JP3456354B2 - Method for producing electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the electrode - Google Patents

Method for producing electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the electrode

Info

Publication number
JP3456354B2
JP3456354B2 JP31131696A JP31131696A JP3456354B2 JP 3456354 B2 JP3456354 B2 JP 3456354B2 JP 31131696 A JP31131696 A JP 31131696A JP 31131696 A JP31131696 A JP 31131696A JP 3456354 B2 JP3456354 B2 JP 3456354B2
Authority
JP
Japan
Prior art keywords
electrode
active material
conductive agent
aqueous electrolyte
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31131696A
Other languages
Japanese (ja)
Other versions
JPH10144302A (en
Inventor
直人 松枝
崇典 福井
茂生 小松
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP31131696A priority Critical patent/JP3456354B2/en
Publication of JPH10144302A publication Critical patent/JPH10144302A/en
Application granted granted Critical
Publication of JP3456354B2 publication Critical patent/JP3456354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解質電池用電極
の製造方法及びその製造方法により製造された電極を有
する非水電解質電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an electrode for a non-aqueous electrolyte battery and a non-aqueous electrolyte battery having an electrode manufactured by the manufacturing method.

【0002】[0002]

【従来の技術】近年の電子技術のめざましい進歩は、電
子機器の小形・軽量化を次々と実現させている。それに
伴い、電源である電池に対しても、一層の小型化、軽量
化、高エネルギー密度化が求められるようになってい
る。
2. Description of the Related Art Recent remarkable advances in electronic technology have made electronic devices smaller and lighter one after another. Along with this, further miniaturization, weight reduction, and higher energy density are also required for batteries that are power sources.

【0003】従来、一般用途の電池としては、鉛電池、
ニッケルカドミウム電池等の水溶液系電池が主流であっ
た。しかし、これらの水溶液系電池は、サイクル特性に
は優れるものの、電池重量やエネルギー密度の点では十
分に満足できるものとは言えない。
Conventionally, lead batteries have been used as batteries for general use,
Aqueous solution batteries such as nickel-cadmium batteries were the mainstream. However, although these aqueous solution type batteries are excellent in cycle characteristics, they cannot be said to be sufficiently satisfactory in terms of battery weight and energy density.

【0004】そこで、最近、電池電圧が高く、高エネル
ギー密度を有し、サイクル特性にも優れた非水電解液電
池が使用され始めている。非水電解液電池の代表的なも
のとしては、リチウムイオンの可逆的インターカレーシ
ョンが可能な物質を電極材料に用いたリチウムイオン電
池がある。
Therefore, recently, non-aqueous electrolyte batteries having a high battery voltage, a high energy density and excellent cycle characteristics have begun to be used. A typical non-aqueous electrolyte battery is a lithium ion battery using a material capable of reversibly intercalating lithium ions as an electrode material.

【0005】ポータブル機器電源に使用される各種小形
二次電池のおおよそのネルギー密度を比較してみると、
鉛電池では20〜40Wh/kg,50〜100Wh/
l、ニッケルカドミウム電池では30〜60Wh/k
g,100〜160Wh/l、ニッケル水素電池では4
5〜65Wh/kg,160〜200Wh/lなのに対
し、リチウムイオン電池では60〜125Wh/kg,
190〜310Wh/lと言われている。
Comparing the approximate energy densities of various small secondary batteries used for power sources of portable equipment,
20-40 Wh / kg, 50-100 Wh / for lead batteries
1, 30-60 Wh / k for nickel-cadmium battery
g, 100 to 160 Wh / l, 4 for nickel metal hydride batteries
5 to 65 Wh / kg, 160 to 200 Wh / l, while lithium ion batteries have 60 to 125 Wh / kg,
It is said to be 190-310 Wh / l.

【0006】[0006]

【発明が解決しようとする課題】リチウムイオン電池に
おいては、このようにエネルギー密度、充放電サイクル
特性に優れることから、比較的消費電力の大きい携帯用
機器の供給電源としての用途が期待されているが、さら
なる負荷特性の向上が1つの重要な課題とされている。
Since the lithium ion battery is excellent in energy density and charge / discharge cycle characteristics as described above, it is expected to be used as a power supply for a portable device which consumes a relatively large amount of power. However, further improvement of load characteristics is one of the important issues.

【0007】一般に、電池の負荷特性を向上させる方法
の一つは、電極内の電子伝導性を改善することで電子の
移動を容易にすることである。とりわけ正極活物質とし
て用いられる金属酸化物や金属複合酸化物は、それ自
体、比較的電気抵抗が大きい物質である。したがって、
これらの活物質のみで電極を構成した場合には、電子伝
導性が不十分である。このため、電極に導電性の高いグ
ラファイトやカーボンなどの炭素原子で構成される導電
剤(以下、炭素系導電剤)を添加することで、電子伝導
性が高められている。
Generally, one of the methods for improving the load characteristics of a battery is to improve the electron conductivity in the electrode to facilitate the movement of electrons. In particular, the metal oxides and metal composite oxides used as the positive electrode active material are themselves substances having relatively high electric resistance. Therefore,
When the electrode is composed of only these active materials, the electron conductivity is insufficient. Therefore, electronic conductivity is enhanced by adding a conductive agent composed of carbon atoms such as highly conductive graphite or carbon (hereinafter, carbon-based conductive agent) to the electrode.

