認 組み換え体プラスミドpHLf203DNAを含有する大腸菌J
M101[pHLf203]〔宿主菌としては大腸菌JM101(ATCC3387
6)を使用〕(尚、大腸菌JM101[pHLf203]は、工業技術院
生命工学工業技術研究所にFERM BP−5052と
して寄託されている。)を0.2 mMのイソプロピル-β-チ
オガラクトサイド(IPTG)と50μg/mlのアンピシリンを含
むLB培地(1% バクトトリプトン, 0.5%酵母エキス, 0.5%
塩化ナトリウム) 2 mlにて、30℃、120 rpmで5時間振と
う培養した。5,000 r.p.m.で5分間遠心分離により得ら
れた菌体を超音波処理により破砕し、12,000 r.p.m.で5
分間遠心分離により菌体破砕液上清を得た。
【0027】菌体破砕液上清のビオチン化ホタルルシフ
ェラーゼ bL203の活性は以下の方法にて測定した。マイ
クロタイターイムノアッセイプレートFluoroNunc Plate
s C96 White Maxisorp(Nunc社・製)のウエルに100 μ
lのビオチン化牛血清アルブミン(BSA)溶液〔10μg/ml A
LBUMIN BOVINE-BIOTIN Labeled (SIGMA),15 mM炭酸ナト
リウム (pH 9.6)〕を加え、4℃にて16時間放置し、ビオ
チン化BSAの固定を行なった。ウエルよりビオチン化BSA
溶液を廃棄し、各ウエルを300 μlのTPBS〔0.05% トゥ
イーン(tween)20, 65 mM 塩化ナトリウム, 10 mM リ
ン酸ナトリウム (pH 7.2)〕にて洗浄したのち、300 μl
のブロッキング溶液〔1% BSA, 65 mM塩化ナトリウム, 1
0 mM リン酸ナトリウム (pH 7.2)〕を加え、37℃にて2
時間放置し、ウエルのブロッキングを行なった。ブロッ
キング溶液を廃棄後、300 μlのTPBSで各ウエルを洗浄
し、100 μlのアビジン溶液〔PBSにアビジン(和光純薬
社・製)を10μg/mlとなるように溶解したもの〕または
対照として同量のPBSを加え、室温で1時間放置した。T
PBSで各ウエルを洗浄後、上述の大腸菌JM101[pHLf203]
の菌体破砕液上清をTBSで10倍に希釈した溶液100 μlを
加え、室温にて1時間放置した。菌体破砕液上清希釈液
を廃棄し、各ウエルを300 μlのTPBSにて4回洗浄し
た。
【0028】各ウエルのルシフェラーゼ活性を以下の方
法で測定した。マイクロタイターイムノアッセイプレー
トをマイクロプレートルミノメーターML3000(DYNATECH
社・製)に装着し、100 μlの基質溶液〔0.069 mMルシ
フェリン(SIGMA社・製), 4mM ATP, 4.3 mM塩化マグネ
イシウム, 25 mM グリシルグリシン (pH 7.8)〕を加
え、20秒間に発生するフォトンの数を測定した。その結
果、アビジン無添加の対照のウエルでの発光が96カウン
トであったのに対し、アビジンを添加したウエルでは2
7,000カウントの発光が観察され、顕著なルシフェラー
ゼ活性の増加が認められた。従って、大腸菌JM101[pHLf
203]の菌体破砕液上清には、アビジンに対し結合能を有
するホタルルシフェラーゼ、すなわち活性のあるビオチ
ン化ホタルルシフェラーゼ bL203の生産が確認された。
【0029】3.ビオチン化ホタルルシフェラーゼbL20
3の精製 大腸菌JM101〔pHLf203〕を0.2 mMのイソプロピル-β-チ
オガラクトサイド(IPTG)と50μg/mlのアンピシリン及び
10μg/mlのD-biotinを含むLB培地(1% バクトトリプト
ン, 0.5%酵母エキス, 0.5%塩化ナトリウム) 1リッター
にて、30℃、120rpmで5時間振とう培養した。5,000 r.
p.m.で5分間遠心分離により得られた菌体を100 mlの緩
衝液〔25 mM tris(hydroxymethyl)aminomethane(Tri
s), 1 mM ethylenediaminetetraacetic acid(EDTA),
10%飽和硫酸アンモニウム, 1mg/mlリゾチーム,pH7.8
〕に懸濁した。凍結融解を3回繰り返し菌体の溶菌を行
ない、12,000 r.p.m.で5分間遠心により菌体破砕液上清
を得た。菌体破砕液上清よりbL203の精製は梶山等の方
法〔N. Kajiyama et al., Biochim. Biophys. Acta, 11
20, 228 (1992)〕に従った。精製したbL203の濃度は紫
外吸光法に従い測定した。精製したbL203の比活性は、2
17 番目のAlaがLeuに置換され、精製された耐熱性ヘイ
ケボタルルシフェラーゼの比活性の98%であった。ま
た、精製したbL203は4℃で60日以上保存しても活性の減
少は認められなかった。
【0030】4.化学修飾ビオチン化ホタルルシフェラ
ーゼの作成 本発明のビオチン化ホタルルシフェラーゼbL203と比較
実験を行なうために、特開昭60-138463号公報記載の方
法に従い化学修飾ビオチン化ホタルルシフェラーゼの作
成を行なった。ホタルルシフェラーゼとしては公報に従
いシグマケミカル社より入手したフォティナス・ピラリ
ス由来のホタルルシフェラーゼを使用した。反応用緩衝
液〔0.1 M 塩化ナトリウム,0.1 M リン酸カリウム(pH
7.6)〕中2.6 mg/mlのホタルルシフェラーゼ400 μlに、
592 μlの同じ緩衝液に溶解した5.5 μモル ATP、及び8
μlのジメチルスルホキシド中60 nモルのN-ヒドロキシ
スクシニミドビオチン(ピアス社・製)を加えた。4℃
にて一夜インキュベーションした後、緩衝液〔10% グリ
セロール,1 mM EDTA,2 mMβ-メルカプトエタノール,
0.1 M リン酸カリウム(pH 7.5)〕に透析した。この標識
反応後未修飾のホタルルシフェラーゼの活性と比較して
62%の活性が残存しており、前記公報に記載の少なくと
も50%以上の活性が残留する化学修飾ビオチン化ホタル
ルシフェラーゼが得られたが、本発明の方法により得ら
れたビオチン化ホタルルシフェラーゼの活性98%には
遠く及ばなかった。
【0031】5.ストレプトアビジン結合による活性の
変化 ビオチン化ホタルルシフェラーゼbL203及び化学修飾ビ
オチン化ホタルルシフェラーゼのストレプトアビジンと
結合した際の活性変化を測定した。各ビオチン化ホタル
ルシフェラーゼをルシフェラーゼ希釈液〔1% BSA,1 mM
EDTA,1 mMβ-メルカプトエタノール,50 mM HEPES(pH
7.5)〕で0.1 ng/mlに希釈した液と、ストレプトアビジ
ン(ベーリンガーマンハイム社・製)をルシフェラーゼ
希釈液で1 μg/mlに希釈した液または対照としてルシフ
ェラーゼ希釈液を等量混合し、室温で30分間放置した。
これらの液を各50μlずつマイクロタイタープレートMic
rolite 2(ダイナッテックラボラトリーズ社・製)のウ
エルに移し、生物発光・化学発光測定用マイクロプレー
トリーダーLUMINOUS CT-9000D(ダイアヤトロン社・
製)に装着し、基質溶液〔40 mM ATP,1.4 mMルシフェ
リン,300 mM硫酸マグネシウム,50 mM HEPES(pH 7.
5)〕を50μlずつ分注しつつ10秒間に発生するフォトン
の数を測定した。その結果、ストレプトアビジンと混合
後の残存活性はビオチン化ホタルルシフェラーゼbL203
で93%、化学修飾ビオチン化ホタルルシフェラーゼで62%
であり、本発明のビオチン化ホタルルシフェラーゼbL20
3ではほとんど活性変化がないのに対し、化学修飾ビオ
チン化ホタルルシフェラーゼにおいては40%近く活性が
低下することが明らかになった。
【0032】6.ビオチン化ホタルルシフェラーゼ bL2
03を用いたサンドイッチELISA マイクロタイタープレートMicrolite 2にヤギ抗マウスI
gG Fcフラグメント特異的ポリクローナル抗体(ジャク
ソンイムノリサーチ社・製)を50 mM 炭酸ナトリウム緩
衝液(pH 9.6)で5 μg/mlに希釈し、各ウエルに100 μl
ずつ分注し4℃で一夜固相化した。各ウエルを300 μlの
T-TBS〔0.05% トゥイーン20,0.15M NaCl,50 mM Tris
(pH 7.6)〕で4回ずつ洗浄し、各ウエルに200 μlの4倍
希釈したブロックエース(大日本製薬株式会社)を加
