JPH07211320A - Positive mix and battery using the same - Google Patents

Positive mix and battery using the same

Info

Publication number
JPH07211320A
JPH07211320A JP6003884A JP388494A JPH07211320A JP H07211320 A JPH07211320 A JP H07211320A JP 6003884 A JP6003884 A JP 6003884A JP 388494 A JP388494 A JP 388494A JP H07211320 A JPH07211320 A JP H07211320A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode mixture
battery
solid electrolyte
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6003884A
Other languages
Japanese (ja)
Other versions
JP3399614B2 (en
Inventor
Yasumasa Nakajima
保正 中嶋
Hiroshi Imachi
宏 井町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP00388494A priority Critical patent/JP3399614B2/en
Publication of JPH07211320A publication Critical patent/JPH07211320A/en
Application granted granted Critical
Publication of JP3399614B2 publication Critical patent/JP3399614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase active material filling density per positive mix volume and energy density per battery volume. CONSTITUTION:A positive mix contains a positive active material, a conductive material, and an ion-conductive polymer solid electrolyte. The conductive material is made of carbon fibers with a diameter of 0.08-10mum and aspect ratio of 10 or more. A battery uses this positive mix.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質電池、特に
リチウム固体電解質電池およびその正極合剤に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte battery, particularly a lithium solid electrolyte battery and its positive electrode mixture.

【0002】[0002]

【従来の技術】固体電解質電池、リチウム固体電解質電
池として正極活物質にカルコゲン化合物、負極に金属リ
チウム、炭素質材料などを用いた一次電池および二次電
池がある。この様な電池の構成は、正極活物質粒子と導
電剤であるアセチレンブラックなどの炭素粒子、そして
それぞれの粒子の結着剤およびイオン伝導性物質として
イオン伝導性高分子固体電解質材料などを混合してペー
スト状にして、金属基板に塗布し、前記イオン伝導性高
分子固体電解質材料をキュアリングしてシート状とした
ものを正極とし、前記イオン伝導性固体電解質からなる
セパレータを介して負極である金属基板に金属リチウム
シートや炭素質材料を用いた合剤を張り合わせたものま
たは塗布したものを重ね合わせたものの周縁部に封口剤
を充填して電池としていた。その際に用いられる導電剤
としては、アセチレンブラック以外に黒鉛などがある。
2. Description of the Related Art As solid electrolyte batteries and lithium solid electrolyte batteries, there are primary batteries and secondary batteries using a chalcogen compound as a positive electrode active material and metallic lithium, a carbonaceous material or the like as a negative electrode. Such a battery is constructed by mixing positive electrode active material particles, carbon particles such as acetylene black as a conductive agent, and a binder for each particle and an ion conductive polymer solid electrolyte material as an ion conductive material. To form a paste, which is applied to a metal substrate and cured into a sheet shape by curing the ion conductive polymer solid electrolyte material as a positive electrode, and a negative electrode via a separator made of the ion conductive solid electrolyte. A battery was obtained by filling the periphery of a metal substrate with a metal lithium sheet or a mixture made of a carbonaceous material bonded or coated with the mixture and filling the peripheral portion with a sealing agent. As the conductive agent used at that time, graphite and the like other than acetylene black are used.

【0003】[0003]