【0008】このような電極は、粉体状(一例として鱗
片状)の炭素系導電剤と、活物質粉末と、バインダー
と、分散溶媒とを混練してペーストとし、このペースト
を電極基体に塗布することにより製造されている(例え
ば、特開平5−174811号、特開平6−33355
8号等参照)。
In such an electrode, a powdery (scale-like, for example) carbonaceous conductive agent, an active material powder, a binder, and a dispersion solvent are kneaded to form a paste, and the paste is applied to an electrode substrate. Are manufactured by the following method (for example, JP-A-5-174811 and JP-A-6-33355).
(See No. 8).

【0009】しかしながら、粉体状炭素系導電剤と活物
質粉末とバインダーと、分散溶媒とを混練してペースト
とし、このペーストを電極基体に塗布する方法の場合、
炭素系導電剤の混合ムラが生じて期待通りの導電効果が
得られなかったり、電極の充填密度が低くなったり、生
産工程上煩雑であったりするという問題がある。
However, in the case of the method of kneading the powdery carbon-based conductive agent, the active material powder, the binder, and the dispersion solvent into a paste, and applying this paste to the electrode substrate,
There are problems that the carbon-based conductive agent is mixed unevenly and the expected conductive effect cannot be obtained, the packing density of the electrodes is lowered, and the production process is complicated.

【0010】本発明は、上記のような従来の課題を解決
するためになされたものであり、負荷特性に優れた電極
の製造方法を提供し、もって優れた電池を提供すること
を目的とする。
The present invention has been made to solve the above conventional problems, and an object of the present invention is to provide a method for manufacturing an electrode having excellent load characteristics, and to provide an excellent battery. .

【0011】[0011]

【課題を解決するための手段】すなわち、本発明にかか
る第一の発明は、非水電解質電池用電極の製造方法にお
いて、炭素系導電剤と水を除く分散溶媒とが混練された
のち、ボールミルを用いて炭素系導電剤が分散される工
程と、前記工程で得られたペーストに活物質とバインダ
ーとが添加され、これらを混練して活物質ペーストとす
る工程と、前記活物質ペーストが電極基体に塗布される
工程とを備えたことを特徴とする。
[Means for Solving the Problems] That is, the first aspect of the present invention is a ball mill after a carbon-based conductive agent and a dispersion solvent other than water are kneaded in a method for producing an electrode for a non-aqueous electrolyte battery. A step of dispersing a carbon-based conductive agent using, a step of adding an active material and a binder to the paste obtained in the step, kneading these to form an active material paste, and the active material paste is an electrode And a step of applying to a substrate.

【0012】また、本発明にかかる第二の発明は、非水
電解質電池用電極の製造方法において、炭素系導電剤と
水を除く分散溶媒とバインダーとが混練されたのち、ボ
ールミルを用いて炭素系導電剤が分散される工程と、前
記工程で得られたペーストに活物質が添加され、これら
を混練して活物質ペーストとする工程と、前記活物質ペ
ーストが電極基体に塗布される工程とを備えたことを特
徴とする。
A second aspect of the present invention is a method for producing an electrode for a non-aqueous electrolyte battery, wherein a carbon-based conductive agent, a dispersion solvent excluding water, and a binder are kneaded, and then a carbon is produced using a ball mill. A step of dispersing the system conductive agent, a step of adding an active material to the paste obtained in the step, kneading these to form an active material paste, and a step of applying the active material paste to an electrode substrate It is characterized by having.

【0013】[0013]

【0014】[0014]

【0015】[0015]

【0016】第の発明は、非水電解質電池において、
前記第一又は二の発明にかかる製造方法により製造され
た電極を備えたことを特徴とする。
The third invention is a non-aqueous electrolyte battery,
An electrode manufactured by the manufacturing method according to the first or second invention is provided.

【0017】[0017]

【0018】[0018]

【発明の実施の形態】本発明にかかる第一の発明は、非
水電解質電池用電極の製造方法において、炭素系導電剤
と水を除く分散溶媒とが混練されたのち、ボールミルを
用いて炭素系導電剤が分散される工程と、前記工程で得
られたペーストに活物質とバインダーとが添加され、こ
れらを混練して活物質ペーストとする工程と、前記活物
質ペーストが電極基体に塗布される工程とを備えたこと
を特徴とし、本発明にかかる第二の発明は、非水電解質
電池用電極の製造方法において、炭素系導電剤と水を除
く分散溶媒とバインダーとが混練されたのち、ボールミ
ルを用いて炭素系導電剤が分散される工程と、前記工程
で得られたペーストに活物質が添加され、これらを混練
して活物質ペーストとする工程と、前記活物質ペースト
を電極基体に塗布する工程とを備えたことを特徴とす
る。
BEST MODE FOR CARRYING OUT THE INVENTION The first invention according to the present invention is, in a method for producing an electrode for a non-aqueous electrolyte battery, a carbon-based conductive agent and a dispersion solvent other than water are kneaded and then carbonized using a ball mill. The step of dispersing the system conductive agent, the step of adding the active material and the binder to the paste obtained in the step, kneading them to form the active material paste, and applying the active material paste to the electrode substrate. The second invention according to the present invention is a method for producing an electrode for a non-aqueous electrolyte battery, in which a carbon-based conductive agent, a dispersion solvent other than water, and a binder are kneaded. , A step of dispersing a carbon-based conductive agent using a ball mill, a step of adding an active material to the paste obtained in the above step and kneading these to form an active material paste, and the active material paste as an electrode substrate Applied to Characterized in that a that step.