え、4℃で一夜ブロッキングした。同様に洗浄を行なっ
た後、4倍希釈したブロックエースで1 pg/ml〜1000 pg/
mlまでの各濃度に調製したマウスIgG1(ケミコン社・
製)及び陰性対照として4倍希釈ブロックエースを100
μlずつ添加し37℃で2時間放置した。洗浄後、ビオチン
化ヤギ抗マウスIgG F(ab')2フラグメント特異的ポリク
ローナル抗体F(ab')2フラグメント(ジャクソンイムノ
リサーチ社・製)を4倍希釈ブロックエースで0.1 μg/m
lに希釈したものを100 μlずつ加え、37℃で1時間放置
した。洗浄後、ストレプトアビジン(ベーリンガーマン
ハイム社・製)を4倍希釈ブロックエースで2μg/mlに希
釈して100 μlずつ加え、室温で30分放置した。それを
洗浄後、ビオチン化ホタルルシフェラーゼbL203及び化
学修飾ビオチン化ホタルルシフェラーゼをルシフェラー
ゼ希釈液で5×10-13 mol/mlに希釈し、100 μlずつ添加
し室温で30分間放置した。洗浄後、ルシフェラーゼ希釈
液〔1% BSA,1 mM EDTA,1 mMβ-メルカプトエタノー
ル,50 mM HEPES(pH7.5)〕を各ウエルに50μlずつ分注
し、生物発光・化学発光測定用マイクロプレートリーダ
ーLUMINOUS CT-9000D(ダイアヤトロン社・製)に装着
し、基質溶液〔40 mM ATP,1.4 mMルシフェリン,300 m
M硫酸マグネシウム,50 mM HEPES(pH 7.5)〕を50μlず
つ分注しつつ10秒間に発生するフォトンの数を測定した
結果を表1に示した。
【0033】
【表1】 ──────────────────────────────────── マウスIgG1濃度 ビオチン化ホタルルシフェ 化学修飾ビオチン化ホタルル (pg/ml) ラーゼbL203を使用した場 シフェラーゼを使用した場合 合の発光量 の発光量 (count)注1 (count)注1 ──────────────────────────────────── 0 5633 131 1 5773 156 5 6906 151 10 7781 158 50 16319 196 100 24950 241 1000 162429 1117 ──────────────────────────────────── 注1:4エルの測定の平均値
【0034】表1から明らかなように、ビオチン化ホタ
ルルシフェラーゼbL203はスチューデントのt検定〔R.
C. キャンベル著,石居進訳,生物学者のための統計学
入門(第2版)(1976),培風館〕によりP<0.05で5 pg/m
lより測定が可能であり、それに対し化学修飾ビオチン
化ホタルルシフェラーゼは同様に95%以上の有意差で50p
g/mlより測定が可能であった。以上より本発明によるビ
オチン化ホタルルシフェラーゼは、従来の化学修飾法に
よるビオチン化ホタルルシフェラーゼに比べ、それを用
いた実際の測定においても10倍高い感度が得られること
が明らかになった。
【0035】7.ビオチン化ホタルルシフェラーゼbL24
8を発現させるプラスミドの作製 大腸菌のアセチルCoAカルボキシラーゼのサブユニット
であるビオチンカルボキシルキャリアープロテイン(以
下、BCCPという)は大腸菌内でビオチンホロエンザイム
シンセターゼの作用により122番目のLys残基がビオチン
化されていることが知られている〔The Journal of Bio
logical Chemistry, 263, 6461 (1988)〕。BCCPのbioti
n化Lys残基を含むC末端側の87残基よりなるポリペプチ
ド(以下、BCCP-87という、配列番号7)をコードする
遺伝子を以下の方法によりクローニングした。特開平6-
292584号公報記載の方法により大腸菌1100(Max-Plank-I
nstitute、ドイツ、ハイデルベルグより入手)から染色
体DNAを取得し変性させた。S. Muramatsuらの報告
〔Nucleic Acids Research, 17, 3982 (1989)〕のBCCP
遺伝子の塩基配列を参考に、5'側のプライマーとしてオ
リゴヌクレオチドSLF116(CCGGCGACCGTTGGATCCATGGAAGC
G)及び3'側のプライマーとしてオリゴヌクレオチドSLF
117(TTATCCAGCGGATCCACTAGTTTACTCGATGACGACCAGCGG )
をDNA Model 392 シンセサイザー(Applied Biosystems
社・製)を用いて合成した。なお、夫々のプライマーの
内部に後のサブクローニングのため、制限酵素BamHIの
認識部位(下線部)を導入した。プライマーSLF116とプ
ライマーSLF117各1 pmolと上述の変性させた大腸菌の染
色体DNA0.1 μgを用いて、DNA Thermal Cycler(Per
kin-Elmer社・製)及びAmpli Taq DNAポリメラーゼを含
むGeneAmp PCR試薬キット(宝酒造社・製)によるPCR増
幅を行ない、 BCCP-87をコードする遺伝子断片1μgを
得、更に、この断片をBamHIにより消化した。
【0036】一方、プラスミドpHLf107DNA(図1参
照)のルシフェラーゼ遺伝子の3'端付近に、オリゴヌク
レオチドSLF81(TGATTGACATGGATCCCTTAGCAACT)(下線
部は制限酵素BamHI部位)を用いて、項目1に記載の部
位特異的変異法によりBamHI部位を導入したプラスミドp
HLf142DNAを取得した(図2参照)。次いで、プラス
ミドpHLf142DNAを制限酵素BamHI(宝酒造社・製)及
びEcoRI(同社・製)で完全に消化した後、アガロース
ゲル電気泳動とgene clean II kit(BIO101社・製)に
よりルシフェラーゼ遺伝子断片を調製した。この断片
を、予めBamHIとEcoRIで切断したプラスミドpUC118 DNA
(宝酒造社・製)と連結し、プラスミドpHLf230DNA
を構築した(図2参照)。
【0037】プラスミドpHLf230DNAをBamHIで切断
し、上述のBamHIで消化したBCCP-87遺伝子断片と常法に
従い結合させ、耐熱性ヘイケボタルルシフェラーゼ(配
列番号2)のC末端にBCCP-87が融合したビオチン化ホタ
ルルシフェラーゼbL248をβーガラクトシダーゼプロモ
ーターにより発現させることのできる組み換え体プラス
ミドpHLf248DNAを構築した(図2参照)。組み換え体
プラスミドpHLf248の有するビオチン化ホタルルシフェ
ラーゼbL248遺伝子の塩基配列及び該遺伝子から発現さ
れるアミノ酸配列を夫々配列番号8及び配列番号9に示
した。
【0038】8.ビオチン化ホタルルシフェラーゼbL24
8の大腸菌による生産の確認 組み換え体プラスミドpHLf248DNAを含有する大腸菌J
M101[pHLf248]〔宿主菌として大腸菌JM101(ATCC33876
を使用)(尚、大腸菌JM101[pHLf248]は、工業技術院生
命工学工業技術研究所にFERM BP−5081とし
て寄託されている。)を、項目2記載の方法にて、培養
及びビオチン化ルシフェラーゼの活性測定を行なった。
その結果、アビジン無添加のウエルでの発光が75カウン
トであったのに対し、アビジンを添加したウエルでは1
1,000カウントの発光が観察された。すなわち、大腸菌J
M101[pHLf248]は活性のあるビオチン化ホタルルシフェ
ラーゼbL248を生産することが確認された。
【0039】9.ビオチン化ホタルルシフェラーゼbL24
8の粗精製 項目3記載の方法により、大腸菌JM101[pHLf248]を培養
し菌体破砕液上清を得た。梶山等の方法(N. Kajiyama
et al., Biochim. Biophys. Acta, 1120, 228(1992))
に従い、菌体破砕液上清より30%-60%飽和硫安で沈澱す
る画分を取得し、緩衝液(25mM Tris, 1 mM EDTA, 10%
飽和硫酸アンモニウム, pH7.8)に懸濁し、粗精製標品
とした。なお、ビオチン化ホタルルシフェラーゼbL248
がストレプトアビジンと結合した際の活性の変化を項目
5記載の方法により測定した結果、残存活性は102% で
あり、ストレプトアビジンと結合しても活性の低下は認
められなかった。
【0040】10.ビオチン化ホタルルシフェラーゼbL24
8を用いたサンドイッチELISA 項目6記載の方法により、ビオチン化ホタルルシフェラ