【発明が解決しようとする課題】しかし、アセチレンブ
ラックは、導電に適した鎖状の構造を持っていて導電性
は優れているが比表面積が大きく吸液特性が大きすぎて
正極合剤中のイオン伝導性高分子固体電解質材料を多量
に吸液する。そのためにイオン伝導性高分子固体電解質
は正極活物質および導電剤の結着剤も兼ねているので吸
液されることによりその結着特性が発揮されにくく、結
着特性を発揮させるために過剰のイオン伝導性高分子固
体電解質を添加しなければならず、正極合剤体積当りの
活物質充填密度が低くなってしまう。一方、黒鉛は吸液
特性が小さいためにイオン伝導性高分子固体電解質の吸
液量が小さく、その結着特性が容易に発揮され正極合剤
体積当りの活物質充填密度は向上するが構造が粒状で正
極合剤中では分散された状態で存在するために導電に必
要な導電剤が連鎖した構造が得られにくく、正極合剤中
の導電性はよくない。そのために放電における正極活物
質利用率の向上には過剰の黒鉛を添加しなければなら
ず、正極合剤体積当りの活物質充填密度は低くなってし
まう。また、二次電池の場合はさらに、充放電を繰り返
すことにより電極の膨張、収縮が起こり集電不良が生じ
充分な充放電サイクル特性が得られない。
However, acetylene black has a chain structure suitable for electrical conductivity and is excellent in electrical conductivity, but has a large specific surface area and too large liquid-absorbing property, and therefore acetylene black is contained in the positive electrode mixture. Absorb a large amount of ion conductive polymer solid electrolyte material. Therefore, since the ion conductive polymer solid electrolyte also serves as a binder for the positive electrode active material and the conductive agent, it is difficult to exert its binding property by being absorbed, and the excess amount is required to exert the binding property. Since the ion conductive polymer solid electrolyte must be added, the packing density of the active material per volume of the positive electrode mixture becomes low. On the other hand, since graphite has a small liquid absorption property, the liquid absorption amount of the ion conductive polymer solid electrolyte is small, and its binding property is easily exhibited, and the active material packing density per positive electrode mixture volume is improved, but the structure is Since it is granular and exists in a dispersed state in the positive electrode mixture, it is difficult to obtain a structure in which a conductive agent necessary for conduction is chained, and the conductivity in the positive electrode mixture is not good. Therefore, in order to improve the utilization rate of the positive electrode active material in discharging, it is necessary to add an excessive amount of graphite, and the packing density of the active material per volume of the positive electrode mixture becomes low. Further, in the case of a secondary battery, further repeated charging and discharging causes expansion and contraction of the electrodes, resulting in poor current collection, and sufficient charge / discharge cycle characteristics cannot be obtained.

【0004】本発明は、固体電解質電池の正極合剤に関
し、導電剤に炭素繊維を用いることによって正極合剤の
導電性を低下させることなく導電剤によるイオン伝導性
高分子固体電解質の吸液量を小さくすることにより正極
合剤体積当りの活物質充填密度が向上し電池体積当りの
エネルギー密度をより高くしようとするものである。さ
らに、二次電池の場合充放電サイクル特性を向上しよう
とするものである。
The present invention relates to a positive electrode mixture for a solid electrolyte battery, and by using carbon fibers as a conductive agent, the liquid absorption amount of an ion conductive polymer solid electrolyte by the conductive agent without lowering the conductivity of the positive electrode mixture. It is intended to reduce the energy density per battery volume by decreasing the active material packing density per positive electrode mixture volume. Furthermore, in the case of a secondary battery, it is intended to improve charge / discharge cycle characteristics.

【0005】[0005]

【課題を解決するための手段】本発明の正極合剤は、正
極活物質、導電剤およびイオン伝導性高分子固体電解質
を含有するものであって、前記導電剤が直径0.08〜
10μm、アスペクト比10以上の炭素繊維であること
を特徴とするものである。
The positive electrode mixture of the present invention contains a positive electrode active material, a conductive agent and an ion conductive polymer solid electrolyte, and the conductive agent has a diameter of 0.08 to
It is characterized in that it is a carbon fiber of 10 μm and an aspect ratio of 10 or more.

【0006】また、炭素繊維の添加量は、正極活物質と
炭素繊維を合わせた重量を100重量%としたとき、
0.5〜20重量%でその効果は発揮される。0.5重
量%より少ない添加量では、導電剤の量が不足し正極合
剤中の導電性が充分でない。20重量%より多い添加量
では、正極合剤体積当たりの活物質充填密度が低下して
しまう。さらに、炭素繊維の直径が0.08〜10μm
が好ましい。0.08μm未満だと直径が小さく炭素繊
維の強度が低下し正極合剤混合中に炭素繊維が折れてし
まう。反対に10μmを越えると正極合剤の炭素繊維の
本数が少なくなり、正極活物質と炭素繊維の接触機会が
少なくなり導電性が落ちてしまう。
The amount of carbon fiber added is 100% by weight based on the total weight of the positive electrode active material and the carbon fiber.
The effect is exhibited at 0.5 to 20% by weight. If the added amount is less than 0.5% by weight, the amount of the conductive agent is insufficient and the conductivity in the positive electrode mixture is insufficient. If the added amount is more than 20% by weight, the active material packing density per volume of the positive electrode mixture is lowered. Further, the diameter of the carbon fiber is 0.08 to 10 μm.
Is preferred. If it is less than 0.08 μm, the diameter is small and the strength of the carbon fiber is lowered, and the carbon fiber is broken during the mixing of the positive electrode mixture. On the other hand, when it exceeds 10 μm, the number of carbon fibers of the positive electrode mixture is reduced, the chance of contact between the positive electrode active material and the carbon fibers is reduced, and the conductivity is lowered.