【0019】[0019]

【0020】従来のこの種の電池用電極の製造方法にお
いては、炭素系導電剤と活物質とバインダーと、溶媒と
を混練して活物質ペーストを製造して電極基体に塗布す
るのが一般的であったが、本願発明者らは電池性能改良
研究の過程で、まず、炭素系導電剤又は/及びバインダ
ーと水を除く分散溶媒とを混練する工程と、この混練さ
れたものと、活物質及びバインダー又は活物質とを混練
する工程とに分け、かつこの工程の間にボールミルによ
る炭素系導電剤の分散工程を取り入れることにより、飛
躍的に電池特性を改善できることを見いだした。
In the conventional method for manufacturing a battery electrode of this type, it is general that a carbon-based conductive agent, an active material, a binder, and a solvent are kneaded to manufacture an active material paste, which is applied to an electrode substrate. However, in the course of battery performance improvement research, the inventors of the present invention first knead a carbon-based conductive agent or / and a binder and a dispersion solvent other than water, and kneaded the active material. It was found that the battery characteristics can be dramatically improved by dividing into a step of kneading with a binder or an active material and a step of dispersing a carbon-based conductive agent by a ball mill during this step.

【0021】かかる構成を採用することによりなぜ負荷
特性に優れた電極が提供されるのかは、必ずしも本発明
者において解明されているわけではないが、炭素系導電
剤が好適な微粒子に分散されるため、活物質とともに混
練・ペースト化される際に、分散ムラが生じず均一に分
散すること、活物質との密着性が改善されること、バイ
ンダーや活物質とのなんらかの相乗効果が生じているこ
と等によるものと考えられる。加えて、ボールミルの分
散媒体が直径30mm以下の球体又は/及びそれに準じ
た形状とすることにより、上記効果がより発揮される。
The reason why an electrode excellent in load characteristics is provided by adopting such a constitution is not necessarily understood by the present inventors, but the carbon-based conductive agent is dispersed in suitable fine particles. Therefore, when kneading and forming a paste together with the active material, there is no unevenness in dispersion, uniform dispersion, improved adhesion with the active material, and some synergistic effect with the binder and active material. It is thought that this is due to things. In addition, when the dispersion medium of the ball mill is a sphere having a diameter of 30 mm or less and / or a shape corresponding to the sphere, the above effect is further exhibited.

【0022】また、ボールミルの分散媒体の形状及び材
質等においても特に限定されるものではないが、好まし
くは球体又は/及びそれに準じた形状がよい。ここでい
う準じた形状とは、たとえば楕円、楕円状等があげら
れ、材質にしても自然石、メノウ石、オタワサンド等で
あってもよい。また、ボールミルに類似したサンドグラ
インダー等の連続式分散機等も使用できる。
Further, the shape and material of the dispersion medium of the ball mill are not particularly limited, but preferably spherical or / and a shape corresponding thereto. Examples of the conformable shape here include an ellipse and an ellipse, and the material may be natural stone, agate stone, Ottawa sand or the like. A continuous disperser such as a sand grinder similar to a ball mill can also be used.

【0023】さらに、バインダーの添加時期を分散工程
の後とすることにより、又は活物質を添加混練したの
ち、バインダーを添加混練することにより、活物質と導
電剤とがより均一な状態で結着され、より良好な電池性
能を示す。
Further, the binder is added in a more uniform state by adding the binder after the dispersing step or by kneading the active material and then kneading the binder. And shows better battery performance.

【0024】[0024]

【実施例】以下、本発明を実施例に基づいて詳細に説明
するが、下記実施例により何ら限定されるものではな
く、その要旨を変更しない範囲において適宜変更して実
施することが可能であることはいうまでもない。
EXAMPLES The present invention will be described in detail below based on examples, but the invention is not limited to the following examples, and various modifications can be made without departing from the scope of the invention. Needless to say.

【0025】<実施例1>[正極] 炭素系導電剤であ
るアセチレンブラックを100重量部のLiCoO2
対し、0.3量部、1.5重量部、3.0重量部、4.
5重量部、6.0重量部の割合とし、それぞれについ
て、バインダーとしてのポリフッ化ビニリデン(PVd
F)を全体の3重量部、分散溶媒としてのNMP(N−
メチルピロリドン)を全体の40重量部とし、それらを
添加して混練した。次に、得られたペーストを媒体型分
散機、ここではボールミルを用いて分散した。このと
き、媒体としては、球形のものであり、直径5mm、1
0mm、30mm、40mm及び50mmのジルコニア
ボールを使用した。
<Example 1> [Positive electrode] 0.3 parts by weight, 1.5 parts by weight, 3.0 parts by weight of acetylene black, which is a carbon-based conductive agent, based on 100 parts by weight of LiCoO 2 , 4.
5 parts by weight and 6.0 parts by weight, and polyvinylidene fluoride (PVd
3 parts by weight of F) and NMP (N- as a dispersion solvent).
Methylpyrrolidone) was added to 40 parts by weight, and they were added and kneaded. Next, the obtained paste was dispersed using a medium type dispersing machine, here a ball mill. At this time, the medium is spherical and has a diameter of 5 mm, 1
Zirconia balls of 0 mm, 30 mm, 40 mm and 50 mm were used.