ーゼbL248の粗酵素液を用いてマウスIgG1/4をサンドイ
ッチELISAにより定量した(表2)。なお、用いたビオ
チン化ホタルルシフェラーゼ bL248の量は項目6で用い
たビオチン化ホタルルシフェラーゼ bL203と同量の活性
量を用いた。表2から明らかなように、ビオチン化ホタ
ルルシフェラーゼbL248はスチューデントのt検定により
P<0.05で10 pg/mlより測定が可能であり、従来の化学
修飾ビオチン化ホタルルシフェラーゼの測定限界の50 p
g/ml(表1)に比べ5倍高い感度が得られることが明ら
かになった。
【0041】
【表2】 ────────────────────────────── マウスIgG1/4濃度 ビオチン化ホタルルシフェラーゼbL248 (pg/ml) を使用した場合の発光量 (count)注1 ────────────────────────────── 0 379 1 376 5 394 10 458 50 856 100 1393 1000 11219 ────────────────────────────── 注1:4ウエルの測定の平均値
【0042】
【発明の効果】本発明により、ビオチン化ホタルルシフ
ェラーゼ、ビオチン化ホタルルシフェラーゼ遺伝子、新
規な組み換え体DNA、ビオチン化ホタルルシフェラー
ゼの製造法及び生物発光分析法が提供された。そして、
本発明によりホタルルシフェラーゼ中の特定の残基にビ
オチンが1個結合した均一な構造を持ち、ビオチン化に
より活性がほとんど損なわれることがなく、更にストレ
プトアビジンまたはアビジンに結合しても活性の低下が
認められない均一な性質のビオチン化ホタルルシフェラ
ーゼを効率よく生産することが可能となり、また本発明
により得られた均一な性質のビオチン化ホタルルシフェ
ラーゼは、従来の化学修飾により得られたビオチン化ホ
タルルシフェラーゼと比較して、生物発光分析に適用し
た場合、より高感度な測定が可能であるため、本発明
は、産業上極めて有用である。
【0043】
【配列表】
配列番号:1 配列の長さ:23 配列の型:アミノ酸 トポロジー:不明 配列の種類:ペプチド 配列の特長:ビオチン化ペプチド#84,13番目のLy
s残基がビオチンホロエンザイムシンセターゼの作用に
よりビオチン化される 配列: Met Ala Phe Ser Leu Arg Ser Ile Leu Glu Ala Gln Lys Met Glu 15 Leu Arg Asn Thr Pro Gly Gly Ser 23
【0044】配列番号:2 配列の長さ:548 配列の型:アミノ酸 トポロジー:不明 配列の種類:ペプチド 起源:Luciola lateralis 配列の特長:ヘイケボタル(Luciola lateralis)由来
の、217番目のAlaがLeuに置換された耐熱性変異型ホタ
ルルシフェラーゼ(特開平5-244942号公報記載)のアミ
ノ酸配列 配列: Met Glu Asn Met Glu Asn Asp Glu Asn Ile Val Tyr Gly Pro Glu 15 Pro Phe Tyr Pro Ile Glu Glu Gly Ser Ala Gly Ala Gln Leu Arg 30 Lys Tyr Met Asp Arg Tyr Ala Lys Leu Gly Ala Ile Ala Phe Thr 45 Asn Ala Leu Thr Gly Val Asp Tyr Thr Tyr Ala Glu Tyr Leu Glu 60 Lys Ser Cys Cys Leu Gly Glu Ala Leu Lys Asn Tyr Gly Leu Val 75 Val Asp Gly Arg Ile Ala Leu Cys Ser Glu Asn Cys Glu Glu Phe 90 Phe Ile Pro Val Leu Ala Gly Leu Phe Ile Gly Val Gly Val Ala 105 Pro Thr Asn Glu Ile Tyr Thr Leu Arg Glu Leu Val His Ser Leu 120 Gly Ile Ser Lys Pro Thr Ile Val Phe Ser Ser Lys Lys Gly Leu 135 Asp Lys Val Ile Thr Val Gln Lys Thr Val Thr Ala Ile Lys Thr 150 Ile Val Ile Leu Asp Ser Lys Val Asp Tyr Arg Gly Tyr Gln Ser 165 Met Asp Asn Phe Ile Lys Lys Asn Thr Pro Gln Gly Phe Lys Gly 180 Ser Ser Phe Lys Thr Val Glu Val Asn Arg Lys Glu Gln Val Ala 195 Leu Ile Met Asn Ser Ser Gly Ser Thr Gly Leu Pro Lys Gly Val 210 Gln Leu Thr His Glu Asn Leu Val Thr Arg Phe Ser His Ala Arg 225 Asp Pro Ile Tyr Gly Asn Gln Val Ser Pro Gly Thr Ala Ile Leu 240 Thr Val Val Pro Phe His His Gly Phe Gly Met Phe Thr Thr Leu 255 Gly Tyr Leu Thr Cys Gly Phe Arg Ile Val Met Leu Thr Lys Phe 270 Asp Glu Glu Thr Phe Leu Lys Thr Leu Gln Asp Tyr Lys Cys Ser 285 Ser Val Ile Leu Val Pro Thr Leu Phe Ala Ile Leu Asn Arg Ser 300 Glu Leu Leu Asp Lys Tyr Asp Leu Ser Asn Leu Val Glu Ile Ala 315 Ser Gly Gly Ala Pro Leu Ser Lys Glu Ile Gly Glu Ala Val Ala 330 Arg Arg Phe Asn Leu Pro Gly Val Arg Gln Gly Tyr Gly Leu Thr 345 Glu Thr Thr Ser Ala Ile Ile Ile Thr Pro Glu Gly Asp Asp Lys 360 Pro Gly Ala Ser Gly Lys Val Val Pro Leu Phe Lys Ala Lys Val 375 Ile Asp Leu Asp Thr Lys Lys Thr Leu Gly Pro Asn Arg Arg Gly 390 Glu Val Cys Val Lys Gly Pro Met Leu Met Lys Gly Tyr Val Asp 405 Asn Pro Glu Ala Thr Arg Glu Ile Ile Asp Glu Glu Gly Trp Leu 420 His Thr Gly Asp Ile Gly Tyr Tyr Asp Glu Glu Lys His Phe Phe 435 Ile Val Asp Arg Leu Lys Ser Leu Ile Lys Tyr Lys Gly Tyr Gln 450 Val Pro Pro Ala Glu Leu Glu Ser Val Leu Leu Gln His Pro Asn 465 Ile Phe Asp Ala Gly Val Ala Gly Val Pro Asp Pro Ile Ala Gly 480 Glu Leu Pro Gly Ala Val Val Val Leu Glu Lys Gly Lys Ser Met 495 Thr Glu Lys Glu Val Met Asp Tyr Val Ala Ser Gln Val Ser Asn 510 Ala Lys Arg Leu Arg Gly Gly Val Arg Phe Val Asp Glu Val Pro 525 Lys Gly Leu Thr Gly Lys Ile Asp Gly Lys Ala Ile Arg Glu Ile 540 Leu Lys Lys Pro Val Ala Lys Met 548