【0007】さらに、アスペクト比は、10以上でその
効果は発揮される。10未満だと導電剤として黒鉛を添
加した場合と同じ現象が起こり上記で述べたように正極
合剤中の導電性が低下する。
Further, the effect is exhibited when the aspect ratio is 10 or more. When it is less than 10, the same phenomenon as in the case where graphite is added as a conductive agent occurs, and the conductivity in the positive electrode mixture is lowered as described above.

【0008】また、正極合剤中の炭素繊維の方向性は問
わない。
The orientation of the carbon fibers in the positive electrode mixture does not matter.

【0009】また、本発明における正極活物質は一次電
池としてMnO2 等、二次電池としてLiCoO2 、L
iV3 8 、LiMn2 4 、V2 5 、LiNiO2
等があるが、これらには限定されない。
The positive electrode active material in the present invention is MnO 2 or the like as a primary battery, and LiCoO 2 or L as a secondary battery.
iV 3 O 8, LiMn 2 O 4, V 2 O 5, LiNiO 2
Etc., but is not limited to these.

【0010】[0010]

【作用】本発明の正極合剤は、その正極合剤中の導電剤
として上記の炭素繊維を使用することによりイオン伝導
性高分子固体電解質材料が導電剤による吸液量を少なく
することができるため正極合剤体積当りの活物質充填密
度が向上し、また炭素繊維の直径が0.08μm以上で
あれば正極合剤混合時の炭素繊維の粉砕もなく、10μ
m以下であれば炭素繊維の本数が不足して正極合剤の導
電性が低下することもない。また炭素繊維のアスペクト
比が10以上あればその構造が繊維状のために正極合剤
中の導電に必要な炭素繊維の連鎖した構造が得られやす
く0.5〜20重量%の添加量で電池として放電におけ
る正極活物質利用率を向上させることができ電池体積当
りのエネルギー密度をより高くすることができる。また
二次電池の場合、炭素繊維が可とう性を持つため充放電
による電極の膨張、収縮を吸収し集電不良を抑えること
ができるため充放電サイクル特性を向上させることがで
きる。
In the positive electrode mixture of the present invention, by using the above-mentioned carbon fiber as the conductive agent in the positive electrode mixture, the amount of the ion conductive polymer solid electrolyte material absorbed by the conductive agent can be reduced. Therefore, the packing density of the active material per volume of the positive electrode mixture is improved, and if the diameter of the carbon fiber is 0.08 μm or more, there is no crushing of the carbon fiber when the positive electrode mixture is mixed,
If it is m or less, the number of carbon fibers will not be insufficient and the conductivity of the positive electrode mixture will not be lowered. If the carbon fiber has an aspect ratio of 10 or more, since the structure is fibrous, it is easy to obtain a chained structure of carbon fibers necessary for conductivity in the positive electrode mixture, and the battery is added at an amount of 0.5 to 20% by weight. As a result, the utilization rate of the positive electrode active material in discharge can be improved, and the energy density per battery volume can be further increased. Further, in the case of a secondary battery, since the carbon fiber has flexibility, expansion and contraction of the electrode due to charge and discharge can be absorbed and current collection failure can be suppressed, so that charge and discharge cycle characteristics can be improved.

【0011】[0011]

【実施例】以下本発明の実施例を説明する。 (実施例1)正極合剤中の導電剤としてアスペクト比が
20、100、500の3種類の炭素繊維を用いて作製
したものについて説明する。なお、用いた炭素繊維の平
均繊維径は、すべて0.15μmである。
EXAMPLES Examples of the present invention will be described below. (Example 1) A description will be given of one prepared by using three kinds of carbon fibers having aspect ratios of 20, 100 and 500 as the conductive agent in the positive electrode mixture. The average fiber diameters of the carbon fibers used are all 0.15 μm.

【0012】一次電池用正極活物質としてMnO2 、1
00gに導電剤として上記炭素繊維10gを混合し、さ
らに結着剤としてイオン伝導性高分子固体電解質材料5
0g、反応開始剤としてアゾビスイソブチロニトリル
0.025gを混合して正極合剤ペーストを得た。ま
た、上記イオン伝導性高分子固体電解質材料はエチレン
オキシドのモノアクリレート、同ジアクリレート、同ト
リアクリレートからなる混合物をプロピレンカーボネー
トにLiClO4 を溶解したものに溶解してなるもので
ある。
MnO 2 , 1 as a positive electrode active material for primary batteries
100 g of the above carbon fiber as a conductive agent is mixed with 00 g, and an ion conductive polymer solid electrolyte material 5 is further used as a binder.
0 g and 0.025 g of azobisisobutyronitrile as a reaction initiator were mixed to obtain a positive electrode mixture paste. The ion conductive polymer solid electrolyte material is obtained by dissolving a mixture of ethylene oxide monoacrylate, diacrylate and triacrylate in LiClO 4 in propylene carbonate.