【0026】そして、得られたペーストに活物質を添加
し、混練して正極ペーストを得た。次にこの活物質ペー
ストをアルミニウム箔よりなる電極基体に塗布、乾燥さ
せ、リチウム電池用正極を得た。従って、ここで調整し
た正極の種類は、媒体5種×炭素系導電剤量5種類の2
5種類である。
Then, an active material was added to the obtained paste and kneaded to obtain a positive electrode paste. Next, this active material paste was applied to an electrode base made of aluminum foil and dried to obtain a lithium battery positive electrode. Therefore, the types of positive electrodes adjusted here are 2 types of 5 types of medium × 5 types of carbon-based conductive agent.
There are five types.

【0027】本発明にて非水電解液電池用正極を製造す
る場合、活物質としては、リチウムイオンを吸蔵放出で
きる物質であればよく、上記以外のものとして、金属酸
化物(MnO2、改質MnO2、重質化MnO2、Li含
有MnO2、MoO2、CuO、Cr23、CrO3、V2
5、LiNiO2、NiOOHなど)、金属硫化物(F
eS、TiS2、又はMoS2など)、金属セレン化物
(TiSe2など)、MnCo、Ni、V、Cr、Cu
及びTiよりなる群から選ばれた少なくとも二種の金属
の複合酸化物等が例示される。また、電極基体として
は、上記以外のものとして、アルミニウム製のラス板、
ステンレス板、樹脂基体にアルミニウムや銅などの金属
薄膜が形成されたもの等が例示される。
In the case of producing a positive electrode for a non-aqueous electrolyte battery according to the present invention, the active material may be any material capable of inserting and extracting lithium ions. Other than the above, metal oxides (MnO 2 , modified MnO 2 , heavy MnO 2 , Li-containing MnO 2 , MoO 2 , CuO, Cr 2 O 3 , CrO 3 , V 2
O 5 , LiNiO 2 , NiOOH, etc., metal sulfide (F
eS, TiS 2 , or MoS 2, etc.), metal selenides (TiSe 2, etc.), MnCo, Ni, V, Cr, Cu
And a composite oxide of at least two metals selected from the group consisting of Ti and Ti. Further, as the electrode substrate, other than the above, an aluminum lath plate,
Examples thereof include a stainless steel plate and a resin substrate on which a metal thin film such as aluminum or copper is formed.

【0028】さらに、ここで使用したアセチレンブラッ
クの比表面積は30m2/gのものを用いており、導電
剤としては、アチレンブラック以外にも、ケッチェンブ
ラック、ファーネスブラック等を単体、もしくはこれら
を組み合わせての使用が例示される。ここでは、バイン
ダーとしてポリフッ化ビニリデンを用いているが、これ
以外のものとしてポリテトラフルオロエチレン、ゴム系
高分子もしくはこれらとセルロース系高分子との混合物
またはポリフッ化ビニリデンを主体とするコポリマー等
が例示される。
Further, the acetylene black used here has a specific surface area of 30 m 2 / g, and as the conductive agent, in addition to acetylene black, Ketjen black, furnace black or the like may be used alone or in combination. Are used in combination. Here, polyvinylidene fluoride is used as a binder, but examples of other materials include polytetrafluoroethylene, rubber-based polymers or mixtures of these with cellulose-based polymers, and copolymers mainly composed of polyvinylidene fluoride. To be done.

【0029】加えて、ボールミルの媒体としては、上記
以外のものとして、ジルコンビーズ、チタニアビーズ、
アルミナビーズ等を使用してもよい。
In addition, as the medium of the ball mill, other than those mentioned above, zircon beads, titania beads,
Alumina beads or the like may be used.

【0030】尚、ボールミルそのものは、例えば「化学
装置便覧」((社)化学工学協会編、1970年6月発
行)に詳述されているので説明を省略するが、この実施
例ではドラム容量300l、ドラム回転数33rpmの
ボールミルを使用し、ドラム容量に対しボール仕込量3
0%、顆粒体仕込量35%、空間35%の条件で粉砕し
た。
The ball mill itself is described in detail in, for example, "Chemical Equipment Handbook" (edited by the Chemical Engineering Society of Japan, published in June 1970), and therefore its explanation is omitted, but in this embodiment, the drum capacity is 300 l. Use a ball mill with a drum rotation speed of 33 rpm, and prepare 3 balls for the drum capacity.
The powder was crushed under the conditions of 0%, granule charged amount 35%, and space 35%.