【0045】配列番号:3 配列の長さ:85 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:合成DNA 配列の特長:オリゴヌクレオチドSLF69 配列: ATGGCATTTTCATTACGTTCTATTCTTGAAGCTCAAAAAATGGAATTACGTAACACTCCA 60 GGAGGTAGTCTCGAGGCTACAATTG 85
【0046】配列番号:4 配列の長さ:85 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:合成DNA 配列の特長:オリゴヌクレオチドSLF70 配列: CAATTGTAGCCTCGAGACTACCTCCTGGAGTGTTACGTAATTCCATTTTTTGAGCTTCAA 60 GAATAGAACGTAATGAAAATGCCAT 85
【0047】配列番号:5 配列の長さ:1704 配列の型:核酸 鎖の数:二本鎖 トポロジー:不明 配列の種類:DNA 配列の特長:組み換え体プラスミドpHLf203 DNAの持つ
ビオチン化ホタルルシフェラーゼ遺伝子の塩基配列 配列: ATGGCATTTTCATTACGTTCTATTCTTGAAGCTCAAAAAATGGAATTACGTAACACTCCA 60 GGAGGTAGTCTCGAGAACGATGAAAATATTGTGTATGGTCCTGAACCATTTTACCCTATT 120 GAAGAGGGATCTGCTGGAGCACAATTGCGCAAGTATATGGATCGATATGCAAAACTTGGA 180 GCAATTGCTTTTACTAACGCACTTACCGGTGTCGATTATACGTACGCCGAATACTTAGAA 240 AAATCATGCTGTCTAGGAGAGGCTTTAAAGAATTATGGTTTGGTTGTTGATGGAAGAATT 300 GCGTTATGCAGTGAAAACTGTGAAGAGTTCTTTATTCCTGTATTAGCCGGTTTATTTATA 360 GGTGTCGGTGTGGCTCCAACTAATGAGATTTACACTCTACGTGAATTGGTTCACAGTTTA 420 GGCATCTCTAAGCCAACAATTGTATTTAGTTCTAAAAAAGGATTAGATAAAGTTATAACT 480 GTACAAAAAACGGTAACTGCTATTAAAACCATTGTTATATTGGACAGCAAAGTGGATTAT 540 AGAGGTTATCAATCCATGGACAACTTTATTAAAAAAAACACTCCACAAGGTTTCAAAGGA 600 TCAAGTTTTAAAACTGTAGAAGTTAACCGCAAAGAACAAGTTGCTCTTATAATGAACTCT 660 TCGGGTTCAACCGGTTTGCCAAAAGGTGTGCAACTTACTCATGAAAATTTGGTCACGCGT 720 TTTTCTCACGCTAGAGATCCAATTTATGGAAACCAAGTTTCACCAGGCACGGCTATTTTA 780 ACTGTAGTACCATTCCATCATGGTTTTGGTATGTTTACTACTTTAGGCTATCTAACTTGT 840 GGTTTTCGTATTGTCATGTTAACGAAATTTGACGAAGAGACTTTTTTAAAAACACTGCAA 900 GATTACAAATGTTCAAGCGTTATTCTTGTACCGACTTTGTTTGCAATTCTTAATAGAAGT 960 GAATTACTCGATAAATATGATTTATCAAATTTAGTTGAAATTGCATCTGGCGGAGCACCT 1020 TTATCTAAAGAAATTGGTGAAGCTGTTGCTAGACGTTTTAATTTACCGGGTGTTCGTCAA 1080 GGCTATGGTTTAACAGAAACAACCTCTGCAATTATTATCACACCGGAAGGCGATGATAAA 1140 CCAGGTGCTTCTGGCAAAGTTGTGCCATTATTTAAAGCAAAAGTTATCGATCTTGATACT 1200 AAAAAAACTTTGGGCCCGAACAGACGTGGAGAAGTTTGTGTAAAGGGTCCTATGCTTATG 1260 AAAGGTTATGTAGATAATCCAGAAGCAACAAGAGAAATCATAGATGAAGAAGGTTGGTTG 1320 CACACAGGAGATATTGGGTATTACGATGAAGAAAAACATTTCTTTATCGTGGATCGTTTG 1380 AAGTCTTTAATCAAATACAAAGGATATCAAGTACCACCTGCTGAATTAGAATCTGTTCTT 1440 TTGCAACATCCAAATATTTTTGATGCCGGCGTTGCTGGCGTTCCAGATCCTATAGCTGGT 1500 GAGCTTCCGGGAGCTGTTGTTGTACTTGAAAAAGGAAAATCTATGACTGAAAAAGAAGTA 1560 ATGGATTACGTTGCTAGTCAAGTTTCAAATGCAAAACGTTTGCGTGGTGGTGTCCGTTTT 1620 GTGGACGAAGTACCTAAAGGTCTCACTGGTAAAATTGACGGTAAAGCAATTAGAGAAATA 1680 CTGAAGAAACCAGTTGCTAAGATG 1704
【0048】配列番号:6 配列の長さ:568 配列の型:アミノ酸 トポロジー:不明 配列の種類:ペプチド 起源:Luciola lateralis 配列の特長:組み換え体プラスミドpHLf203 DNAの持つ
ビオチン化ホタルルシフェラーゼ遺伝子の塩基配列より
演繹されるアミノ酸配列,13番目ののLys残基がビオ
チンホロエンザイムシンセターゼの作用によりビオチン
化される 配列: Met Ala Phe Ser Leu Arg Ser Ile Leu Glu Ala Gln Lys Met Glu 15 Leu Arg Asn Thr Pro Gly Gly Ser Leu Glu Asn Asp Glu Asn Ile 30 Val Tyr Gly Pro Glu Pro Phe Tyr Pro Ile Glu Glu Gly Ser Ala 45 Gly Ala Gln Leu Arg Lys Tyr Met Asp Arg Tyr Ala Lys Leu Gly 60 Ala Ile Ala Phe Thr Asn Ala Leu Thr Gly Val Asp Tyr Thr Tyr 75 Ala Glu Tyr Leu Glu Lys Ser Cys Cys Leu Gly Glu Ala Leu Lys 90 Asn Tyr Gly Leu Val Val Asp Gly Arg Ile Ala Leu Cys Ser Glu 105 Asn Cys Glu Glu Phe Phe Ile Pro Val Leu Ala Gly Leu Phe Ile 120 Gly Val Gly Val Ala Pro Thr Asn Glu Ile Tyr Thr Leu Arg Glu 135 Leu Val His Ser Leu Gly Ile Ser Lys Pro Thr Ile Val Phe Ser 150 Ser Lys Lys Gly Leu Asp Lys Val Ile Thr Val Gln Lys Thr Val 165 Thr Ala Ile Lys Thr Ile Val Ile Leu Asp Ser Lys Val Asp Tyr 180 Arg Gly Tyr Gln Ser Met Asp Asn Phe Ile Lys Lys Asn Thr Pro 195 Gln Gly Phe Lys Gly Ser Ser Phe Lys Thr Val Glu Val Asn Arg 210 Lys Glu Gln Val Ala Leu Ile Met Asn Ser Ser Gly Ser Thr Gly 225 Leu Pro Lys Gly Val Gln Leu Thr His Glu Asn Leu Val Thr Arg 240 Phe Ser His Ala Arg Asp Pro Ile Tyr Gly Asn Gln Val Ser Pro 255 Gly Thr Ala Ile Leu Thr Val Val Pro Phe His His Gly Phe Gly 270 Met Phe Thr Thr Leu Gly Tyr Leu Thr Cys