【0013】次に上記正極合剤ペーストをステンレス基
板上にキャストし不活性ガス雰囲気中で100゜Cで1
時間放置することにより硬化させステンレス基板上にシ
ート状の正極合剤を得た。得られた正極合剤の厚さは約
100μmであった。
Next, the above positive electrode mixture paste is cast on a stainless steel substrate, and the paste is cast at 100 ° C. in an inert gas atmosphere.
The mixture was left to stand for a period of time to be cured to obtain a sheet-shaped positive electrode mixture on a stainless steel substrate. The thickness of the obtained positive electrode mixture was about 100 μm.

【0014】次にアゾビスイソブチロニトリル0.05
gを上記イオン伝導性高分子固体電解質材料100gに
溶解したものを上記正極合剤上にキャストし上記と同様
に硬化させて、上記正極合剤上にセパレータとしてイオ
ン伝導性高分子固体電解質被膜を形成した。得られた被
膜の厚さは、20μmであった。
Next, azobisisobutyronitrile 0.05
What was dissolved in 100 g of the above ion conductive polymer solid electrolyte material was cast on the above positive electrode mixture and cured in the same manner as above, and an ion conductive polymer solid electrolyte film was formed as a separator on the above positive electrode mixture. Formed. The thickness of the obtained coating was 20 μm.

【0015】以上のようにして得たステンレス基板と正
極合剤とイオン伝導性高分子固体電解質被膜とからなる
複合シートを、1cm×1cmの大きさで切り出し、こ
の複合シートのイオン伝導性高分子固体電解質被膜上
に、厚さ100μmの金属リチウムを負極として取り付
けて、図1に示す構造の、即ちステンレス基板1と正極
合剤2とイオン伝導性高分子固体電解質被膜3と負極4
とステンレス基板5とからなる電池を作製した。
A composite sheet consisting of the stainless steel substrate, the positive electrode mixture and the ion conductive polymer solid electrolyte coating obtained as described above is cut into a size of 1 cm × 1 cm, and the ion conductive polymer of this composite sheet is cut out. Metal lithium having a thickness of 100 μm was attached as a negative electrode on the solid electrolyte coating, and the structure shown in FIG. 1, namely, the stainless steel substrate 1, the positive electrode mixture 2, the ion conductive polymer solid electrolyte coating 3, and the negative electrode 4 were used.
A battery composed of the stainless steel substrate 5 and

【0016】得られた電池に1kg/cm2 の荷重を掛
け、その状態で20゜Cにて0.1mA/cm2 の定電
流で放電終止電圧2.0Vで放電試験を行った。
A load of 1 kg / cm 2 was applied to the obtained battery, and in that state, a discharge test was conducted at a constant current of 0.1 mA / cm 2 at 20 ° C. and a discharge end voltage of 2.0V.

【0017】なお、比較例として、導電剤として従来の
アセチレンブラックを添加した正極合剤を用いた電池も
上記と同様の方法で作製した。ただし、正極合剤ペース
ト作製においてイオン伝導性高分子固体電解質は65
g、アゾビスイソブチロニトリルは0.033g必要で
あった以外は、上記と同様である。
As a comparative example, a battery using a positive electrode mixture containing a conventional acetylene black as a conductive agent was also manufactured by the same method as described above. However, the amount of the ion conductive polymer solid electrolyte was 65
g and azobisisobutyronitrile were the same as above except that 0.033 g was required.

【0018】以上のように導電剤の異なる4種類の電池
の正極合剤体積当りの活物質充填密度および放電特性か
ら電池体積当りのエネルギー密度の比較を行った。
As described above, the energy density per battery volume was compared from the packing density of the active material per positive electrode mixture volume and the discharge characteristics of the four types of batteries having different conductive agents.

【0019】表1に放電試験における正極活物質利用
率、正極合剤体積当りの活物質充填密度および電池体積
当りのエネルギー密度を示す。
Table 1 shows the positive electrode active material utilization rate in the discharge test, the active material packing density per positive electrode mixture volume, and the energy density per battery volume.