【0031】[負極] ピッチの炭素化過程で生ずるメ
ソフェーズ小球体を原料としたメソカーボンマイクロビ
ーズをリチウムイオンインターカレーション部材とし、
スチレンブタジエンゴムをバインダーとして混練し、適
宜NMPを添加してペーストとしたものを、銅箔基体に
塗布・乾燥させて負極を作製した。尚、このときのメソ
カーボンマイクロビーズは粒子径が5〜50μm、表面
積が4〜20m2/gである。
[Negative Electrode] Mesocarbon microbeads made of mesophase microspheres produced in the carbonization process of pitch are used as lithium ion intercalation members,
A negative electrode was prepared by kneading styrene-butadiene rubber as a binder and adding NMP as appropriate to form a paste, which was applied to a copper foil substrate and dried. The mesocarbon microbeads at this time have a particle size of 5 to 50 μm and a surface area of 4 to 20 m 2 / g.

【0032】[非水電解液] プロピレンカーボネート
と1、2ジメトキシエタンとの体積比1:1の混合溶媒
に、LiClO4をモル/1リットル溶かして非水系電
解液を調整した。非水系電解液についても、上記に制限
されるものではなく、エチレンカーボネート、1、2−
ブチレンカーボネート、ジメチルカーボネート、ジエチ
ルカーボネート等の溶媒、又はこれらと1、2−ジメト
キシエンタン等の低沸点溶媒との混合溶媒にLiP
6、LiClO4等の溶質を溶かした溶液など、種々の
ものを用いることができる。
[Non-Aqueous Electrolyte] LiClO 4 was dissolved in a mixed solvent of propylene carbonate and 1,2 dimethoxyethane in a volume ratio of 1: 1 to prepare a non-aqueous electrolyte. The non-aqueous electrolyte solution is not limited to the above, and ethylene carbonate, 1,2-
LiP is used as a solvent such as butylene carbonate, dimethyl carbonate, and diethyl carbonate, or a mixed solvent thereof with a low boiling point solvent such as 1,2-dimethoxyentane.
Various solutions such as a solution in which a solute such as F 6 or LiClO 4 is dissolved can be used.

【0033】[セパレータ] 厚さ10μm、空孔率5
0%、平均貫通孔径0.01μm、10mm幅の破断強
度が0.7Kgであるポリエチレン微多孔膜をセパレー
タとして使用した。セパレータについても、特に制限さ
れず、従来から使用されている種々のセパレータを用い
ることができる。
[Separator] Thickness 10 μm, porosity 5
A polyethylene microporous membrane having 0%, an average through-pore diameter of 0.01 μm, and a breaking strength of 0.7 mm in a width of 10 mm was used as a separator. The separator is also not particularly limited, and various conventionally used separators can be used.

【0034】[リチウムイオン電池] 上記正負両極、
セパレータ、電解液を角型の電池容器に収納し、正極処
方のみが異なる25種類の非水電解液電池を作製した。
この電池の概略図を図1に示す。この電池の主な構成要
素は、正極1、負極2、セパレータ3、正極端子4、負
極端子を兼ねるケース5、電解液(図示せず)等であ
る。
[Lithium ion battery] The positive and negative electrodes,
The separator and the electrolytic solution were housed in a rectangular battery container, and 25 types of non-aqueous electrolytic solution batteries having different positive electrode formulations were produced.
A schematic diagram of this battery is shown in FIG. The main constituent elements of this battery are a positive electrode 1, a negative electrode 2, a separator 3, a positive electrode terminal 4, a case 5 also serving as a negative electrode terminal, an electrolytic solution (not shown), and the like.

【0035】[従来例]正極の作製において、炭素系導
電剤であるアセチレンブラックを100重量部のLiC
oO2に対し、0.3重量部、1.5重量部、3.0重
量部、4.5重量部、6.0重量部の割合でそれぞれに
ついて、バインダーとしてのポリフッ化ビニリデン(全
体の3重量部とする)、NMP(全体の40重量部とす
る)と活物質とを添加し、混練して正極活物質ペースト
を得た。
[Conventional Example] In the production of a positive electrode, 100 parts by weight of LiC of acetylene black, which is a carbon-based conductive agent, was used.
Polyvinylidene fluoride (a total of 3 parts by weight) of 0.3 parts by weight, 1.5 parts by weight, 3.0 parts by weight, 4.5 parts by weight, and 6.0 parts by weight with respect to oO 2 , respectively. Parts by weight), NMP (total 40 parts by weight) and the active material were added and kneaded to obtain a positive electrode active material paste.

【0036】次に、この活物質ペーストをアルミニウム
箔よりなる電極基体に塗布、乾燥させ、リチウム電池用
正極を得た。負極、電解液は上記と同様とし、作製した
電池も同様の構成とした。
Next, this active material paste was applied to an electrode substrate made of aluminum foil and dried to obtain a positive electrode for a lithium battery. The negative electrode and the electrolytic solution were the same as those described above, and the manufactured battery had the same structure.

【0037】[試験方法] 上記電池を各々10個づ
つ、及び従来法による電池5個を下記条件でのサイクル
試験に供した。
[Test Method] Ten above-mentioned batteries and five conventional batteries were subjected to a cycle test under the following conditions.