Gly Phe Arg Ile Val 285 Met Leu Thr Lys Phe Asp Glu Glu Thr Phe Leu Lys Thr Leu Gln 300 Asp Tyr Lys Cys Ser Ser Val Ile Leu Val Pro Thr Leu Phe Ala 315 Ile Leu Asn Arg Ser Glu Leu Leu Asp Lys Tyr Asp Leu Ser Asn 330 Leu Val Glu Ile Ala Ser Gly Gly Ala Pro Leu Ser Lys Glu Ile 345 Gly Glu Ala Val Ala Arg Arg Phe Asn Leu Pro Gly Val Arg Gln 360 Gly Tyr Gly Leu Thr Glu Thr Thr Ser Ala Ile Ile Ile Thr Pro 375 Glu Gly Asp Asp Lys Pro Gly Ala Ser Gly Lys Val Val Pro Leu 390 Phe Lys Ala Lys Val Ile Asp Leu Asp Thr Lys Lys Thr Leu Gly 405 Pro Asn Arg Arg Gly Glu Val Cys Val Lys Gly Pro Met Leu Met 420 Lys Gly Tyr Val Asp Asn Pro Glu Ala Thr Arg Glu Ile Ile Asp 435 Glu Glu Gly Trp Leu His Thr Gly Asp Ile Gly Tyr Tyr Asp Glu 450 Glu Lys His Phe Phe Ile Val Asp Arg Leu Lys Ser Leu Ile Lys 465 Tyr Lys Gly Tyr Gln Val Pro Pro Ala Glu Leu Glu Ser Val Leu 480 Leu Gln His Pro Asn Ile Phe Asp Ala Gly Val Ala Gly Val Pro 495 Asp Pro Ile Ala Gly Glu Leu Pro Gly Ala Val Val Val Leu Glu 510 Lys Gly Lys Ser Met Thr Glu Lys Glu Val Met Asp Tyr Val Ala 525 Ser Gln Val Ser Asn Ala Lys Arg Leu Arg Gly Gly Val Arg Phe 540 Val Asp Glu Val Pro Lys Gly Leu Thr Gly Lys Ile Asp Gly Lys 555 Ala Ile Arg Glu Ile Leu Lys Lys Pro Val Ala Lys Met 568
【0049】配列番号:7 配列の長さ:87 配列の型:アミノ酸 トポロジー:不明 配列の種類:ペプチド 起源:大腸菌 配列の特長:大腸菌由来のアセチルCoAカルボキシラー
ゼのサブユニットであるビオチンカルボキシルキャリア
ープロテインのC末端側の87残基よりなるポリペプチ
ド(BCCP-87)、53番目のLys残基がビオチンホロエン
ザイムシンセターゼの作用によりビオチン化される 配列: Met Glu Ala Pro Ala Ala Ala Glu Ile Ser Gly His Ile Val Arg 15 Ser Pro Met Val Gly Thr Phe Tyr Arg Thr Pro Ser Pro Asp Ala 30 Lys Ala Phe Ile Glu Val Gly Gln Lys Val Asn Val Gly Asp Thr 45 Leu Cys Ile Val Glu Ala Met Lys Met Met Asn Gln Ile Glu Ala 60 Asp Lys Ser Gly Thr Val Lys Ala Ile Leu Val Glu Ser Gly Gln 75 Pro Val Glu Phe Asp Glu Pro Leu Val Val Ile Glu 87
【0050】配列番号:8 配列の長さ:1908 配列の型:核酸 鎖の数:二本鎖 トポロジー:不明 配列の種類:DNA 配列の特長:組み換え体プラスミドpHLf248 DNAの持つ
ビオチン化ホタルルシフェラーゼ遺伝子の塩基配列 配列: ATGGAAAACATGGAGAACGATGAAAATATTGTGTATGGTCCTGAACCATTTTACCCTATT 60 GAAGAGGGATCTGCTGGAGCACAATTGCGCAAGTATATGGATCGATATGCAAAACTTGGA 120 GCAATTGCTTTTACTAACGCACTTACCGGTGTCGATTATACGTACGCCGAATACTTAGAA 180 AAATCATGCTGTCTAGGAGAGGCTTTAAAGAATTATGGTTTGGTTGTTGATGGAAGAATT 240 GCGTTATGCAGTGAAAACTGTGAAGAGTTCTTTATTCCTGTATTAGCCGGTTTATTTATA 300 GGTGTCGGTGTGGCTCCAACTAATGAGATTTACACTCTACGTGAATTGGTTCACAGTTTA 360 GGCATCTCTAAGCCAACAATTGTATTTAGTTCTAAAAAAGGATTAGATAAAGTTATAACT 420 GTACAAAAAACGGTAACTGCTATTAAAACCATTGTTATATTGGACAGCAAAGTGGATTAT 480 AGAGGTTATCAATCCATGGACAACTTTATTAAAAAAAACACTCCACAAGGTTTCAAAGGA 540 TCAAGTTTTAAAACTGTAGAAGTTAACCGCAAAGAACAAGTTGCTCTTATAATGAACTCT 600 TCGGGTTCAACCGGTTTGCCAAAAGGTGTGCAACTTACTCATGAAAATTTGGTCACGCGT 660 TTTTCTCACGCTAGAGATCCAATTTATGGAAACCAAGTTTCACCAGGCACGGCTATTTTA 720 ACTGTAGTACCATTCCATCATGGTTTTGGTATGTTTACTACTTTAGGCTATCTAACTTGT 780 GGTTTTCGTATTGTCATGTTAACGAAATTTGACGAAGAGACTTTTTTAAAAACACTGCAA 840 GATTACAAATGTTCAAGCGTTATTCTTGTACCGACTTTGTTTGCAATTCTTAATAGAAGT 900 GAATTACTCGATAAATATGATTTATCAAATTTAGTTGAAATTGCATCTGGCGGAGCACCT 960 TTATCTAAAGAAATTGGTGAAGCTGTTGCTAGACGTTTTAATTTACCGGGTGTTCGTCAA 1020 GGCTATGGTTTAACAGAAACAACCTCTGCAATTATTATCACACCGGAAGGCGATGATAAA 1080 CCAGGTGCTTCTGGCAAAGTTGTGCCATTATTTAAAGCAAAAGTTATCGATCTTGATACT 1140 AAAAAAACTTTGGGCCCGAACAGACGTGGAGAAGTTTGTGTAAAGGGTCCTATGCTTATG 1200 AAAGGTTATGTAGATAATCCAGAAGCAACAAGAGAAATCATAGATGAAGAAGGTTGGTTG 1260 CACACAGGAGATATTGGGTATTACGATGAAGAAAAACATTTCTTTATCGTGGATCGTTTG 1320 AAGTCTTTAATCAAATACAAAGGATATCAAGTACCACCTGCTGAATTAGAATCTGTTCTT 1380 TTGCAACATCCAAATATTTTTGATGCCGGCGTTGCTGGCGTTCCAGATCCTATAGCTGGT 1440 GAGCTTCCGGGAGCTGTTGTTGTACTTGAAAAAGGAAAATCTATGACTGAAAAAGAAGTA 1500 ATGGATTACGTTGCTAGTCAAGTTTCAAATGCAAAACGTTTGCGTGGTGGTGTCCGTTTT 1560 GTGGACGAAGTACCTAAAGGTCTCACTGGTAAAATTGACGGTAAAGCAATTAGAGAAATA 1620 CTGAAGAAACCAGTTGCTAAGGGATCCATGGAAGCGCCAGCAGCAGCGGAAATCAGTGGT 1680 CACATCGTACGTTCCCCGATGGTTGGTACTTTCTACCGCACCCCAAGCCCGGACGCAAAA 1740 GCGTTCATCGAAGTGGGTCAGAAAGTCAACGTGGGCGATACCCTGTGCATCGTTGAAGCC 1800 ATGAAAATGATGAACCAGATCGAAGCGGACAAATCCGGTACCGTGAAAGCAATTCTGGTC 1860 GAAAGTGGACAACCGGTAGAATTTGACGAGCCGCTGGTCGTCATCGAG 1908