【0020】[0020]

【表1】 [Table 1]

【0021】表1に示すように導電剤としてアセチレン
ブラックを使用した従来の電池は、利用率はアスペクト
比が20の炭素繊維を使用した本発明の電池と比較して
利用率は良いが活物質充填密度では炭素繊維を使用した
本発明の3種類の電池と比較してかなり劣っている。結
果としてエネルギー密度では、本発明の3種類の電池と
比較して劣っていることが分かる。
As shown in Table 1, the conventional battery using acetylene black as the conductive agent has a higher utilization ratio than the battery of the present invention using the carbon fiber having an aspect ratio of 20. The packing density is considerably inferior to the three types of batteries of the present invention using carbon fiber. As a result, it can be seen that the energy density is inferior to the three types of batteries of the present invention.

【0022】(実施例2)二次電池用正極活物質として
LiCoO2 、100gに導電剤として上記炭素繊維1
0gを混合し、さらに結着剤としてイオン伝導性高分子
固体電解質材料50g、反応開始剤としてアゾビスイソ
ブチロニトリル0.025gを混合して正極合剤ペース
トを得た。また、上記イオン伝導性高分子固体電解質材
料はエチレンオキシドのモノアクリレート、同ジアクリ
レート、同トリアクリレートからなる混合物をエチレン
カーボネートおよびジエチルカーボネートにLiPF6
を溶解したものに溶解してなるものである。
Example 2 LiCoO 2 as a positive electrode active material for a secondary battery, 100 g of the above carbon fiber 1 as a conductive agent
0 g was mixed, 50 g of an ion conductive polymer solid electrolyte material was further mixed as a binder, and 0.025 g of azobisisobutyronitrile was mixed as a reaction initiator to obtain a positive electrode mixture paste. The ion conductive polymer solid electrolyte material is a mixture of ethylene oxide monoacrylate, diacrylate, and triacrylate, which is mixed with ethylene carbonate and diethyl carbonate in LiPF 6
It is the one obtained by dissolving in.

【0023】次に上記正極合剤ペーストをアルミニウム
基板上にキャストし不活性ガス雰囲気中で100゜Cで
1時間放置することにより硬化させアルミニウム基板上
にシート状の正極合剤を得た。得られた正極合剤の厚さ
は約100μmであった。
Next, the above positive electrode material mixture paste was cast on an aluminum substrate and allowed to stand in an inert gas atmosphere at 100 ° C. for 1 hour to be cured to obtain a sheet-shaped positive electrode material mixture. The thickness of the obtained positive electrode mixture was about 100 μm.

【0024】次にアゾビスイソブチロニトリル0.05
gを上記イオン伝導性高分子固体電解質材料100gに
溶解したものを上記正極合剤上にキャストし上記と同様
に硬化させて、上記正極合剤上にセパレータとしてイオ
ン伝導性高分子固体電解質被膜を形成した。得られた被
膜の厚さは、20μmであった。
Next, azobisisobutyronitrile 0.05
What was dissolved in 100 g of the above ion conductive polymer solid electrolyte material was cast on the above positive electrode mixture and cured in the same manner as above, and an ion conductive polymer solid electrolyte film was formed as a separator on the above positive electrode mixture. Formed. The thickness of the obtained coating was 20 μm.

【0025】以上のようにして得たアルミニウム基板と
正極合剤とイオン伝導性高分子固体電解質被膜とからな
る複合シートを、1cm×1cmの大きさで切り出し、
この複合シートのイオン伝導性高分子固体電解質被膜上
に、厚さ100μmの炭素質材料からなる負極合剤を取
り付けて、図2に示す構造の、即ちアルミニウム基板6
と正極合剤7とイオン伝導性高分子固体電解質被膜8と
負極合剤9と銅基板10とからなる電池を作製した。
The composite sheet comprising the aluminum substrate, the positive electrode mixture and the ion conductive polymer solid electrolyte coating obtained as described above was cut into a size of 1 cm × 1 cm,
A negative electrode mixture made of a carbonaceous material having a thickness of 100 μm was attached on the ion conductive polymer solid electrolyte coating of this composite sheet to have the structure shown in FIG.
Then, a battery composed of the positive electrode mixture 7, the ion conductive polymer solid electrolyte coating 8, the negative electrode mixture 9 and the copper substrate 10 was prepared.