【0038】充電:200mA定電流/4.1V定電圧
×5h(25℃) 放電:400mA
定電流終止定電圧(25℃) [試験結果] 図2は、導電剤量が0.3wt%の電池
の500サイクル目の放電特性(使用したボール径ごと
の電池の平均値)を示す図である。この例から明らかな
ように、直径30mm以下のボールを使用した電池の特
性は、それ以上のボールを使用した電池に比べて優れて
いることがわかる。
Charge: 200 mA constant current / 4.1 V constant voltage × 5 h (25 ° C.) Discharge: 400 mA
Constant current end constant voltage (25 ° C.) [Test result] FIG. 2 is a diagram showing discharge characteristics (average value of batteries for each used ball diameter) at the 500th cycle of a battery having a conductive agent amount of 0.3 wt%. is there. As is clear from this example, the characteristics of the battery using balls having a diameter of 30 mm or less are superior to those of the batteries using balls having a diameter of 30 mm or less.

【0039】図3は、導電剤量が1.5wt%の電池の
500サイクル目の放電特性(使用したボール径ごとの
電池の平均値)を示す図である。この例から明らかなよ
うに、直径30mm以下のボールを使用した電池の特性
は、それ以上のボールを使用した電池に比べて優れてい
ることがわかる。
FIG. 3 is a diagram showing the discharge characteristics (average value of the battery for each used ball diameter) at the 500th cycle of a battery having a conductive agent amount of 1.5 wt%. As is clear from this example, the characteristics of the battery using balls having a diameter of 30 mm or less are superior to those of the batteries using balls having a diameter of 30 mm or less.

【0040】図4は、導電剤量が3.0wt%の電池の
500サイクル目の放電特性(使用したボール径ごとの
電池の平均値)を示す図である。この例から明らかなよ
うに、直径30mm以下のボールを使用した電池の特性
は、それ以上のボールを使用した電池に比べて優れてい
ることがわかる。
FIG. 4 is a diagram showing the discharge characteristics (average value of the battery for each used ball diameter) at the 500th cycle of the battery having a conductive agent amount of 3.0 wt%. As is clear from this example, the characteristics of the battery using balls having a diameter of 30 mm or less are superior to those of the batteries using balls having a diameter of 30 mm or less.

【0041】また、導電剤量を5.0wt%、10.0
wt%とした電池でも同様の結果が得られた。ただし、
導電剤量が3.0wt%を越えると、当然のことながら
極板厚みが厚くなること、一定レベル以上の導電剤を加
えても効果は平衡値に達していること等から、容積効率
が追求される電池では3wt%以下が好適である。
The amount of conductive agent is 5.0 wt%, 10.0
Similar results were obtained with a battery of wt%. However,
When the amount of conductive agent exceeds 3.0 wt%, the electrode plate thickness naturally increases, and even if a certain level or more of conductive agent is added, the effect reaches the equilibrium value. It is suitable for the battery to be 3 wt% or less.

【0042】尚、これらの図において、直径50mmと
40mmのものは、従来電池の特性よりも優れているこ
とが示されたが、他のものよりは若干劣っていることが
示された。
In these figures, it was shown that the diameters of 50 mm and 40 mm were superior to the characteristics of the conventional battery, but were slightly inferior to the others.

【0043】<実施例2>次に、比表面積が10、2
0、30、40及び50m2/gのアセチレンブラック
を用い、導電剤の比表面積が電池特性に及ぼす影響を調
べた。
<Example 2> Next, the specific surface area was 10, 2
Using 0, 30, 40 and 50 m 2 / g of acetylene black, the effect of the specific surface area of the conductive agent on the battery characteristics was investigated.

【0044】尚、ここでは、上記結果をもとに、直径3
0mmのボールを用いて分散した。他の条件は上記と同
じである。
Here, based on the above results, the diameter of 3
Dispersion was carried out using 0 mm balls. Other conditions are the same as above.

【0045】その結果、導電剤の比表面積が30m2
g以下のものは、それ以上のもに比べ、特性が劣る傾向
にあった。これは、比表面積が30m2/g以下のもの
は、それ以上のものに比べ粒子径が大きく、活物質との
接触面積及び導電剤同士の接触面積が少ないことに起因
するものと推測される。このことは、ケッチェンブラッ
クやファーネスブラック等を導電剤として使用した場合
も同じであった。
As a result, the specific surface area of the conductive agent was 30 m 2 /
Those of g or less tended to be inferior in characteristics to those of g or more. It is presumed that this is because those having a specific surface area of 30 m 2 / g or less have a larger particle diameter than those having a specific surface area of less than that, and the contact area with the active material and the contact area between the conductive agents are small. . This was also the case when Ketjen black, furnace black or the like was used as the conductive agent.