【0051】配列番号:9 配列の長さ:636 配列の型:アミノ酸 トポロジー:不明 配列の種類:ペプチド 起源:Luciola lateralis 配列の特長:組み換え体プラスミドpHLf248 DNAの持つ
ビオチン化ホタルルシフェラーゼ遺伝子の塩基配列より
演繹されるアミノ酸配列,602番目のLys残基がビオ
チンホロエンザイムシンセターゼの作用によりビオチン
化される 配列: Met Glu Asn Met Glu Asn Asp Glu Asn Ile Val Tyr Gly Pro Glu 15 Pro Phe Tyr Pro Ile Glu Glu Gly Ser Ala Gly Ala Gln Leu Arg 30 Lys Tyr Met Asp Arg Tyr Ala Lys Leu Gly Ala Ile Ala Phe Thr 45 Asn Ala Leu Thr Gly Val Asp Tyr Thr Tyr Ala Glu Tyr Leu Glu 60 Lys Ser Cys Cys Leu Gly Glu Ala Leu Lys Asn Tyr Gly Leu Val 75 Val Asp Gly Arg Ile Ala Leu Cys Ser Glu Asn Cys Glu Glu Phe 90 Phe Ile Pro Val Leu Ala Gly Leu Phe Ile Gly Val Gly Val Ala 105 Pro Thr Asn Glu Ile Tyr Thr Leu Arg Glu Leu Val His Ser Leu 120 Gly Ile Ser Lys Pro Thr Ile Val Phe Ser Ser Lys Lys Gly Leu 135 Asp Lys Val Ile Thr Val Gln Lys Thr Val Thr Ala Ile Lys Thr 150 Ile Val Ile Leu Asp Ser Lys Val Asp Tyr Arg Gly Tyr Gln Ser 165 Met Asp Asn Phe Ile Lys Lys Asn Thr Pro Gln Gly Phe Lys Gly 180 Ser Ser Phe Lys Thr Val Glu Val Asn Arg Lys Glu Gln Val Ala 195 Leu Ile Met Asn Ser Ser Gly Ser Thr Gly Leu Pro Lys Gly Val 210 Gln Leu Thr His Glu Asn Leu Val Thr Arg Phe Ser His Ala Arg 225 Asp Pro Ile Tyr Gly Asn Gln Val Ser Pro Gly Thr Ala Ile Leu 240 Thr Val Val Pro Phe His His Gly Phe Gly Met Phe Thr Thr Leu 255 Gly Tyr Leu Thr Cys Gly Phe Arg Ile Val Met Leu Thr Lys Phe 270 Asp Glu Glu Thr Phe Leu Lys Thr Leu Gln Asp Tyr Lys Cys Ser 285 Ser Val Ile Leu Val Pro Thr Leu Phe Ala Ile Leu Asn Arg Ser 300 Glu Leu Leu Asp Lys Tyr Asp Leu Ser Asn Leu Val Glu Ile Ala 315 Ser Gly Gly Ala Pro Leu Ser Lys Glu Ile Gly Glu Ala Val Ala 330 Arg Arg Phe Asn Leu Pro Gly Val Arg Gln Gly Tyr Gly Leu Thr 345 Glu Thr Thr Ser Ala Ile Ile Ile Thr Pro Glu Gly Asp Asp Lys 360 Pro Gly Ala Ser Gly Lys Val Val Pro Leu Phe Lys Ala Lys Val 375 Ile Asp Leu Asp Thr Lys Lys Thr Leu Gly Pro Asn Arg Arg Gly 390 Glu Val Cys Val Lys Gly Pro Met Leu Met Lys Gly Tyr Val Asp 405 Asn Pro Glu Ala Thr Arg Glu Ile Ile Asp Glu Glu Gly Trp Leu 420 His Thr Gly Asp Ile Gly Tyr Tyr Asp Glu Glu Lys His Phe Phe 435 Ile Val Asp Arg Leu Lys Ser Leu Ile Lys Tyr Lys Gly Tyr Gln 450 Val Pro Pro Ala Glu Leu Glu Ser Val Leu Leu Gln His Pro Asn 465 Ile Phe Asp Ala Gly Val Ala Gly Val Pro Asp Pro Ile Ala Gly 480 Glu Leu Pro Gly Ala Val Val Val Leu Glu Lys Gly Lys Ser Met 495 Thr Glu Lys Glu Val Met Asp Tyr Val Ala Ser Gln Val Ser Asn 510 Ala Lys Arg Leu Arg Gly Gly Val Arg Phe Val Asp Glu Val Pro 525 Lys Gly Leu Thr Gly Lys Ile Asp Gly Lys Ala Ile Arg Glu Ile 540 Leu Lys Lys Pro Val Ala Lys Gly Ser Met Glu Ala Pro Ala Ala 555 Ala Glu Ile Ser Gly His Ile Val Arg Ser Pro Met Val Gly Thr 570 Phe Tyr Arg Thr Pro Ser Pro Asp Ala Lys Ala Phe Ile Glu Val 585 Gly Gln Lys Val Asn Val Gly Asp Thr Leu Cys Ile Val Glu Ala 600 Met Lys Met Met Asn Gln Ile Glu Ala Asp Lys Ser Gly Thr Val 615 Lys Ala Ile Leu Val Glu Ser Gly Gln Pro Val Glu Phe Asp Glu 630 Pro Leu Val Val Ile Glu 636
【図面の簡単な説明】
【図1】組み換え体プラスミドpHLf203DNAの構築
図。
【図2】組み換え体プラスミドpHLf248DNAの構築
図。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C12R 1:19) (72)発明者 小山 泰二 千葉県野田市野田339番地 キッコーマ ン株式会社内 (56)参考文献 特開 平5−244942(JP,A) BIO/TECHNOLOGY,1993 年, Vol.II, No.10,p. 1138−1143 The Journal of Bi ological Chemistr y,1990年,Vol.265, No.18, p.10327−10333 The Journal of Bi ological Chemistr y,1988年,Vol.263, No.14, p.6461−6464 (58)調査した分野(Int.Cl.7,DB名) C12N 15/00 - 15/90 SwissProt/PIR/GeneS eq GenBank/EMBL/DDBJ/G eneSeq PubMed