【0026】得られた電池に1kg/cm2 の荷重を掛
け、その状態で20゜Cにて充放電試験を行った。充電
は、定電流定電圧充電であり、定電流の電流密度は1m
A/cm2 、終止電圧4.2V、定電圧充電は電圧が
4.2Vで5時間行った。また放電は定電流放電で電流
密度は1mA/cm2 で放電終止電圧は3.0Vで放電
試験を行った。
A load of 1 kg / cm 2 was applied to the obtained battery, and a charge / discharge test was carried out at 20 ° C in that state. Charging is constant current constant voltage charging, the current density of constant current is 1m
A / cm 2 , a final voltage of 4.2V, and constant voltage charging was performed at a voltage of 4.2V for 5 hours. The discharge was a constant current discharge, a current density was 1 mA / cm 2 , and a discharge end voltage was 3.0 V, and a discharge test was conducted.

【0027】なお、比較例として、導電剤として従来の
アセチレンブラックを添加した正極合剤を用いた電池も
上記と同様の方法で作製した。ただし、正極合剤ペース
ト作製においてイオン伝導性高分子固体電解質は65
g、アゾビスイソブチロニトリルは0.033g必要で
あった以外は、上記と同様である。
As a comparative example, a battery using a positive electrode mixture containing conventional acetylene black as a conductive agent was also manufactured by the same method as described above. However, the amount of the ion conductive polymer solid electrolyte was 65
g and azobisisobutyronitrile were the same as above except that 0.033 g was required.

【0028】以上のように導電剤の異なる4種類の電池
の正極合剤体積当りの活物質充填密度、また初期放電容
量および初期放電容量に対する100サイクル目の放電
容量の容量保持率から比較を行った。
As described above, comparison was made from the packing density of the active material per volume of the positive electrode mixture of four types of batteries having different conductive agents, and the initial discharge capacity and the capacity retention rate of the discharge capacity at the 100th cycle with respect to the initial discharge capacity. It was

【0029】表2に充放電試験における初期放電容量お
よび初期放電容量に対する100サイクル目の放電容量
の容量保持率、正極合剤体積当りの活物質充填密度を示
す。放電容量はここでは正極活物質1g当りの容量に換
算している。
Table 2 shows the initial discharge capacity in the charge / discharge test, the capacity retention ratio of the discharge capacity at the 100th cycle to the initial discharge capacity, and the active material packing density per positive electrode mixture volume. Here, the discharge capacity is converted into the capacity per 1 g of the positive electrode active material.

【0030】[0030]

【表2】 [Table 2]

【0031】表2に示すように導電剤としてアセチレン
ブラックを使用した従来の電池は、初期放電容量はアス
ペクト比が20の炭素繊維を使用した本発明の電池と比
較して差はないが活物質充填密度では炭素繊維を使用し
た本発明の3種類の電池と比較してかなり劣っている。
また、100サイクル後の容量保持率についても67%
にまで低下する。一方、導電剤として炭素繊維を含む正
極合剤を用いた電池ではいずれも従来例と比較すると正
極合剤体積当りの活物質充填密度が大きく向上し、充放
電サイクル特性も100サイクル後の放電容量保持率も
大幅に向上している。
As shown in Table 2, the conventional battery using acetylene black as the conductive agent has the same initial discharge capacity as that of the battery of the present invention using the carbon fiber having the aspect ratio of 20, but the active material. The packing density is considerably inferior to the three types of batteries of the present invention using carbon fiber.
Also, the capacity retention rate after 100 cycles is 67%.
Fall to. On the other hand, in all the batteries using the positive electrode mixture containing carbon fiber as the conductive agent, the active material packing density per positive electrode mixture volume was significantly improved compared to the conventional example, and the charge / discharge cycle characteristics were also the discharge capacity after 100 cycles. The retention rate has also improved significantly.

【0032】[0032]