【0046】したがって、炭素系導電剤とバインダーと
分散溶媒とが混練されたものを直径30mm以下の球体
を分散媒体とし、ボールミルで分散する工程と、前記工
程で得られたペーストに活物質を添加し、そして混練し
て活物質ペーストとする工程と、前記活物質ペーストを
電極基体に塗布する工程とを備えた非水電解質電池用電
極の製造方法の発明に使用する導電剤としては、30m
2/g以上のものが好適である。
Therefore, a process in which a carbon-based conductive agent, a binder, and a dispersion solvent are kneaded is used as a dispersion medium in the form of spheres having a diameter of 30 mm or less, and the active material is added to the paste obtained in the above process. The conductive agent used in the invention of the method for producing an electrode for a non-aqueous electrolyte battery, which comprises a step of kneading and kneading to form an active material paste, and a step of applying the active material paste to an electrode substrate is 30 m
Those of 2 / g or more are preferable.

【0047】さらに、媒体型分散機への仕込量(回分式
の場合)あるいは供給量(連続式の場合)及び/又はド
ラム等の回転数等は、本実施例記載のものに限定される
ことなく、本発明の趣旨を逸脱しない範囲において、最
良の効果をより引き出すために適宜変更させることは当
業者ならば容易に想致しえることである。
Further, the charging amount (in the case of a batch type) or supply amount (in the case of a continuous type) and / or the number of rotations of the drum, etc. to the medium type disperser are limited to those described in this embodiment. Without departing from the spirit of the present invention, those skilled in the art can easily think of making appropriate changes in order to bring out the best effect.

【0048】加えて、バインダーの添加時期を分散工程
の後とすることにより、又は活物質を添加混練したの
ち、バインダーを添加混練することにより、活物質と導
電剤とがより均一な状態で結着され、より良好な電池性
能を示した。
In addition, the binder is added after the dispersing step, or after the active material is added and kneaded, the binder is added and kneaded to bond the active material and the conductive agent in a more uniform state. It was worn and showed better cell performance.

【0049】[0049]

【0050】[0050]

【0051】[0051]

【0052】[0052]

【0053】[0053]

【0054】[0054]

【0055】[0055]

【0056】[0056]

【発明の効果】以上、詳述したように、本発明は、従来
の非水電解質電池用電極の製造方法に見られた、炭素系
導電剤の混合ムラによる導電効果の低下、電極への充填
密度低下、そして生産工程上煩雑さを解消するととも
に、負荷特性に優れた非水電解質電池用電極の製造方法
及び優れた電池を提供することができる。
As described above in detail, according to the present invention, the conductive effect is reduced due to the uneven mixing of the carbon-based conductive agent, which is found in the conventional method for manufacturing the electrode for the non-aqueous electrolyte battery, and the filling of the electrode. It is possible to provide a method for manufacturing an electrode for a non-aqueous electrolyte battery, which has excellent density characteristics and a complicated manufacturing process, and an excellent battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例である電池を示すである。FIG. 1 shows a battery that is an embodiment of the present invention.

【図2】導電剤量が0.3wt%における500サイク
ル目の放電特性を示す図である。
FIG. 2 is a diagram showing discharge characteristics at a 500th cycle when a conductive agent amount is 0.3 wt%.

【図3】導電剤量が1.5wt%における500サイク
ル目の放電特性を示す図である。
FIG. 3 is a diagram showing discharge characteristics at the 500th cycle when the amount of conductive agent is 1.5 wt%.

【図4】導電剤量が3.0wt%における500サイク
ル目の放電特性を示す図である。
FIG. 4 is a diagram showing discharge characteristics at the 500th cycle when the amount of a conductive agent is 3.0 wt%.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極端子 5 ケース 1 positive electrode 2 Negative electrode 3 separator 4 Positive terminal 5 cases

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/62 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01M 4/00-4/62

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭素系導電剤と水を除く分散溶媒とが混
練されたのち、ボールミルを用いて炭素系導電剤が分散
される工程と、前記工程で得られたペーストに活物質及
びバインダーが添加され、これらを混練して活物質ペー
ストとする工程と、前記活物質ペーストが電極基体に塗
布される工程とを備えたことを特徴とする非水電解質電
池用電極の製造方法。
1. A step of kneading a carbon-based conductive agent and a dispersion solvent excluding water and then dispersing the carbon-based conductive agent by using a ball mill, and a step of adding an active material and a binder to the paste obtained in the above step. A method for producing an electrode for a non-aqueous electrolyte battery, comprising: a step of adding and kneading these to form an active material paste; and a step of applying the active material paste to an electrode substrate.
【請求項2】 炭素系導電剤とバインダーと水を除く分
散溶媒とが混練されたのち、ボールミルを用いて炭素系
導電剤が分散される工程と、前記工程で得られたペース
トに活物質が添加され、これらを混練して活物質ペース
トとする工程と、前記活物質ペーストが電極基体に塗布
される工程とを備えたことを特徴とする非水電解質電池
用電極の製造方法。
2. A step of kneading a carbon-based conductive agent, a binder and a dispersion solvent excluding water and then dispersing the carbon-based conductive agent using a ball mill, and an active material in the paste obtained in the above step. A method for producing an electrode for a non-aqueous electrolyte battery, which comprises: a step of adding and kneading these to form an active material paste; and a step of applying the active material paste to an electrode substrate.
【請求項3】 請求項1又は2記載の製造方法により製
造された電極を備えることを特徴とする非水電解質電
池。
3. A manufacturing method according to claim 1 or 2.
Non-aqueous electrolyte battery characterized by having a built-in electrode
pond.
JP31131696A 1996-11-06 1996-11-06 Method for producing electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the electrode Expired - Lifetime JP3456354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31131696A JP3456354B2 (en) 1996-11-06 1996-11-06 Method for producing electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31131696A JP3456354B2 (en) 1996-11-06 1996-11-06 Method for producing electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the electrode