Claims (6)

    (57)【特許請求の範囲】
  1. 【請求項1】 配列番号6又は9で表されるアミノ酸配
    列を有する、或いは該アミノ酸配列において1もしくは
    複数のアミノ酸が付加、欠失もしくは置換されており且
    つビオチンを結合し得るとともにホタルルシフェラーゼ
    活性を有する可溶性のビオチン化ホタルルシフェラー
    ゼ。
  2. 【請求項2】 配列番号1又は7で表されるアミノ酸配
    列或いは該アミノ酸配列において1もしくは複数のアミ
    ノ酸が付加、欠失もしくは置換されており且つビオチン
    を結合し得るアミノ酸配列をコードするビオチン化ペプ
    チド遺伝子及びホタルルシフェラーゼ遺伝子を連結して
    なることを特徴とする可溶性ビオチン化ホタルルシフェ
    ラーゼ遺伝子。
  3. 【請求項3】 請求項2記載のビオチン化ホタルルシフ
    ェラーゼ遺伝子をベクターDNAに挿入してなることを
    特徴とする新規な組み換え体DNA。
  4. 【請求項4】 エッシェリシア属に属し、請求項3記載
    の組み換え体DNAを含有する微生物を培地に培養し、
    培養物よりビオチン化ホタルルシフェラーゼを採取する
    ことを特徴とするビオチン化ホタルルシフェラーゼの製
    造法。
  5. 【請求項5】 請求項1記載のビオチン化ホタルルシフ
    ェラーゼを用いることを特徴とする生物発光分析法。
  6. 【請求項6】 請求項1記載のビオチン化ホタルルシフ
    ェラーゼを使用し、ビオチン化受容体を測定することに
    より、リガンドを定量することを特徴とする生物発光分
    析法。
JP09885795A 1994-07-27 1995-04-24 ビオチン化ホタルルシフェラーゼ、ビオチン化ホタルルシフェラーゼ遺伝子、新規な組み換え体dna、ビオチン化ホタルルシフェラーゼの製造法及び生物発光分析法 Expired - Lifetime JP3466765B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP09885795A JP3466765B2 (ja) 1994-07-27 1995-04-24 ビオチン化ホタルルシフェラーゼ、ビオチン化ホタルルシフェラーゼ遺伝子、新規な組み換え体dna、ビオチン化ホタルルシフェラーゼの製造法及び生物発光分析法
US08/460,934 US5814465A (en) 1994-07-27 1995-06-05 Biotinated firefly luciferase, a gene for biotinated firefly luciferase, a recombinant DNA, a process for producing biotinated luciferase and a bioluminescent analysis method
US08/782,118 US5843746A (en) 1994-07-27 1997-01-13 Biotinated firefly luciferase, a gene for biotinated firefly luciferase, a recombinant DNA, a process for producing biotinated luciferase and a bioluminescent analysis method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP6-193798 1994-07-27
JP19379894 1994-07-27
JP7-54625 1995-03-14
JP5462595 1995-03-14
JP09885795A JP3466765B2 (ja) 1994-07-27 1995-04-24 ビオチン化ホタルルシフェラーゼ、ビオチン化ホタルルシフェラーゼ遺伝子、新規な組み換え体dna、ビオチン化ホタルルシフェラーゼの製造法及び生物発光分析法