【発明の効果】以上のことから、実施例1および2から
導電剤として炭素繊維を用いた正極合剤では導電剤によ
るイオン伝導性高分子固体電解質材料の吸液量を少なく
することができ、正極活物質、導電剤の結着特性を低下
させることなく正極合剤を作製できる。それにより正極
合剤体積当りの活物質充填密度を向上させることができ
る。また炭素繊維のアスペクト比が10以上あればその
構造が繊維状のために正極合剤中の導電に必要な導電剤
が連鎖した構造が得られやすく0.5〜20重量%の添
加量で電池として放電における正極活物質利用率を向上
させることができ電池体積当りのエネルギー密度をより
高くすることができる。また二次電池の場合、炭素繊維
が可とう性を持つため充放電による電極の膨張、収縮を
吸収し集電不良を抑えることができるため充放電サイク
ル特性を向上させることができる。
From the above, in the positive electrode mixture using carbon fibers as the conductive agent from Examples 1 and 2, it is possible to reduce the amount of the ion conductive polymer solid electrolyte material absorbed by the conductive agent. The positive electrode mixture can be produced without deteriorating the binding characteristics of the positive electrode active material and the conductive agent. Thereby, the packing density of the active material per volume of the positive electrode mixture can be improved. If the carbon fiber has an aspect ratio of 10 or more, since the structure is fibrous, it is easy to obtain a structure in which a conductive agent necessary for conductivity in the positive electrode mixture is chained, and a battery is added in an amount of 0.5 to 20% by weight. As a result, the utilization rate of the positive electrode active material in discharge can be improved, and the energy density per battery volume can be further increased. Further, in the case of a secondary battery, since the carbon fiber has flexibility, expansion and contraction of the electrode due to charge and discharge can be absorbed and current collection failure can be suppressed, so that charge and discharge cycle characteristics can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の正極合剤を用いた電池の断
面図である。
FIG. 1 is a cross-sectional view of a battery using a positive electrode mixture of Example 1 of the present invention.

【図2】本発明の実施例2の正極合剤を用いた電池の断
面図である。
FIG. 2 is a sectional view of a battery using the positive electrode mixture of Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 ステンレス基板 2 正極合剤 3 イオン伝導性高分子固体電解質被膜 4 負極 5 ステンレス基板 6 アルミニウム基板 7 正極合剤 8 イオン伝導性高分子固体電解質被膜 9 負極合剤 10 銅基板 1 Stainless Steel Substrate 2 Positive Electrode Mixture 3 Ion Conductive Polymer Solid Electrolyte Coating 4 Negative Electrode 5 Stainless Steel Substrate 6 Aluminum Substrate 7 Positive Electrode Mixture 8 Ion Conductive Polymer Solid Electrolyte Coating 9 Negative Electrode Mixture 10 Copper Substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質、導電剤およびイオン伝導性
高分子固体電解質を含有する正極合剤であって、前記導
電剤が直径0.08〜10μm、アスペクト比10以上
の炭素繊維からなることを特徴とする正極合剤。
1. A positive electrode mixture containing a positive electrode active material, a conductive agent, and an ion conductive polymer solid electrolyte, wherein the conductive agent comprises carbon fibers having a diameter of 0.08 to 10 μm and an aspect ratio of 10 or more. A positive electrode mixture characterized by:
【請求項2】 前記炭素繊維の添加量が、正極活物質と
炭素繊維を合わせた重量を100重量%としたとき、
0.5〜20重量%であることを特徴とする請求項1記
載の正極合剤。
2. The addition amount of the carbon fibers is 100% by weight based on the total weight of the positive electrode active material and the carbon fibers.
It is 0.5 to 20 weight%, The positive electrode mixture of Claim 1 characterized by the above-mentioned.
【請求項3】 請求項1又は請求項2記載の正極合剤を
用いたことを特徴とする電池。
3. A battery comprising the positive electrode mixture according to claim 1 or 2.
JP00388494A 1994-01-19 1994-01-19 Positive electrode mixture and battery using the same Expired - Fee Related JP3399614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00388494A JP3399614B2 (en) 1994-01-19 1994-01-19 Positive electrode mixture and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00388494A JP3399614B2 (en) 1994-01-19 1994-01-19 Positive electrode mixture and battery using the same

Publications (2)

Publication Number Publication Date
JPH07211320A true JPH07211320A (en) 1995-08-11
JP3399614B2 JP3399614B2 (en) 2003-04-21

Family

ID=11569618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00388494A Expired - Fee Related JP3399614B2 (en) 1994-01-19 1994-01-19 Positive electrode mixture and battery using the same

Country Status (1)