Publications (2)

Publication Number Publication Date
JPH10144302A JPH10144302A (en) 1998-05-29
JP3456354B2 true JP3456354B2 (en) 2003-10-14

Family

ID=18015675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31131696A Expired - Lifetime JP3456354B2 (en) 1996-11-06 1996-11-06 Method for producing electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the electrode

Country Status (1)

Country Link
JP (1) JP3456354B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4947830B2 (en) * 2000-08-31 2012-06-06 株式会社クレハ Method for producing electrode mixture, electrode structure using the same, and non-aqueous electrochemical device
US7662516B2 (en) 2004-06-07 2010-02-16 Panasonic Corporation Electrode plate of positive electrode for non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5279567B2 (en) * 2009-03-23 2013-09-04 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2012127762A1 (en) * 2011-03-23 2012-09-27 ヤマハ発動機株式会社 Electrically conductive composition, dispersion system, process for producing electrically conductive composition, and solid electrolyte battery
JP2012221568A (en) * 2011-04-04 2012-11-12 Toyota Motor Corp Method for manufacturing positive electrode plate
JP2013004403A (en) * 2011-06-20 2013-01-07 Hitachi Vehicle Energy Ltd Lithium-ion secondary battery
JP5561559B2 (en) 2011-10-06 2014-07-30 トヨタ自動車株式会社 Method for manufacturing lithium secondary battery
JP6077347B2 (en) * 2012-04-10 2017-02-08 株式会社半導体エネルギー研究所 Method for producing positive electrode for non-aqueous secondary battery
JP2014182892A (en) 2013-03-18 2014-09-29 Fdk Corp Method for manufacturing slurry for lithium secondary battery electrode use, and slurry for electrode use
TWI579233B (en) 2015-12-23 2017-04-21 財團法人工業技術研究院 Additive formulation and compisition for lithium ion batteries and lithium ion batteries
JPWO2023026898A1 (en) * 2021-08-27 2023-03-02

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0789412B1 (en) * 1994-10-27 2000-01-19 Fuji Photo Film Co., Ltd. Nonaqueous secondary cell and its manufacturing method

Also Published As

Publication number Publication date
JPH10144302A (en) 1998-05-29

Similar Documents

Publication Publication Date Title
KR100446828B1 (en) Graphite particles and lithium secondary battery using them as negative electrode
JP4861120B2 (en) Negative electrode active material, production method thereof, and negative electrode and lithium battery employing the same
KR100889451B1 (en) Preparation method of electrode active material comprising nano particle with advanced dispersibility
KR101009625B1 (en) Negative active material for lithium secondary battery, and lithium secondary battery including same
KR101006212B1 (en) NEGATIVE ELECTRODE FOR NON-AQUEOUS SECONDARY CELL, NON-AQUEOUS SECONDARY CELL COMPRISING THE SAME, METHOD FOR PRODUCING THE SAME AND ELECTRONIC DEVICE COMPRISING NON-x
KR20130107597A (en) Positive active material for lithium ion secondary battery and lithium ion secondary battery including the same
JP2007173134A (en) Material for electrode of lithium ion battery, slurry for forming electrode of lithium ion battery, and lithium ion battery
CN103762335B (en) Lithium titanate electrode plate and lithium ion battery
JP3456354B2 (en) Method for producing electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the electrode
JPH10144298A (en) Lithium secondary battery
JPH11283623A (en) Lithium ion battery and its manufacture
JPH09213309A (en) Manufacture of positive electrode for lithium secondary cell and lithium secondary cell
JP2004234977A (en) Positive electrode material for lithium secondary battery, manufacturing method of same, and lithium secondary battery using same
US10115963B2 (en) Negative electrode material for secondary battery and secondary battery using the same
JP3409956B2 (en) Method for producing electrode for lithium ion battery and lithium ion battery using the electrode
JP2002313324A (en) Anode for use in lithium metal dispersed system secondary battery
JPH06111818A (en) Carbon negative electrode for nonaqueous electrolyte secondary battery
JP3052760B2 (en) Non-aqueous electrolyte secondary battery
JP2001126718A (en) Method for manufacturing electrode for nonaqueous electrolytic cell and the nonaqueous electrolytic cell
JP4971646B2 (en) Method for producing positive electrode mixture-containing composition, method for producing negative electrode mixture-containing composition, method for producing positive electrode for battery, method for producing negative electrode for battery, non-aqueous secondary battery and method for producing the same
JPH07211320A (en) Positive mix and battery using the same
JP3582823B2 (en) Positive electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP4267885B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode using the negative electrode material, and lithium ion secondary battery
JPH09306546A (en) Positive electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US20200358080A1 (en) Negative electrode active material for solid battery, negative electrode using the active material, and solid battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10

EXPY Cancellation because of completion of term