Publications (2)

Publication Number Publication Date
JPH08308578A JPH08308578A (ja) 1996-11-26
JP3466765B2 true JP3466765B2 (ja) 2003-11-17

Family

ID=27295357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09885795A Expired - Lifetime JP3466765B2 (ja) 1994-07-27 1995-04-24 ビオチン化ホタルルシフェラーゼ、ビオチン化ホタルルシフェラーゼ遺伝子、新規な組み換え体dna、ビオチン化ホタルルシフェラーゼの製造法及び生物発光分析法

Country Status (2)

Country Link
US (2) US5814465A (ja)
JP (1) JP3466765B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066673A1 (ja) 2007-11-20 2009-05-28 Kikkoman Corporation 核酸分析用組成物
WO2011058767A1 (ja) 2009-11-10 2011-05-19 キッコーマン株式会社 ホタルルシフェラーゼ、その遺伝子、およびホタルルシフェラーゼの製造法
CN108752484A (zh) * 2018-06-21 2018-11-06 中国科学院生物物理研究所 一种用于检测丙二酰辅酶a的分子探针

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074859A (en) * 1997-07-08 2000-06-13 Kikkoman Corporation Mutant-type bioluminescent protein, and process for producing the mutant-type bioluminescent protein
JP4004230B2 (ja) 1998-11-06 2007-11-07 株式会社三菱化学ヤトロン 架橋アビジン含有新規複合体、架橋アビジンを用いる分析方法、並びに分析用試薬及びキット
US6410255B1 (en) * 1999-05-05 2002-06-25 Aurora Biosciences Corporation Optical probes and assays
EP1305412A2 (en) 1999-10-14 2003-05-02 Clontech Laboratories Inc. Anthozoa derived chromo/fluoroproteins and methods for using the same
US7198924B2 (en) 2000-12-11 2007-04-03 Invitrogen Corporation Methods and compositions for synthesis of nucleic acid molecules using multiple recognition sites
AR034749A1 (es) * 2001-07-09 2004-03-17 Schering Ag Formulaciones de interferon beta humano
CA2467383C (en) * 2001-12-19 2012-08-28 The University Of Chicago Rapidly maturing fluorescent proteins and methods for using the same
CA2469435A1 (en) 2001-12-21 2003-07-24 X-Ceptor Therapeutics, Inc. Modulators of lxr
US7482366B2 (en) 2001-12-21 2009-01-27 X-Ceptor Therapeutics, Inc. Modulators of LXR
EP1465882B1 (en) * 2001-12-21 2011-08-24 X-Ceptor Therapeutics, Inc. Hetrocyclic modulators of nuclear receptors
GB0202018D0 (en) * 2002-01-29 2002-03-13 Sense Proteomic Ltd Tag and method
AU2003285844A1 (en) 2002-11-12 2004-06-03 Zakrytoe Aktsionernoe Obschestvo "Evrogen" Fluorescent proteins and chromoproteins from non-aequorea hydrozoa species and methods for using same
CA2510884A1 (en) 2002-12-26 2004-07-15 Zakrytoe Aktsionernoe Obschestvo "Evrogen" Fluorescent proteins from copepoda species and methods for using same
CA2445420A1 (en) 2003-07-29 2005-01-29 Invitrogen Corporation Kinase and phosphatase assays
US7727752B2 (en) 2003-07-29 2010-06-01 Life Technologies Corporation Kinase and phosphatase assays
WO2005014796A2 (en) 2003-08-08 2005-02-17 Invitrogen Corporation Methods and compositions for seamless cloning of nucleic acid molecules
JP2007536904A (ja) * 2003-11-03 2007-12-20 アカディア ファーマシューティカルズ,インコーポレーテッド rap−rasキメラタンパク質を用いるGタンパク質共役受容体の高スループット機能アッセイ
EP1697534B1 (en) 2003-12-01 2010-06-02 Life Technologies Corporation Nucleic acid molecules containing recombination sites and methods of using the same
US7250298B2 (en) * 2004-04-07 2007-07-31 The University Of Chicago Monomeric red fluorescent proteins
CA2588646A1 (en) * 2004-11-19 2006-05-26 Acadia Pharmaceuticals Inc. Methods to identify ligands of hormone nuclear receptors
BRPI0612287A8 (pt) 2005-06-27 2019-01-22 Exelixis Inc composição para uso farmacêutico no tratamento de doenças através da medicina nuclear e métodos de uso e para modulação de atividade de receptor nuclear
DK1954713T3 (da) * 2005-11-04 2013-02-11 Evrogen Jsc Modificerede grønfluorescerende proteiner og fremgangsmåder til anvendelse af samme
RU2395581C2 (ru) * 2006-01-25 2010-07-27 Закрытое Акционерное Общество "Евроген Айпи" Новые флуоресцентные белки из entacmaea quadricolor и способ их получения
US8563703B2 (en) 2006-01-25 2013-10-22 Evrogen IP Joint Stock Company Fluorescent proteins and methods for using same
CA2678451A1 (en) 2007-02-20 2008-08-28 Robert A. Horlick Somatic hypermutation systems
BRPI0812400A2 (pt) 2007-06-05 2014-10-29 Univ Yale Unidade, hibridoma, composição farmacêutica, método para identificar uma unidade, anticorpo isolado a uma unidade de ligação de antígeno do mesmo, molécula peptídica, e, uso da unidade.
WO2009059305A2 (en) * 2007-11-01 2009-05-07 The University Of Chicago Red fluorescent proteins with enhanced bacterial expression, increased brightness and reduced aggregation
NZ593294A (en) 2009-01-29 2013-04-26 Commw Scient Ind Res Org Measuring g protein coupled receptor activation
DK2414507T3 (da) 2009-04-03 2014-08-25 Medical Res Council Mutanter af aktiveringsinduceret cytidin-deaminase (aid) og til anvendelsesfremgangsmåder
WO2013037482A1 (en) 2011-09-15 2013-03-21 Phenex Pharmaceuticals Ag Farnesoid x receptor agonists for cancer treatment and prevention
AU2013204332B2 (en) 2012-04-16 2015-07-16 Commonwealth Scientific And Industrial Research Organisation Methods and systems for detecting an analyte or classifying a sample
US9074186B2 (en) 2012-08-15 2015-07-07 Boston Medical Center Corporation Production of red blood cells and platelets from stem cells
AU2013394649B2 (en) 2013-07-18 2020-07-16 Ecole Polytechnique Federale De Lausanne (Epfl) Means and methods for bioluminescence resonance energy transfer (BRET) analysis in a biological sample
WO2015050959A1 (en) 2013-10-01 2015-04-09 Yale University Anti-kit antibodies and methods of use thereof
WO2015067302A1 (en) 2013-11-05 2015-05-14 Ecole Polytechnique Federale De Lausanne (Epfl) Sensor molecules and uses thereof
EP3056902B1 (en) 2015-02-16 2020-04-01 Universite De Bordeaux Novel voltage dependent ion channel fusions and method of use thereof
AU2017358067B2 (en) 2016-11-14 2024-04-18 PPB Technology Pty Ltd Protease sensor molecules
US11959121B2 (en) 2017-05-30 2024-04-16 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Sensors, methods and kits for detecting NADPH based on resonance energy transfer
PL3665481T3 (pl) 2017-08-08 2024-02-05 PPB Technology Pty Ltd Czujniki węglowodanów
AU2018353813A1 (en) 2017-10-18 2020-04-09 Domain Therapeutics Systems and methods for the assessment of G-protein activation
EP3882632A1 (en) 2020-03-18 2021-09-22 Universite De Bordeaux Novel ion conducting channel fusion subunits and methods of use thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0141581A2 (en) * 1983-10-21 1985-05-15 Hemogenetics, Inc. Labelling system for specific binding assays
US5252466A (en) * 1989-05-19 1993-10-12 Biotechnology Research And Development Corporation Fusion proteins having a site for in vivo post-translation modification and methods of making and purifying them
US5229285A (en) * 1991-06-27 1993-07-20 Kikkoman Corporation Thermostable luciferase of firefly, thermostable luciferase gene of firefly, novel recombinant dna, and process for the preparation of thermostable luciferase of firefly

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIO/TECHNOLOGY,1993年, Vol.II, No.10,p.1138−1143
The Journal of Biological Chemistry,1988年,Vol.263, No.14,p.6461−6464
The Journal of Biological Chemistry,1990年,Vol.265, No.18,p.10327−10333

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066673A1 (ja) 2007-11-20 2009-05-28 Kikkoman Corporation 核酸分析用組成物
EP2407551A2 (en) 2007-11-20 2012-01-18 Kikkoman Corporation Composition for analyzing nucleic acid
WO2011058767A1 (ja) 2009-11-10 2011-05-19 キッコーマン株式会社 ホタルルシフェラーゼ、その遺伝子、およびホタルルシフェラーゼの製造法
CN108752484A (zh) * 2018-06-21 2018-11-06 中国科学院生物物理研究所 一种用于检测丙二酰辅酶a的分子探针
CN108752484B (zh) * 2018-06-21 2021-06-15 中国科学院生物物理研究所 一种用于检测丙二酰辅酶a的分子探针

Also Published As

Publication number Publication date
JPH08308578A (ja) 1996-11-26
US5814465A (en) 1998-09-29
US5843746A (en) 1998-12-01

Similar Documents

Publication Publication Date Title
JP3466765B2 (ja) ビオチン化ホタルルシフェラーゼ、ビオチン化ホタルルシフェラーゼ遺伝子、新規な組み換え体dna、ビオチン化ホタルルシフェラーゼの製造法及び生物発光分析法
US9267127B2 (en) Evolution of bond-forming enzymes
Rho et al. Interaction between human tRNA synthetases involves repeated sequence elements.
EP3046932B1 (en) Evolved sortases and uses thereof
JP2003125790A (ja) ユビキチン特異的プロテアーゼ
CA2411842C (en) A protein fragment complementation assay utilizing e.coli tem-1 .beta.-lactamase
Tatsumi et al. Construction of biotinylated firefly luciferases using biotin acceptor peptides
JP2009148300A6 (ja) 新規なスルフリラーゼ−ルシフェラーゼ融合タンパク質および熱安定性スルフリラーゼ
JP2009148300A (ja) 新規なスルフリラーゼ−ルシフェラーゼ融合タンパク質および熱安定性スルフリラーゼ
Zhang et al. Sortase A‐mediated synthesis of ligand‐grafted cyclized peptides for modulating a model protein‐protein interaction
EP2118304A1 (en) Homogeneous in vitro fec assays and components
JP3039566B2 (ja) 活性の増大したβ−ガラクトシダーゼ断片の突然変異タンパク質
Van der Donk et al. Identification of an active site residue of the R1 subunit of ribonucleotide reductase from Escherichia coli: characterization of substrate-induced polypeptide cleavage by C225SR1
Siemers et al. Modifying the specificity and activity of the Enterobacter cloacae P99 β-lactamase by mutagenesis within an M13 phage vector
WO2012043601A1 (ja) アマドリアーゼ改変体
WO2005047305A2 (en) Cellular membrane protein assay
WO2005071100A2 (en) Method for determination of protein modifying or demodifying activity and suitable materials thereof
JP4416185B2 (ja) 調節可能な活性を有するキメラ標的分子
WO2015127365A2 (en) Calcium-independent sortase a mutants
US7452690B2 (en) Protease EFC cell surface fusion protein assay
Lambertz et al. Development of a novel, sensitive cell-based corin assay
Readnour et al. Evolution of Streptococcus pyogenes has maximized the efficiency of the Sortase A cleavage motif for cell wall transpeptidation
Zhang et al. Development of a general bioluminescent activity assay for peptide ligases
WO2024000408A1 (zh) 荧光素酶突变体及其应用
Lee et al. LPXTGase of S. pyogenes is Internally Cross-Linked Through The ε-Amino Groups of Lysines and the Cross-Linking is Catalyzed by Penicillin-Binding Proteins

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term