Country Link
JP (1) JP3399614B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856898A3 (en) * 1997-02-04 1999-06-30 Mitsubishi Denki Kabushiki Kaisha Electrode for lithium ion secondary battery and lithium ion secondary battery using the same
WO2002089236A1 (en) * 2001-04-24 2002-11-07 Matsushita Electric Industrial Co., Ltd. Secondary cell and production method thereof
JP2004220909A (en) * 2003-01-15 2004-08-05 Mitsubishi Materials Corp Positive electrode activator and positive electrode using the same, lithium ion battery and lithium polymer battery using positive electrode
WO2005011028A1 (en) * 2003-07-28 2005-02-03 Showa Denko K.K. High density electrode and battery using the electrode
JP2016106360A (en) * 2010-03-22 2016-06-16 アンプリウス、インコーポレイテッド Electrode used in lithium ion battery
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
JPWO2017104405A1 (en) * 2015-12-16 2018-09-20 富士フイルム株式会社 Electrode material, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
US10461359B2 (en) 2009-05-27 2019-10-29 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
JP2020524359A (en) * 2017-05-30 2020-08-13 ナノテク インストゥルメンツ, インコーポレイテッドNanotek Instruments, Inc. A conformable alkali metal battery with a conductive deformable quasi-solid polymer electrode
WO2020170048A1 (en) * 2019-02-20 2020-08-27 深圳智科微铝科技有限公司 Electrode of power storage device using solid electrolyte, power storage device, and production method for positive electrode layer or negative electrode layer of power storage device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856898A3 (en) * 1997-02-04 1999-06-30 Mitsubishi Denki Kabushiki Kaisha Electrode for lithium ion secondary battery and lithium ion secondary battery using the same
WO2002089236A1 (en) * 2001-04-24 2002-11-07 Matsushita Electric Industrial Co., Ltd. Secondary cell and production method thereof
US7094500B2 (en) 2001-04-24 2006-08-22 Matsushita Electric Industrial Co., Ltd. Secondary battery
KR100827911B1 (en) * 2001-04-24 2008-05-07 마쯔시다덴기산교 가부시키가이샤 Secondary cell and production method thereof
JP2004220909A (en) * 2003-01-15 2004-08-05 Mitsubishi Materials Corp Positive electrode activator and positive electrode using the same, lithium ion battery and lithium polymer battery using positive electrode
WO2005011028A1 (en) * 2003-07-28 2005-02-03 Showa Denko K.K. High density electrode and battery using the electrode
US10461359B2 (en) 2009-05-27 2019-10-29 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
JP2016106360A (en) * 2010-03-22 2016-06-16 アンプリウス、インコーポレイテッド Electrode used in lithium ion battery
JPWO2017104405A1 (en) * 2015-12-16 2018-09-20 富士フイルム株式会社 Electrode material, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
US10693190B2 (en) 2015-12-16 2020-06-23 Fujifilm Corporation Material for electrode, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery
JP2020524359A (en) * 2017-05-30 2020-08-13 ナノテク インストゥルメンツ, インコーポレイテッドNanotek Instruments, Inc. A conformable alkali metal battery with a conductive deformable quasi-solid polymer electrode
WO2020170048A1 (en) * 2019-02-20 2020-08-27 深圳智科微铝科技有限公司 Electrode of power storage device using solid electrolyte, power storage device, and production method for positive electrode layer or negative electrode layer of power storage device

Also Published As

Publication number Publication date
JP3399614B2 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
EP0982787A1 (en) Non-aqueous electrolyte secondary cell, negative electrode therefor, and method of producing negative electrode
JP5344884B2 (en) Lithium secondary battery
JP2001052747A (en) Lithium secondary battery
JP2000173612A (en) Nonaqueous electrolyte secondary battery and negative electrode material thereof
KR100313633B1 (en) Secondary battery
JPH10144298A (en) Lithium secondary battery
JP3615472B2 (en) Non-aqueous electrolyte battery
JPH07201316A (en) Nonaqueous electrolyte secondary battery
JP3399614B2 (en) Positive electrode mixture and battery using the same
JP3456354B2 (en) Method for producing electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the electrode
JP3052760B2 (en) Non-aqueous electrolyte secondary battery
JPH1131508A (en) Nonaqueous electrolyte secondary battery
JPH1012273A (en) Nonaqueous electrolyte secondary battery
KR20230105655A (en) Composite negative active material ball
JP2000195518A (en) Nonaqueous electrolyte secondary battery
JPH11126600A (en) Lithium ion secondary battery
JP2002117834A (en) Positive electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2023520193A (en) Negative electrode active material for lithium secondary battery, negative electrode and lithium secondary battery
CN109411759B (en) High-temperature lithium ion power battery and pre-formation method thereof
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JPH08138678A (en) Positive electrode mix
JPH07201315A (en) Nonaqueous electrolyte secondary battery
JPH113706A (en) Lithium secondary battery
KR100706188B1 (en) Lithium metal dispersion in secondary battery anodes
CN116705987B (en) Negative plate, electrochemical device and preparation method of electrochemical device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees